Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family

Background Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling stage of their life, while they also occur as pathogenic bacteria of the urogenital tract. The pan-genome of the genus Bifidobacterium...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 18; no. 1; pp. 568 - 15
Main Authors Lugli, Gabriele Andrea, Milani, Christian, Turroni, Francesca, Duranti, Sabrina, Mancabelli, Leonardo, Mangifesta, Marta, Ferrario, Chiara, Modesto, Monica, Mattarelli, Paola, Jiří, Killer, van Sinderen, Douwe, Ventura, Marco
Format Journal Article
LanguageEnglish
Published London BioMed Central 01.08.2017
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/s12864-017-3955-4

Cover

Abstract Background Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling stage of their life, while they also occur as pathogenic bacteria of the urogenital tract. The pan-genome of the genus Bifidobacterium has been explored in detail in recent years, though genomics of the Bifidobacteriaceae family has not yet received much attention. Here, a comparative genomic analyses of 67 Bifidobacteriaceae (sub) species including all currently recognized genera of this family, i.e., Aeriscardovia , Alloscardovia , Bifidobacterium , Bombiscardovia , Gardnerella , Neoscardovia , Parascardovia , Pseudoscardovia and Scardovia, was performed. Furthermore, in order to include a representative of each of the 67 (currently recognized) (sub) species belonging to the Bifidobacteriaceae family, we sequenced the genomes of an additional 11 species from this family, accomplishing the most extensive comparative genomic analysis performed within this family so far. Results Phylogenomics-based analyses revealed the deduced evolutionary pathway followed by each member of the Bifidobacteriaceae family, highlighting Aeriscardovia aeriphila LMG 21773 as the deepest branch in the evolutionary tree of this family. Furthermore, functional analyses based on genome content unveil connections between a given member of the family, its carbohydrate utilization abilities and its corresponding host. In this context, bifidobacterial (sub) species isolated from humans and monkeys possess the highest relative number of acquired glycosyl hydrolase-encoding genes, probably in order to enhance their metabolic ability to utilize different carbon sources consumed by the host. Conclusions Within the Bifidobacteriaceae family, genomics of the genus Bifidobacterium has been extensively investigated. In contrast, very little is known about the genomics of members of the other eight genera of this family. In this study, we decoded the genome sequences of each member of the Bifidobacteriaceae family. Thanks to subsequent comparative genomic and phylogenetic analyses, the deduced pan-genome of this family, as well as the predicted evolutionary development of each taxon belonging to this family was assessed.
AbstractList Background Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling stage of their life, while they also occur as pathogenic bacteria of the urogenital tract. The pan-genome of the genus Bifidobacterium has been explored in detail in recent years, though genomics of the Bifidobacteriaceae family has not yet received much attention. Here, a comparative genomic analyses of 67 Bifidobacteriaceae (sub) species including all currently recognized genera of this family, i.e., Aeriscardovia, Alloscardovia, Bifidobacterium, Bombiscardovia, Gardnerella, Neoscardovia, Parascardovia, Pseudoscardovia and Scardovia, was performed. Furthermore, in order to include a representative of each of the 67 (currently recognized) (sub) species belonging to the Bifidobacteriaceae family, we sequenced the genomes of an additional 11 species from this family, accomplishing the most extensive comparative genomic analysis performed within this family so far. Results Phylogenomics-based analyses revealed the deduced evolutionary pathway followed by each member of the Bifidobacteriaceae family, highlighting Aeriscardovia aeriphila LMG 21773 as the deepest branch in the evolutionary tree of this family. Furthermore, functional analyses based on genome content unveil connections between a given member of the family, its carbohydrate utilization abilities and its corresponding host. In this context, bifidobacterial (sub) species isolated from humans and monkeys possess the highest relative number of acquired glycosyl hydrolase-encoding genes, probably in order to enhance their metabolic ability to utilize different carbon sources consumed by the host. Conclusions Within the Bifidobacteriaceae family, genomics of the genus Bifidobacterium has been extensively investigated. In contrast, very little is known about the genomics of members of the other eight genera of this family. In this study, we decoded the genome sequences of each member of the Bifidobacteriaceae family. Thanks to subsequent comparative genomic and phylogenetic analyses, the deduced pan-genome of this family, as well as the predicted evolutionary development of each taxon belonging to this family was assessed.
Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling stage of their life, while they also occur as pathogenic bacteria of the urogenital tract. The pan-genome of the genus Bifidobacterium has been explored in detail in recent years, though genomics of the Bifidobacteriaceae family has not yet received much attention. Here, a comparative genomic analyses of 67 Bifidobacteriaceae (sub) species including all currently recognized genera of this family, i.e., Aeriscardovia, Alloscardovia, Bifidobacterium, Bombiscardovia, Gardnerella, Neoscardovia, Parascardovia, Pseudoscardovia and Scardovia, was performed. Furthermore, in order to include a representative of each of the 67 (currently recognized) (sub) species belonging to the Bifidobacteriaceae family, we sequenced the genomes of an additional 11 species from this family, accomplishing the most extensive comparative genomic analysis performed within this family so far. Phylogenomics-based analyses revealed the deduced evolutionary pathway followed by each member of the Bifidobacteriaceae family, highlighting Aeriscardovia aeriphila LMG 21773 as the deepest branch in the evolutionary tree of this family. Furthermore, functional analyses based on genome content unveil connections between a given member of the family, its carbohydrate utilization abilities and its corresponding host. In this context, bifidobacterial (sub) species isolated from humans and monkeys possess the highest relative number of acquired glycosyl hydrolase-encoding genes, probably in order to enhance their metabolic ability to utilize different carbon sources consumed by the host. Within the Bifidobacteriaceae family, genomics of the genus Bifidobacterium has been extensively investigated. In contrast, very little is known about the genomics of members of the other eight genera of this family. In this study, we decoded the genome sequences of each member of the Bifidobacteriaceae family. Thanks to subsequent comparative genomic and phylogenetic analyses, the deduced pan-genome of this family, as well as the predicted evolutionary development of each taxon belonging to this family was assessed.
Abstract Background Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling stage of their life, while they also occur as pathogenic bacteria of the urogenital tract. The pan-genome of the genus Bifidobacterium has been explored in detail in recent years, though genomics of the Bifidobacteriaceae family has not yet received much attention. Here, a comparative genomic analyses of 67 Bifidobacteriaceae (sub) species including all currently recognized genera of this family, i.e., Aeriscardovia, Alloscardovia, Bifidobacterium, Bombiscardovia, Gardnerella, Neoscardovia, Parascardovia, Pseudoscardovia and Scardovia, was performed. Furthermore, in order to include a representative of each of the 67 (currently recognized) (sub) species belonging to the Bifidobacteriaceae family, we sequenced the genomes of an additional 11 species from this family, accomplishing the most extensive comparative genomic analysis performed within this family so far. Results Phylogenomics-based analyses revealed the deduced evolutionary pathway followed by each member of the Bifidobacteriaceae family, highlighting Aeriscardovia aeriphila LMG 21773 as the deepest branch in the evolutionary tree of this family. Furthermore, functional analyses based on genome content unveil connections between a given member of the family, its carbohydrate utilization abilities and its corresponding host. In this context, bifidobacterial (sub) species isolated from humans and monkeys possess the highest relative number of acquired glycosyl hydrolase-encoding genes, probably in order to enhance their metabolic ability to utilize different carbon sources consumed by the host. Conclusions Within the Bifidobacteriaceae family, genomics of the genus Bifidobacterium has been extensively investigated. In contrast, very little is known about the genomics of members of the other eight genera of this family. In this study, we decoded the genome sequences of each member of the Bifidobacteriaceae family. Thanks to subsequent comparative genomic and phylogenetic analyses, the deduced pan-genome of this family, as well as the predicted evolutionary development of each taxon belonging to this family was assessed.
Background Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling stage of their life, while they also occur as pathogenic bacteria of the urogenital tract. The pan-genome of the genus Bifidobacterium has been explored in detail in recent years, though genomics of the Bifidobacteriaceae family has not yet received much attention. Here, a comparative genomic analyses of 67 Bifidobacteriaceae (sub) species including all currently recognized genera of this family, i.e., Aeriscardovia, Alloscardovia, Bifidobacterium, Bombiscardovia, Gardnerella, Neoscardovia, Parascardovia, Pseudoscardovia and Scardovia, was performed. Furthermore, in order to include a representative of each of the 67 (currently recognized) (sub) species belonging to the Bifidobacteriaceae family, we sequenced the genomes of an additional 11 species from this family, accomplishing the most extensive comparative genomic analysis performed within this family so far. Results Phylogenomics-based analyses revealed the deduced evolutionary pathway followed by each member of the Bifidobacteriaceae family, highlighting Aeriscardovia aeriphila LMG 21773 as the deepest branch in the evolutionary tree of this family. Furthermore, functional analyses based on genome content unveil connections between a given member of the family, its carbohydrate utilization abilities and its corresponding host. In this context, bifidobacterial (sub) species isolated from humans and monkeys possess the highest relative number of acquired glycosyl hydrolase-encoding genes, probably in order to enhance their metabolic ability to utilize different carbon sources consumed by the host. Conclusions Within the Bifidobacteriaceae family, genomics of the genus Bifidobacterium has been extensively investigated. In contrast, very little is known about the genomics of members of the other eight genera of this family. In this study, we decoded the genome sequences of each member of the Bifidobacteriaceae family. Thanks to subsequent comparative genomic and phylogenetic analyses, the deduced pan-genome of this family, as well as the predicted evolutionary development of each taxon belonging to this family was assessed. Keywords: Bifidobacteriaceae, Genomics, Phylogenomics, Bifidobacterium, Bifidobacteria
Background Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling stage of their life, while they also occur as pathogenic bacteria of the urogenital tract. The pan-genome of the genus Bifidobacterium has been explored in detail in recent years, though genomics of the Bifidobacteriaceae family has not yet received much attention. Here, a comparative genomic analyses of 67 Bifidobacteriaceae (sub) species including all currently recognized genera of this family, i.e., Aeriscardovia , Alloscardovia , Bifidobacterium , Bombiscardovia , Gardnerella , Neoscardovia , Parascardovia , Pseudoscardovia and Scardovia, was performed. Furthermore, in order to include a representative of each of the 67 (currently recognized) (sub) species belonging to the Bifidobacteriaceae family, we sequenced the genomes of an additional 11 species from this family, accomplishing the most extensive comparative genomic analysis performed within this family so far. Results Phylogenomics-based analyses revealed the deduced evolutionary pathway followed by each member of the Bifidobacteriaceae family, highlighting Aeriscardovia aeriphila LMG 21773 as the deepest branch in the evolutionary tree of this family. Furthermore, functional analyses based on genome content unveil connections between a given member of the family, its carbohydrate utilization abilities and its corresponding host. In this context, bifidobacterial (sub) species isolated from humans and monkeys possess the highest relative number of acquired glycosyl hydrolase-encoding genes, probably in order to enhance their metabolic ability to utilize different carbon sources consumed by the host. Conclusions Within the Bifidobacteriaceae family, genomics of the genus Bifidobacterium has been extensively investigated. In contrast, very little is known about the genomics of members of the other eight genera of this family. In this study, we decoded the genome sequences of each member of the Bifidobacteriaceae family. Thanks to subsequent comparative genomic and phylogenetic analyses, the deduced pan-genome of this family, as well as the predicted evolutionary development of each taxon belonging to this family was assessed.
Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling stage of their life, while they also occur as pathogenic bacteria of the urogenital tract. The pan-genome of the genus Bifidobacterium has been explored in detail in recent years, though genomics of the Bifidobacteriaceae family has not yet received much attention. Here, a comparative genomic analyses of 67 Bifidobacteriaceae (sub) species including all currently recognized genera of this family, i.e., Aeriscardovia, Alloscardovia, Bifidobacterium, Bombiscardovia, Gardnerella, Neoscardovia, Parascardovia, Pseudoscardovia and Scardovia, was performed. Furthermore, in order to include a representative of each of the 67 (currently recognized) (sub) species belonging to the Bifidobacteriaceae family, we sequenced the genomes of an additional 11 species from this family, accomplishing the most extensive comparative genomic analysis performed within this family so far.BACKGROUNDMembers of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling stage of their life, while they also occur as pathogenic bacteria of the urogenital tract. The pan-genome of the genus Bifidobacterium has been explored in detail in recent years, though genomics of the Bifidobacteriaceae family has not yet received much attention. Here, a comparative genomic analyses of 67 Bifidobacteriaceae (sub) species including all currently recognized genera of this family, i.e., Aeriscardovia, Alloscardovia, Bifidobacterium, Bombiscardovia, Gardnerella, Neoscardovia, Parascardovia, Pseudoscardovia and Scardovia, was performed. Furthermore, in order to include a representative of each of the 67 (currently recognized) (sub) species belonging to the Bifidobacteriaceae family, we sequenced the genomes of an additional 11 species from this family, accomplishing the most extensive comparative genomic analysis performed within this family so far.Phylogenomics-based analyses revealed the deduced evolutionary pathway followed by each member of the Bifidobacteriaceae family, highlighting Aeriscardovia aeriphila LMG 21773 as the deepest branch in the evolutionary tree of this family. Furthermore, functional analyses based on genome content unveil connections between a given member of the family, its carbohydrate utilization abilities and its corresponding host. In this context, bifidobacterial (sub) species isolated from humans and monkeys possess the highest relative number of acquired glycosyl hydrolase-encoding genes, probably in order to enhance their metabolic ability to utilize different carbon sources consumed by the host.RESULTSPhylogenomics-based analyses revealed the deduced evolutionary pathway followed by each member of the Bifidobacteriaceae family, highlighting Aeriscardovia aeriphila LMG 21773 as the deepest branch in the evolutionary tree of this family. Furthermore, functional analyses based on genome content unveil connections between a given member of the family, its carbohydrate utilization abilities and its corresponding host. In this context, bifidobacterial (sub) species isolated from humans and monkeys possess the highest relative number of acquired glycosyl hydrolase-encoding genes, probably in order to enhance their metabolic ability to utilize different carbon sources consumed by the host.Within the Bifidobacteriaceae family, genomics of the genus Bifidobacterium has been extensively investigated. In contrast, very little is known about the genomics of members of the other eight genera of this family. In this study, we decoded the genome sequences of each member of the Bifidobacteriaceae family. Thanks to subsequent comparative genomic and phylogenetic analyses, the deduced pan-genome of this family, as well as the predicted evolutionary development of each taxon belonging to this family was assessed.CONCLUSIONSWithin the Bifidobacteriaceae family, genomics of the genus Bifidobacterium has been extensively investigated. In contrast, very little is known about the genomics of members of the other eight genera of this family. In this study, we decoded the genome sequences of each member of the Bifidobacteriaceae family. Thanks to subsequent comparative genomic and phylogenetic analyses, the deduced pan-genome of this family, as well as the predicted evolutionary development of each taxon belonging to this family was assessed.
Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling stage of their life, while they also occur as pathogenic bacteria of the urogenital tract. The pan-genome of the genus Bifidobacterium has been explored in detail in recent years, though genomics of the Bifidobacteriaceae family has not yet received much attention. Here, a comparative genomic analyses of 67 Bifidobacteriaceae (sub) species including all currently recognized genera of this family, i.e., Aeriscardovia, Alloscardovia, Bifidobacterium, Bombiscardovia, Gardnerella, Neoscardovia, Parascardovia, Pseudoscardovia and Scardovia, was performed. Furthermore, in order to include a representative of each of the 67 (currently recognized) (sub) species belonging to the Bifidobacteriaceae family, we sequenced the genomes of an additional 11 species from this family, accomplishing the most extensive comparative genomic analysis performed within this family so far. Phylogenomics-based analyses revealed the deduced evolutionary pathway followed by each member of the Bifidobacteriaceae family, highlighting Aeriscardovia aeriphila LMG 21773 as the deepest branch in the evolutionary tree of this family. Furthermore, functional analyses based on genome content unveil connections between a given member of the family, its carbohydrate utilization abilities and its corresponding host. In this context, bifidobacterial (sub) species isolated from humans and monkeys possess the highest relative number of acquired glycosyl hydrolase-encoding genes, probably in order to enhance their metabolic ability to utilize different carbon sources consumed by the host. Within the Bifidobacteriaceae family, genomics of the genus Bifidobacterium has been extensively investigated. In contrast, very little is known about the genomics of members of the other eight genera of this family. In this study, we decoded the genome sequences of each member of the Bifidobacteriaceae family. Thanks to subsequent comparative genomic and phylogenetic analyses, the deduced pan-genome of this family, as well as the predicted evolutionary development of each taxon belonging to this family was assessed.
ArticleNumber 568
Audience Academic
Author van Sinderen, Douwe
Milani, Christian
Duranti, Sabrina
Turroni, Francesca
Modesto, Monica
Lugli, Gabriele Andrea
Mangifesta, Marta
Mattarelli, Paola
Ventura, Marco
Ferrario, Chiara
Mancabelli, Leonardo
Jiří, Killer
Author_xml – sequence: 1
  givenname: Gabriele Andrea
  surname: Lugli
  fullname: Lugli, Gabriele Andrea
  organization: Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma
– sequence: 2
  givenname: Christian
  surname: Milani
  fullname: Milani, Christian
  organization: Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma
– sequence: 3
  givenname: Francesca
  surname: Turroni
  fullname: Turroni, Francesca
  organization: Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma
– sequence: 4
  givenname: Sabrina
  surname: Duranti
  fullname: Duranti, Sabrina
  organization: Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma
– sequence: 5
  givenname: Leonardo
  surname: Mancabelli
  fullname: Mancabelli, Leonardo
  organization: Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma
– sequence: 6
  givenname: Marta
  surname: Mangifesta
  fullname: Mangifesta, Marta
  organization: GenProbio srl
– sequence: 7
  givenname: Chiara
  surname: Ferrario
  fullname: Ferrario, Chiara
  organization: Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma
– sequence: 8
  givenname: Monica
  surname: Modesto
  fullname: Modesto, Monica
  organization: Department of Agricultural Sciences, University of Bologna
– sequence: 9
  givenname: Paola
  surname: Mattarelli
  fullname: Mattarelli, Paola
  organization: Department of Agricultural Sciences, University of Bologna
– sequence: 10
  givenname: Killer
  surname: Jiří
  fullname: Jiří, Killer
  organization: Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Institute of Animal Physiology and Genetics v.v.i., Academy of Sciences of the Czech Republic
– sequence: 11
  givenname: Douwe
  surname: van Sinderen
  fullname: van Sinderen, Douwe
  organization: APC Microbiome Institute and School of Microbiology, National University of Ireland
– sequence: 12
  givenname: Marco
  surname: Ventura
  fullname: Ventura, Marco
  email: marco.ventura@unipr.it
  organization: Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28764658$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURNuBH8AGRWIDixRfv-JskNoRj5EqkHisLcexMx4l8WBnKubf45BSZiqoskh0851zr6_PeXYy-MFk2XNAFwCCv4mABacFgrIgFWMFfZSdAS2hwMDpycH3aXYe4wYlUGD2JDvFouSUM3GWfVr6fquCGt2NyVsz-N7pXA1Nvl3vO_-3oLp9NDH3Nh_XJr9y1jW-Vno0wSltlMmt6l23f5o9tqqL5tnte5F9f__u2_Jjcf35w2p5eV1oztlYCEEoogRragVQgJqQ2qCaW5wGbMoG15Y3NeFEaVWzRjcaI6MrXta21oA0WWSr2bfxaiO3wfUq7KVXTv4u-NBKFUanOyMJAChSKY2gpig14EJxAraigjRlmmKRvZ29tru6N402wxhUd2R6_Gdwa9n6G8kYRawiyeDVrUHwP3YmjrJ3UZuuU4PxuyihwowBYpQl9OU9dON3IW03SkyowJzT5PgANXlhzKA6oFqVjukG69N0emotLxlA8uMYJ-riH1R6GpNuNuXJulQ_Erw-EiRmND_HVu1ilKuvX47ZF4eru9vZn3wlAGZABx9jMPYOASSnDMs5wzJFU04ZltN9lPc02o0poH7avuseVOJZGVOXoTXhYG__Ff0CQ5UBZA
CitedBy_id crossref_primary_10_3389_fcimb_2023_1072960
crossref_primary_10_1038_s41396_019_0553_2
crossref_primary_10_1099_ijsem_0_004506
crossref_primary_10_1038_s41598_022_13668_2
crossref_primary_10_1002_mbo3_579
crossref_primary_10_1007_s00253_019_10012_z
crossref_primary_10_3390_microorganisms7120638
crossref_primary_10_1016_j_tim_2017_10_001
crossref_primary_10_3390_microorganisms8111720
crossref_primary_10_1042_ETLS20170058
crossref_primary_10_1371_journal_pone_0278105
crossref_primary_10_1099_ijsem_0_004032
crossref_primary_10_1099_mgen_0_000183
crossref_primary_10_1128_aem_02038_21
crossref_primary_10_1099_ijsem_0_004073
crossref_primary_10_1016_j_syapm_2025_126579
crossref_primary_10_1038_s41598_019_49468_4
crossref_primary_10_1128_mBio_01153_21
crossref_primary_10_1111_1462_2920_16223
crossref_primary_10_3389_fmicb_2020_02087
crossref_primary_10_3390_nu14112347
crossref_primary_10_1007_s10482_019_01307_2
crossref_primary_10_1128_spectrum_02733_21
crossref_primary_10_1128_AEM_03065_18
crossref_primary_10_1016_j_fbio_2020_100659
crossref_primary_10_1038_s41598_019_54229_4
crossref_primary_10_1128_aem_01080_24
crossref_primary_10_1002_ajp_22983
crossref_primary_10_1016_j_envpol_2020_113920
crossref_primary_10_1016_j_ijbiomac_2019_12_227
crossref_primary_10_3389_fenrg_2020_00105
crossref_primary_10_1371_journal_pone_0196290
crossref_primary_10_1016_j_aquaculture_2019_734361
crossref_primary_10_1016_j_csbj_2021_03_006
crossref_primary_10_1128_aem_01244_24
crossref_primary_10_1073_pnas_1916224116
crossref_primary_10_1099_mgen_0_001354
crossref_primary_10_3390_microorganisms8010007
crossref_primary_10_1080_1828051X_2022_2149357
crossref_primary_10_1155_2021_4704771
crossref_primary_10_3389_fmicb_2023_1273714
crossref_primary_10_1111_1462_2920_15108
crossref_primary_10_1128_AEM_00796_18
crossref_primary_10_1128_AEM_02249_17
crossref_primary_10_3389_fcell_2021_778826
crossref_primary_10_1186_s12864_024_10618_2
crossref_primary_10_3390_microorganisms12040659
crossref_primary_10_3389_fmicb_2018_00776
crossref_primary_10_1002_mc_23151
crossref_primary_10_1099_ijsem_0_003518
crossref_primary_10_1093_jas_skae028
crossref_primary_10_1007_s00253_018_8795_x
crossref_primary_10_1099_ijsem_0_003200
crossref_primary_10_1099_ijsem_0_004378
crossref_primary_10_3389_fmicb_2019_02374
crossref_primary_10_1007_s12223_019_00716_0
crossref_primary_10_1128_MMBR_00036_17
crossref_primary_10_1007_s11356_020_08446_4
crossref_primary_10_3390_microorganisms9050883
crossref_primary_10_1099_ijsem_0_004573
crossref_primary_10_3390_foods10102284
crossref_primary_10_1128_AEM_02806_18
crossref_primary_10_1111_1462_2920_15559
crossref_primary_10_20517_mrr_2023_37
crossref_primary_10_1128_AEM_02188_20
crossref_primary_10_3390_nu15030709
crossref_primary_10_1111_mec_16736
crossref_primary_10_3390_microorganisms7110535
crossref_primary_10_1016_j_syapm_2021_126273
crossref_primary_10_1099_ijsem_0_003306
crossref_primary_10_1016_j_micres_2024_127966
crossref_primary_10_3389_fmars_2024_1340088
crossref_primary_10_1038_s41467_023_38694_0
crossref_primary_10_1038_s41598_024_64324_w
crossref_primary_10_1038_s41598_021_94824_y
crossref_primary_10_1099_mgen_0_000609
crossref_primary_10_1007_s12275_018_8167_3
crossref_primary_10_3390_v13061013
Cites_doi 10.1038/nrg.2016.39
10.4161/gmic.2.3.16105
10.1007/s00018-013-1318-0
10.1016/S0168-9525(01)02447-7
10.1099/ijs.0.64812-0
10.1186/s12864-015-1968-4
10.1099/ijs.0.054171-0
10.1093/nar/gkv1239
10.1038/srep23971
10.1128/genomeA.01463-15
10.1093/nar/30.7.1575
10.1128/AEM.00895-08
10.1093/bioinformatics/btr595
10.1073/pnas.0906412106
10.1007/s10482-015-0425-3
10.1099/ijs.0.056937-0
10.1023/B:ANTO.0000047930.11029.ec
10.1093/nar/25.5.0955
10.1371/journal.pone.0044229
10.1371/journal.pgen.1000785
10.1128/AEM.02004-14
10.1101/gr.1917404
10.1007/s12263-010-0206-6
10.1128/AEM.00984-13
10.1186/1471-2164-15-170
10.1128/genomeA.00048-14
10.1093/nar/gkv1248
10.1007/0-387-30741-9
10.1093/bioinformatics/btm404
10.1159/000092237
10.1111/j.1348-0421.2007.tb03964.x
10.1128/JCM.20.4.677-679.1984
10.1093/bioinformatics/16.10.944
10.1093/nar/gkf436
10.1093/bioinformatics/btq315
10.1093/bioinformatics/btr655
10.1093/nar/gkt1103
10.1073/pnas.1011100107
10.1128/CMR.5.3.213
10.1093/nar/gkt1223
10.1099/ijs.0.64233-0
10.1128/AEM.02308-14
10.1111/1462-2920.12012
10.1111/j.1399-302X.2008.00470.x
10.1111/j.1600-0463.2005.apm1130301.x
10.1371/journal.pone.0012411
10.1111/1462-2920.12743
10.1093/femsle/fnw049
10.1016/j.syapm.2012.06.007
10.1093/nar/gkm160
10.1128/AEM.67.6.2760-2765.2001
10.1099/ijs.0.02667-0
10.1093/nar/gkt1178
10.1093/gbe/evw201
10.1186/1471-2105-11-119
10.1038/srep15782
10.1099/00207713-52-3-809
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
– notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-017-3955-4
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
Publicly Available Content Database




MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 15
ExternalDocumentID oai_doaj_org_article_3111a39ac01b4027868a631f9483d704
PMC5540593
A511234622
28764658
10_1186_s12864_017_3955_4
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: Science Foundation Ireland
  grantid: SFI/12/RC/2273
  funderid: http://dx.doi.org/10.13039/501100001602
– fundername: MIUR
– fundername: Fondazione Cariparma
  funderid: http://dx.doi.org/10.13039/100009097
– fundername: EU Joint Programming Initiative
  grantid: 15/JP-HDHL/3280
– fundername: ;
– fundername: ;
  grantid: SFI/12/RC/2273
– fundername: ;
  grantid: 15/JP-HDHL/3280
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
AIXEN
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AHSBF
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c665t-88340432c4f81411b33be0b6f2782d7d2bf6db363acab5dcdc20ec967bfbc10c3
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Aug 27 01:21:18 EDT 2025
Thu Aug 21 13:55:07 EDT 2025
Fri Sep 05 11:29:32 EDT 2025
Fri Jul 25 10:46:49 EDT 2025
Fri Jul 25 10:37:36 EDT 2025
Tue Jun 17 21:47:41 EDT 2025
Tue Jun 10 20:08:20 EDT 2025
Fri Jun 27 04:04:48 EDT 2025
Wed Feb 19 02:44:26 EST 2025
Thu Apr 24 22:53:16 EDT 2025
Mon Sep 08 01:43:52 EDT 2025
Sat Sep 06 07:21:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bifidobacteria
Genomics
Phylogenomics
Bifidobacteriaceae
Bifidobacterium
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c665t-88340432c4f81411b33be0b6f2782d7d2bf6db363acab5dcdc20ec967bfbc10c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-017-3955-4
PMID 28764658
PQID 1925225199
PQPubID 44682
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_3111a39ac01b4027868a631f9483d704
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5540593
proquest_miscellaneous_1925510545
proquest_journals_2348266459
proquest_journals_1925225199
gale_infotracmisc_A511234622
gale_infotracacademiconefile_A511234622
gale_incontextgauss_ISR_A511234622
pubmed_primary_28764658
crossref_primary_10_1186_s12864_017_3955_4
crossref_citationtrail_10_1186_s12864_017_3955_4
springer_journals_10_1186_s12864_017_3955_4
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References M Okamoto (3955_CR13) 2007; 51
AJ Enright (3955_CR40) 2002; 30
F Turroni (3955_CR7) 2014; 71
M Ventura (3955_CR23) 2009; 5
K Lagesen (3955_CR35) 2007; 35
A Mira (3955_CR60) 2001; 17
TM Lowe (3955_CR34) 1997; 25
M Ventura (3955_CR29) 2001; 67
M Mantzourani (3955_CR8) 2009; 24
JF Strassert (3955_CR4) 2012; 14
F Bottacini (3955_CR27) 2014; 15
V Lombard (3955_CR44) 2014; 42
R Caspi (3955_CR46) 2014; 42
3955_CR31
CJ Yeoman (3955_CR18) 2010; 5
MA Larkin (3955_CR42) 2007; 23
3955_CR30
G Huys (3955_CR12) 2007; 57
J Huerta-Cepas (3955_CR45) 2016; 44
PJ Simpson (3955_CR14) 2004; 54
P Piot (3955_CR16) 1980; 119
W Jian (3955_CR20) 2002; 52
S Duranti (3955_CR26) 2016; 6
K Pokusaeva (3955_CR63) 2011; 6
M Richter (3955_CR43) 2009; 106
C Milani (3955_CR11) 2013; 79
C Milani (3955_CR2) 2014; 80
D Beighton (3955_CR22) 2008; 74
GA Lugli (3955_CR24) 2014; 80
C Milani (3955_CR54) 2015; 5
J Praet (3955_CR49) 2015; 107
F Bottacini (3955_CR10) 2012; 7
K Rutherford (3955_CR38) 2000; 16
M Csuros (3955_CR47) 2010; 26
F Turroni (3955_CR61) 2010; 107
R Albalat (3955_CR59) 2016; 17
U Forsum (3955_CR19) 2005; 113
G Zhang (3955_CR3) 2016; 7
M Modesto (3955_CR57) 2014; 64
Y Zhao (3955_CR39) 2012; 28
P Piot (3955_CR17) 1984; 20
3955_CR5
3955_CR1
F Turroni (3955_CR62) 2011; 2
V Scardovi (3955_CR58) 1965; 15
A O'Callaghan (3955_CR28) 2015; 16
Y Zhao (3955_CR36) 2012; 28
RD Finn (3955_CR37) 2014; 42
S Duranti (3955_CR25) 2015; 17
M Ventura (3955_CR6) 2004; 86
3955_CR50
C Garcia-Aljaro (3955_CR51) 2012; 35
3955_CR52
S Leopold (3955_CR15) 1953; 4
K Katoh (3955_CR41) 2002; 30
D Hyatt (3955_CR33) 2010; 11
B Chevreux (3955_CR32) 2004; 14
L Chen (3955_CR53) 2016; 44
3955_CR48
J Chun (3955_CR55) 2014; 64
BW Catlin (3955_CR9) 1992; 5
M Modesto (3955_CR21) 2006; 40
M Ventura (3955_CR56) 2006; 56
24558236 - Genome Announc. 2014 Feb 20;2(1):null
23028506 - PLoS One. 2012;7(9):e44229
26659692 - Genome Announc. 2015 Dec 10;3(6):null
26578559 - Nucleic Acids Res. 2016 Jan 4;44(D1):D694-7
11917018 - Nucleic Acids Res. 2002 Apr 1;30(7):1575-84
19121067 - Oral Microbiol Immunol. 2009 Feb;24(1):32-7
17158978 - Int J Syst Evol Microbiol. 2006 Dec;56(Pt 12):2783-92
27446019 - Front Microbiol. 2016 Jun 27;7:978
22824582 - Syst Appl Microbiol. 2012 Sep;35(6):374-9
20974960 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19514-9
23116209 - Environ Microbiol. 2012 Dec;14(12):3259-70
26936607 - FEMS Microbiol Lett. 2016 Apr;363(7):null
13015741 - U S Armed Forces Med J. 1953 Feb;4(2):263-6
24288371 - Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30
25753540 - Antonie Van Leeuwenhoek. 2015 May;107(5):1307-13
15539925 - Antonie Van Leeuwenhoek. 2004 Oct;86(3):205-23
11375192 - Appl Environ Microbiol. 2001 Jun;67(6):2760-5
27087500 - Nat Rev Genet. 2016 Jul;17 (7):379-91
27540085 - Genome Biol Evol. 2016 Aug 18;:null
15140833 - Genome Res. 2004 Jun;14(6):1147-59
15799757 - APMIS. 2005 Mar;113(3):153-61
1498765 - Clin Microbiol Rev. 1992 Jul;5(3):213-37
22130594 - Bioinformatics. 2012 Feb 1;28(3):416-8
24505069 - Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):316-24
12054242 - Int J Syst Evol Microbiol. 2002 May;52(Pt 3):809-12
23516017 - Cell Mol Life Sci. 2014 Jan;71(2):183-203
24581150 - BMC Genomics. 2014 Mar 01;15:170
25107967 - Appl Environ Microbiol. 2014 Oct;80(20):6383-94
21804355 - Gut Microbes. 2011 May-Jun;2(3):183-9
24867172 - Int J Syst Evol Microbiol. 2014 Aug;64(Pt 8):2819-27
26506949 - Sci Rep. 2015 Oct 28;5:15782
11585665 - Trends Genet. 2001 Oct;17(10):589-96
26582926 - Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93
25085493 - Appl Environ Microbiol. 2014 Oct;80(20):6290-302
17452365 - Nucleic Acids Res. 2007;35(9):3100-8
23645200 - Appl Environ Microbiol. 2013 Jul;79(14):4304-15
16707878 - Caries Res. 2006;40(3):271-6
20865041 - PLoS One. 2010 Aug 26;5(8):e12411
27035119 - Sci Rep. 2016 Apr 01;6:23971
24225315 - Nucleic Acids Res. 2014 Jan;42(Database issue):D459-71
26489930 - BMC Genomics. 2015 Oct 21;16:832
20041198 - PLoS Genet. 2009 Dec;5(12):e1000785
20551134 - Bioinformatics. 2010 Aug 1;26(15):1910-2
9023104 - Nucleic Acids Res. 1997 Mar 1;25(5):955-64
24270786 - Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
18723652 - Appl Environ Microbiol. 2008 Oct;74(20):6457-60
25523018 - Environ Microbiol. 2015 Jul;17(7):2515-31
17704637 - Microbiol Immunol. 2007;51(8):747-54
17625172 - Int J Syst Evol Microbiol. 2007 Jul;57(Pt 7):1442-6
11120685 - Bioinformatics. 2000 Oct;16(10):944-5
6971916 - J Gen Microbiol. 1980 Aug;119(2):373-96
12136088 - Nucleic Acids Res. 2002 Jul 15;30(14):3059-66
21484167 - Genes Nutr. 2011 Aug;6(3):285-306
6333436 - J Clin Microbiol. 1984 Oct;20(4):677-9
19855009 - Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19126-31
15023951 - Int J Syst Evol Microbiol. 2004 Mar;54(Pt 2):401-6
20211023 - BMC Bioinformatics. 2010 Mar 08;11:119
22039206 - Bioinformatics. 2012 Jan 1;28(1):125-6
17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
References_xml – volume: 17
  start-page: 379
  year: 2016
  ident: 3955_CR59
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.39
– volume: 2
  start-page: 183
  year: 2011
  ident: 3955_CR62
  publication-title: Gut Microbes
  doi: 10.4161/gmic.2.3.16105
– volume: 119
  start-page: 373
  year: 1980
  ident: 3955_CR16
  publication-title: J Gen Microbiol
– volume: 71
  start-page: 183
  year: 2014
  ident: 3955_CR7
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-013-1318-0
– volume: 17
  start-page: 589
  year: 2001
  ident: 3955_CR60
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(01)02447-7
– volume: 57
  start-page: 1442
  year: 2007
  ident: 3955_CR12
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.64812-0
– volume: 16
  start-page: 832
  year: 2015
  ident: 3955_CR28
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1968-4
– volume: 64
  start-page: 316
  year: 2014
  ident: 3955_CR55
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.054171-0
– volume: 44
  start-page: D694
  year: 2016
  ident: 3955_CR53
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1239
– volume: 6
  start-page: 23971
  year: 2016
  ident: 3955_CR26
  publication-title: Sci Rep
  doi: 10.1038/srep23971
– ident: 3955_CR50
  doi: 10.1128/genomeA.01463-15
– volume: 30
  start-page: 1575
  year: 2002
  ident: 3955_CR40
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.7.1575
– volume: 74
  start-page: 6457
  year: 2008
  ident: 3955_CR22
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00895-08
– volume: 28
  start-page: 125
  year: 2012
  ident: 3955_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr595
– volume: 106
  start-page: 19126
  year: 2009
  ident: 3955_CR43
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0906412106
– volume: 107
  start-page: 1307
  year: 2015
  ident: 3955_CR49
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-015-0425-3
– volume: 64
  start-page: 2819
  year: 2014
  ident: 3955_CR57
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.056937-0
– volume: 86
  start-page: 205
  year: 2004
  ident: 3955_CR6
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1023/B:ANTO.0000047930.11029.ec
– volume: 25
  start-page: 955
  year: 1997
  ident: 3955_CR34
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.5.0955
– volume: 7
  year: 2012
  ident: 3955_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0044229
– volume: 5
  year: 2009
  ident: 3955_CR23
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000785
– volume: 80
  start-page: 6383
  year: 2014
  ident: 3955_CR24
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02004-14
– volume: 14
  start-page: 1147
  year: 2004
  ident: 3955_CR32
  publication-title: Genome Res
  doi: 10.1101/gr.1917404
– volume: 6
  start-page: 285
  year: 2011
  ident: 3955_CR63
  publication-title: Genes Nutr
  doi: 10.1007/s12263-010-0206-6
– volume: 4
  start-page: 263
  year: 1953
  ident: 3955_CR15
  publication-title: U S Armed Forces Med J
– volume: 79
  start-page: 4304
  year: 2013
  ident: 3955_CR11
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00984-13
– volume: 15
  start-page: 170
  year: 2014
  ident: 3955_CR27
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-170
– ident: 3955_CR48
  doi: 10.1128/genomeA.00048-14
– volume: 15
  start-page: 19
  year: 1965
  ident: 3955_CR58
  publication-title: Annali di Microbiologia ed Enzimologia
– volume: 44
  start-page: D286
  year: 2016
  ident: 3955_CR45
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1248
– ident: 3955_CR5
  doi: 10.1007/0-387-30741-9
– volume: 23
  start-page: 2947
  year: 2007
  ident: 3955_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 40
  start-page: 271
  year: 2006
  ident: 3955_CR21
  publication-title: Caries Res
  doi: 10.1159/000092237
– volume: 51
  start-page: 747
  year: 2007
  ident: 3955_CR13
  publication-title: Microbiol Immunol
  doi: 10.1111/j.1348-0421.2007.tb03964.x
– volume: 20
  start-page: 677
  year: 1984
  ident: 3955_CR17
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.20.4.677-679.1984
– volume: 16
  start-page: 944
  year: 2000
  ident: 3955_CR38
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.10.944
– volume: 30
  start-page: 3059
  year: 2002
  ident: 3955_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkf436
– volume: 26
  start-page: 1910
  year: 2010
  ident: 3955_CR47
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq315
– volume: 28
  start-page: 416
  year: 2012
  ident: 3955_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr655
– volume: 42
  start-page: D459
  year: 2014
  ident: 3955_CR46
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1103
– volume: 107
  start-page: 19514
  year: 2010
  ident: 3955_CR61
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1011100107
– volume: 5
  start-page: 213
  year: 1992
  ident: 3955_CR9
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.5.3.213
– volume: 42
  start-page: D222
  year: 2014
  ident: 3955_CR37
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1223
– volume: 56
  start-page: 2783
  year: 2006
  ident: 3955_CR56
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.64233-0
– volume: 80
  start-page: 6290
  year: 2014
  ident: 3955_CR2
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02308-14
– ident: 3955_CR30
– volume: 14
  start-page: 3259
  year: 2012
  ident: 3955_CR4
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12012
– volume: 24
  start-page: 32
  year: 2009
  ident: 3955_CR8
  publication-title: Oral Microbiol Immunol
  doi: 10.1111/j.1399-302X.2008.00470.x
– volume: 113
  start-page: 153
  year: 2005
  ident: 3955_CR19
  publication-title: APMIS
  doi: 10.1111/j.1600-0463.2005.apm1130301.x
– volume: 5
  year: 2010
  ident: 3955_CR18
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012411
– volume: 17
  start-page: 2515
  year: 2015
  ident: 3955_CR25
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12743
– ident: 3955_CR31
  doi: 10.1093/femsle/fnw049
– volume: 35
  start-page: 374
  year: 2012
  ident: 3955_CR51
  publication-title: Syst Appl Microbiol
  doi: 10.1016/j.syapm.2012.06.007
– volume: 35
  start-page: 3100
  year: 2007
  ident: 3955_CR35
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm160
– volume: 7
  start-page: 978
  year: 2016
  ident: 3955_CR3
  publication-title: Front Microbiol
– ident: 3955_CR1
– volume: 67
  start-page: 2760
  year: 2001
  ident: 3955_CR29
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.6.2760-2765.2001
– volume: 54
  start-page: 401
  year: 2004
  ident: 3955_CR14
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.02667-0
– volume: 42
  start-page: D490
  year: 2014
  ident: 3955_CR44
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1178
– ident: 3955_CR52
  doi: 10.1093/gbe/evw201
– volume: 11
  start-page: 119
  year: 2010
  ident: 3955_CR33
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-119
– volume: 5
  start-page: 15782
  year: 2015
  ident: 3955_CR54
  publication-title: Sci Rep
  doi: 10.1038/srep15782
– volume: 52
  start-page: 809
  year: 2002
  ident: 3955_CR20
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/00207713-52-3-809
– reference: 26506949 - Sci Rep. 2015 Oct 28;5:15782
– reference: 19855009 - Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19126-31
– reference: 13015741 - U S Armed Forces Med J. 1953 Feb;4(2):263-6
– reference: 24581150 - BMC Genomics. 2014 Mar 01;15:170
– reference: 11585665 - Trends Genet. 2001 Oct;17(10):589-96
– reference: 24270786 - Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
– reference: 21484167 - Genes Nutr. 2011 Aug;6(3):285-306
– reference: 26936607 - FEMS Microbiol Lett. 2016 Apr;363(7):null
– reference: 23116209 - Environ Microbiol. 2012 Dec;14(12):3259-70
– reference: 19121067 - Oral Microbiol Immunol. 2009 Feb;24(1):32-7
– reference: 17625172 - Int J Syst Evol Microbiol. 2007 Jul;57(Pt 7):1442-6
– reference: 24505069 - Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):316-24
– reference: 20865041 - PLoS One. 2010 Aug 26;5(8):e12411
– reference: 20551134 - Bioinformatics. 2010 Aug 1;26(15):1910-2
– reference: 27446019 - Front Microbiol. 2016 Jun 27;7:978
– reference: 23028506 - PLoS One. 2012;7(9):e44229
– reference: 1498765 - Clin Microbiol Rev. 1992 Jul;5(3):213-37
– reference: 24225315 - Nucleic Acids Res. 2014 Jan;42(Database issue):D459-71
– reference: 15539925 - Antonie Van Leeuwenhoek. 2004 Oct;86(3):205-23
– reference: 6971916 - J Gen Microbiol. 1980 Aug;119(2):373-96
– reference: 27035119 - Sci Rep. 2016 Apr 01;6:23971
– reference: 15023951 - Int J Syst Evol Microbiol. 2004 Mar;54(Pt 2):401-6
– reference: 9023104 - Nucleic Acids Res. 1997 Mar 1;25(5):955-64
– reference: 16707878 - Caries Res. 2006;40(3):271-6
– reference: 20974960 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19514-9
– reference: 27540085 - Genome Biol Evol. 2016 Aug 18;:null
– reference: 22130594 - Bioinformatics. 2012 Feb 1;28(3):416-8
– reference: 20041198 - PLoS Genet. 2009 Dec;5(12):e1000785
– reference: 22824582 - Syst Appl Microbiol. 2012 Sep;35(6):374-9
– reference: 21804355 - Gut Microbes. 2011 May-Jun;2(3):183-9
– reference: 25107967 - Appl Environ Microbiol. 2014 Oct;80(20):6383-94
– reference: 23516017 - Cell Mol Life Sci. 2014 Jan;71(2):183-203
– reference: 25523018 - Environ Microbiol. 2015 Jul;17(7):2515-31
– reference: 24288371 - Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30
– reference: 22039206 - Bioinformatics. 2012 Jan 1;28(1):125-6
– reference: 11917018 - Nucleic Acids Res. 2002 Apr 1;30(7):1575-84
– reference: 15799757 - APMIS. 2005 Mar;113(3):153-61
– reference: 26489930 - BMC Genomics. 2015 Oct 21;16:832
– reference: 12136088 - Nucleic Acids Res. 2002 Jul 15;30(14):3059-66
– reference: 17452365 - Nucleic Acids Res. 2007;35(9):3100-8
– reference: 17704637 - Microbiol Immunol. 2007;51(8):747-54
– reference: 26578559 - Nucleic Acids Res. 2016 Jan 4;44(D1):D694-7
– reference: 24867172 - Int J Syst Evol Microbiol. 2014 Aug;64(Pt 8):2819-27
– reference: 18723652 - Appl Environ Microbiol. 2008 Oct;74(20):6457-60
– reference: 12054242 - Int J Syst Evol Microbiol. 2002 May;52(Pt 3):809-12
– reference: 11120685 - Bioinformatics. 2000 Oct;16(10):944-5
– reference: 26659692 - Genome Announc. 2015 Dec 10;3(6):null
– reference: 24558236 - Genome Announc. 2014 Feb 20;2(1):null
– reference: 25085493 - Appl Environ Microbiol. 2014 Oct;80(20):6290-302
– reference: 17158978 - Int J Syst Evol Microbiol. 2006 Dec;56(Pt 12):2783-92
– reference: 23645200 - Appl Environ Microbiol. 2013 Jul;79(14):4304-15
– reference: 11375192 - Appl Environ Microbiol. 2001 Jun;67(6):2760-5
– reference: 26582926 - Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93
– reference: 20211023 - BMC Bioinformatics. 2010 Mar 08;11:119
– reference: 6333436 - J Clin Microbiol. 1984 Oct;20(4):677-9
– reference: 25753540 - Antonie Van Leeuwenhoek. 2015 May;107(5):1307-13
– reference: 15140833 - Genome Res. 2004 Jun;14(6):1147-59
– reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
– reference: 27087500 - Nat Rev Genet. 2016 Jul;17 (7):379-91
SSID ssj0017825
Score 2.5039122
Snippet Background Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the...
Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling...
Background Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the...
Abstract Background Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 568
SubjectTerms Animal Genetics and Genomics
Babies
Bacteria
Bees
Bifidobacteria
Bifidobacteriaceae
Bifidobacterium
Bifidobacterium - genetics
Biomedical and Life Sciences
Carbohydrates
Carbon sources
Comparative and evolutionary genomics
Dental caries
Deoxyribonucleic acid
DNA
Evolution
Evolution (Biology)
Evolution, Molecular
Feces
Gene sequencing
Genera
Genes
Genetic aspects
Genomes
Genomic analysis
Genomics
Glycosidases
Glycosyl hydrolase
Hydrolase
Life Sciences
Metabolism
Microarrays
Microbial Genetics and Genomics
Microorganisms
Monkeys
Phylogenetics
Phylogenomics
Phylogeny
Plant Genetics and Genomics
Proteins
Proteomics
Research Article
Software
Species
Suckling behavior
Taxonomy
Transfer RNA
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hSpW4IChfKQUZhIQEiprYjhMf24qqINEDUKk3y3YcWAmyFdk98O-Zib1hU74uXO1JlDzPeJ7jyTPAc4ssgDvV5E5LnctQhFxbDHeLybdWssNFF_3g_O5cnV3It5fV5dZRX1QTFuWBI3CHAoPRCm19UTpJ22SqsUqUnZaNaOuoBFroYrOYSvsHmPeqtIdZNupwwFlYUbUFBpSuqlzOstAo1v_rlLyVk67XS17bNB1z0eltuJVIJDuKD38HboR-D3bjsZLf78L5yU9Jb0YirF8Xntm-ZQgpWkwNJEcSBrbsGLJAdrzoFi1G96jebH2wgcWvH_fg4vT1x5OzPJ2bkHulqlXeNII0c7hHqEtZlk4IFwqnOkSPt3XLXadaJ5Sw3rqq9a3nRfBa1a5zviy8uA87_bIPD4FJBA4NSeHHyTo4VyPF8wJpGLbL0GRQbHA0PomK09kWX8y4uGiUidAbhN4Q9EZm8HK65CoqavzN-JgGZzIkMeyxAV3EJBcx_3KRDJ7R0BqSu-ipnuaTXQ-DefPhvTkivimk4jyDF8moW-IbeJt-T0AcSCFrZnkws8R49PPujQeZNB8MBnk0El1ky_q33ZwkhhTp-mTwdOqmG1MJXB-W63gLYsOyyuBB9McJFlz2KolcMoN65qkz3OY9_eLzKCZeEWXXIoNXG5_eeuo_Dcv-_xiWR3CTU0SO1ZQHsLP6tg6PkeGt3JMxmH8AOfxGJw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BERIXxDeBggJCQgJFTWzHiU-oragKEj0AlfZm2Y7TrgRJaXYP_HtmHG_aFOg1nrU2z57xsz15A_DGIAtgVtaZVUJlwuc-Uwbd3eDiW0nR4qaLPnD-ciQPj8XnRbmIB25DTKvcxMQQqJve0Rn5DiMVFknSJx_OfmVUNYpuV2MJjZtwq0AmQqUbqsW04Spw9SvjTWZRy50BY7GknAt0K1WWmZitRUGy_-_AfGllupo1eeXqNKxIB_fgbqSS6e449vfhhu8ewO2xuOTvh3C0fyHsnZIU68-lS03XpAgsWkwPSJTED2nfpsgF071lu2zQx4OGs3He-HQ8A3kExwcfv-8fZrF6QuakLFdZXXNSzmEOAS9EUVjOrc-tbBnC0lQNs61sLJfcOGPLxjWO5d4pWdnWuiJ3_DFsdX3nn0IqEDg0JJ0fKypvbYVEz3EkY_hc-DqBfIOjdlFanCpc_NBhi1FLPUKvEXpN0GuRwLvpJ2ejrsZ1xns0OJMhSWKHB_35iY4epjlGbcOVcXlhBd2nytpIXrRK1LypcuzkNQ2tJtGLjrJqTsx6GPSnb1_1LrFOLiRjCbyNRm2Pb-BM_EgBcSCdrJnl9swSvdLNmzczSMeoMGhk00h3kTOrfzZfTPEEXk3N1DElwnW-X49dECcWZQJPxvk4wYKbXymQUSZQzWbqDLd5S7c8DZLiJRF3xRN4v5nTl_71_4bl2fUv8RzuMPK1kC25DVur87V_gQxuZV8GN_0DTeI_kQ
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB70RPBF_G31lCiCoBTb_GrzeLd4nIL3oB7cW0jS9FzQrtjdB_97Z9ps3Z6n4GsyDe2XmeRLM_kC8MIhC-Be17k30uQyFjE3DsPd4eRbadnioosOOH840cen8v2ZOkti0XQWZnf_vqz1mx7HT015EhgKRqlcXoVrCsddcuaFXkwbBjjRqbRpeeljs2lnUOf_cwzemYQuJkhe2CUdJp-jW3AzsUZ2MHbzbbgSuztwfbxH8uddOFn81vBmpLr6bRmY6xqGGKLFVED6I7Fnq5Yh7WOHy3bZYDgPcs0uRBfZ-LvjHpwevf28OM7TRQl50Fqt87oWJJLDA2JbyrL0QvhYeN1yhKWpGu5b3XihhQvOqyY0gRcxGF351oeyCOI-7HWrLj4EJhE4NCRJHy-r6H2FnC4I5F1YLmOdQbHF0YakIk6XWXy1w2qi1naE3iL0lqC3MoNX0yPfRwmNfxkfUudMhqR-PRSgU9gUTFbgAO2EcaEovaStU107LcrWyFo0VYGNPKeutaRv0VECzbnb9L199-mjPSCCKaTmPIOXyahd4RcEl84jIA4kiTWz3J9ZYgCGefXWg2waAHqLxBmZLdJjc2k1J00hTUI-GTybqqlhynnr4mozNkH0V6oMHoz-OMGC61wtkTxmUM08dYbbvKZbfhnUwxVxdCMyeL316Z23_lu3PPov68dwg1PoDXmS-7C3_rGJT5C7rf3TIWp_AT7DOBI
  priority: 102
  providerName: Springer Nature
Title Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family
URI https://link.springer.com/article/10.1186/s12864-017-3955-4
https://www.ncbi.nlm.nih.gov/pubmed/28764658
https://www.proquest.com/docview/1925225199
https://www.proquest.com/docview/2348266459
https://www.proquest.com/docview/1925510545
https://pubmed.ncbi.nlm.nih.gov/PMC5540593
https://doaj.org/article/3111a39ac01b4027868a631f9483d704
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aRUi8IO4ERhUQEhIokNiOkzwg1FabBhIVGlTqm2U7zqi0paMXif17znHSbhkF8VKp9qmVfj7H_hwffwZ4pZEFMCPzyBSiiISLXVRoDHeNk28mRYWLLjrg_GUkj8fi8ySd7MD6eqsWwMXWpR3dJzWen7379fPyIwb8Bx_wuXy_wDFWUi4FhkuRppHYhX2_XUSZfOJqUwEnw9QfNsqSiOEyod3k3NpEZ5ryav5_jtnXJq2bCZU3dlX9ZHV0F-60LDPsN25xD3ZcfR9uNfdOXj6A0fBK8zskldbzqQ11XYaIOVpsCkivxC3CWRUiTQwH02paYvh7eWdtnXZh83rkIYyPDr8Pj6P2YoXISpkuozznJKrDLPZFIpLEcG5cbGTFEKIyK5mpZGm45Npqk5a2tCx2tpCZqYxNYssfwV49q90TCAUCh4YkAWRE5ozJkANajjwNy4XLA4jXOCrbqo7T5Rdnyq8-cqka6BVCrwh6JQJ4s_nJRSO58S_jAXXOxpDUsn3BbH6q2uBTHAd0zQtt48QI2mqVuZY8qQqR8zKLsZGX1LWK9DBqSrg51avFQn36dqL6REi5kIwF8Lo1qmb4D6xuzy8gDiSh1bE86FhiwNpu9dqD1NrfFRJtZMJIp4ut1Yw0iCQJ_wTwYlNNDVOOXO1mq6YJossiDeBx448bWHBdLAWSzQCyjqd2cOvW1NMfXm08JU5f8ADern362lP_rVue_g-iz-A2o4jz6ZQHsLecr9xzpHhL04PdbJL1YH9wOPp6gt-Gctjzr0t6PqTxc8z6vwFj9UuV
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBQICIVFFTWLHSQ4V6pZWu7RdodJKvRnbccpKkC3NrlD_HL-NmbzaFOit13hiJWPPzGd7_A3AG4UoINQi8XTKU49b33qpQnNXGHxjwXNcdNEF572JGB3yT0fR0RL8bu_CUFpl6xMrR53NDO2Rr4XEwiKI-uTDyU-PqkbR6WpbQkM1pRWy9YpirLnYsWPPfuESrlwff8TxfhuG21sHmyOvqTLgGSGiuZckjBhmQoMfFvAg0Ixp62uRhxg8szgLdS4yzQRTRukoM5kJfWtSEetcm8A3DPu9AcucNlAGsDzcmnze784xsIuoOUsNErFWYjQQlPWBhp1Gkcd70bAqGvB3aLgQGy_nbV46vK1i4vZduNOAWXejnn33YMkW9-FmXd7y7AFMNs-pxV0ig_0xNa4qMheHFiW6B0SLYkt3lruIRt3hNJ9m6GUqFmllrLJuvQvzEA6vRbOPYFDMCvsEXI6KQ0FiGtI8tlrHCDUNQziIz7lNHPBbPUrTkJtTjY3vslrkJELWqpeoekmql9yB990rJzWzx1XCQxqcTpBIuasHs9Nj2di4ZBg3FEuV8QPN6URXJEqwIE95wrLYx05e09BKot0oKK_nWC3KUo6_7MsNwr2MizB04F0jlM_wD4xqrkmgHoipqye50pNEv2D6ze0Mko1fKiXieQTciNrTfzafG5kDr7pm6phS8Qo7W9RdECrnkQOP6_nYqQWX34IjpnUg7s3Unt76LcX0W0VqHtHSIWUOrLZz-sJX_29Ynl79Ey_h1uhgb1fujic7z-B2SHZX5W6uwGB-urDPEU_O9YvGaF34et1-4g9e9YQj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BEYgL4ptAgYCQkEBRE9txkuO2sGr5WCFgpd4s23HKSm1SNbsH_j0zcRKaUpC42hMrefZ4nuPxM8ArjSyAGZlHphBFJFzsokKju2sMvpkUFS666IDz54XcX4oPh-lhf89pO2S7D1uS_kwDqTTV653TsvIunsudFmdVSdkT6CBFmkbiKlwTGKopp2vJZuM2Aoa_tN_KvPSxSTDqNPv_nJnPhaaLaZMX9k67kDS_Dbd6LhnOfOffgSuuvgvX_e2SP-_BYu-3sndIWqwnKxvqugwRWbQYC0iVxLVhU4VIBsPdVbUq0ck7EWdtnXah_wlyH5bz99_39qP--oTISpmuozznJJ3DLCKeiCQxnBsXG1kxhKXMSmYqWRouubbapKUtLYudLWRmKmOT2PIHsFU3tXsEIWKboyEJ_RiROWMyZHqWIxvDcuHyAOIBR2V7bXG64uJYdWuMXCoPvULoFUGvRABvxkdOvbDGv4x3qXNGQ9LE7gqasyPVu5jiOG1rXmgbJ0bQhqrMteRJVYicl1mMjbykrlWkelFTWs2R3rStOvj2Vc2IdnIhGQvgdW9UNfgFVvenFBAHEsqaWG5PLNEt7bR6GEGqnxZahXQa-S6S5uLSakZKQ5LkfQJ4MVZTw5QJV7tm45sgUizSAB768TjCgqtfKZBSBpBNRuoEt2lNvfrRaYqnxNwLHsDbYUyfe-u_dcvj_7J-Dje-vJurTweLj0_gJiMv7BIpt2FrfbZxT5Hcrc2zzoF_Ac9fQ2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+genomic+and+phylogenomic+analyses+of+the+Bifidobacteriaceae+family&rft.jtitle=BMC+genomics&rft.au=Lugli%2C+Gabriele+Andrea&rft.au=Milani%2C+Christian&rft.au=Turroni%2C+Francesca&rft.au=Duranti%2C+Sabrina&rft.date=2017-08-01&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-017-3955-4&rft.externalDBID=ISR&rft.externalDocID=A511234622
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon