Filtering, FDR and power

Background In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or variance filters in an attempt to reduce the multiple testing penalty and improve power. However, filtering may introduce a bias on the multiple testing...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 11; no. 1; p. 450
Main Authors van Iterson, Maarten, Boer, Judith M, Menezes, Renée X
Format Journal Article
LanguageEnglish
Published London BioMed Central 07.09.2010
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-11-450

Cover

Abstract Background In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or variance filters in an attempt to reduce the multiple testing penalty and improve power. However, filtering may introduce a bias on the multiple testing correction. The precise amount of bias depends on many quantities, such as fraction of probes filtered out, filter statistic and test statistic used. Results We show that a biased multiple testing correction results if non-differentially expressed probes are not filtered out with equal probability from the entire range of p-values. We illustrate our results using both a simulation study and an experimental dataset, where the FDR is shown to be biased mostly by filters that are associated with the hypothesis being tested, such as the fold change. Filters that induce little bias on the FDR yield less additional power of detecting differentially expressed genes. Finally, we propose a statistical test that can be used in practice to determine whether any chosen filter introduces bias on the FDR estimate used, given a general experimental setup. Conclusions Filtering out of probes must be used with care as it may bias the multiple testing correction. Researchers can use our test for FDR bias to guide their choice of filter and amount of filtering in practice.
AbstractList Background In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or variance filters in an attempt to reduce the multiple testing penalty and improve power. However, filtering may introduce a bias on the multiple testing correction. The precise amount of bias depends on many quantities, such as fraction of probes filtered out, filter statistic and test statistic used. Results We show that a biased multiple testing correction results if non-differentially expressed probes are not filtered out with equal probability from the entire range of p-values. We illustrate our results using both a simulation study and an experimental dataset, where the FDR is shown to be biased mostly by filters that are associated with the hypothesis being tested, such as the fold change. Filters that induce little bias on the FDR yield less additional power of detecting differentially expressed genes. Finally, we propose a statistical test that can be used in practice to determine whether any chosen filter introduces bias on the FDR estimate used, given a general experimental setup. Conclusions Filtering out of probes must be used with care as it may bias the multiple testing correction. Researchers can use our test for FDR bias to guide their choice of filter and amount of filtering in practice.
Background In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or variance filters in an attempt to reduce the multiple testing penalty and improve power. However, filtering may introduce a bias on the multiple testing correction. The precise amount of bias depends on many quantities, such as fraction of probes filtered out, filter statistic and test statistic used. Results We show that a biased multiple testing correction results if non-differentially expressed probes are not filtered out with equal probability from the entire range of p-values. We illustrate our results using both a simulation study and an experimental dataset, where the FDR is shown to be biased mostly by filters that are associated with the hypothesis being tested, such as the fold change. Filters that induce little bias on the FDR yield less additional power of detecting differentially expressed genes. Finally, we propose a statistical test that can be used in practice to determine whether any chosen filter introduces bias on the FDR estimate used, given a general experimental setup. Conclusions Filtering out of probes must be used with care as it may bias the multiple testing correction. Researchers can use our test for FDR bias to guide their choice of filter and amount of filtering in practice.
Abstract Background: In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or variance filters in an attempt to reduce the multiple testing penalty and improve power. However, filtering may introduce a bias on the multiple testing correction. The precise amount of bias depends on many quantities, such as fraction of probes filtered out, filter statistic and test statistic used. Results: We show that a biased multiple testing correction results if non-differentially expressed probes are not filtered out with equal probability from the entire range of p-values. We illustrate our results using both a simulation study and an experimental dataset, where the FDR is shown to be biased mostly by filters that are associated with the hypothesis being tested, such as the fold change. Filters that induce little bias on the FDR yield less additional power of detecting differentially expressed genes. Finally, we propose a statistical test that can be used in practice to determine whether any chosen filter introduces bias on the FDR estimate used, given a general experimental setup. Conclusions: Filtering out of probes must be used with care as it may bias the multiple testing correction. Researchers can use our test for FDR bias to guide their choice of filter and amount of filtering in practice.
In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or variance filters in an attempt to reduce the multiple testing penalty and improve power. However, filtering may introduce a bias on the multiple testing correction. The precise amount of bias depends on many quantities, such as fraction of probes filtered out, filter statistic and test statistic used. We show that a biased multiple testing correction results if non-differentially expressed probes are not filtered out with equal probability from the entire range of p-values. We illustrate our results using both a simulation study and an experimental dataset, where the FDR is shown to be biased mostly by filters that are associated with the hypothesis being tested, such as the fold change. Filters that induce little bias on the FDR yield less additional power of detecting differentially expressed genes. Finally, we propose a statistical test that can be used in practice to determine whether any chosen filter introduces bias on the FDR estimate used, given a general experimental setup. Filtering out of probes must be used with care as it may bias the multiple testing correction. Researchers can use our test for FDR bias to guide their choice of filter and amount of filtering in practice.
In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or variance filters in an attempt to reduce the multiple testing penalty and improve power. However, filtering may introduce a bias on the multiple testing correction. The precise amount of bias depends on many quantities, such as fraction of probes filtered out, filter statistic and test statistic used.BACKGROUNDIn high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or variance filters in an attempt to reduce the multiple testing penalty and improve power. However, filtering may introduce a bias on the multiple testing correction. The precise amount of bias depends on many quantities, such as fraction of probes filtered out, filter statistic and test statistic used.We show that a biased multiple testing correction results if non-differentially expressed probes are not filtered out with equal probability from the entire range of p-values. We illustrate our results using both a simulation study and an experimental dataset, where the FDR is shown to be biased mostly by filters that are associated with the hypothesis being tested, such as the fold change. Filters that induce little bias on the FDR yield less additional power of detecting differentially expressed genes. Finally, we propose a statistical test that can be used in practice to determine whether any chosen filter introduces bias on the FDR estimate used, given a general experimental setup.RESULTSWe show that a biased multiple testing correction results if non-differentially expressed probes are not filtered out with equal probability from the entire range of p-values. We illustrate our results using both a simulation study and an experimental dataset, where the FDR is shown to be biased mostly by filters that are associated with the hypothesis being tested, such as the fold change. Filters that induce little bias on the FDR yield less additional power of detecting differentially expressed genes. Finally, we propose a statistical test that can be used in practice to determine whether any chosen filter introduces bias on the FDR estimate used, given a general experimental setup.Filtering out of probes must be used with care as it may bias the multiple testing correction. Researchers can use our test for FDR bias to guide their choice of filter and amount of filtering in practice.CONCLUSIONSFiltering out of probes must be used with care as it may bias the multiple testing correction. Researchers can use our test for FDR bias to guide their choice of filter and amount of filtering in practice.
In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or variance filters in an attempt to reduce the multiple testing penalty and improve power. However, filtering may introduce a bias on the multiple testing correction. The precise amount of bias depends on many quantities, such as fraction of probes filtered out, filter statistic and test statistic used. We show that a biased multiple testing correction results if non-differentially expressed probes are not filtered out with equal probability from the entire range of p-values. We illustrate our results using both a simulation study and an experimental dataset, where the FDR is shown to be biased mostly by filters that are associated with the hypothesis being tested, such as the fold change. Filters that induce little bias on the FDR yield less additional power of detecting differentially expressed genes. Finally, we propose a statistical test that can be used in practice to determine whether any chosen filter introduces bias on the FDR estimate used, given a general experimental setup. Filtering out of probes must be used with care as it may bias the multiple testing correction. Researchers can use our test for FDR bias to guide their choice of filter and amount of filtering in practice.
ArticleNumber 450
Audience Academic
Author Boer, Judith M
Menezes, Renée X
van Iterson, Maarten
AuthorAffiliation 1 Center for Human and Clinical Genetics, Leiden University Medical Center, Postzone S4-P, P.O. Box 9600 Leiden, 2300 RC, The Netherlands
2 Netherlands Bioinformatics Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
4 Laboratory of Pediatrics, Erasmus Medical Center/Sophia Children's Hospital, P.O. Box 2060, Rotterdam, 3000 CB, The Netherlands
3 Department of Epidemiology and Biostatistics, VU University Medical Center, PK 6Z 183, P.O. Box 7057, Amsterdam, 1007 MB, The Netherlands
5 Centre for Medical Systems Biology, P.O. Box 9600, Leiden, 2300 RC, The Netherlands
AuthorAffiliation_xml – name: 1 Center for Human and Clinical Genetics, Leiden University Medical Center, Postzone S4-P, P.O. Box 9600 Leiden, 2300 RC, The Netherlands
– name: 5 Centre for Medical Systems Biology, P.O. Box 9600, Leiden, 2300 RC, The Netherlands
– name: 3 Department of Epidemiology and Biostatistics, VU University Medical Center, PK 6Z 183, P.O. Box 7057, Amsterdam, 1007 MB, The Netherlands
– name: 2 Netherlands Bioinformatics Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
– name: 4 Laboratory of Pediatrics, Erasmus Medical Center/Sophia Children's Hospital, P.O. Box 2060, Rotterdam, 3000 CB, The Netherlands
Author_xml – sequence: 1
  givenname: Maarten
  surname: van Iterson
  fullname: van Iterson, Maarten
  organization: Center for Human and Clinical Genetics, Leiden University Medical Center, Netherlands Bioinformatics Centre
– sequence: 2
  givenname: Judith M
  surname: Boer
  fullname: Boer, Judith M
  organization: Center for Human and Clinical Genetics, Leiden University Medical Center, Netherlands Bioinformatics Centre, Centre for Medical Systems Biology
– sequence: 3
  givenname: Renée X
  surname: Menezes
  fullname: Menezes, Renée X
  email: r.menezes@vumc.nl
  organization: Department of Epidemiology and Biostatistics, VU University Medical Center, Laboratory of Pediatrics, Erasmus Medical Center/Sophia Children's Hospital, Centre for Medical Systems Biology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20822518$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB-w7wqNYIGQSLEdPzdIVWFgpEpIBdbWje0EjzLxYCeU_nscZhg6FS9l4fj6O0dX597j4qAPvSuKU4zOMJb8JaYClwQjVmJcUobuFUe70sGt_8PiOKUlQlhIxB4UhwRJQhiWR8Xp3HeDi75vX8zmr69m0NvZOly7-LC430CX3KPteVJ8mr_5ePGuvHz_dnFxflkazquhFJYbJCrG66pylFLChWXSACcNrp1CgmALQIXC0lXUNtwRChWigmJTIWuqk2Kx8bUBlnod_QrijQ7g9Y9CiK2GOHjTOQ21oQ0wwlTTUFZbpYiQ4CiIBtvsnb3wxmvs13BzDV23M8RIT4npKRI9RZKvOieWNa82mvVYr5w1rh8idHuN7L_0_rNuw1dNFFVS8mzwbGsQw5fRpUGvfDKu66B3YUxaMcoREujfpGCcc4HR1NSTO-QyjLHPc9AKYcmUkCJDTzdQCzkc3zch92cmS31OKsmxkpxk6uw3VP6sW3mT16nxub4neL4nyMzgvg0tjCnpxYerffbx7fB2qf3crwzwDWBiSCm6Rhs_wODDlKXv_jYWdEf4H5PcTj-tp3128Vdof9R8B5uM-ww
CitedBy_id crossref_primary_10_1093_bioinformatics_btx138
crossref_primary_10_1093_bioinformatics_btx214
crossref_primary_10_1371_journal_pone_0212032
crossref_primary_10_15252_embj_2022111485
crossref_primary_10_3389_fcell_2020_592518
crossref_primary_10_1016_j_fertnstert_2018_08_052
crossref_primary_10_1371_journal_pone_0132310
crossref_primary_10_1038_s41437_018_0160_4
crossref_primary_10_1080_15592294_2020_1767277
crossref_primary_10_1016_j_pld_2022_10_002
crossref_primary_10_1111_biom_13457
crossref_primary_10_1002_jcp_29829
crossref_primary_10_1016_j_envexpbot_2021_104514
crossref_primary_10_1016_j_fm_2023_104285
crossref_primary_10_1002_ana_22497
crossref_primary_10_1038_s41540_022_00222_z
crossref_primary_10_1186_s40537_018_0128_5
crossref_primary_10_1016_j_jprot_2013_05_030
crossref_primary_10_1016_j_isci_2024_110640
crossref_primary_10_1016_j_jri_2021_103307
crossref_primary_10_1289_ehp_1307892
crossref_primary_10_1080_15592294_2020_1712876
crossref_primary_10_3390_ijms241713318
crossref_primary_10_1186_s13148_016_0212_7
crossref_primary_10_1038_s42003_024_06325_z
crossref_primary_10_1186_1471_2164_14_376
crossref_primary_10_1186_s13059_023_02917_w
crossref_primary_10_1109_TCBB_2018_2858825
crossref_primary_10_1111_pce_14224
crossref_primary_10_3390_biom13050872
crossref_primary_10_1007_s00253_022_11796_3
crossref_primary_10_1007_s00421_011_2048_3
crossref_primary_10_1186_s12859_023_05142_1
crossref_primary_10_1002_sim_6082
crossref_primary_10_3390_ijms21082873
crossref_primary_10_1002_advs_202308313
Cites_doi 10.1007/0-387-29362-0_23
10.1089/cmb.2005.12.482
10.1002/bimj.200710473
10.1186/1471-2105-7-49
10.1016/S0378-3758(99)00041-5
10.1214/009053607000000046
10.1016/S1470-2045(08)70339-5
10.1214/aos/1013699998
10.1093/bioinformatics/btp053
10.1111/1467-9868.00346
10.1111/j.1541-0420.2008.01052.x
10.1038/ni.1688
10.1186/1471-2105-10-11
10.1111/j.2517-6161.1995.tb02031.x
10.1093/biomet/93.3.491
10.1186/1471-2105-10-402
10.1111/j.1467-9868.2005.00515.x
ContentType Journal Article
Copyright van Iterson et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2010 BioMed Central Ltd.
2010 van Iterson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2010 van Iterson et al; licensee BioMed Central Ltd. 2010 van Iterson et al; licensee BioMed Central Ltd.
Copyright_xml – notice: van Iterson et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: 2010 van Iterson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2010 van Iterson et al; licensee BioMed Central Ltd. 2010 van Iterson et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-11-450
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals) eJournal Collection
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database



Engineering Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 450
ExternalDocumentID oai_doaj_org_article_abc4fa5259ff45bd99278ae4a7f1d4df
10.1186/1471-2105-11-450
PMC2949886
2501705051
A238619862
20822518
10_1186_1471_2105_11_450
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c663t-7d6c07356b33e444267d58ca62f1be90721daa47918e34df6e24a304741c30dc3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:44:22 EDT 2025
Wed Oct 29 11:23:23 EDT 2025
Tue Sep 30 16:49:04 EDT 2025
Mon Oct 06 18:07:50 EDT 2025
Thu Sep 04 19:20:26 EDT 2025
Mon Oct 06 18:30:25 EDT 2025
Mon Oct 20 22:18:23 EDT 2025
Mon Oct 20 16:10:31 EDT 2025
Thu Oct 16 15:05:44 EDT 2025
Wed Feb 19 02:03:42 EST 2025
Wed Oct 01 06:55:10 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords False Discovery Rate
Multiple Testing Correction
Filter Statistic
Variance Filter
Signal Filter
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c663t-7d6c07356b33e444267d58ca62f1be90721daa47918e34df6e24a304741c30dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-11-450
PMID 20822518
PQID 901859787
PQPubID 44065
ParticipantIDs doaj_primary_oai_doaj_org_article_abc4fa5259ff45bd99278ae4a7f1d4df
unpaywall_primary_10_1186_1471_2105_11_450
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2949886
proquest_miscellaneous_954600706
proquest_miscellaneous_756667100
proquest_journals_901859787
gale_infotracmisc_A238619862
gale_infotracacademiconefile_A238619862
gale_incontextgauss_ISR_A238619862
pubmed_primary_20822518
crossref_citationtrail_10_1186_1471_2105_11_450
crossref_primary_10_1186_1471_2105_11_450
springer_journals_10_1186_1471_2105_11_450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-07
PublicationDateYYYYMMDD 2010-09-07
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-07
  day: 07
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2010
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References S Pounds (3907_CR18) 2005; 12
Y Benjamini (3907_CR5) 2006; 93
W van Wieringen (3907_CR10) 2009; 65
A Hackstadt (3907_CR15) 2009; 10
G Smyth (3907_CR12) 2005
D McCarthy (3907_CR2) 2009; 25
S Dudoit (3907_CR17) 2008; 50
J Storey (3907_CR9) 2002; 64
J McClintick (3907_CR14) 2006; 7
Y Benjamini (3907_CR1) 1995; 57
D Yekutieli (3907_CR16) 1999; 82
H Finner (3907_CR4) 2007; 35
J Ferreira (3907_CR7) 2006
M Langaas (3907_CR8) 2005; 67
S Zhang (3907_CR3) 2009; 10
M Den Boer (3907_CR11) 2009; 10
R Development Core Team (3907_CR19) 2007
Y Benjamini (3907_CR6) 2001; 29
T Querec (3907_CR13) 2009; 10
15882143 - J Comput Biol. 2005 May;12(4):482-95
19995439 - BMC Bioinformatics. 2009;10:402
18479479 - Biometrics. 2009 Mar;65(1):19-29
18932138 - Biom J. 2008 Oct;50(5):716-44
19176553 - Bioinformatics. 2009 Mar 15;25(6):765-71
19133141 - BMC Bioinformatics. 2009;10:11
19138562 - Lancet Oncol. 2009 Feb;10(2):125-34
19029902 - Nat Immunol. 2009 Jan;10(1):116-25
16448562 - BMC Bioinformatics. 2006;7:49
References_xml – start-page: 397
  volume-title: Bioinformatics and Computational Biology Solutions using R and Bioconductor
  year: 2005
  ident: 3907_CR12
  doi: 10.1007/0-387-29362-0_23
– volume: 12
  start-page: 482
  issue: 4
  year: 2005
  ident: 3907_CR18
  publication-title: Journal of Computational Biology: A Journal of Computational Molecular Cell Biology
  doi: 10.1089/cmb.2005.12.482
– volume: 50
  start-page: 716
  year: 2008
  ident: 3907_CR17
  publication-title: Biometrical Journal
  doi: 10.1002/bimj.200710473
– volume: 7
  start-page: 49
  year: 2006
  ident: 3907_CR14
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-49
– volume-title: International Journal of Biostatistics
  year: 2006
  ident: 3907_CR7
– volume: 82
  start-page: 171
  year: 1999
  ident: 3907_CR16
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/S0378-3758(99)00041-5
– volume: 35
  start-page: 1432
  issue: 4
  year: 2007
  ident: 3907_CR4
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000046
– volume: 10
  start-page: 125
  issue: 2
  year: 2009
  ident: 3907_CR11
  publication-title: The Lancet Oncology
  doi: 10.1016/S1470-2045(08)70339-5
– volume: 29
  start-page: 1165
  issue: 4
  year: 2001
  ident: 3907_CR6
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1013699998
– volume: 25
  start-page: 765
  issue: 6
  year: 2009
  ident: 3907_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp053
– volume: 64
  start-page: 479
  year: 2002
  ident: 3907_CR9
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/1467-9868.00346
– volume: 65
  start-page: 19
  year: 2009
  ident: 3907_CR10
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01052.x
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2007
  ident: 3907_CR19
– volume: 10
  start-page: 116
  year: 2009
  ident: 3907_CR13
  publication-title: Nature Immunology
  doi: 10.1038/ni.1688
– volume: 10
  start-page: 11
  year: 2009
  ident: 3907_CR15
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-11
– volume: 57
  start-page: 289
  year: 1995
  ident: 3907_CR1
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 93
  start-page: 491
  issue: 3
  year: 2006
  ident: 3907_CR5
  publication-title: Biometrics
  doi: 10.1093/biomet/93.3.491
– volume: 10
  start-page: 402
  year: 2009
  ident: 3907_CR3
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-402
– volume: 67
  start-page: 555
  issue: 4
  year: 2005
  ident: 3907_CR8
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.1467-9868.2005.00515.x
– reference: 15882143 - J Comput Biol. 2005 May;12(4):482-95
– reference: 16448562 - BMC Bioinformatics. 2006;7:49
– reference: 19995439 - BMC Bioinformatics. 2009;10:402
– reference: 18479479 - Biometrics. 2009 Mar;65(1):19-29
– reference: 19133141 - BMC Bioinformatics. 2009;10:11
– reference: 19029902 - Nat Immunol. 2009 Jan;10(1):116-25
– reference: 18932138 - Biom J. 2008 Oct;50(5):716-44
– reference: 19176553 - Bioinformatics. 2009 Mar 15;25(6):765-71
– reference: 19138562 - Lancet Oncol. 2009 Feb;10(2):125-34
SSID ssj0017805
Score 2.1886883
Snippet Background In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or variance...
In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or variance filters in an...
Background In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or variance...
Abstract Background: In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or...
Abstract Background In high-dimensional data analysis such as differential gene expression analysis, people often use filtering methods like fold-change or...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 450
SubjectTerms Algorithms
Bias
Bioinformatics
Biomedical and Life Sciences
Computational biology
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Filters
Gene expression
Gene Expression Profiling - methods
Humans
Independent sample
Leukemia - genetics
Life Sciences
Microarrays
Networks analysis
Nucleic acid probes
Probes
R&D
Research & development
Research Article
Studies
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlENoeSvqMk7SYUigNNWvJsh7H9LGkhfaQNpCbkGQpDSzeJbtLyL_PjF9dt6S59GhpbOxPI2uGmfmGkDc5VQ55wTPmFDooSHlrC5dxGmVRRsu0wuLkb9_F8Sn_elaebbT6wpywlh64BW5inefRlmClx8hLV2nNpLKBWxlpxauIf99c6d6Z6uIHyNTf1BVJmoFTU_YBSiUmwxhWlHGst984kBre_r__zhvH05-pk0P89CG5v64X9vrKzmYbR9R0hzzqbMv0qP2mx-ReqJ-Q7bbb5PVTsju9wNA4POZ9Ov10ktq6ShfYJO0ZOZ1-_vnxOOsaI2QeDIRVJivhYWuWwhVF4BwOWVmVylvBInVBI-VZZS2XmqpQAEYiMG4xvsapL_LKF8_JVj2vwy5JHXV5yJnXwlnOq9wxalXuI1gGnHnmEzLp0TG-Yw3H5hUz03gPShjE0yCecGkAz4S8G-5YtIwZ_5D9gIAPcsh13QyABphOA8xdGpCQ17hcBtksakyXObfr5dJ8-XFijsAgAQ8RvLaEvO2E4hze39uu-gBQQAKskeTBSBK2mx9N7_daYbrtvjRgVCnwzJRMSDrM4o2YwVaH-XppJNjNAqmUbhfRJcduAblIyItWywZgGBLzl1QlRI70b4TceKa--NWwhTPNtVLwzMNeU3-_9-3rcjjo8p2LuPc_FnGfPGjzMrCk7oBsrS7X4SWYeyv3qtnZN0diSHs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB_qFdE-iN-NrRJEEIvhks0m2TyItNqjCi1yWujbsh_ZWjiSa-8O6X_vTL68KK2PyU5CbnZmZ-Zm5jcAb8JIaMIFD5gWFKAQ5K2KdcAjl8WJUywX1Jx8fJIenfKvZ8nZBhx3vTBUVtmdifVBbStD_5GP0W4JdH5F9nF-GdDQKEqudhM0VDtZwX6oEcbuwCYjYKwRbB4cnnyb9mkFAvDvcpUiHUd4MgdIl1BzGafW-zXbVEP4_3tQr1mqv6so-1TqFtxblXN1_UvNZmvWavIQHrRupr_fyMUj2CjKx3C3GTx5_QS2JxeUJcfXvPcnn6e-Kq0_p3lpT-F0cvjj01HQzkgIDPoKyyCzqUEtTVIdxwXnaG8zmwijUuYiXeSEfmaV4lkeiSLm1qUF44pSbTwycWhN_AxGZVUW2-DrSIdFyEyeasW5DTWLlAiNQyeBM8OMB-OOO9K0AOI0x2Im60BCpJL4KYmfeCmRnx6865-YN-AZt9AeEMN7OoK9rm9UV-ey1SKptOFOJRiyOccTbfOcZUIVXGUusvjrPHhN2yUJ2KKkyplztVos5JfvU7mPvgkGixjAefC2JXIVfr9RbSMCcoGwsAaUuwNK1DwzWN7ppEK2mr-QvZx64Per9CAVs5VFtVrIDF3olFCVbibJE06DA8LUg-eNlPWMYYTRj0LuQTaQvwHnhivlxc8aOJzlPBcC37nXSeqf7755X_Z6Wf7vJr64lSM7cL-pvaC2uV0YLa9WxUt06Zb6VauovwG7wUKv
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-hIQQ8oPG5sIEihISYiBY7tuM8boNqIMHDYNLeLNuxx6QqrWgrtP-euyQNDTAQj63PVnofubue73cAL3OmHeGCZ9xpSlAI8tYWLhMsloWMlleampM_flInZ-LDuTzv_--gXpjN-j3T6oDhyzPDtERS_5eg5PwmuijVlmXV8VAvIGT-dRHyD7tGTqfF5v_9Dbzhgn69HjnUSO_C7VUzt1ff7XS64YYm23Cvjx_Tw07g9-FGaB7ArW6i5NVD2JlcUvkbj3mTTt6eprap0zkNQnsEZ5N3X45Psn74QeYxCFhmZa08mp9UriiCEOhIy1pqbxWPzIWKYM1qa0VZMR0KUUcVuLBUQxPMF3nti8ew1cyasAOpYy4POfeVclaIOnecWZ37iN5fcM99Agdr7hjfI4PTgIqpaTMErQzx0xA_8aNBfibwetgx71Ax_kJ7RAwf6AjPuv0CxWx68zDWeRGtxFwsRiFdXVW81DYIW0ZW469L4AWJyxBiRUNXYi7sarEw7z-fmkMMOjALxMwsgVc9UZzh83vbdxggFwjkakS5N6JEk_Kj5d21VpjepBcGAyeN2ZcuE0iHVdpIt9SaMFstTImxsSK4pOtJKiloIkCuEnjSadnAGE7g-5LpBMqR_o04N15pLr-2iOC8EpXWeOb-WlN_Pvf1ctkfdPmfQnz6Pyfvwp3ujgW1x-3B1vLbKjzD0G3pnrdW-wM1LjPl
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELemTgj4wHssbKAIISEm0iaO4zgfy6MaSEzToNL4ZNmOPSpKUvoQGn89d82DZjAQEh8bnyuffXe-k-9-R8iTMBIaccEDqgUGKAh5q2IdsMilceIUzQQWJ7874odj9vY0Od0ix00tjP5i9KSsQUMRqLi_WYY-raocsIuCnQ9muauUXvBBBEY2gPAlwToxhkH8Nk_AO--R7fHR8fDjusioJmleK38zrXM7rUH8fzXVG3fVxTzK9jH1Orm6Kmbq_JuaTjfuq9FN8rXhtEpT-dxfLXXffL8AAvk_t-IWuVE7t_6wksbbZMsWd8iVqt3l-V2yO5rg2zws_bk_enXiqyL3Z9il7R4Zj15_eHkY1J0ZAgMeyjJIc27ANiRcx7FlDG75NE-EUZy6SNsMMddypViaRcLGLHfcUqbwgY9FJg5zE--QXlEWdpf4OtKhDanJuFaM5aGmkRKhceCaMGqo8cigORFpathy7J4xlevwRXCJ_ErkF35K4Ncjz9oZswqy4w-0L_CQWzoE215_KOdnstZdqbRhTiUQKDrHEp1nGU2FskylLsqBO488RhGRCKdRYL7OmVotFvLN-xM5BI8IQlQIGz3ytCZyJazfqLr8AXYBEbg6lPsdStB30xneayRR1vZmIcGrExAaitQjfjuKEzGFrrDlaiFTcNw5YjldTpIlDNsVhNwj9yvJbjeGYmeAJBIeSTsy39m57kgx-bSGK6cZy4SA_zxotOPnui8_l4NWf_56iA_-hXiPXKsSQLB2b5_0lvOVfQh-5VI_qk3FDwroa68
  priority: 102
  providerName: Unpaywall
Title Filtering, FDR and power
URI https://link.springer.com/article/10.1186/1471-2105-11-450
https://www.ncbi.nlm.nih.gov/pubmed/20822518
https://www.proquest.com/docview/901859787
https://www.proquest.com/docview/756667100
https://www.proquest.com/docview/954600706
https://pubmed.ncbi.nlm.nih.gov/PMC2949886
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-11-450
https://doaj.org/article/abc4fa5259ff45bd99278ae4a7f1d4df
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central [NZ]
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9NADLf2EAI-IN4LG1WEEIhpYXlccpcPCHVlZVRaNW1UKp9Od5dkTKrSrg9B_3vsNMkW2MaXRs05p8Rnx3Z8_hngresJTbjgjq8FBSgEeasC7TAv40GYKT8WVJx83I-OBqw3DIdrUFWXlAyc3RjaUT-pwXT08ffl8jMq_KdC4UW07-EL1sHQJaQaMRa67yaXDrWVovRr2WNjHTbRdMXU2-GYXaUZCNC_yl3eMFHDVhWQ_v--uK9Zrr93Vdap1Ydwf5FP1PKXGo2uWa_uY3hUup12eyUnT2AtzZ_CvVUjyuUz2OpeUNYcp9mzu19ObZUn9oT6pz2HQffwe-fIKXsmOAZ9h7nDk8ig1oaRDoKUMbS_PAmFUZGfeTqNCQ0tUYrx2BNpwJIsSn2mKPXGPBO4iQlewEY-ztMtsLWn3dT1TRxpxVjiat9TwjUZOg3MN76xYL_ijjQloDj1tRjJIrAQkSR-SuIn_pXITws-1FdMVmAad9AeEMNrOoLBLk6Mp-ey1CqptGGZCjGEyzIW6iSOfS5UyhTPvASfzoI3tFySgC5y2klzrhazmfx2dirb6Ktg8IgBnQXvS6JsjPdvVFmYgFwgbKwG5U6DEjXRNIa3K6mQlSBL9LcEBm2CW2DXo3QhbW7L0_FiJjm61BGhLN1OEoeMGgm4kQUvV1JWM8YnzP7QExbwhvw1ONccyS9-FkDifsxiIXDO3UpSr-779nXZrWX5v4v46k6ObMOD1V4MKqPbgY35dJG-Rhdvrluwzoccf0X3aws22-3eWQ-PB4f9k1M824k6reLjSatQZxwZ9E_aP_4AAqBOwg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlQ4IN41LWAhEKLCine9ttcHhAolSunjUFopt-3u2i6VIic0iar8KP4jM34Rg1pOPSY7Xjmzs_PIzHwD8MZn0hAuuMeNpACFIG91YDzB8jgIc80TSc3JB4fR4ER8G4bDFfjV9MJQWWWjE0tFnY4t_UfeQ7sl0fmV8afJT4-GRlFytZmgUUnFXra4xIht-nF3B4_3Lef9r8dfBl49VMCzaFxnXpxGFsU6jEwQZEKggYrTUFod8ZyZLCG4sFRrESdMZoFI8yjjQlNuSjAb-KkNcN9bcFsEqErw-sTDNr5jNB6gyYTKqMdQ73sYUYXUuiaosX_J8pUDAv41A0t28O8azTZRew_W5sVELy71aLRkC_sP4H7txLrbldQ9hJWseAR3qrGWi8ew3j-nHDxu88Ht7xy5ukjdCU1jewInN8Ksp7BajItsHVzDjJ_53CaR0UKkvuFMS9_m6IIIbrl1oNdwR9kanpymZIxUGabISBE_FfETPyrkpwPv2ycmFTTHNbSfieEtHYFql1-ML85UfUeVNlbkOsSAMM9FaNIk4bHUmdBxzlL8dQ68puNSBJtRUF3OmZ5Pp2r3-5HaRs8HQ1EMDx14VxPlY3x_q-s2B-QCIW11KDc7lHivbWd5o5EKVeuVqWpvgQNuu0oPUqlckY3nUxWjgx4RZtPVJEkoaCyBHznwrJKyljGcJgCETDoQd-Svw7nuSnH-o4Ql54lIpMQ9txpJ_fPeV5_LVivL_z3E59dy5BWsDY4P9tX-7uHeBtytqjyoQW8TVmcX8-wFOo8z87K8si6c3rSO-A0jv3eU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9QwDI_QJh77gHivbECFkBDTqmvSNE0_jhvVxmNCg0n7FuXRjEmn3mm9E9p_j90XKzAQH-_iRD3Hru2z_TMhr2IqDeKCR8xIDFAQ8lYnJuLUZ0nqNcslNid_OhIHJ_z9aXra_eFW99XufUqy7WlAlKZqOVk436q4FBMKr9QIgpUUu8I4huzrHGwbTjCYiumQRUC8_j41-YddI1PUIPb__l6-Yph-LZocMqcb5PaqWujL73o2u2KcinvkbudVhnutGNwnN8rqAbnZzpm8fEg2i3NMisMxu2GxfxzqyoULHI_2iJwU775OD6JuJEJkwTVYRpkTFpQyFSZJSs7BvGYulVYL5qkpcwQ7c1rzLKeyTLjzomRcY2aNU5vEziaPyVo1r8pNEhpq4jJmNhdGc-5iw6iWsfXgE3BmmQ3IpOeOsh1eOI6tmKkmbpBCIT8V8hM-KuBnQN4MOxYtVsZfaN8iwwc6RLluvphfnKlOaZQ2lnudQoTmPU-Ny3OWSV1ynXnq4NcF5CVel0IciwoLZc70qq7V4ZdjtQeuCMSGEK8F5HVH5Ofw_FZ3fQfABYS-GlFujyhB0exoeauXCtUpeq3AnZIQk8ksIOGwihuxdq0q56taZeAxCwRRup4kTznOCYhFQJ60UjYwhiEkf0plQLKR_I04N16pzr81OOEs57mUcOZOL6k_n_v6e9kZZPmfl_j0f05-QW593i_Ux8OjD1vkTluEgf1z22RtebEqn4FvtzTPGwX-AUDkPxs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELemTgj4wHssbKAIISEm0iaO4zgfy6MaSEzToNL4ZNmOPSpKUvoQGn89d82DZjAQEh8bnyuffXe-k-9-R8iTMBIaccEDqgUGKAh5q2IdsMilceIUzQQWJ7874odj9vY0Od0ix00tjP5i9KSsQUMRqLi_WYY-raocsIuCnQ9muauUXvBBBEY2gPAlwToxhkH8Nk_AO--R7fHR8fDjusioJmleK38zrXM7rUH8fzXVG3fVxTzK9jH1Orm6Kmbq_JuaTjfuq9FN8rXhtEpT-dxfLXXffL8AAvk_t-IWuVE7t_6wksbbZMsWd8iVqt3l-V2yO5rg2zws_bk_enXiqyL3Z9il7R4Zj15_eHkY1J0ZAgMeyjJIc27ANiRcx7FlDG75NE-EUZy6SNsMMddypViaRcLGLHfcUqbwgY9FJg5zE--QXlEWdpf4OtKhDanJuFaM5aGmkRKhceCaMGqo8cigORFpathy7J4xlevwRXCJ_ErkF35K4Ncjz9oZswqy4w-0L_CQWzoE215_KOdnstZdqbRhTiUQKDrHEp1nGU2FskylLsqBO488RhGRCKdRYL7OmVotFvLN-xM5BI8IQlQIGz3ytCZyJazfqLr8AXYBEbg6lPsdStB30xneayRR1vZmIcGrExAaitQjfjuKEzGFrrDlaiFTcNw5YjldTpIlDNsVhNwj9yvJbjeGYmeAJBIeSTsy39m57kgx-bSGK6cZy4SA_zxotOPnui8_l4NWf_56iA_-hXiPXKsSQLB2b5_0lvOVfQh-5VI_qk3FDwroa68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Filtering%2C+FDR+and+power&rft.jtitle=BMC+bioinformatics&rft.au=van+Iterson%2C+Maarten&rft.au=Boer%2C+Judith+M&rft.au=Menezes%2C+Ren%C3%A9e+X&rft.date=2010-09-07&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=11&rft.spage=450&rft_id=info:doi/10.1186%2F1471-2105-11-450&rft.externalDocID=2501705051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon