Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes

Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes Martin Mogensen 1 , Kent Sahlin 1 2 3 , Maria Fernström 2 3 , Dorte Glintborg 4 , Birgitte F. Vind 4 , Henning Beck-Nielsen 4 and Kurt Højlund 4 1 Institute of Sports Science and Clinical Biomechanics, Univers...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 56; no. 6; pp. 1592 - 1599
Main Authors Mogensen, Martin, Sahlin, Kent, Fernström, Maria, Glintborg, Dorte, Vind, Birgitte F., Beck-Nielsen, Henning, Højlund, Kurt
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.06.2007
Subjects
Online AccessGet full text
ISSN0012-1797
1939-327X
1939-327X
DOI10.2337/db06-0981

Cover

Abstract Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes Martin Mogensen 1 , Kent Sahlin 1 2 3 , Maria Fernström 2 3 , Dorte Glintborg 4 , Birgitte F. Vind 4 , Henning Beck-Nielsen 4 and Kurt Højlund 4 1 Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark 2 Stockholm University College of Physical Education and Sports, GIH, Stockholm, Sweden 3 Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden 4 Department of Endocrinology, Diabetes Research Centre, Odense University Hospital, Odense, Denmark Address correspondence and reprint requests to Kurt Højlund, MD, PhD, Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, 3, DK-5000 Odense C, Denmark. E-mail: k.hojlund{at}dadlnet.dk Abstract We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl- l -carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance ( P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity. ETC, electron transport chain FFA, free fatty acid HAD, 3-hydroxy-Acyl-CoA-dehydrogenase HNE, 4-hydroxy-2-nonenal HOMA-IR, homeostasis model assessment of insulin resistance RCI, respiratory control index ROS, reactive oxygen species UCP, uncoupling protein Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 9 March 2007. DOI: 10.2337/db06-0981. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted February 26, 2007. Received July 17, 2006. DIABETES
AbstractList We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl-l-carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance (P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity.
We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl-L-carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance (P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity. Diabetes 56:1592-1599, 2007
Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes Martin Mogensen 1 , Kent Sahlin 1 2 3 , Maria Fernström 2 3 , Dorte Glintborg 4 , Birgitte F. Vind 4 , Henning Beck-Nielsen 4 and Kurt Højlund 4 1 Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark 2 Stockholm University College of Physical Education and Sports, GIH, Stockholm, Sweden 3 Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden 4 Department of Endocrinology, Diabetes Research Centre, Odense University Hospital, Odense, Denmark Address correspondence and reprint requests to Kurt Højlund, MD, PhD, Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, 3, DK-5000 Odense C, Denmark. E-mail: k.hojlund{at}dadlnet.dk Abstract We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl- l -carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance ( P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity. ETC, electron transport chain FFA, free fatty acid HAD, 3-hydroxy-Acyl-CoA-dehydrogenase HNE, 4-hydroxy-2-nonenal HOMA-IR, homeostasis model assessment of insulin resistance RCI, respiratory control index ROS, reactive oxygen species UCP, uncoupling protein Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 9 March 2007. DOI: 10.2337/db06-0981. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted February 26, 2007. Received July 17, 2006. DIABETES
We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P &lt; 0.05). There were no differences in respiration with palmitoyl-l-carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance (P &lt; 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity.
We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl-l-carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance (P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity.We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl-l-carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance (P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity.
Audience Professional
Author Maria Fernström
Dorte Glintborg
Birgitte F. Vind
Henning Beck-Nielsen
Kent Sahlin
Martin Mogensen
Kurt Højlund
Author_xml – sequence: 1
  givenname: Martin
  surname: Mogensen
  fullname: Mogensen, Martin
  organization: Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
– sequence: 2
  givenname: Kent
  surname: Sahlin
  fullname: Sahlin, Kent
  organization: Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark, Stockholm University College of Physical Education and Sports, GIH, Stockholm, Sweden, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
– sequence: 3
  givenname: Maria
  surname: Fernström
  fullname: Fernström, Maria
  organization: Stockholm University College of Physical Education and Sports, GIH, Stockholm, Sweden, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
– sequence: 4
  givenname: Dorte
  surname: Glintborg
  fullname: Glintborg, Dorte
  organization: Department of Endocrinology, Diabetes Research Centre, Odense University Hospital, Odense, Denmark
– sequence: 5
  givenname: Birgitte F.
  surname: Vind
  fullname: Vind, Birgitte F.
  organization: Department of Endocrinology, Diabetes Research Centre, Odense University Hospital, Odense, Denmark
– sequence: 6
  givenname: Henning
  surname: Beck-Nielsen
  fullname: Beck-Nielsen, Henning
  organization: Department of Endocrinology, Diabetes Research Centre, Odense University Hospital, Odense, Denmark
– sequence: 7
  givenname: Kurt
  surname: Højlund
  fullname: Højlund, Kurt
  organization: Department of Endocrinology, Diabetes Research Centre, Odense University Hospital, Odense, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18811665$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17351150$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-5017$$DView record from Swedish Publication Index
http://kipublications.ki.se/Default.aspx?queryparsed=id:115529378$$DView record from Swedish Publication Index
BookMark eNp90ltv0zAUB3ALDbGu8MAXQBEIJISy-RLn8li1MCZ1GoJxES-W45yk3tK42I7Gvj0uDa2KCvJDLOvno5zj_wk66kwHCD0l-JQylp1VJU5jXOTkARqRghUxo9m3IzTCmNCYZEV2jE6cu8EYp2E9QsckY5wQjkfo-6X2Ri1MV1kt2-gjuJW20mvTRRcumoGyIB1Uke6iT7fQgg_osneqhcjU0YcgofMu-qr9Irq-X0FEo5mWJXhwj9HDWrYOngzfMfr87u319H08vzq_mE7msUpT6uOsgrwukoolSU4IxhVXZQ6MySqhKWWyYHmJEyAqwcBVInNFMyhypmqlSk4LNkbxpq67g1VfipXVS2nvhZFaDEe3YQeCZ4SGeY3Rm3_6mf4yEcY2otELwXGY0xi92uiVNT96cF4stVPQtrID0zuRYc5JxnmAz_-CN6a3XehcUJImOWMMB_RigxrZgtBdbbyVal1RTALiPA9r19GeaqADK9vw9LUOx3v-9IAPq4KlVgcvvN67EIyHn76RvXMiP5__72cGq0zbQgMiPOX0at8_G-bQl0uotuP9k7kAXg5AOiXb2spOabdzeYhBmq4LnW2cssY5C7VQ2v-OZuhOt4JgsU6_WKdfrNO_a2t7Y1v0gB1SsNDN4k5bENWQ292GpyIVhBeU_QJ-tw38
CODEN DIAEAZ
CitedBy_id crossref_primary_10_3390_biom12020208
crossref_primary_10_2337_db17_1150
crossref_primary_10_3934_molsci_2016_4_479
crossref_primary_10_3389_fcvm_2022_883615
crossref_primary_10_3164_jcbn_11_012FR
crossref_primary_10_3389_fendo_2019_00741
crossref_primary_10_1371_journal_pone_0123966
crossref_primary_10_3389_fphys_2022_1006993
crossref_primary_10_1152_ajpendo_00663_2011
crossref_primary_10_1210_jc_2011_2963
crossref_primary_10_1016_j_mito_2011_06_007
crossref_primary_10_1038_ejcn_2013_1
crossref_primary_10_1016_j_mito_2016_08_004
crossref_primary_10_1002_jcsm_12515
crossref_primary_10_1073_pnas_1008872107
crossref_primary_10_1002_jbio_201960140
crossref_primary_10_1016_j_jgr_2021_10_003
crossref_primary_10_3389_fphys_2021_779121
crossref_primary_10_1155_2011_435245
crossref_primary_10_1007_s00125_022_05752_z
crossref_primary_10_1016_j_orcp_2011_06_003
crossref_primary_10_1016_j_jcjd_2019_04_005
crossref_primary_10_1152_ajpendo_00069_2021
crossref_primary_10_3390_biomedicines11010121
crossref_primary_10_1007_s00408_024_00744_9
crossref_primary_10_1530_JOE_13_0397
crossref_primary_10_2337_db08_0043
crossref_primary_10_1111_j_1748_1716_2008_01878_x
crossref_primary_10_1111_obr_13164
crossref_primary_10_1073_pnas_1700997114
crossref_primary_10_1161_CIRCRESAHA_107_165472
crossref_primary_10_3390_nu14214479
crossref_primary_10_1210_jc_2010_0822
crossref_primary_10_1007_s11306_021_01777_4
crossref_primary_10_1007_s00125_015_3654_0
crossref_primary_10_1007_s11010_010_0662_8
crossref_primary_10_1113_EP087317
crossref_primary_10_1139_cjpp_2012_0228
crossref_primary_10_1016_j_jprot_2009_06_011
crossref_primary_10_1007_s00421_011_1913_4
crossref_primary_10_1080_01913123_2021_1983099
crossref_primary_10_2337_db09_1299
crossref_primary_10_1210_clinem_dgaa751
crossref_primary_10_2337_db08_0391
crossref_primary_10_3389_fphys_2015_00426
crossref_primary_10_1113_EP085251
crossref_primary_10_1016_j_niox_2013_12_009
crossref_primary_10_2337_db08_1240
crossref_primary_10_1016_j_bbalip_2013_11_014
crossref_primary_10_1007_s00125_008_1122_9
crossref_primary_10_1089_ars_2017_7225
crossref_primary_10_1007_s13238_012_2043_4
crossref_primary_10_1002_dmrr_812
crossref_primary_10_1111_apha_13395
crossref_primary_10_1038_ijo_2011_201
crossref_primary_10_1371_journal_pone_0015234
crossref_primary_10_1016_j_bbapap_2020_140469
crossref_primary_10_1093_function_zqad020
crossref_primary_10_1139_apnm_2018_0577
crossref_primary_10_3390_cells11132005
crossref_primary_10_1210_endocr_bqac018
crossref_primary_10_1016_S2213_8587_14_70034_8
crossref_primary_10_1152_physrev_00003_2009
crossref_primary_10_1016_j_diabet_2015_02_006
crossref_primary_10_1016_j_beem_2012_06_001
crossref_primary_10_1016_j_smrv_2017_01_001
crossref_primary_10_1371_journal_pone_0028536
crossref_primary_10_1371_journal_pone_0183978
crossref_primary_10_1016_j_mehy_2019_109439
crossref_primary_10_1007_s00421_020_04518_y
crossref_primary_10_1016_j_mcn_2018_05_006
crossref_primary_10_3390_nu11112806
crossref_primary_10_2337_db10_0174
crossref_primary_10_1093_brain_aws097
crossref_primary_10_1016_j_bbrc_2010_09_115
crossref_primary_10_1289_EHP7058
crossref_primary_10_1007_s11154_023_09827_z
crossref_primary_10_1016_j_mam_2024_101272
crossref_primary_10_1016_j_toxrep_2022_03_004
crossref_primary_10_1016_j_biochi_2012_12_014
crossref_primary_10_1097_MCO_0b013e3282f0eca9
crossref_primary_10_1111_apha_14139
crossref_primary_10_1002_jcp_22812
crossref_primary_10_1007_s40279_018_0936_y
crossref_primary_10_1016_j_orcp_2016_09_012
crossref_primary_10_1007_s00424_021_02613_3
crossref_primary_10_3389_fmolb_2022_959844
crossref_primary_10_1152_japplphysiol_00053_2012
crossref_primary_10_1016_j_physbeh_2008_04_019
crossref_primary_10_1016_j_metabol_2011_02_006
crossref_primary_10_1007_s11010_012_1478_5
crossref_primary_10_3390_antiox11010154
crossref_primary_10_1007_s13539_012_0073_7
crossref_primary_10_1038_hr_2011_140
crossref_primary_10_3109_10715762_2013_830717
crossref_primary_10_1016_j_mce_2019_110580
crossref_primary_10_1152_ajpendo_00317_2009
crossref_primary_10_1016_j_abb_2015_09_017
crossref_primary_10_2522_ptj_20080018
crossref_primary_10_1002_dmrr_2658
crossref_primary_10_3389_fgene_2019_00325
crossref_primary_10_1002_pbc_31369
crossref_primary_10_1016_j_physbeh_2008_01_020
crossref_primary_10_1007_s00125_010_1764_2
crossref_primary_10_1016_j_febslet_2007_06_044
crossref_primary_10_1002_ehf2_13121
crossref_primary_10_1007_s00125_012_2456_x
crossref_primary_10_1210_er_2009_0003
crossref_primary_10_1007_s00281_013_0369_5
crossref_primary_10_3390_life11040288
crossref_primary_10_1016_j_bbabio_2010_02_017
crossref_primary_10_1007_s00421_017_3687_9
crossref_primary_10_1172_JCI146415
crossref_primary_10_1007_s11892_012_0361_9
crossref_primary_10_3390_antiox13040489
crossref_primary_10_1002_mus_23828
crossref_primary_10_3389_fmed_2023_1206071
crossref_primary_10_1016_j_mce_2010_01_039
crossref_primary_10_1016_j_mito_2021_02_007
crossref_primary_10_3390_biology11111638
crossref_primary_10_3390_ijms21051614
crossref_primary_10_1007_s00421_014_2906_x
crossref_primary_10_3390_ijms241814015
crossref_primary_10_1210_jc_2017_01727
crossref_primary_10_1016_j_bbrc_2009_03_102
crossref_primary_10_1152_ajpregu_90820_2008
crossref_primary_10_1097_MCO_0b013e3283455d7a
crossref_primary_10_1016_j_metabol_2009_12_020
crossref_primary_10_1146_annurev_nutr_071715_050656
crossref_primary_10_1242_jcs_034660
crossref_primary_10_3389_fcell_2022_965523
crossref_primary_10_1016_j_bbadis_2016_11_010
crossref_primary_10_1038_s41598_017_17418_7
crossref_primary_10_1080_13813450802676335
crossref_primary_10_1016_j_trsl_2011_08_007
crossref_primary_10_1111_1753_0407_12874
crossref_primary_10_1177_14791641211029002
crossref_primary_10_1016_j_mehy_2022_110804
crossref_primary_10_1038_nrendo_2011_138
crossref_primary_10_1111_j_1582_4934_2010_01085_x
crossref_primary_10_1113_JP280603
crossref_primary_10_1155_2011_587495
crossref_primary_10_3390_ijms21186559
crossref_primary_10_1007_s00125_008_1153_2
crossref_primary_10_1194_jlr_M003756
crossref_primary_10_1007_s12035_022_03003_1
crossref_primary_10_1016_j_bbagen_2013_09_019
crossref_primary_10_1210_er_2009_0027
crossref_primary_10_1016_j_metabol_2009_07_009
crossref_primary_10_3390_antiox9121304
crossref_primary_10_1249_MSS_0000000000002030
crossref_primary_10_1152_ajpheart_00267_2009
crossref_primary_10_1152_ajpregu_00222_2021
crossref_primary_10_1111_apha_13772
crossref_primary_10_1016_j_lfs_2021_119639
crossref_primary_10_1007_s00125_011_2377_0
crossref_primary_10_1007_s00018_023_04771_2
crossref_primary_10_1016_j_tem_2012_05_007
crossref_primary_10_1111_bph_16487
crossref_primary_10_3390_cimb45110548
crossref_primary_10_3390_jpm10020042
crossref_primary_10_1152_ajpendo_00416_2012
crossref_primary_10_1016_j_freeradbiomed_2013_11_012
crossref_primary_10_1042_CS20160736
crossref_primary_10_1515_HMBCI_2011_132
crossref_primary_10_1038_hr_2011_78
crossref_primary_10_1038_ijo_2010_123
crossref_primary_10_1007_s10545_009_1263_0
crossref_primary_10_1152_ajpendo_00755_2009
crossref_primary_10_1152_ajpendo_00426_2017
crossref_primary_10_7717_peerj_8793
crossref_primary_10_1210_clinem_dgad259
crossref_primary_10_1210_jc_2012_3111
crossref_primary_10_1007_s00018_018_2781_4
crossref_primary_10_1152_ajpheart_00699_2012
crossref_primary_10_1007_s00125_015_3772_8
crossref_primary_10_3390_cells10113013
crossref_primary_10_1152_ajpendo_90896_2008
crossref_primary_10_1371_journal_pone_0047996
crossref_primary_10_1002_dmrr_2601
crossref_primary_10_3389_fphys_2022_927969
crossref_primary_10_1152_ajpregu_00036_2012
crossref_primary_10_1007_s11033_018_4551_7
crossref_primary_10_1016_j_molmed_2014_11_008
crossref_primary_10_3892_etm_2014_1835
crossref_primary_10_1016_j_biocel_2012_09_019
crossref_primary_10_1186_s12933_020_01114_4
crossref_primary_10_1016_j_freeradbiomed_2024_12_019
crossref_primary_10_3390_ijms18040831
crossref_primary_10_1152_ajpheart_00782_2007
crossref_primary_10_1073_pnas_1207287109
crossref_primary_10_1007_s00125_009_1353_4
crossref_primary_10_2337_dc10_0712
crossref_primary_10_1016_j_biopha_2024_116587
crossref_primary_10_5352_JLS_2011_21_7_997
crossref_primary_10_1113_EP086019
crossref_primary_10_1002_jcsm_13763
crossref_primary_10_1152_physiolgenomics_00045_2023
crossref_primary_10_1186_s12986_017_0191_5
crossref_primary_10_1016_j_endoen_2011_05_004
crossref_primary_10_1371_journal_pone_0102196
crossref_primary_10_1298_ptr_E9984
crossref_primary_10_1111_j_1463_1326_2009_01063_x
crossref_primary_10_2337_db08_1043
crossref_primary_10_1096_fj_14_255901
crossref_primary_10_1111_obr_13131
crossref_primary_10_1186_s13024_018_0294_0
crossref_primary_10_3389_fendo_2021_599164
crossref_primary_10_2337_db09_1519
crossref_primary_10_1016_j_bbadis_2010_09_014
crossref_primary_10_3390_ijms24098154
crossref_primary_10_1016_j_ecl_2008_06_006
crossref_primary_10_2147_DMSO_S286888
crossref_primary_10_3390_nu10030350
crossref_primary_10_1111_jcmm_15238
crossref_primary_10_3233_MNM_150047
crossref_primary_10_3389_fphys_2016_00546
crossref_primary_10_1139_H09_028
crossref_primary_10_3945_an_111_000737
crossref_primary_10_1007_s00125_010_1708_x
crossref_primary_10_1111_dom_12492
crossref_primary_10_3390_biomedicines12010211
crossref_primary_10_1007_s12035_020_02142_7
crossref_primary_10_1016_j_biocel_2009_02_004
crossref_primary_10_1016_j_diabet_2007_11_006
crossref_primary_10_3390_ijms22126642
crossref_primary_10_1038_s41366_020_0573_z
crossref_primary_10_1074_mcp_M113_027441
crossref_primary_10_1164_rccm_201208_1441OE
crossref_primary_10_3390_nu14193904
crossref_primary_10_1042_BCJ20210145
crossref_primary_10_3390_ijms231710035
crossref_primary_10_1097_MD_0000000000027126
crossref_primary_10_2337_db10_0519
crossref_primary_10_1038_s41598_025_92572_x
crossref_primary_10_1016_j_freeradbiomed_2020_07_028
crossref_primary_10_3390_nu15204438
crossref_primary_10_1007_s00125_014_3187_y
crossref_primary_10_1016_j_cmet_2010_04_004
crossref_primary_10_1016_j_tem_2008_08_001
crossref_primary_10_3389_fendo_2024_1375610
crossref_primary_10_1016_j_molmet_2020_101110
crossref_primary_10_1080_14789450_2018_1528147
crossref_primary_10_1152_ajpcell_00144_2024
crossref_primary_10_1155_2010_476279
crossref_primary_10_3390_ijms22010243
crossref_primary_10_3945_jn_108_103754
crossref_primary_10_1155_2012_642038
crossref_primary_10_1096_fj_201903113RR
crossref_primary_10_1152_ajpregu_00497_2014
crossref_primary_10_1016_j_endonu_2011_05_008
crossref_primary_10_1074_jbc_M707192200
crossref_primary_10_15407_ubj96_04_033
crossref_primary_10_1002_oby_21654
crossref_primary_10_1089_ars_2012_4910
crossref_primary_10_1139_apnm_2020_0943
crossref_primary_10_5812_thrita_138382
crossref_primary_10_1007_s00125_009_1624_0
crossref_primary_10_3390_ijms23168852
crossref_primary_10_2337_dc12_1161
crossref_primary_10_1038_s41598_021_98819_7
crossref_primary_10_1152_ajpendo_00144_2017
crossref_primary_10_1016_j_jelekin_2015_06_008
crossref_primary_10_3390_ijms252312860
crossref_primary_10_1152_ajpendo_00590_2009
crossref_primary_10_2337_db09_1322
crossref_primary_10_2147_DNND_S247153
crossref_primary_10_1016_j_metabol_2008_06_015
crossref_primary_10_2337_db14_0874
crossref_primary_10_3390_ijms24021724
crossref_primary_10_1136_bmjdrc_2020_001204
crossref_primary_10_3389_fphys_2023_1151389
crossref_primary_10_1007_s11306_018_1352_x
crossref_primary_10_1152_ajpendo_00143_2023
crossref_primary_10_1152_ajpcell_00200_2010
crossref_primary_10_1007_s00125_011_2367_2
crossref_primary_10_3390_ijms23063326
crossref_primary_10_1530_EJE_14_0006
crossref_primary_10_2337_db23_0432
crossref_primary_10_23736_S0392_9590_21_04661_7
crossref_primary_10_1172_JCI37048
crossref_primary_10_1371_journal_pone_0040837
crossref_primary_10_1111_j_1749_6632_2010_05625_x
crossref_primary_10_1007_s11010_014_2236_7
crossref_primary_10_1007_s13340_018_0384_9
crossref_primary_10_1016_j_bbrc_2012_12_084
crossref_primary_10_14814_phy2_13793
crossref_primary_10_3390_nu14061158
crossref_primary_10_1152_japplphysiol_00063_2013
crossref_primary_10_3390_ijms20215271
crossref_primary_10_1042_BCJ20160913
crossref_primary_10_1089_ars_2021_0258
crossref_primary_10_1371_journal_pone_0040600
crossref_primary_10_1016_j_cmet_2024_02_014
crossref_primary_10_1113_jphysiol_2014_274704
crossref_primary_10_1152_japplphysiol_00289_2016
crossref_primary_10_1007_s00125_011_2114_8
crossref_primary_10_3390_ijms24043399
crossref_primary_10_1089_ars_2015_6291
crossref_primary_10_2337_db13_0303
crossref_primary_10_1186_s13395_022_00299_4
crossref_primary_10_1371_journal_pone_0048345
crossref_primary_10_4093_dmj_2015_39_4_328
crossref_primary_10_1007_s00192_013_2218_4
crossref_primary_10_1016_j_mito_2024_101872
crossref_primary_10_1111_apha_13972
crossref_primary_10_1016_j_freeradbiomed_2013_08_007
crossref_primary_10_1186_s13075_023_03065_z
crossref_primary_10_3389_fphys_2022_920034
crossref_primary_10_1111_j_1463_1326_2010_01237_x
crossref_primary_10_1016_j_phrs_2024_107439
crossref_primary_10_3389_fendo_2022_1032235
crossref_primary_10_3390_ijms21155374
crossref_primary_10_2337_db10_0818
crossref_primary_10_1186_2193_1801_3_251
crossref_primary_10_3389_fnmol_2022_837448
crossref_primary_10_1038_nrdp_2015_19
crossref_primary_10_1371_journal_pone_0051648
crossref_primary_10_1016_j_ejphar_2014_06_008
crossref_primary_10_1186_2193_1801_3_255
crossref_primary_10_1016_j_bbadis_2019_05_004
crossref_primary_10_2165_00007256_200838090_00003
crossref_primary_10_1038_s41387_022_00213_3
crossref_primary_10_1073_pnas_1108220109
crossref_primary_10_3390_biom11060769
crossref_primary_10_1139_H08_074
crossref_primary_10_1002_oby_23227
crossref_primary_10_1016_j_bbagen_2013_10_012
crossref_primary_10_18632_oncotarget_14837
crossref_primary_10_3390_genes13060947
crossref_primary_10_14814_phy2_13207
crossref_primary_10_1038_oby_2011_166
crossref_primary_10_1152_ajpcell_00388_2022
crossref_primary_10_1210_endocr_bqaa158
crossref_primary_10_3389_fphys_2019_00558
crossref_primary_10_1152_physrev_00014_2008
crossref_primary_10_4330_wjc_v17_i2_102308
crossref_primary_10_1007_s00125_009_1403_y
crossref_primary_10_1016_j_cmet_2021_02_017
crossref_primary_10_1016_j_freeradbiomed_2010_12_006
crossref_primary_10_1152_japplphysiol_00091_2008
crossref_primary_10_1007_s11892_008_0030_1
crossref_primary_10_1007_s00125_010_1813_x
crossref_primary_10_1113_EP086406
crossref_primary_10_3390_ijms23105511
crossref_primary_10_14814_phy2_12467
crossref_primary_10_1016_j_jss_2023_02_015
crossref_primary_10_3390_biology12070892
crossref_primary_10_1139_cjas_2021_0085
crossref_primary_10_1210_jc_2011_3454
crossref_primary_10_1113_jphysiol_2009_184754
crossref_primary_10_3390_nu4111664
crossref_primary_10_1113_jphysiol_2013_259226
crossref_primary_10_1016_j_metabol_2020_154416
crossref_primary_10_1111_febs_12399
crossref_primary_10_1016_j_bbadis_2010_12_007
crossref_primary_10_1038_s12276_019_0214_6
crossref_primary_10_1111_micc_12517
crossref_primary_10_3945_ajcn_2008_26717B
crossref_primary_10_1007_s00125_013_3127_2
crossref_primary_10_2337_db09_1105
crossref_primary_10_1007_s00125_012_2626_x
crossref_primary_10_1210_endocr_bqaa017
crossref_primary_10_1097_MED_0b013e32833c3026
crossref_primary_10_3389_fendo_2021_635175
crossref_primary_10_3389_fphys_2018_00463
crossref_primary_10_2174_0113894501302098240430164446
crossref_primary_10_1007_s13238_017_0442_2
crossref_primary_10_1139_apnm_2019_0208
crossref_primary_10_1016_j_mito_2014_05_007
crossref_primary_10_1016_j_metabol_2009_03_014
crossref_primary_10_3390_ijms24065516
crossref_primary_10_1186_s12964_023_01166_5
crossref_primary_10_1016_j_trsl_2015_01_007
crossref_primary_10_2337_db11_1832
crossref_primary_10_1016_j_jff_2016_12_023
crossref_primary_10_1016_j_diabet_2009_02_002
crossref_primary_10_1016_j_apsb_2012_06_010
crossref_primary_10_1111_febs_12096
crossref_primary_10_1210_jc_2009_1844
crossref_primary_10_1517_13543784_2013_775245
crossref_primary_10_2220_biomedres_41_227
crossref_primary_10_1016_j_mce_2016_08_047
crossref_primary_10_1371_journal_pone_0094181
crossref_primary_10_2217_clp_10_51
crossref_primary_10_1016_j_bbalip_2009_09_011
crossref_primary_10_1371_journal_pone_0270001
crossref_primary_10_1002_oby_21192
crossref_primary_10_1089_ars_2016_6771
crossref_primary_10_1152_ajpendo_00726_2007
crossref_primary_10_1152_ajpcell_00345_2010
crossref_primary_10_1186_s13102_018_0110_8
crossref_primary_10_1152_japplphysiol_00383_2018
crossref_primary_10_1111_obr_12862
crossref_primary_10_3389_fendo_2024_1474232
crossref_primary_10_3390_ijms21186948
crossref_primary_10_1016_j_mce_2009_10_017
crossref_primary_10_1016_j_metabol_2011_04_015
crossref_primary_10_1007_s00109_019_01781_1
crossref_primary_10_1152_ajpendo_00088_2019
crossref_primary_10_1007_s00592_009_0129_0
crossref_primary_10_1080_0035919X_2018_1476421
crossref_primary_10_2337_db23_0827
crossref_primary_10_1016_j_bbrc_2011_04_028
crossref_primary_10_1016_j_mitoco_2024_07_001
crossref_primary_10_1016_j_dsx_2021_02_037
crossref_primary_10_1152_ajpendo_90558_2008
crossref_primary_10_1016_j_jcmg_2014_12_033
crossref_primary_10_1586_eem_09_55
crossref_primary_10_1016_j_diabres_2012_03_004
crossref_primary_10_1152_ajpendo_00314_2018
crossref_primary_10_1016_j_redox_2016_09_007
crossref_primary_10_1016_j_redox_2013_04_001
crossref_primary_10_1152_ajpendo_00103_2012
crossref_primary_10_1016_j_febslet_2008_01_013
crossref_primary_10_1016_j_bbabio_2016_07_008
crossref_primary_10_3390_biomedicines10061456
crossref_primary_10_1007_s11064_020_03173_1
crossref_primary_10_1007_s11892_015_0671_9
crossref_primary_10_1111_j_1753_4887_2010_00363_x
crossref_primary_10_1007_s40279_018_0894_4
crossref_primary_10_1371_journal_pone_0076628
crossref_primary_10_1586_eem_10_21
crossref_primary_10_1016_j_nupar_2011_07_003
crossref_primary_10_3389_fendo_2023_1127524
Cites_doi 10.1073/pnas.1332551100
10.1016/j.amjmed.2006.01.009
10.1016/S1521-690X(03)00041-1
10.1210/er.2001-0039
10.1074/jbc.M212881200
10.2337/diabetes.50.4.817
10.1046/j.1365-201X.1997.00222.x
10.1046/j.1365-201X.2002.01032.x
10.1007/s00424-002-0943-5
10.1038/ng1180
10.2337/diabetes.55.01.06.db05-1286
10.1152/ajpendo.2000.279.5.E1039
10.1002/1097-4598(200007)23:7<1095::AID-MUS13>3.0.CO;2-O
10.1152/ajpendo.1995.268.3.E453
10.2337/diabetes.51.10.2944
10.1016/j.bbadis.2003.11.007
10.2337/diacare.29.04.06.dc05-1854
10.2337/diabetes.52.6.1393
10.2337/diabetes.49.5.677
10.1152/ajpendo.1999.277.6.E1130
10.2337/diabetes.51.6.1913
10.1007/s00424-003-1044-9
10.2337/diabetes.53.6.1412
10.1152/jappl.1997.83.1.166
10.1146/annurev.nutr.22.010402.102912
10.1016/j.cmet.2005.06.002
10.1172/JCI117600
10.1111/j.1365-201X.2005.01488.x
10.1016/S0003-2697(02)00424-4
10.1007/s001250100545
10.1007/978-1-60327-407-4
10.1074/jbc.M601387200
10.1042/bj1540689
10.1096/fasebj.13.14.2051
10.1006/abio.1996.0197
10.1111/j.1469-7793.1997.455bn.x
10.1113/jphysiol.2005.101691
10.1073/pnas.1032913100
10.1042/bj3510805
10.1007/BF02658504
10.1210/jc.2005-1572
10.1111/j.1463-1326.2005.00496.x
10.1113/jphysiol.2003.055202
10.1172/JCI113088
10.2337/diabetes.53.11.2861
10.2337/diacare.17.5.382
10.2337/diabetes.54.1.8
10.1152/ajpcell.00402.2005
10.1056/NEJMoa031314
10.1007/BF00280883
ContentType Journal Article
Copyright 2007 INIST-CNRS
COPYRIGHT 2007 American Diabetes Association
Copyright American Diabetes Association Jun 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: COPYRIGHT 2007 American Diabetes Association
– notice: Copyright American Diabetes Association Jun 2007
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8GL
3V.
7RV
7X7
7XB
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M1P
M2O
M2P
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
ADFMZ
ADTPV
AOWAS
D8T
DF1
ZZAVC
DOI 10.2337/db06-0981
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: High School
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Consumer Health Database (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Consumer Health Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
SWEPUB Gymnastik- och idrottshögskolan full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Gymnastik- och idrottshögskolan
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef



MEDLINE

Research Library Prep
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 1599
ExternalDocumentID oai_swepub_ki_se_571223
oai_DiVA_org_gih_5017
1295533271
A164558585
17351150
18811665
10_2337_db06_0981
diabetes_56_6_1592
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Denmark
GeographicLocations_xml – name: Denmark
GroupedDBID -
08R
0R
1AW
29F
2WC
3V.
4.4
53G
55
5GY
5RE
5RS
5VS
7RV
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAQQT
AAWTL
AAYEP
AAYJJ
ABFLS
ABOCM
ABPTK
ABUWG
ACDCL
ACGOD
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AFFNX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBAFP
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EX3
F5P
FRP
FYUFA
GICCO
GJ
GNUQQ
GUQSH
GX1
H13
HCIFZ
HZ
H~9
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
J5H
K-O
K9-
KM
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5
M7P
MBDVC
O0-
O9-
OB3
OBH
OK1
OVD
P2P
PADUT
PCD
PEA
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
RHF
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
WH7
WOQ
WOW
X7M
XZ
ZA5
ZY1
---
.55
.GJ
.XZ
08P
0R~
18M
354
6PF
AAFWJ
AAKAS
AAYXX
ACGFO
ADGHP
ADZCM
AEGXH
AERZD
AIAGR
AIZAD
BTFSW
CCPQU
CITATION
EMOBN
HMCUK
HZ~
ITC
K2M
M5~
N4W
NAPCQ
OHH
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
TEORI
TR2
UKHRP
VVN
W8F
YFH
YHG
YOC
~KM
1CY
AI.
ALIPV
IQODW
MVM
O5R
O5S
VH1
XOL
YQJ
ZGI
ZXP
AAYOK
AFHIN
CGR
CUY
CVF
ECM
EIF
NPM
PKN
PMFND
7XB
8FK
K9.
PKEHL
Q9U
7X8
ADFMZ
ADTPV
AFLOD
AOWAS
D8T
DF1
ZZAVC
ID FETCH-LOGICAL-c662t-7de8f94d34481100d5cb8e33ad42623a938b04e1c40e5c4a8c27e983cfccb5293
IEDL.DBID 7X7
ISSN 0012-1797
1939-327X
IngestDate Tue Sep 30 03:26:18 EDT 2025
Thu Sep 18 03:25:43 EDT 2025
Thu Sep 04 16:50:27 EDT 2025
Fri Jul 25 19:40:47 EDT 2025
Tue Jun 17 22:08:31 EDT 2025
Fri Jun 13 00:07:27 EDT 2025
Tue Jun 10 21:04:14 EDT 2025
Fri Jun 27 05:55:23 EDT 2025
Tue Jun 10 19:59:22 EDT 2025
Wed Feb 12 01:06:35 EST 2025
Mon Jul 21 09:14:27 EDT 2025
Wed Oct 01 03:44:38 EDT 2025
Thu Apr 24 23:12:33 EDT 2025
Fri Jan 15 19:45:50 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Endocrinopathy
Type 2 diabetes
Human
Mitochondria
Metabolic diseases
Striated muscle
Respiration
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c662t-7de8f94d34481100d5cb8e33ad42623a938b04e1c40e5c4a8c27e983cfccb5293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-5017
PMID 17351150
PQID 216483330
PQPubID 34443
PageCount 8
ParticipantIDs gale_infotracacademiconefile_A164558585
gale_incontextcollege_GICCO_A164558585
crossref_citationtrail_10_2337_db06_0981
gale_infotracmisc_A164558585
proquest_miscellaneous_70551755
gale_incontextgauss_8GL_A164558585
swepub_primary_oai_DiVA_org_gih_5017
proquest_journals_216483330
swepub_primary_oai_swepub_ki_se_571223
pascalfrancis_primary_18811665
gale_infotracgeneralonefile_A164558585
highwire_diabetes_diabetes_56_6_1592
pubmed_primary_17351150
crossref_primary_10_2337_db06_0981
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-06-01
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2007
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References 2022051622384592800_R24
2022051622384592800_R25
2022051622384592800_R9
2022051622384592800_R22
2022051622384592800_R8
2022051622384592800_R23
2022051622384592800_R7
2022051622384592800_R20
2022051622384592800_R6
2022051622384592800_R21
2022051622384592800_R5
2022051622384592800_R4
2022051622384592800_R28
2022051622384592800_R29
2022051622384592800_R26
2022051622384592800_R27
2022051622384592800_R3
2022051622384592800_R2
2022051622384592800_R1
2022051622384592800_R35
2022051622384592800_R36
2022051622384592800_R33
2022051622384592800_R34
2022051622384592800_R31
2022051622384592800_R32
2022051622384592800_R30
2022051622384592800_R39
2022051622384592800_R37
2022051622384592800_R38
2022051622384592800_R46
2022051622384592800_R47
2022051622384592800_R44
2022051622384592800_R45
2022051622384592800_R42
2022051622384592800_R43
2022051622384592800_R40
2022051622384592800_R41
2022051622384592800_R48
2022051622384592800_R49
2022051622384592800_R50
2022051622384592800_R13
2022051622384592800_R14
2022051622384592800_R11
2022051622384592800_R12
2022051622384592800_R10
2022051622384592800_R19
2022051622384592800_R17
2022051622384592800_R18
2022051622384592800_R15
2022051622384592800_R16
References_xml – ident: 2022051622384592800_R7
  doi: 10.1073/pnas.1332551100
– ident: 2022051622384592800_R2
  doi: 10.1016/j.amjmed.2006.01.009
– ident: 2022051622384592800_R1
  doi: 10.1016/S1521-690X(03)00041-1
– ident: 2022051622384592800_R34
  doi: 10.1210/er.2001-0039
– ident: 2022051622384592800_R17
  doi: 10.1074/jbc.M212881200
– ident: 2022051622384592800_R42
  doi: 10.2337/diabetes.50.4.817
– ident: 2022051622384592800_R24
  doi: 10.1046/j.1365-201X.1997.00222.x
– ident: 2022051622384592800_R31
  doi: 10.1046/j.1365-201X.2002.01032.x
– ident: 2022051622384592800_R46
  doi: 10.1007/s00424-002-0943-5
– ident: 2022051622384592800_R15
  doi: 10.1038/ng1180
– ident: 2022051622384592800_R6
  doi: 10.2337/diabetes.55.01.06.db05-1286
– ident: 2022051622384592800_R12
  doi: 10.1152/ajpendo.2000.279.5.E1039
– ident: 2022051622384592800_R30
  doi: 10.1002/1097-4598(200007)23:7<1095::AID-MUS13>3.0.CO;2-O
– ident: 2022051622384592800_R41
  doi: 10.1152/ajpendo.1995.268.3.E453
– ident: 2022051622384592800_R18
  doi: 10.2337/diabetes.51.10.2944
– ident: 2022051622384592800_R36
  doi: 10.1016/j.bbadis.2003.11.007
– ident: 2022051622384592800_R40
  doi: 10.2337/diacare.29.04.06.dc05-1854
– ident: 2022051622384592800_R3
  doi: 10.2337/diabetes.52.6.1393
– ident: 2022051622384592800_R8
  doi: 10.2337/diabetes.49.5.677
– ident: 2022051622384592800_R10
  doi: 10.1152/ajpendo.1999.277.6.E1130
– ident: 2022051622384592800_R16
  doi: 10.2337/diabetes.51.6.1913
– ident: 2022051622384592800_R32
  doi: 10.1007/s00424-003-1044-9
– ident: 2022051622384592800_R48
  doi: 10.2337/diabetes.53.6.1412
– ident: 2022051622384592800_R11
  doi: 10.1152/jappl.1997.83.1.166
– ident: 2022051622384592800_R4
  doi: 10.1146/annurev.nutr.22.010402.102912
– ident: 2022051622384592800_R49
  doi: 10.1016/j.cmet.2005.06.002
– ident: 2022051622384592800_R9
  doi: 10.1172/JCI117600
– ident: 2022051622384592800_R27
  doi: 10.1111/j.1365-201X.2005.01488.x
– ident: 2022051622384592800_R26
  doi: 10.1016/S0003-2697(02)00424-4
– ident: 2022051622384592800_R5
  doi: 10.1007/s001250100545
– ident: 2022051622384592800_R28
  doi: 10.1007/978-1-60327-407-4
– ident: 2022051622384592800_R33
  doi: 10.1074/jbc.M601387200
– ident: 2022051622384592800_R29
  doi: 10.1042/bj1540689
– ident: 2022051622384592800_R13
  doi: 10.1096/fasebj.13.14.2051
– ident: 2022051622384592800_R22
  doi: 10.1006/abio.1996.0197
– ident: 2022051622384592800_R37
  doi: 10.1111/j.1469-7793.1997.455bn.x
– ident: 2022051622384592800_R25
  doi: 10.1113/jphysiol.2005.101691
– ident: 2022051622384592800_R14
  doi: 10.1073/pnas.1032913100
– ident: 2022051622384592800_R39
  doi: 10.1042/bj3510805
– ident: 2022051622384592800_R43
  doi: 10.1007/BF02658504
– ident: 2022051622384592800_R50
  doi: 10.1210/jc.2005-1572
– ident: 2022051622384592800_R35
  doi: 10.1111/j.1463-1326.2005.00496.x
– ident: 2022051622384592800_R38
  doi: 10.1113/jphysiol.2003.055202
– ident: 2022051622384592800_R44
  doi: 10.1172/JCI113088
– ident: 2022051622384592800_R21
  doi: 10.2337/diabetes.53.11.2861
– ident: 2022051622384592800_R45
  doi: 10.2337/diacare.17.5.382
– ident: 2022051622384592800_R19
  doi: 10.2337/diabetes.54.1.8
– ident: 2022051622384592800_R47
  doi: 10.1152/ajpcell.00402.2005
– ident: 2022051622384592800_R20
  doi: 10.1056/NEJMoa031314
– ident: 2022051622384592800_R23
  doi: 10.1007/BF00280883
SSID ssj0006060
Score 2.4516935
Snippet Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes Martin Mogensen 1 , Kent Sahlin 1 2 3 , Maria Fernström 2 3 , Dorte...
We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle...
SourceID swepub
proquest
gale
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1592
SubjectTerms 3-Hydroxyacyl CoA Dehydrogenases - metabolism
Biological and medical sciences
Biopsy
Blood Glucose - metabolism
Cell respiration
Citrate (si)-Synthase - metabolism
Dehydrogenases
Diabetes
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - pathology
Diabetes. Impaired glucose tolerance
Electron Transport
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Fundamental and applied biological sciences. Psychology
Glucose
Humans
Insulin resistance
Lipids
Male
Medical sciences
Medicin/Teknik
Medicine/Technology
Metabolism
Middle Aged
Mitochondria
Mitochondria, Muscle - metabolism
Mitochondria, Muscle - pathology
Mitochondrial DNA
Muscle, Skeletal - metabolism
Musculoskeletal system
Obesity
Obesity - metabolism
Obesity - pathology
Oxidation
Oxidative stress
Oxygen Consumption
Phosphorylation
Physiological aspects
Protons
Reference Values
Respiration
Striated muscle. Tendons
Type 2 diabetes
Vertebrates: osteoarticular system, musculoskeletal system
Title Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes
URI http://diabetes.diabetesjournals.org/content/56/6/1592.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17351150
https://www.proquest.com/docview/216483330
https://www.proquest.com/docview/70551755
https://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-5017
http://kipublications.ki.se/Default.aspx?queryparsed=id:115529378
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: KQ8
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: DIK
  dateStart: 19520101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Geneva Foundation for Medical Education and Research Open Access Journals
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: 8C1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgkxAviN-UjWKhavASLYnj2HlCpdsYiI5pMKh4sRLb6aqhZMzt_89d46QKqnip0vhiOb7z-Tv78pmQURZrUQotgsjIIkhkZIMC4oggh_-51HFZlrigPz1LTy-TzzM-87k5zqdVtj5x7ahNrXGN_DAGXC8ZRN_vb_4EeGgUbq76EzTukt0IkAoatZh18VYI2Lz5AiWKkYVTNMRCMWPi0BQYSGcy6k1HrVNumYIxUTJ30Fdlc8jFNhT6D8Xoelo6eUgeeDxJx40BPCJ3bPWY3Jv6HfMn5NcUhiy4uMqgpdELv7MO2qCfHD1ag0ZnDV1U9Ns1TEGAxel05aAuWpf0vGFddfTnYnlFMWalMfVJNO4puTw5_j45Dfx5CoFO03gZCGNlmSWGQUiGTHGG60JaxnKDtPQsz5gswsRGOgkt1wmqSthMMl1qXXDABc_ITlVX9gWhUvMiNaHIGYd4MpcZIBktjbbaFAUP7YC8a7tVaU82jmde_FYQdKAGFGpAoQYG5E0netMwbGwTOkDdKGSsqDAlRjfLKgreb_JVjcE4OMctTqitLzjPV84p-fFLT-itFypraJXO_acI8G7IhtWTPOhJzhsu8G2C-z1BGKS6VzxqjUq1i-qbC56qVAGujAdk2DO4TYdI0FiaQj17rQUq72yc6obGgLzuSrEBmD9X2XrlFHImAVCE5583ZrupWeBWModnR40ddyVIPH60-DFW9e1czRdXioP3hg7ZIuZvXcOVVVxEgDlf_rele-R-m3gZRvtkZ3m7sq8A3S2L4XoMw6-cREOy--H47PziLxuWT9w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemIQEviP-Ujc1CZfASLbHjxHlAqFoZK2sHgg0qXkxiO101lIy5FeJD8R25a5JWQRVve0vii-X4Luc73_l3hHQTpuM81rEXGJl5oQysl4Ef4aVwn0rN8jzHDf3RSXR0Fr4fi_EG-dOchcG0ykYnLhS1KTXuke8zsOslB-_7zeVPD4tGYXC1qaBRScWx_f0LPDb3etAH9r5g7PDt6cGRVxcV8HQUsZkXGyvzJDQc_BKESzNCZ9JynhrEZudpwmXmhzbQoW-FDnG8sU0k17nWmWCIvQQa_0bI_RCh-uPx0r_zwReoTrwEDFE_4wrIiHEe75sMHfdEBq3lr1kEGmRiTMxMHfAmr4pqrLN6_4E0XSyDh3fJndp-pb1K4O6RDVvcJzdHdYT-Afk2AhUBKrUwKNn0Ux3JB-7TgaP9hZHqrKHTgn6-gCUPbH86mjvoi5Y5_VihvDr6dTo7p-gjU0brpB33kJxdy1Q_IptFWdgnhEotssj4ccoF-K-pTMBy0tJoq02WCd92yKtmWpWuwc2xxsYPBU4OckAhBxRyoEOeL0kvK0SPdUR7yBuFCBkFpuDoahtHwfcdfFA9EEYhMKQKvbUJJ-ncOSXfDVtEL2uivIRR6bQ--gDfhuhbLcq9FuWkwh5fR7jdIgSloFvN3UaoVLOJv7oQkYoU2LGsQ3ZaAreaEAkciyLoZ6uRQFUrN6eWv2KH7C5bcQCYr1fYcu4UYjSBYQrvP67EdtVzjKFrAe92KzletiDQeX_6pafKq4maTM-VgNUCJmQNWf3oAq6sEnEANu7T_450l9w6Oh0N1XBwcrxFbjdJn36wTTZnV3P7DCzLWbaz-J8p-X7dCuQvRfOKFw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamIU28IH5TNjYLlcFLtCSOY-cBoWqlrGwdEzCoeDGJ7XTVUDKWVog_jf-Ou8ZpFVTxtrckvliO73K-zz5_JqSbhFrkQgsvMDLzIhlYLwMc4aVwn0od5nmOE_qj0_joPHo_5uMN8qfZC4NplY1PXDhqU2qcIz8IIa6XDND3Qe6yIs76gzdXPz08QAoXWpvTNGoLOba_fwF6q14P-6DqF2E4ePv58MhzBwx4Oo7DmSeMlXkSGQYYBanTDNeZtIylBnnaWZowmfmRDXTkW64jbLuwiWQ61zrjIfIwgfe_JVjEMJtMjJdYzwdcUO9-CUJkABU1qVHImDgwGYL4RAatobAZEBqWYkzSTCvQU14fsLEuAv6H3nQxJA7ukjsulqW92vjukQ1b3CdbI7da_4B8G4G7APdaGLRy-tGt6oMl0GFF-4uAtbKGTgv66RKGP8ABdDSvoC5a5vSsZnyt6Nfp7IIiXqYhdQk81UNyfiNd_YhsFmVhnxAqNc9i44uUccCyqUwgitLSaKtNlnHfdsirpluVdkTneN7GDwWABzWgUAMKNdAhz5eiVzW7xzqhfdSNQraMAg1P11M6Cr7v8IPqgWFyjsurUFtbcJLOq0rJdyctoZdOKC-hVTp12yDg25CJqyW535Kc1Dzk6wR3WoLgIHSruNsYlWom9FcXPFaxgpg27JDdlsGtOkSCxuIY6tluLFA5R1ep5W_ZIXvLUmwA5u4VtpxXCvmaIEiF9x_XZruqWeAyNod3u7UdL0uQ9Lw__dJT5fVETaYXisPIAR2yRsw9uoQrq7gIIN59-t-W7pEtcB3qZHh6vE1uN_mffrBDNmfXc_sMgsxZtrv4nSn5ftP-4y_zlI5S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+respiration+is+decreased+in+skeletal+muscle+of+patients+with+type+2+diabetes&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Mogensen%2C+Ma&rft.au=Sahlin%2C+Kent&rft.au=Fernstrom%2C+Maria&rft.au=Glintborg%2C+Dorte&rft.date=2007-06-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.volume=56&rft.issue=6&rft.spage=1592&rft_id=info:doi/10.2337%2Fdb06-0981&rft.externalDocID=A164558585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon