Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes
Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes Martin Mogensen 1 , Kent Sahlin 1 2 3 , Maria Fernström 2 3 , Dorte Glintborg 4 , Birgitte F. Vind 4 , Henning Beck-Nielsen 4 and Kurt Højlund 4 1 Institute of Sports Science and Clinical Biomechanics, Univers...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 56; no. 6; pp. 1592 - 1599 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.06.2007
|
Subjects | |
Online Access | Get full text |
ISSN | 0012-1797 1939-327X 1939-327X |
DOI | 10.2337/db06-0981 |
Cover
Abstract | Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes
Martin Mogensen 1 ,
Kent Sahlin 1 2 3 ,
Maria Fernström 2 3 ,
Dorte Glintborg 4 ,
Birgitte F. Vind 4 ,
Henning Beck-Nielsen 4 and
Kurt Højlund 4
1 Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
2 Stockholm University College of Physical Education and Sports, GIH, Stockholm, Sweden
3 Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
4 Department of Endocrinology, Diabetes Research Centre, Odense University Hospital, Odense, Denmark
Address correspondence and reprint requests to Kurt Højlund, MD, PhD, Diabetes Research Centre, Department of Endocrinology,
Odense University Hospital, Kloevervaenget 6, 3, DK-5000 Odense C, Denmark. E-mail: k.hojlund{at}dadlnet.dk
Abstract
We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients
compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects
were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3
content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria.
Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated
respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in
type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese
subjects (all P < 0.05). There were no differences in respiration with palmitoyl- l -carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between
the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively
associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance ( P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount
of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes
in humans with obesity.
ETC, electron transport chain
FFA, free fatty acid
HAD, 3-hydroxy-Acyl-CoA-dehydrogenase
HNE, 4-hydroxy-2-nonenal
HOMA-IR, homeostasis model assessment of insulin resistance
RCI, respiratory control index
ROS, reactive oxygen species
UCP, uncoupling protein
Footnotes
Published ahead of print at http://diabetes.diabetesjournals.org on 9 March 2007. DOI: 10.2337/db06-0981.
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore
be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Accepted February 26, 2007.
Received July 17, 2006.
DIABETES |
---|---|
AbstractList | We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl-l-carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance (P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity. We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl-L-carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance (P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity. Diabetes 56:1592-1599, 2007 Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes Martin Mogensen 1 , Kent Sahlin 1 2 3 , Maria Fernström 2 3 , Dorte Glintborg 4 , Birgitte F. Vind 4 , Henning Beck-Nielsen 4 and Kurt Højlund 4 1 Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark 2 Stockholm University College of Physical Education and Sports, GIH, Stockholm, Sweden 3 Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden 4 Department of Endocrinology, Diabetes Research Centre, Odense University Hospital, Odense, Denmark Address correspondence and reprint requests to Kurt Højlund, MD, PhD, Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, 3, DK-5000 Odense C, Denmark. E-mail: k.hojlund{at}dadlnet.dk Abstract We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl- l -carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance ( P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity. ETC, electron transport chain FFA, free fatty acid HAD, 3-hydroxy-Acyl-CoA-dehydrogenase HNE, 4-hydroxy-2-nonenal HOMA-IR, homeostasis model assessment of insulin resistance RCI, respiratory control index ROS, reactive oxygen species UCP, uncoupling protein Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 9 March 2007. DOI: 10.2337/db06-0981. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted February 26, 2007. Received July 17, 2006. DIABETES We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl-l-carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance (P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity. We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl-l-carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance (P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity.We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria. Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P < 0.05). There were no differences in respiration with palmitoyl-l-carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C, and the proportion of type 2X fibers correlated with markers of insulin resistance (P < 0.05). In conclusion, we provide evidence for a functional impairment in mitochondrial respiration and increased amount of type 2X fibers in muscle of type 2 diabetic patients. These alterations may contribute to the development of type 2 diabetes in humans with obesity. |
Audience | Professional |
Author | Maria Fernström Dorte Glintborg Birgitte F. Vind Henning Beck-Nielsen Kent Sahlin Martin Mogensen Kurt Højlund |
Author_xml | – sequence: 1 givenname: Martin surname: Mogensen fullname: Mogensen, Martin organization: Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark – sequence: 2 givenname: Kent surname: Sahlin fullname: Sahlin, Kent organization: Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark, Stockholm University College of Physical Education and Sports, GIH, Stockholm, Sweden, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden – sequence: 3 givenname: Maria surname: Fernström fullname: Fernström, Maria organization: Stockholm University College of Physical Education and Sports, GIH, Stockholm, Sweden, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden – sequence: 4 givenname: Dorte surname: Glintborg fullname: Glintborg, Dorte organization: Department of Endocrinology, Diabetes Research Centre, Odense University Hospital, Odense, Denmark – sequence: 5 givenname: Birgitte F. surname: Vind fullname: Vind, Birgitte F. organization: Department of Endocrinology, Diabetes Research Centre, Odense University Hospital, Odense, Denmark – sequence: 6 givenname: Henning surname: Beck-Nielsen fullname: Beck-Nielsen, Henning organization: Department of Endocrinology, Diabetes Research Centre, Odense University Hospital, Odense, Denmark – sequence: 7 givenname: Kurt surname: Højlund fullname: Højlund, Kurt organization: Department of Endocrinology, Diabetes Research Centre, Odense University Hospital, Odense, Denmark |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18811665$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17351150$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-5017$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:115529378$$DView record from Swedish Publication Index |
BookMark | eNp90ltv0zAUB3ALDbGu8MAXQBEIJISy-RLn8li1MCZ1GoJxES-W45yk3tK42I7Gvj0uDa2KCvJDLOvno5zj_wk66kwHCD0l-JQylp1VJU5jXOTkARqRghUxo9m3IzTCmNCYZEV2jE6cu8EYp2E9QsckY5wQjkfo-6X2Ri1MV1kt2-gjuJW20mvTRRcumoGyIB1Uke6iT7fQgg_osneqhcjU0YcgofMu-qr9Irq-X0FEo5mWJXhwj9HDWrYOngzfMfr87u319H08vzq_mE7msUpT6uOsgrwukoolSU4IxhVXZQ6MySqhKWWyYHmJEyAqwcBVInNFMyhypmqlSk4LNkbxpq67g1VfipXVS2nvhZFaDEe3YQeCZ4SGeY3Rm3_6mf4yEcY2otELwXGY0xi92uiVNT96cF4stVPQtrID0zuRYc5JxnmAz_-CN6a3XehcUJImOWMMB_RigxrZgtBdbbyVal1RTALiPA9r19GeaqADK9vw9LUOx3v-9IAPq4KlVgcvvN67EIyHn76RvXMiP5__72cGq0zbQgMiPOX0at8_G-bQl0uotuP9k7kAXg5AOiXb2spOabdzeYhBmq4LnW2cssY5C7VQ2v-OZuhOt4JgsU6_WKdfrNO_a2t7Y1v0gB1SsNDN4k5bENWQ292GpyIVhBeU_QJ-tw38 |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_3390_biom12020208 crossref_primary_10_2337_db17_1150 crossref_primary_10_3934_molsci_2016_4_479 crossref_primary_10_3389_fcvm_2022_883615 crossref_primary_10_3164_jcbn_11_012FR crossref_primary_10_3389_fendo_2019_00741 crossref_primary_10_1371_journal_pone_0123966 crossref_primary_10_3389_fphys_2022_1006993 crossref_primary_10_1152_ajpendo_00663_2011 crossref_primary_10_1210_jc_2011_2963 crossref_primary_10_1016_j_mito_2011_06_007 crossref_primary_10_1038_ejcn_2013_1 crossref_primary_10_1016_j_mito_2016_08_004 crossref_primary_10_1002_jcsm_12515 crossref_primary_10_1073_pnas_1008872107 crossref_primary_10_1002_jbio_201960140 crossref_primary_10_1016_j_jgr_2021_10_003 crossref_primary_10_3389_fphys_2021_779121 crossref_primary_10_1155_2011_435245 crossref_primary_10_1007_s00125_022_05752_z crossref_primary_10_1016_j_orcp_2011_06_003 crossref_primary_10_1016_j_jcjd_2019_04_005 crossref_primary_10_1152_ajpendo_00069_2021 crossref_primary_10_3390_biomedicines11010121 crossref_primary_10_1007_s00408_024_00744_9 crossref_primary_10_1530_JOE_13_0397 crossref_primary_10_2337_db08_0043 crossref_primary_10_1111_j_1748_1716_2008_01878_x crossref_primary_10_1111_obr_13164 crossref_primary_10_1073_pnas_1700997114 crossref_primary_10_1161_CIRCRESAHA_107_165472 crossref_primary_10_3390_nu14214479 crossref_primary_10_1210_jc_2010_0822 crossref_primary_10_1007_s11306_021_01777_4 crossref_primary_10_1007_s00125_015_3654_0 crossref_primary_10_1007_s11010_010_0662_8 crossref_primary_10_1113_EP087317 crossref_primary_10_1139_cjpp_2012_0228 crossref_primary_10_1016_j_jprot_2009_06_011 crossref_primary_10_1007_s00421_011_1913_4 crossref_primary_10_1080_01913123_2021_1983099 crossref_primary_10_2337_db09_1299 crossref_primary_10_1210_clinem_dgaa751 crossref_primary_10_2337_db08_0391 crossref_primary_10_3389_fphys_2015_00426 crossref_primary_10_1113_EP085251 crossref_primary_10_1016_j_niox_2013_12_009 crossref_primary_10_2337_db08_1240 crossref_primary_10_1016_j_bbalip_2013_11_014 crossref_primary_10_1007_s00125_008_1122_9 crossref_primary_10_1089_ars_2017_7225 crossref_primary_10_1007_s13238_012_2043_4 crossref_primary_10_1002_dmrr_812 crossref_primary_10_1111_apha_13395 crossref_primary_10_1038_ijo_2011_201 crossref_primary_10_1371_journal_pone_0015234 crossref_primary_10_1016_j_bbapap_2020_140469 crossref_primary_10_1093_function_zqad020 crossref_primary_10_1139_apnm_2018_0577 crossref_primary_10_3390_cells11132005 crossref_primary_10_1210_endocr_bqac018 crossref_primary_10_1016_S2213_8587_14_70034_8 crossref_primary_10_1152_physrev_00003_2009 crossref_primary_10_1016_j_diabet_2015_02_006 crossref_primary_10_1016_j_beem_2012_06_001 crossref_primary_10_1016_j_smrv_2017_01_001 crossref_primary_10_1371_journal_pone_0028536 crossref_primary_10_1371_journal_pone_0183978 crossref_primary_10_1016_j_mehy_2019_109439 crossref_primary_10_1007_s00421_020_04518_y crossref_primary_10_1016_j_mcn_2018_05_006 crossref_primary_10_3390_nu11112806 crossref_primary_10_2337_db10_0174 crossref_primary_10_1093_brain_aws097 crossref_primary_10_1016_j_bbrc_2010_09_115 crossref_primary_10_1289_EHP7058 crossref_primary_10_1007_s11154_023_09827_z crossref_primary_10_1016_j_mam_2024_101272 crossref_primary_10_1016_j_toxrep_2022_03_004 crossref_primary_10_1016_j_biochi_2012_12_014 crossref_primary_10_1097_MCO_0b013e3282f0eca9 crossref_primary_10_1111_apha_14139 crossref_primary_10_1002_jcp_22812 crossref_primary_10_1007_s40279_018_0936_y crossref_primary_10_1016_j_orcp_2016_09_012 crossref_primary_10_1007_s00424_021_02613_3 crossref_primary_10_3389_fmolb_2022_959844 crossref_primary_10_1152_japplphysiol_00053_2012 crossref_primary_10_1016_j_physbeh_2008_04_019 crossref_primary_10_1016_j_metabol_2011_02_006 crossref_primary_10_1007_s11010_012_1478_5 crossref_primary_10_3390_antiox11010154 crossref_primary_10_1007_s13539_012_0073_7 crossref_primary_10_1038_hr_2011_140 crossref_primary_10_3109_10715762_2013_830717 crossref_primary_10_1016_j_mce_2019_110580 crossref_primary_10_1152_ajpendo_00317_2009 crossref_primary_10_1016_j_abb_2015_09_017 crossref_primary_10_2522_ptj_20080018 crossref_primary_10_1002_dmrr_2658 crossref_primary_10_3389_fgene_2019_00325 crossref_primary_10_1002_pbc_31369 crossref_primary_10_1016_j_physbeh_2008_01_020 crossref_primary_10_1007_s00125_010_1764_2 crossref_primary_10_1016_j_febslet_2007_06_044 crossref_primary_10_1002_ehf2_13121 crossref_primary_10_1007_s00125_012_2456_x crossref_primary_10_1210_er_2009_0003 crossref_primary_10_1007_s00281_013_0369_5 crossref_primary_10_3390_life11040288 crossref_primary_10_1016_j_bbabio_2010_02_017 crossref_primary_10_1007_s00421_017_3687_9 crossref_primary_10_1172_JCI146415 crossref_primary_10_1007_s11892_012_0361_9 crossref_primary_10_3390_antiox13040489 crossref_primary_10_1002_mus_23828 crossref_primary_10_3389_fmed_2023_1206071 crossref_primary_10_1016_j_mce_2010_01_039 crossref_primary_10_1016_j_mito_2021_02_007 crossref_primary_10_3390_biology11111638 crossref_primary_10_3390_ijms21051614 crossref_primary_10_1007_s00421_014_2906_x crossref_primary_10_3390_ijms241814015 crossref_primary_10_1210_jc_2017_01727 crossref_primary_10_1016_j_bbrc_2009_03_102 crossref_primary_10_1152_ajpregu_90820_2008 crossref_primary_10_1097_MCO_0b013e3283455d7a crossref_primary_10_1016_j_metabol_2009_12_020 crossref_primary_10_1146_annurev_nutr_071715_050656 crossref_primary_10_1242_jcs_034660 crossref_primary_10_3389_fcell_2022_965523 crossref_primary_10_1016_j_bbadis_2016_11_010 crossref_primary_10_1038_s41598_017_17418_7 crossref_primary_10_1080_13813450802676335 crossref_primary_10_1016_j_trsl_2011_08_007 crossref_primary_10_1111_1753_0407_12874 crossref_primary_10_1177_14791641211029002 crossref_primary_10_1016_j_mehy_2022_110804 crossref_primary_10_1038_nrendo_2011_138 crossref_primary_10_1111_j_1582_4934_2010_01085_x crossref_primary_10_1113_JP280603 crossref_primary_10_1155_2011_587495 crossref_primary_10_3390_ijms21186559 crossref_primary_10_1007_s00125_008_1153_2 crossref_primary_10_1194_jlr_M003756 crossref_primary_10_1007_s12035_022_03003_1 crossref_primary_10_1016_j_bbagen_2013_09_019 crossref_primary_10_1210_er_2009_0027 crossref_primary_10_1016_j_metabol_2009_07_009 crossref_primary_10_3390_antiox9121304 crossref_primary_10_1249_MSS_0000000000002030 crossref_primary_10_1152_ajpheart_00267_2009 crossref_primary_10_1152_ajpregu_00222_2021 crossref_primary_10_1111_apha_13772 crossref_primary_10_1016_j_lfs_2021_119639 crossref_primary_10_1007_s00125_011_2377_0 crossref_primary_10_1007_s00018_023_04771_2 crossref_primary_10_1016_j_tem_2012_05_007 crossref_primary_10_1111_bph_16487 crossref_primary_10_3390_cimb45110548 crossref_primary_10_3390_jpm10020042 crossref_primary_10_1152_ajpendo_00416_2012 crossref_primary_10_1016_j_freeradbiomed_2013_11_012 crossref_primary_10_1042_CS20160736 crossref_primary_10_1515_HMBCI_2011_132 crossref_primary_10_1038_hr_2011_78 crossref_primary_10_1038_ijo_2010_123 crossref_primary_10_1007_s10545_009_1263_0 crossref_primary_10_1152_ajpendo_00755_2009 crossref_primary_10_1152_ajpendo_00426_2017 crossref_primary_10_7717_peerj_8793 crossref_primary_10_1210_clinem_dgad259 crossref_primary_10_1210_jc_2012_3111 crossref_primary_10_1007_s00018_018_2781_4 crossref_primary_10_1152_ajpheart_00699_2012 crossref_primary_10_1007_s00125_015_3772_8 crossref_primary_10_3390_cells10113013 crossref_primary_10_1152_ajpendo_90896_2008 crossref_primary_10_1371_journal_pone_0047996 crossref_primary_10_1002_dmrr_2601 crossref_primary_10_3389_fphys_2022_927969 crossref_primary_10_1152_ajpregu_00036_2012 crossref_primary_10_1007_s11033_018_4551_7 crossref_primary_10_1016_j_molmed_2014_11_008 crossref_primary_10_3892_etm_2014_1835 crossref_primary_10_1016_j_biocel_2012_09_019 crossref_primary_10_1186_s12933_020_01114_4 crossref_primary_10_1016_j_freeradbiomed_2024_12_019 crossref_primary_10_3390_ijms18040831 crossref_primary_10_1152_ajpheart_00782_2007 crossref_primary_10_1073_pnas_1207287109 crossref_primary_10_1007_s00125_009_1353_4 crossref_primary_10_2337_dc10_0712 crossref_primary_10_1016_j_biopha_2024_116587 crossref_primary_10_5352_JLS_2011_21_7_997 crossref_primary_10_1113_EP086019 crossref_primary_10_1002_jcsm_13763 crossref_primary_10_1152_physiolgenomics_00045_2023 crossref_primary_10_1186_s12986_017_0191_5 crossref_primary_10_1016_j_endoen_2011_05_004 crossref_primary_10_1371_journal_pone_0102196 crossref_primary_10_1298_ptr_E9984 crossref_primary_10_1111_j_1463_1326_2009_01063_x crossref_primary_10_2337_db08_1043 crossref_primary_10_1096_fj_14_255901 crossref_primary_10_1111_obr_13131 crossref_primary_10_1186_s13024_018_0294_0 crossref_primary_10_3389_fendo_2021_599164 crossref_primary_10_2337_db09_1519 crossref_primary_10_1016_j_bbadis_2010_09_014 crossref_primary_10_3390_ijms24098154 crossref_primary_10_1016_j_ecl_2008_06_006 crossref_primary_10_2147_DMSO_S286888 crossref_primary_10_3390_nu10030350 crossref_primary_10_1111_jcmm_15238 crossref_primary_10_3233_MNM_150047 crossref_primary_10_3389_fphys_2016_00546 crossref_primary_10_1139_H09_028 crossref_primary_10_3945_an_111_000737 crossref_primary_10_1007_s00125_010_1708_x crossref_primary_10_1111_dom_12492 crossref_primary_10_3390_biomedicines12010211 crossref_primary_10_1007_s12035_020_02142_7 crossref_primary_10_1016_j_biocel_2009_02_004 crossref_primary_10_1016_j_diabet_2007_11_006 crossref_primary_10_3390_ijms22126642 crossref_primary_10_1038_s41366_020_0573_z crossref_primary_10_1074_mcp_M113_027441 crossref_primary_10_1164_rccm_201208_1441OE crossref_primary_10_3390_nu14193904 crossref_primary_10_1042_BCJ20210145 crossref_primary_10_3390_ijms231710035 crossref_primary_10_1097_MD_0000000000027126 crossref_primary_10_2337_db10_0519 crossref_primary_10_1038_s41598_025_92572_x crossref_primary_10_1016_j_freeradbiomed_2020_07_028 crossref_primary_10_3390_nu15204438 crossref_primary_10_1007_s00125_014_3187_y crossref_primary_10_1016_j_cmet_2010_04_004 crossref_primary_10_1016_j_tem_2008_08_001 crossref_primary_10_3389_fendo_2024_1375610 crossref_primary_10_1016_j_molmet_2020_101110 crossref_primary_10_1080_14789450_2018_1528147 crossref_primary_10_1152_ajpcell_00144_2024 crossref_primary_10_1155_2010_476279 crossref_primary_10_3390_ijms22010243 crossref_primary_10_3945_jn_108_103754 crossref_primary_10_1155_2012_642038 crossref_primary_10_1096_fj_201903113RR crossref_primary_10_1152_ajpregu_00497_2014 crossref_primary_10_1016_j_endonu_2011_05_008 crossref_primary_10_1074_jbc_M707192200 crossref_primary_10_15407_ubj96_04_033 crossref_primary_10_1002_oby_21654 crossref_primary_10_1089_ars_2012_4910 crossref_primary_10_1139_apnm_2020_0943 crossref_primary_10_5812_thrita_138382 crossref_primary_10_1007_s00125_009_1624_0 crossref_primary_10_3390_ijms23168852 crossref_primary_10_2337_dc12_1161 crossref_primary_10_1038_s41598_021_98819_7 crossref_primary_10_1152_ajpendo_00144_2017 crossref_primary_10_1016_j_jelekin_2015_06_008 crossref_primary_10_3390_ijms252312860 crossref_primary_10_1152_ajpendo_00590_2009 crossref_primary_10_2337_db09_1322 crossref_primary_10_2147_DNND_S247153 crossref_primary_10_1016_j_metabol_2008_06_015 crossref_primary_10_2337_db14_0874 crossref_primary_10_3390_ijms24021724 crossref_primary_10_1136_bmjdrc_2020_001204 crossref_primary_10_3389_fphys_2023_1151389 crossref_primary_10_1007_s11306_018_1352_x crossref_primary_10_1152_ajpendo_00143_2023 crossref_primary_10_1152_ajpcell_00200_2010 crossref_primary_10_1007_s00125_011_2367_2 crossref_primary_10_3390_ijms23063326 crossref_primary_10_1530_EJE_14_0006 crossref_primary_10_2337_db23_0432 crossref_primary_10_23736_S0392_9590_21_04661_7 crossref_primary_10_1172_JCI37048 crossref_primary_10_1371_journal_pone_0040837 crossref_primary_10_1111_j_1749_6632_2010_05625_x crossref_primary_10_1007_s11010_014_2236_7 crossref_primary_10_1007_s13340_018_0384_9 crossref_primary_10_1016_j_bbrc_2012_12_084 crossref_primary_10_14814_phy2_13793 crossref_primary_10_3390_nu14061158 crossref_primary_10_1152_japplphysiol_00063_2013 crossref_primary_10_3390_ijms20215271 crossref_primary_10_1042_BCJ20160913 crossref_primary_10_1089_ars_2021_0258 crossref_primary_10_1371_journal_pone_0040600 crossref_primary_10_1016_j_cmet_2024_02_014 crossref_primary_10_1113_jphysiol_2014_274704 crossref_primary_10_1152_japplphysiol_00289_2016 crossref_primary_10_1007_s00125_011_2114_8 crossref_primary_10_3390_ijms24043399 crossref_primary_10_1089_ars_2015_6291 crossref_primary_10_2337_db13_0303 crossref_primary_10_1186_s13395_022_00299_4 crossref_primary_10_1371_journal_pone_0048345 crossref_primary_10_4093_dmj_2015_39_4_328 crossref_primary_10_1007_s00192_013_2218_4 crossref_primary_10_1016_j_mito_2024_101872 crossref_primary_10_1111_apha_13972 crossref_primary_10_1016_j_freeradbiomed_2013_08_007 crossref_primary_10_1186_s13075_023_03065_z crossref_primary_10_3389_fphys_2022_920034 crossref_primary_10_1111_j_1463_1326_2010_01237_x crossref_primary_10_1016_j_phrs_2024_107439 crossref_primary_10_3389_fendo_2022_1032235 crossref_primary_10_3390_ijms21155374 crossref_primary_10_2337_db10_0818 crossref_primary_10_1186_2193_1801_3_251 crossref_primary_10_3389_fnmol_2022_837448 crossref_primary_10_1038_nrdp_2015_19 crossref_primary_10_1371_journal_pone_0051648 crossref_primary_10_1016_j_ejphar_2014_06_008 crossref_primary_10_1186_2193_1801_3_255 crossref_primary_10_1016_j_bbadis_2019_05_004 crossref_primary_10_2165_00007256_200838090_00003 crossref_primary_10_1038_s41387_022_00213_3 crossref_primary_10_1073_pnas_1108220109 crossref_primary_10_3390_biom11060769 crossref_primary_10_1139_H08_074 crossref_primary_10_1002_oby_23227 crossref_primary_10_1016_j_bbagen_2013_10_012 crossref_primary_10_18632_oncotarget_14837 crossref_primary_10_3390_genes13060947 crossref_primary_10_14814_phy2_13207 crossref_primary_10_1038_oby_2011_166 crossref_primary_10_1152_ajpcell_00388_2022 crossref_primary_10_1210_endocr_bqaa158 crossref_primary_10_3389_fphys_2019_00558 crossref_primary_10_1152_physrev_00014_2008 crossref_primary_10_4330_wjc_v17_i2_102308 crossref_primary_10_1007_s00125_009_1403_y crossref_primary_10_1016_j_cmet_2021_02_017 crossref_primary_10_1016_j_freeradbiomed_2010_12_006 crossref_primary_10_1152_japplphysiol_00091_2008 crossref_primary_10_1007_s11892_008_0030_1 crossref_primary_10_1007_s00125_010_1813_x crossref_primary_10_1113_EP086406 crossref_primary_10_3390_ijms23105511 crossref_primary_10_14814_phy2_12467 crossref_primary_10_1016_j_jss_2023_02_015 crossref_primary_10_3390_biology12070892 crossref_primary_10_1139_cjas_2021_0085 crossref_primary_10_1210_jc_2011_3454 crossref_primary_10_1113_jphysiol_2009_184754 crossref_primary_10_3390_nu4111664 crossref_primary_10_1113_jphysiol_2013_259226 crossref_primary_10_1016_j_metabol_2020_154416 crossref_primary_10_1111_febs_12399 crossref_primary_10_1016_j_bbadis_2010_12_007 crossref_primary_10_1038_s12276_019_0214_6 crossref_primary_10_1111_micc_12517 crossref_primary_10_3945_ajcn_2008_26717B crossref_primary_10_1007_s00125_013_3127_2 crossref_primary_10_2337_db09_1105 crossref_primary_10_1007_s00125_012_2626_x crossref_primary_10_1210_endocr_bqaa017 crossref_primary_10_1097_MED_0b013e32833c3026 crossref_primary_10_3389_fendo_2021_635175 crossref_primary_10_3389_fphys_2018_00463 crossref_primary_10_2174_0113894501302098240430164446 crossref_primary_10_1007_s13238_017_0442_2 crossref_primary_10_1139_apnm_2019_0208 crossref_primary_10_1016_j_mito_2014_05_007 crossref_primary_10_1016_j_metabol_2009_03_014 crossref_primary_10_3390_ijms24065516 crossref_primary_10_1186_s12964_023_01166_5 crossref_primary_10_1016_j_trsl_2015_01_007 crossref_primary_10_2337_db11_1832 crossref_primary_10_1016_j_jff_2016_12_023 crossref_primary_10_1016_j_diabet_2009_02_002 crossref_primary_10_1016_j_apsb_2012_06_010 crossref_primary_10_1111_febs_12096 crossref_primary_10_1210_jc_2009_1844 crossref_primary_10_1517_13543784_2013_775245 crossref_primary_10_2220_biomedres_41_227 crossref_primary_10_1016_j_mce_2016_08_047 crossref_primary_10_1371_journal_pone_0094181 crossref_primary_10_2217_clp_10_51 crossref_primary_10_1016_j_bbalip_2009_09_011 crossref_primary_10_1371_journal_pone_0270001 crossref_primary_10_1002_oby_21192 crossref_primary_10_1089_ars_2016_6771 crossref_primary_10_1152_ajpendo_00726_2007 crossref_primary_10_1152_ajpcell_00345_2010 crossref_primary_10_1186_s13102_018_0110_8 crossref_primary_10_1152_japplphysiol_00383_2018 crossref_primary_10_1111_obr_12862 crossref_primary_10_3389_fendo_2024_1474232 crossref_primary_10_3390_ijms21186948 crossref_primary_10_1016_j_mce_2009_10_017 crossref_primary_10_1016_j_metabol_2011_04_015 crossref_primary_10_1007_s00109_019_01781_1 crossref_primary_10_1152_ajpendo_00088_2019 crossref_primary_10_1007_s00592_009_0129_0 crossref_primary_10_1080_0035919X_2018_1476421 crossref_primary_10_2337_db23_0827 crossref_primary_10_1016_j_bbrc_2011_04_028 crossref_primary_10_1016_j_mitoco_2024_07_001 crossref_primary_10_1016_j_dsx_2021_02_037 crossref_primary_10_1152_ajpendo_90558_2008 crossref_primary_10_1016_j_jcmg_2014_12_033 crossref_primary_10_1586_eem_09_55 crossref_primary_10_1016_j_diabres_2012_03_004 crossref_primary_10_1152_ajpendo_00314_2018 crossref_primary_10_1016_j_redox_2016_09_007 crossref_primary_10_1016_j_redox_2013_04_001 crossref_primary_10_1152_ajpendo_00103_2012 crossref_primary_10_1016_j_febslet_2008_01_013 crossref_primary_10_1016_j_bbabio_2016_07_008 crossref_primary_10_3390_biomedicines10061456 crossref_primary_10_1007_s11064_020_03173_1 crossref_primary_10_1007_s11892_015_0671_9 crossref_primary_10_1111_j_1753_4887_2010_00363_x crossref_primary_10_1007_s40279_018_0894_4 crossref_primary_10_1371_journal_pone_0076628 crossref_primary_10_1586_eem_10_21 crossref_primary_10_1016_j_nupar_2011_07_003 crossref_primary_10_3389_fendo_2023_1127524 |
Cites_doi | 10.1073/pnas.1332551100 10.1016/j.amjmed.2006.01.009 10.1016/S1521-690X(03)00041-1 10.1210/er.2001-0039 10.1074/jbc.M212881200 10.2337/diabetes.50.4.817 10.1046/j.1365-201X.1997.00222.x 10.1046/j.1365-201X.2002.01032.x 10.1007/s00424-002-0943-5 10.1038/ng1180 10.2337/diabetes.55.01.06.db05-1286 10.1152/ajpendo.2000.279.5.E1039 10.1002/1097-4598(200007)23:7<1095::AID-MUS13>3.0.CO;2-O 10.1152/ajpendo.1995.268.3.E453 10.2337/diabetes.51.10.2944 10.1016/j.bbadis.2003.11.007 10.2337/diacare.29.04.06.dc05-1854 10.2337/diabetes.52.6.1393 10.2337/diabetes.49.5.677 10.1152/ajpendo.1999.277.6.E1130 10.2337/diabetes.51.6.1913 10.1007/s00424-003-1044-9 10.2337/diabetes.53.6.1412 10.1152/jappl.1997.83.1.166 10.1146/annurev.nutr.22.010402.102912 10.1016/j.cmet.2005.06.002 10.1172/JCI117600 10.1111/j.1365-201X.2005.01488.x 10.1016/S0003-2697(02)00424-4 10.1007/s001250100545 10.1007/978-1-60327-407-4 10.1074/jbc.M601387200 10.1042/bj1540689 10.1096/fasebj.13.14.2051 10.1006/abio.1996.0197 10.1111/j.1469-7793.1997.455bn.x 10.1113/jphysiol.2005.101691 10.1073/pnas.1032913100 10.1042/bj3510805 10.1007/BF02658504 10.1210/jc.2005-1572 10.1111/j.1463-1326.2005.00496.x 10.1113/jphysiol.2003.055202 10.1172/JCI113088 10.2337/diabetes.53.11.2861 10.2337/diacare.17.5.382 10.2337/diabetes.54.1.8 10.1152/ajpcell.00402.2005 10.1056/NEJMoa031314 10.1007/BF00280883 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS COPYRIGHT 2007 American Diabetes Association Copyright American Diabetes Association Jun 2007 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: COPYRIGHT 2007 American Diabetes Association – notice: Copyright American Diabetes Association Jun 2007 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8GL 3V. 7RV 7X7 7XB 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. KB0 LK8 M0R M0S M1P M2O M2P M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7X8 ADFMZ ADTPV AOWAS D8T DF1 ZZAVC |
DOI | 10.2337/db06-0981 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: High School ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection Consumer Health Database (Alumni Edition) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Consumer Health Database ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial MEDLINE - Academic SWEPUB Gymnastik- och idrottshögskolan full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Gymnastik- och idrottshögskolan SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 1599 |
ExternalDocumentID | oai_swepub_ki_se_571223 oai_DiVA_org_gih_5017 1295533271 A164558585 17351150 18811665 10_2337_db06_0981 diabetes_56_6_1592 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Denmark |
GeographicLocations_xml | – name: Denmark |
GroupedDBID | - 08R 0R 1AW 29F 2WC 3V. 4.4 53G 55 5GY 5RE 5RS 5VS 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAQQT AAWTL AAYEP AAYJJ ABFLS ABOCM ABPTK ABUWG ACDCL ACGOD ACPRK ADACO ADBBV ADBIT AENEX AFFNX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBAFP BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EX3 F5P FRP FYUFA GICCO GJ GNUQQ GUQSH GX1 H13 HCIFZ HZ H~9 IAG IAO IEA IHR INH INR IOF IPO J5H K-O K9- KM KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5 M7P MBDVC O0- O9- OB3 OBH OK1 OVD P2P PADUT PCD PEA PQEST PQQKQ PQUKI PRINS PROAC PSQYO Q2X RHF RHI RPM S0X SJFOW SJN SV3 TDI WH7 WOQ WOW X7M XZ ZA5 ZY1 --- .55 .GJ .XZ 08P 0R~ 18M 354 6PF AAFWJ AAKAS AAYXX ACGFO ADGHP ADZCM AEGXH AERZD AIAGR AIZAD BTFSW CCPQU CITATION EMOBN HMCUK HZ~ ITC K2M M5~ N4W NAPCQ OHH PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO TEORI TR2 UKHRP VVN W8F YFH YHG YOC ~KM 1CY AI. ALIPV IQODW MVM O5R O5S VH1 XOL YQJ ZGI ZXP AAYOK AFHIN CGR CUY CVF ECM EIF NPM PKN PMFND 7XB 8FK K9. PKEHL Q9U 7X8 ADFMZ ADTPV AFLOD AOWAS D8T DF1 ZZAVC |
ID | FETCH-LOGICAL-c662t-7de8f94d34481100d5cb8e33ad42623a938b04e1c40e5c4a8c27e983cfccb5293 |
IEDL.DBID | 7X7 |
ISSN | 0012-1797 1939-327X |
IngestDate | Tue Sep 30 03:26:18 EDT 2025 Thu Sep 18 03:25:43 EDT 2025 Thu Sep 04 16:50:27 EDT 2025 Fri Jul 25 19:40:47 EDT 2025 Tue Jun 17 22:08:31 EDT 2025 Fri Jun 13 00:07:27 EDT 2025 Tue Jun 10 21:04:14 EDT 2025 Fri Jun 27 05:55:23 EDT 2025 Tue Jun 10 19:59:22 EDT 2025 Wed Feb 12 01:06:35 EST 2025 Mon Jul 21 09:14:27 EDT 2025 Wed Oct 01 03:44:38 EDT 2025 Thu Apr 24 23:12:33 EDT 2025 Fri Jan 15 19:45:50 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Endocrinopathy Type 2 diabetes Human Mitochondria Metabolic diseases Striated muscle Respiration |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c662t-7de8f94d34481100d5cb8e33ad42623a938b04e1c40e5c4a8c27e983cfccb5293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-5017 |
PMID | 17351150 |
PQID | 216483330 |
PQPubID | 34443 |
PageCount | 8 |
ParticipantIDs | gale_infotracacademiconefile_A164558585 gale_incontextcollege_GICCO_A164558585 crossref_citationtrail_10_2337_db06_0981 gale_infotracmisc_A164558585 proquest_miscellaneous_70551755 gale_incontextgauss_8GL_A164558585 swepub_primary_oai_DiVA_org_gih_5017 proquest_journals_216483330 swepub_primary_oai_swepub_ki_se_571223 pascalfrancis_primary_18811665 gale_infotracgeneralonefile_A164558585 highwire_diabetes_diabetes_56_6_1592 pubmed_primary_17351150 crossref_primary_10_2337_db06_0981 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-06-01 |
PublicationDateYYYYMMDD | 2007-06-01 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2007 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | 2022051622384592800_R24 2022051622384592800_R25 2022051622384592800_R9 2022051622384592800_R22 2022051622384592800_R8 2022051622384592800_R23 2022051622384592800_R7 2022051622384592800_R20 2022051622384592800_R6 2022051622384592800_R21 2022051622384592800_R5 2022051622384592800_R4 2022051622384592800_R28 2022051622384592800_R29 2022051622384592800_R26 2022051622384592800_R27 2022051622384592800_R3 2022051622384592800_R2 2022051622384592800_R1 2022051622384592800_R35 2022051622384592800_R36 2022051622384592800_R33 2022051622384592800_R34 2022051622384592800_R31 2022051622384592800_R32 2022051622384592800_R30 2022051622384592800_R39 2022051622384592800_R37 2022051622384592800_R38 2022051622384592800_R46 2022051622384592800_R47 2022051622384592800_R44 2022051622384592800_R45 2022051622384592800_R42 2022051622384592800_R43 2022051622384592800_R40 2022051622384592800_R41 2022051622384592800_R48 2022051622384592800_R49 2022051622384592800_R50 2022051622384592800_R13 2022051622384592800_R14 2022051622384592800_R11 2022051622384592800_R12 2022051622384592800_R10 2022051622384592800_R19 2022051622384592800_R17 2022051622384592800_R18 2022051622384592800_R15 2022051622384592800_R16 |
References_xml | – ident: 2022051622384592800_R7 doi: 10.1073/pnas.1332551100 – ident: 2022051622384592800_R2 doi: 10.1016/j.amjmed.2006.01.009 – ident: 2022051622384592800_R1 doi: 10.1016/S1521-690X(03)00041-1 – ident: 2022051622384592800_R34 doi: 10.1210/er.2001-0039 – ident: 2022051622384592800_R17 doi: 10.1074/jbc.M212881200 – ident: 2022051622384592800_R42 doi: 10.2337/diabetes.50.4.817 – ident: 2022051622384592800_R24 doi: 10.1046/j.1365-201X.1997.00222.x – ident: 2022051622384592800_R31 doi: 10.1046/j.1365-201X.2002.01032.x – ident: 2022051622384592800_R46 doi: 10.1007/s00424-002-0943-5 – ident: 2022051622384592800_R15 doi: 10.1038/ng1180 – ident: 2022051622384592800_R6 doi: 10.2337/diabetes.55.01.06.db05-1286 – ident: 2022051622384592800_R12 doi: 10.1152/ajpendo.2000.279.5.E1039 – ident: 2022051622384592800_R30 doi: 10.1002/1097-4598(200007)23:7<1095::AID-MUS13>3.0.CO;2-O – ident: 2022051622384592800_R41 doi: 10.1152/ajpendo.1995.268.3.E453 – ident: 2022051622384592800_R18 doi: 10.2337/diabetes.51.10.2944 – ident: 2022051622384592800_R36 doi: 10.1016/j.bbadis.2003.11.007 – ident: 2022051622384592800_R40 doi: 10.2337/diacare.29.04.06.dc05-1854 – ident: 2022051622384592800_R3 doi: 10.2337/diabetes.52.6.1393 – ident: 2022051622384592800_R8 doi: 10.2337/diabetes.49.5.677 – ident: 2022051622384592800_R10 doi: 10.1152/ajpendo.1999.277.6.E1130 – ident: 2022051622384592800_R16 doi: 10.2337/diabetes.51.6.1913 – ident: 2022051622384592800_R32 doi: 10.1007/s00424-003-1044-9 – ident: 2022051622384592800_R48 doi: 10.2337/diabetes.53.6.1412 – ident: 2022051622384592800_R11 doi: 10.1152/jappl.1997.83.1.166 – ident: 2022051622384592800_R4 doi: 10.1146/annurev.nutr.22.010402.102912 – ident: 2022051622384592800_R49 doi: 10.1016/j.cmet.2005.06.002 – ident: 2022051622384592800_R9 doi: 10.1172/JCI117600 – ident: 2022051622384592800_R27 doi: 10.1111/j.1365-201X.2005.01488.x – ident: 2022051622384592800_R26 doi: 10.1016/S0003-2697(02)00424-4 – ident: 2022051622384592800_R5 doi: 10.1007/s001250100545 – ident: 2022051622384592800_R28 doi: 10.1007/978-1-60327-407-4 – ident: 2022051622384592800_R33 doi: 10.1074/jbc.M601387200 – ident: 2022051622384592800_R29 doi: 10.1042/bj1540689 – ident: 2022051622384592800_R13 doi: 10.1096/fasebj.13.14.2051 – ident: 2022051622384592800_R22 doi: 10.1006/abio.1996.0197 – ident: 2022051622384592800_R37 doi: 10.1111/j.1469-7793.1997.455bn.x – ident: 2022051622384592800_R25 doi: 10.1113/jphysiol.2005.101691 – ident: 2022051622384592800_R14 doi: 10.1073/pnas.1032913100 – ident: 2022051622384592800_R39 doi: 10.1042/bj3510805 – ident: 2022051622384592800_R43 doi: 10.1007/BF02658504 – ident: 2022051622384592800_R50 doi: 10.1210/jc.2005-1572 – ident: 2022051622384592800_R35 doi: 10.1111/j.1463-1326.2005.00496.x – ident: 2022051622384592800_R38 doi: 10.1113/jphysiol.2003.055202 – ident: 2022051622384592800_R44 doi: 10.1172/JCI113088 – ident: 2022051622384592800_R21 doi: 10.2337/diabetes.53.11.2861 – ident: 2022051622384592800_R45 doi: 10.2337/diacare.17.5.382 – ident: 2022051622384592800_R19 doi: 10.2337/diabetes.54.1.8 – ident: 2022051622384592800_R47 doi: 10.1152/ajpcell.00402.2005 – ident: 2022051622384592800_R20 doi: 10.1056/NEJMoa031314 – ident: 2022051622384592800_R23 doi: 10.1007/BF00280883 |
SSID | ssj0006060 |
Score | 2.4516935 |
Snippet | Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes
Martin Mogensen 1 ,
Kent Sahlin 1 2 3 ,
Maria Fernström 2 3 ,
Dorte... We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle... |
SourceID | swepub proquest gale pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1592 |
SubjectTerms | 3-Hydroxyacyl CoA Dehydrogenases - metabolism Biological and medical sciences Biopsy Blood Glucose - metabolism Cell respiration Citrate (si)-Synthase - metabolism Dehydrogenases Diabetes Diabetes Mellitus, Type 2 - metabolism Diabetes Mellitus, Type 2 - pathology Diabetes. Impaired glucose tolerance Electron Transport Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Fundamental and applied biological sciences. Psychology Glucose Humans Insulin resistance Lipids Male Medical sciences Medicin/Teknik Medicine/Technology Metabolism Middle Aged Mitochondria Mitochondria, Muscle - metabolism Mitochondria, Muscle - pathology Mitochondrial DNA Muscle, Skeletal - metabolism Musculoskeletal system Obesity Obesity - metabolism Obesity - pathology Oxidation Oxidative stress Oxygen Consumption Phosphorylation Physiological aspects Protons Reference Values Respiration Striated muscle. Tendons Type 2 diabetes Vertebrates: osteoarticular system, musculoskeletal system |
Title | Mitochondrial Respiration Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes |
URI | http://diabetes.diabetesjournals.org/content/56/6/1592.abstract https://www.ncbi.nlm.nih.gov/pubmed/17351150 https://www.proquest.com/docview/216483330 https://www.proquest.com/docview/70551755 https://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-5017 http://kipublications.ki.se/Default.aspx?queryparsed=id:115529378 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: KQ8 dateStart: 19980101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: DIK dateStart: 19520101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Geneva Foundation for Medical Education and Research Open Access Journals customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1939-327X dateEnd: 20130731 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1939-327X dateEnd: 20130731 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1939-327X dateEnd: 20130731 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: 8C1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgkxAviN-UjWKhavASLYnj2HlCpdsYiI5pMKh4sRLb6aqhZMzt_89d46QKqnip0vhiOb7z-Tv78pmQURZrUQotgsjIIkhkZIMC4oggh_-51HFZlrigPz1LTy-TzzM-87k5zqdVtj5x7ahNrXGN_DAGXC8ZRN_vb_4EeGgUbq76EzTukt0IkAoatZh18VYI2Lz5AiWKkYVTNMRCMWPi0BQYSGcy6k1HrVNumYIxUTJ30Fdlc8jFNhT6D8Xoelo6eUgeeDxJx40BPCJ3bPWY3Jv6HfMn5NcUhiy4uMqgpdELv7MO2qCfHD1ag0ZnDV1U9Ns1TEGAxel05aAuWpf0vGFddfTnYnlFMWalMfVJNO4puTw5_j45Dfx5CoFO03gZCGNlmSWGQUiGTHGG60JaxnKDtPQsz5gswsRGOgkt1wmqSthMMl1qXXDABc_ITlVX9gWhUvMiNaHIGYd4MpcZIBktjbbaFAUP7YC8a7tVaU82jmde_FYQdKAGFGpAoQYG5E0netMwbGwTOkDdKGSsqDAlRjfLKgreb_JVjcE4OMctTqitLzjPV84p-fFLT-itFypraJXO_acI8G7IhtWTPOhJzhsu8G2C-z1BGKS6VzxqjUq1i-qbC56qVAGujAdk2DO4TYdI0FiaQj17rQUq72yc6obGgLzuSrEBmD9X2XrlFHImAVCE5583ZrupWeBWModnR40ddyVIPH60-DFW9e1czRdXioP3hg7ZIuZvXcOVVVxEgDlf_rele-R-m3gZRvtkZ3m7sq8A3S2L4XoMw6-cREOy--H47PziLxuWT9w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemIQEviP-Ujc1CZfASLbHjxHlAqFoZK2sHgg0qXkxiO101lIy5FeJD8R25a5JWQRVve0vii-X4Luc73_l3hHQTpuM81rEXGJl5oQysl4Ef4aVwn0rN8jzHDf3RSXR0Fr4fi_EG-dOchcG0ykYnLhS1KTXuke8zsOslB-_7zeVPD4tGYXC1qaBRScWx_f0LPDb3etAH9r5g7PDt6cGRVxcV8HQUsZkXGyvzJDQc_BKESzNCZ9JynhrEZudpwmXmhzbQoW-FDnG8sU0k17nWmWCIvQQa_0bI_RCh-uPx0r_zwReoTrwEDFE_4wrIiHEe75sMHfdEBq3lr1kEGmRiTMxMHfAmr4pqrLN6_4E0XSyDh3fJndp-pb1K4O6RDVvcJzdHdYT-Afk2AhUBKrUwKNn0Ux3JB-7TgaP9hZHqrKHTgn6-gCUPbH86mjvoi5Y5_VihvDr6dTo7p-gjU0brpB33kJxdy1Q_IptFWdgnhEotssj4ccoF-K-pTMBy0tJoq02WCd92yKtmWpWuwc2xxsYPBU4OckAhBxRyoEOeL0kvK0SPdUR7yBuFCBkFpuDoahtHwfcdfFA9EEYhMKQKvbUJJ-ncOSXfDVtEL2uivIRR6bQ--gDfhuhbLcq9FuWkwh5fR7jdIgSloFvN3UaoVLOJv7oQkYoU2LGsQ3ZaAreaEAkciyLoZ6uRQFUrN6eWv2KH7C5bcQCYr1fYcu4UYjSBYQrvP67EdtVzjKFrAe92KzletiDQeX_6pafKq4maTM-VgNUCJmQNWf3oAq6sEnEANu7T_450l9w6Oh0N1XBwcrxFbjdJn36wTTZnV3P7DCzLWbaz-J8p-X7dCuQvRfOKFw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamIU28IH5TNjYLlcFLtCSOY-cBoWqlrGwdEzCoeDGJ7XTVUDKWVog_jf-Ou8ZpFVTxtrckvliO73K-zz5_JqSbhFrkQgsvMDLzIhlYLwMc4aVwn0od5nmOE_qj0_joPHo_5uMN8qfZC4NplY1PXDhqU2qcIz8IIa6XDND3Qe6yIs76gzdXPz08QAoXWpvTNGoLOba_fwF6q14P-6DqF2E4ePv58MhzBwx4Oo7DmSeMlXkSGQYYBanTDNeZtIylBnnaWZowmfmRDXTkW64jbLuwiWQ61zrjIfIwgfe_JVjEMJtMjJdYzwdcUO9-CUJkABU1qVHImDgwGYL4RAatobAZEBqWYkzSTCvQU14fsLEuAv6H3nQxJA7ukjsulqW92vjukQ1b3CdbI7da_4B8G4G7APdaGLRy-tGt6oMl0GFF-4uAtbKGTgv66RKGP8ABdDSvoC5a5vSsZnyt6Nfp7IIiXqYhdQk81UNyfiNd_YhsFmVhnxAqNc9i44uUccCyqUwgitLSaKtNlnHfdsirpluVdkTneN7GDwWABzWgUAMKNdAhz5eiVzW7xzqhfdSNQraMAg1P11M6Cr7v8IPqgWFyjsurUFtbcJLOq0rJdyctoZdOKC-hVTp12yDg25CJqyW535Kc1Dzk6wR3WoLgIHSruNsYlWom9FcXPFaxgpg27JDdlsGtOkSCxuIY6tluLFA5R1ep5W_ZIXvLUmwA5u4VtpxXCvmaIEiF9x_XZruqWeAyNod3u7UdL0uQ9Lw__dJT5fVETaYXisPIAR2yRsw9uoQrq7gIIN59-t-W7pEtcB3qZHh6vE1uN_mffrBDNmfXc_sMgsxZtrv4nSn5ftP-4y_zlI5S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+respiration+is+decreased+in+skeletal+muscle+of+patients+with+type+2+diabetes&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Mogensen%2C+Ma&rft.au=Sahlin%2C+Kent&rft.au=Fernstrom%2C+Maria&rft.au=Glintborg%2C+Dorte&rft.date=2007-06-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.volume=56&rft.issue=6&rft.spage=1592&rft_id=info:doi/10.2337%2Fdb06-0981&rft.externalDocID=A164558585 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |