Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation
Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability...
Saved in:
Published in | BMC neuroscience Vol. 9; no. 1; p. 103 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
28.10.2008
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2202 1471-2202 |
DOI | 10.1186/1471-2202-9-103 |
Cover
Abstract | Background
Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere – with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere – with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores.
Results
A repeated measures ANOVA yielded a significant effect of tDCS condition (
F
(2,30) = 4.468,
p
= .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere (
p
= .021) and sham stimulation (
p
= .041).
Conclusion
We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke. |
---|---|
AbstractList | Abstract Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere – with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere – with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores. Results A repeated measures ANOVA yielded a significant effect of tDCS condition (F(2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere (p = .021) and sham stimulation (p = .041). Conclusion We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke. Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere – with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere – with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores. Results A repeated measures ANOVA yielded a significant effect of tDCS condition ( F (2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere ( p = .021) and sham stimulation ( p = .041). Conclusion We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke. Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere - with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere - with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores.BACKGROUNDTranscranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere - with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere - with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores.A repeated measures ANOVA yielded a significant effect of tDCS condition (F(2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere (p = .021) and sham stimulation (p = .041).RESULTSA repeated measures ANOVA yielded a significant effect of tDCS condition (F(2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere (p = .021) and sham stimulation (p = .041).We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke.CONCLUSIONWe propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke. Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere - with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere - with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores. Results A repeated measures ANOVA yielded a significant effect of tDCS condition (F(2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere (p = .021) and sham stimulation (p = .041). Conclusion We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke. Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere - with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere - with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores. A repeated measures ANOVA yielded a significant effect of tDCS condition (F(2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere (p = .021) and sham stimulation (p = .041). We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke. |
ArticleNumber | 103 |
Audience | Academic |
Author | Cerruti, Carlo Vines, Bradley W Schlaug, Gottfried |
AuthorAffiliation | 1 Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA 2 Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada 3 Harvard Graduate School of Education, Cambridge, MA 02138, USA |
AuthorAffiliation_xml | – name: 1 Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA – name: 3 Harvard Graduate School of Education, Cambridge, MA 02138, USA – name: 2 Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada |
Author_xml | – sequence: 1 givenname: Bradley W surname: Vines fullname: Vines, Bradley W organization: Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Institute of Mental Health, Department of Psychiatry, University of British Columbia – sequence: 2 givenname: Carlo surname: Cerruti fullname: Cerruti, Carlo organization: Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Harvard Graduate School of Education – sequence: 3 givenname: Gottfried surname: Schlaug fullname: Schlaug, Gottfried email: gschlaug@bidmc.harvard.edu organization: Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18957075$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1r3DAUNCWl-WjPvRVBIT05kWRZti6FkPQjEOih7VnI0vNaiy1tJTmQe3945W667JaGooPE08xI896cFkfOOyiK1wRfENLyS8IaUlKKaSlKgqtnxcmucrR3Pi5OY1xjTJqW0RfFMWlF3eCmPil-3sxqLAeYbNwMEAClm-uvqFfajjapBBGtAuQ9IDttgr-HCVyKqPcBDaDGNDygOHdr0Cm-Q_lzpfGTdcolNChnkPbTRgUwKHk0O7v_UEx2mkeVrHcvi-e9GiO8etzPiu8fP3y7_lzeffl0e311V2rOaSq5EkSYtsPcVAw3QCtDRMeN4LzR0LZQZatVbUQFTdOwynDe1ZQTzTFXzLTVWXG71TVereUm2EmFB-mVlb8LPqykCsnqEaTI3VSEiU51itWdaIFUDeuY6fqaMFJlrfdbrc3cTWB0bktQ44Ho4Y2zg1z5e0nrlvGaZoHzR4Hgf8wQk8yt0TCOyoGfo-Sixbxq-H-B2XR2Wy_At1vgSmUH1vU-P6wXsLzKE6dUUMwy6uIfqLxMno3O8eptrh8Q3uw73Vn8E6IMqLcAHXyMAXqpl-zkwWZlO0qC5RJWucRRLnGUIteWFl7-xdtJP8nAW0bMSLeCINd-Di5n5knKL8GT-fs |
CitedBy_id | crossref_primary_10_3389_fnhum_2024_1427091 crossref_primary_10_1007_s10936_017_9516_9 crossref_primary_10_3389_fnbeh_2017_00173 crossref_primary_10_1016_j_neuroimage_2016_01_057 crossref_primary_10_1111_cns_12221 crossref_primary_10_1016_j_brainres_2010_07_062 crossref_primary_10_5535_arm_2013_37_5_603 crossref_primary_10_1007_s40141_020_00262_8 crossref_primary_10_1007_s11055_023_01412_w crossref_primary_10_1016_j_brs_2014_10_001 crossref_primary_10_1155_2019_1372138 crossref_primary_10_1080_02687038_2016_1240353 crossref_primary_10_1007_s00221_012_3315_1 crossref_primary_10_3389_fpsyg_2017_00224 crossref_primary_10_3389_fpsyg_2023_1211034 crossref_primary_10_3389_fnhum_2024_1305446 crossref_primary_10_1016_j_neuropsychologia_2011_12_011 crossref_primary_10_1027_1016_9040_a000238 crossref_primary_10_1016_j_ijpsycho_2023_01_004 crossref_primary_10_1093_cercor_bhw114 crossref_primary_10_3109_09638288_2010_532283 crossref_primary_10_1016_j_neulet_2017_02_033 crossref_primary_10_3233_NRE_151251 crossref_primary_10_1111_ejn_16173 crossref_primary_10_1186_1743_0003_11_124 crossref_primary_10_1093_brain_awu074 crossref_primary_10_1038_s41598_019_53275_2 crossref_primary_10_1016_j_bbr_2013_04_007 crossref_primary_10_1016_j_cortex_2014_08_015 crossref_primary_10_1523_JNEUROSCI_2282_13_2014 crossref_primary_10_3390_jcm9103369 crossref_primary_10_1016_j_cortex_2023_12_015 crossref_primary_10_1016_j_neulet_2012_03_012 crossref_primary_10_3389_fnins_2016_00128 crossref_primary_10_1371_journal_pone_0114244 crossref_primary_10_1016_j_bandc_2016_06_009 crossref_primary_10_3390_brainsci6030026 crossref_primary_10_5762_KAIS_2015_16_1_445 crossref_primary_10_1016_j_brainres_2018_03_031 crossref_primary_10_1523_JNEUROSCI_3315_13_2014 crossref_primary_10_1016_j_nbd_2009_05_027 crossref_primary_10_3233_RNN_150569 crossref_primary_10_1177_1545968311427568 crossref_primary_10_3389_fnagi_2014_00253 crossref_primary_10_1186_s12984_017_0301_7 crossref_primary_10_1016_j_neuropsychologia_2014_11_012 crossref_primary_10_1016_j_bbr_2022_113833 crossref_primary_10_1177_1545968314521004 crossref_primary_10_1177_1073858410386614 crossref_primary_10_1093_cercor_bhu075 crossref_primary_10_1109_TNSRE_2019_2924742 crossref_primary_10_1152_jn_00606_2012 crossref_primary_10_3389_fpsyg_2018_01758 crossref_primary_10_1007_s00221_019_05477_3 crossref_primary_10_1016_j_neuroimage_2021_118144 crossref_primary_10_3389_fnhum_2018_00441 crossref_primary_10_1016_j_cortex_2017_06_021 crossref_primary_10_1016_j_neulet_2014_11_043 crossref_primary_10_1016_j_brainres_2013_07_026 crossref_primary_10_1016_j_clinbiomech_2019_07_022 crossref_primary_10_1016_j_brs_2012_05_008 crossref_primary_10_1523_JNEUROSCI_0222_09_2009 crossref_primary_10_1523_JNEUROSCI_3770_13_2014 crossref_primary_10_1007_s00221_014_4087_6 crossref_primary_10_1016_j_neuroscience_2025_01_028 crossref_primary_10_1002_hbm_21266 crossref_primary_10_1016_j_neubiorev_2020_09_005 crossref_primary_10_3233_NRE_230099 crossref_primary_10_1371_journal_pone_0222620 crossref_primary_10_1139_apnm_2012_0412 crossref_primary_10_1016_j_bbr_2016_12_044 crossref_primary_10_1016_j_clinph_2017_02_020 crossref_primary_10_1016_j_brs_2024_03_015 crossref_primary_10_1186_s13229_017_0152_x crossref_primary_10_1016_j_clinph_2015_07_003 crossref_primary_10_1111_ejn_13385 crossref_primary_10_1186_1471_2202_14_64 crossref_primary_10_1007_s40279_013_0027_z crossref_primary_10_1016_j_brs_2019_08_001 crossref_primary_10_1016_j_jpain_2012_02_001 crossref_primary_10_1080_14737175_2020_1775586 crossref_primary_10_1007_s12152_020_09435_7 crossref_primary_10_1089_brain_2020_0916 crossref_primary_10_1111_j_1600_0404_2010_01417_x crossref_primary_10_1016_j_neuroimage_2013_05_098 crossref_primary_10_1016_j_neuroimage_2013_05_096 crossref_primary_10_1016_j_jocn_2019_12_022 crossref_primary_10_1016_j_rehab_2018_04_005 crossref_primary_10_1038_s41598_024_62889_0 crossref_primary_10_5535_arm_2014_38_3_297 crossref_primary_10_1002_hbm_24556 crossref_primary_10_1055_a_1198_8525 crossref_primary_10_1586_17434440_5_6_759 crossref_primary_10_1080_10874208_2011_623092 crossref_primary_10_1016_j_clinph_2017_01_004 crossref_primary_10_3389_fneur_2025_1531314 crossref_primary_10_1097_PHM_0b013e3181f70aa7 crossref_primary_10_1016_j_jht_2012_07_002 crossref_primary_10_3389_fnhum_2018_00009 crossref_primary_10_1016_j_apmr_2013_09_002 crossref_primary_10_1371_journal_pone_0016655 crossref_primary_10_1027_1016_9040_a000254 crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_08_008 crossref_primary_10_1007_s11065_011_9181_y crossref_primary_10_3389_fphys_2021_789886 crossref_primary_10_1177_1545968311413906 crossref_primary_10_3109_09638288_2014_982834 crossref_primary_10_3389_fpsyg_2016_01981 crossref_primary_10_1016_j_clinph_2016_03_018 crossref_primary_10_1523_JNEUROSCI_1170_14_2014 crossref_primary_10_1016_j_pmrj_2018_04_012 crossref_primary_10_1186_s12984_019_0561_5 crossref_primary_10_1038_s41598_017_08928_5 crossref_primary_10_3389_fnins_2021_649459 crossref_primary_10_1016_j_brs_2015_10_001 crossref_primary_10_1016_j_neuropsychologia_2015_02_002 crossref_primary_10_1016_j_neulet_2013_08_064 crossref_primary_10_1080_17434440_2019_1615440 crossref_primary_10_1002_hbm_21104 crossref_primary_10_1371_journal_pone_0226103 crossref_primary_10_1016_j_neuropsychologia_2015_06_021 crossref_primary_10_1016_j_neuropsychologia_2016_04_010 crossref_primary_10_1007_s10072_020_04875_8 crossref_primary_10_1016_j_schres_2011_06_021 crossref_primary_10_1016_j_neuroimage_2017_05_060 crossref_primary_10_1016_j_rehab_2015_04_009 crossref_primary_10_1038_s41598_017_13795_1 crossref_primary_10_1002_jnr_25311 crossref_primary_10_1007_s12311_024_01749_z crossref_primary_10_3389_fnhum_2018_00268 crossref_primary_10_1038_s41598_024_74941_0 crossref_primary_10_3389_fnins_2021_648354 crossref_primary_10_12674_ptk_2014_21_4_001 crossref_primary_10_1371_journal_pone_0295373 crossref_primary_10_1186_1471_2202_14_35 crossref_primary_10_1002_jnr_24793 crossref_primary_10_1016_j_heliyon_2024_e25905 crossref_primary_10_1002_dev_20508 crossref_primary_10_1038_jcbfm_2011_72 crossref_primary_10_3389_fpain_2024_1353987 crossref_primary_10_1080_17470218_2010_526232 crossref_primary_10_1186_2040_7378_3_4 crossref_primary_10_3390_brainsci10020096 crossref_primary_10_1212_WNL_0b013e318202013a crossref_primary_10_1007_s00221_025_07045_4 crossref_primary_10_3233_RNN_140490 crossref_primary_10_1002_ana_23761 crossref_primary_10_1016_j_brs_2021_03_014 crossref_primary_10_1007_s00221_015_4547_7 crossref_primary_10_1016_j_jneuroling_2017_07_002 crossref_primary_10_1080_23279095_2022_2164717 crossref_primary_10_1371_journal_pone_0010623 crossref_primary_10_1590_0103_5150_028_001_AR01 crossref_primary_10_1016_j_clinph_2013_12_100 crossref_primary_10_1080_20445911_2014_996569 crossref_primary_10_1016_j_neuropsychologia_2016_12_002 crossref_primary_10_1080_00222895_2019_1646206 crossref_primary_10_3389_fphar_2022_887115 crossref_primary_10_3389_fneur_2021_587771 crossref_primary_10_1371_journal_pone_0160063 crossref_primary_10_1080_13554794_2014_927508 crossref_primary_10_3389_fnhum_2021_674851 crossref_primary_10_1016_j_neulet_2018_12_010 crossref_primary_10_37714_josam_v2i2_40 crossref_primary_10_3389_fnbeh_2017_00130 crossref_primary_10_3389_fnhum_2022_998843 crossref_primary_10_1109_TBME_2015_2407491 crossref_primary_10_1523_JNEUROSCI_2524_18_2018 crossref_primary_10_1523_JNEUROSCI_0055_13_2013 crossref_primary_10_1371_journal_pone_0124509 crossref_primary_10_1016_j_brainres_2016_11_008 crossref_primary_10_1007_s12035_024_04574_x crossref_primary_10_1016_j_clinph_2015_12_020 crossref_primary_10_1097_WCO_0b013e32834c3db0 crossref_primary_10_3390_geriatrics1040032 crossref_primary_10_1111_ner_13526 crossref_primary_10_1016_j_neucli_2023_102895 crossref_primary_10_1186_s12984_020_00706_1 crossref_primary_10_1177_1073858409336227 crossref_primary_10_1016_j_brs_2011_05_001 crossref_primary_10_1080_02687038_2011_616925 crossref_primary_10_1038_srep22003 crossref_primary_10_3389_fneur_2019_01242 crossref_primary_10_1002_mus_25143 crossref_primary_10_1016_j_clinph_2023_03_009 crossref_primary_10_3389_fnhum_2015_00533 crossref_primary_10_1080_00222895_2022_2090489 crossref_primary_10_1097_WNR_0000000000000845 crossref_primary_10_1080_13554794_2019_1694951 crossref_primary_10_3171_2014_7_JNS131826 crossref_primary_10_1016_j_neuropsychologia_2019_05_023 crossref_primary_10_1111_ejn_12332 crossref_primary_10_1016_j_bandc_2015_11_005 crossref_primary_10_1155_2018_1237962 crossref_primary_10_1016_j_neuropsychologia_2020_107568 crossref_primary_10_1016_j_brs_2017_07_004 crossref_primary_10_3390_brainsci11060691 crossref_primary_10_3389_fnhum_2014_00451 crossref_primary_10_3389_fnins_2022_721987 crossref_primary_10_1016_j_neuroscience_2015_01_061 crossref_primary_10_1186_1471_2202_12_2 crossref_primary_10_3389_fnins_2019_01213 crossref_primary_10_1186_s12984_020_00708_z crossref_primary_10_1016_j_brs_2022_12_011 crossref_primary_10_1016_j_neuroimage_2011_06_018 crossref_primary_10_24332_aospt_2019_15_1_02 crossref_primary_10_1002_jnr_24908 crossref_primary_10_1093_ijnp_pyaa051 crossref_primary_10_1016_j_neulet_2021_135968 crossref_primary_10_1016_j_neulet_2014_03_022 crossref_primary_10_1016_j_jpain_2019_03_007 crossref_primary_10_1016_j_brs_2011_01_003 crossref_primary_10_31083_j_jin2002036 crossref_primary_10_3389_fnhum_2016_00426 crossref_primary_10_3389_fnhum_2016_00668 crossref_primary_10_1007_s00426_021_01560_z crossref_primary_10_1152_physiol_00014_2015 crossref_primary_10_3390_a15050169 crossref_primary_10_1080_00222895_2013_808604 crossref_primary_10_1007_s00421_017_3538_8 crossref_primary_10_1371_journal_pone_0085693 crossref_primary_10_1007_s00221_019_05525_y crossref_primary_10_3389_fphys_2021_788719 crossref_primary_10_1152_jn_00879_2013 crossref_primary_10_3389_fneur_2017_00029 crossref_primary_10_1093_brain_awu336 crossref_primary_10_1177_0284185113491088 |
Cites_doi | 10.1016/j.neuroimage.2005.06.022 10.1113/jphysiol.1992.sp019243 10.1523/JNEUROSCI.1851-05.2005 10.1001/archneur.65.12.1571 10.1097/01.wnr.0000223396.05070.a2 10.1016/j.neulet.2006.05.051 10.1016/0013-4694(87)90206-9 10.1016/j.clinph.2007.12.001 10.1016/j.neuroimage.2003.08.026 10.1016/S1388-2457(00)00284-4 10.1162/089892903321662994 10.1152/jn.01312.2006 10.1212/WNL.41.11.1795 10.1113/jphysiol.2003.049916 10.1093/brain/awf238 10.1016/j.clinph.2005.12.003 10.1007/s00221-003-1719-7 10.1111/j.1469-7793.2000.t01-1-00633.x 10.1016/0028-3932(71)90067-4 10.1007/BF00231987 10.1016/S1053-8119(03)00220-9 10.1111/j.1460-9568.2008.06459.x 10.1212/01.WNL.0000161839.38079.92 10.1007/s00221-006-0440-8 10.1161/01.STR.0000189658.51972.34 10.1097/01.wnr.0000177010.44602.5e 10.1016/j.clinph.2006.04.009 10.1016/S0304-3940(98)00437-6 10.1161/STROKEAHA.107.496935 10.1097/00001756-200604240-00023 10.1016/S1388-2457(03)00157-3 10.1162/jocn.2007.19.5.721 10.1093/brain/121.2.253 10.1177/155005940703800213 10.1073/pnas.210381897 10.1152/jn.00595.2003 10.1097/WCO.0b013e32801080d1 10.1016/S1474-4422(06)70525-7 10.1093/brain/awh369 |
ContentType | Journal Article |
Copyright | Vines et al; licensee BioMed Central Ltd. 2008 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2008 BioMed Central Ltd. Copyright © 2008 Vines et al; licensee BioMed Central Ltd. 2008 Vines et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Vines et al; licensee BioMed Central Ltd. 2008 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2008 BioMed Central Ltd. – notice: Copyright © 2008 Vines et al; licensee BioMed Central Ltd. 2008 Vines et al; licensee BioMed Central Ltd. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM DOA |
DOI | 10.1186/1471-2202-9-103 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-2202 |
EndPage | 103 |
ExternalDocumentID | oai_doaj_org_article_9103a149baba45b98e1374b4dbf51413 PMC2584652 A189229204 18957075 10_1186_1471_2202_9_103 |
Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Canada United States |
GeographicLocations_xml | – name: Canada – name: United States |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: NS045049 – fundername: NIDCD NIH HHS grantid: R01 DC009823 – fundername: NINDS NIH HHS grantid: NS053326 – fundername: NINDS NIH HHS grantid: R01 NS045049 – fundername: NINDS NIH HHS grantid: F32 NS053326 |
GroupedDBID | --- 0R~ 123 23N 2VQ 2WC 4.4 53G 5VS 6J9 6PF AAFWJ AAJSJ AASML AAWTL ABDBF ABIVO ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFPKN AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C1A C6C CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO IGS IHR INH INR IPNFZ IPY ITC KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A W2D WOQ WOW XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM NXXTH 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c662t-6a919d8b06d3407e23d19b6d9667ce88e320235d93e77743d66b5261c606a4d83 |
IEDL.DBID | M48 |
ISSN | 1471-2202 |
IngestDate | Wed Aug 27 01:31:36 EDT 2025 Thu Aug 21 14:10:06 EDT 2025 Thu Sep 04 18:07:00 EDT 2025 Sun Aug 24 04:04:51 EDT 2025 Tue Jun 17 22:21:53 EDT 2025 Tue Jun 10 21:24:13 EDT 2025 Fri May 30 10:59:25 EDT 2025 Thu Apr 24 22:50:47 EDT 2025 Tue Jul 01 02:25:50 EDT 2025 Sat Sep 06 07:28:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Transcranial Magnetic Stimulation Anodal tDCS Stimulation Condition Motor Cortex Sham Stimulation |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c662t-6a919d8b06d3407e23d19b6d9667ce88e320235d93e77743d66b5261c606a4d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2202-9-103 |
PMID | 18957075 |
PQID | 20277456 |
PQPubID | 23462 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9103a149baba45b98e1374b4dbf51413 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2584652 proquest_miscellaneous_69806376 proquest_miscellaneous_20277456 gale_infotracmisc_A189229204 gale_infotracacademiconefile_A189229204 pubmed_primary_18957075 crossref_citationtrail_10_1186_1471_2202_9_103 crossref_primary_10_1186_1471_2202_9_103 springer_journals_10_1186_1471_2202_9_103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-10-28 |
PublicationDateYYYYMMDD | 2008-10-28 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-28 day: 28 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC neuroscience |
PublicationTitleAbbrev | BMC Neurosci |
PublicationTitleAlternate | BMC Neurosci |
PublicationYear | 2008 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | F Hummel (786_CR5) 2006; 5 M Okamoto (786_CR23) 2004; 21 RW Homan (786_CR22) 1987; 66 G Schlaug (786_CR6) 2008; 65 PC Gandiga (786_CR24) 2006; 117 S Koeneke (786_CR28) 2006; 174 EM Wassermann (786_CR30) 1991; 41 A Flöel (786_CR3) 2008; 69 RC Oldfield (786_CR21) 1971; 9 PS Boggio (786_CR10) 2006; 404 CG Mansur (786_CR37) 2005; 64 W Muellbacher (786_CR35) 2000; 111 K Kansaku (786_CR32) 2005; 28 BW Vines (786_CR1) 2006; 17 M Kobayashi (786_CR29) 2004; 20 P Ragert (786_CR2) 2008; 119 MA Nitsche (786_CR9) 2003; 553 EM Robertson (786_CR36) 2005; 25 MA Nitsche (786_CR11) 2003; 15 MA Nitsche (786_CR40) 2007; 97 J Netz (786_CR18) 1995; 104 F Fregni (786_CR20) 2005; 16 F Hummel (786_CR14) 2005; 128 BW Vines (786_CR12) 2006; 17 A Ferbert (786_CR16) 1992; 453 D Liebetanz (786_CR7) 2002; 125 DG Nair (786_CR15) 2008; 39 BW Vines (786_CR4) 2008; 28 MJ Catalan (786_CR31) 1998; 121 A Gorsler (786_CR17) 2003; 114 P Talelli (786_CR39) 2006; 19 N Takeuchi (786_CR38) 2005; 36 MA Nitsche (786_CR8) 2000; 527 A Rau (786_CR41) 2007; 38 PC Miranda (786_CR25) 2006; 117 L Jäncke (786_CR33) 2004; 155 N Levit-Binnun (786_CR34) 2007; 19 S Hesse (786_CR13) 2007; 25 EM Wassermann (786_CR19) 1998; 250 MI Garry (786_CR27) 2004; 91 H Okano (786_CR26) 2000; 97 |
References_xml | – volume: 28 start-page: 669 issue: 3 year: 2005 ident: 786_CR32 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.06.022 – volume: 453 start-page: 525 year: 1992 ident: 786_CR16 publication-title: J Physiol doi: 10.1113/jphysiol.1992.sp019243 – volume: 25 start-page: 6372 year: 2005 ident: 786_CR36 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1851-05.2005 – volume: 65 start-page: 1 issue: 12 year: 2008 ident: 786_CR6 publication-title: Arch Neurol doi: 10.1001/archneur.65.12.1571 – volume: 17 start-page: 1047 year: 2006 ident: 786_CR1 publication-title: Neuroreport doi: 10.1097/01.wnr.0000223396.05070.a2 – volume: 404 start-page: 232 year: 2006 ident: 786_CR10 publication-title: Neurosci Let doi: 10.1016/j.neulet.2006.05.051 – volume: 66 start-page: 376 year: 1987 ident: 786_CR22 publication-title: Electroencephalography and Clin Neurophysiol doi: 10.1016/0013-4694(87)90206-9 – volume: 119 start-page: 805 year: 2008 ident: 786_CR2 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2007.12.001 – volume: 21 start-page: 99 year: 2004 ident: 786_CR23 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.08.026 – volume: 111 start-page: 1002 issue: 6 year: 2000 ident: 786_CR35 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(00)00284-4 – volume: 15 start-page: 619 year: 2003 ident: 786_CR11 publication-title: J Cog Neurosci doi: 10.1162/089892903321662994 – volume: 97 start-page: 3109 issue: 4 year: 2007 ident: 786_CR40 publication-title: J Neurophysiol doi: 10.1152/jn.01312.2006 – volume: 41 start-page: 1795 issue: 11 year: 1991 ident: 786_CR30 publication-title: Neurology doi: 10.1212/WNL.41.11.1795 – volume: 553 start-page: 293 year: 2003 ident: 786_CR9 publication-title: J Physiol-London doi: 10.1113/jphysiol.2003.049916 – volume: 125 start-page: 2238 year: 2002 ident: 786_CR7 publication-title: Brain doi: 10.1093/brain/awf238 – volume: 117 start-page: 845 issue: 4 year: 2006 ident: 786_CR24 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.12.003 – volume: 155 start-page: 196 year: 2004 ident: 786_CR33 publication-title: Exp Brain Res doi: 10.1007/s00221-003-1719-7 – volume: 527 start-page: 633 year: 2000 ident: 786_CR8 publication-title: J Physiol doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – volume: 9 start-page: 97 year: 1971 ident: 786_CR21 publication-title: Neuropsychologia doi: 10.1016/0028-3932(71)90067-4 – volume: 104 start-page: 527 year: 1995 ident: 786_CR18 publication-title: Exp Brain Res doi: 10.1007/BF00231987 – volume: 69 start-page: 32 year: 2008 ident: 786_CR3 publication-title: J Cogn Neurosci – volume: 20 start-page: 2259 year: 2004 ident: 786_CR29 publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00220-9 – volume: 28 start-page: 1667 year: 2008 ident: 786_CR4 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2008.06459.x – volume: 64 start-page: 1802 year: 2005 ident: 786_CR37 publication-title: Neurology doi: 10.1212/01.WNL.0000161839.38079.92 – volume: 174 start-page: 199 issue: 2 year: 2006 ident: 786_CR28 publication-title: Exp Brain Res doi: 10.1007/s00221-006-0440-8 – volume: 36 start-page: 2681 year: 2005 ident: 786_CR38 publication-title: Stroke doi: 10.1161/01.STR.0000189658.51972.34 – volume: 16 start-page: 1551 issue: 14 year: 2005 ident: 786_CR20 publication-title: Neuroreport doi: 10.1097/01.wnr.0000177010.44602.5e – volume: 117 start-page: 1623 year: 2006 ident: 786_CR25 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.04.009 – volume: 250 start-page: 141 year: 1998 ident: 786_CR19 publication-title: Neurosci Lett doi: 10.1016/S0304-3940(98)00437-6 – volume: 39 start-page: 542 issue: 2 year: 2008 ident: 786_CR15 publication-title: Stroke doi: 10.1161/STROKEAHA.107.496935 – volume: 17 start-page: 671 issue: 6 year: 2006 ident: 786_CR12 publication-title: Neuroreport doi: 10.1097/00001756-200604240-00023 – volume: 114 start-page: 1800 year: 2003 ident: 786_CR17 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00157-3 – volume: 19 start-page: 721 issue: 5 year: 2007 ident: 786_CR34 publication-title: J Cogn Neurosci doi: 10.1162/jocn.2007.19.5.721 – volume: 121 start-page: 253 year: 1998 ident: 786_CR31 publication-title: Brain doi: 10.1093/brain/121.2.253 – volume: 38 start-page: 105 issue: 2 year: 2007 ident: 786_CR41 publication-title: Clin EEG Neurosci doi: 10.1177/155005940703800213 – volume: 97 start-page: 12403 year: 2000 ident: 786_CR26 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.210381897 – volume: 91 start-page: 1570 year: 2004 ident: 786_CR27 publication-title: J Neurophysiol doi: 10.1152/jn.00595.2003 – volume: 25 start-page: 9 issue: 1 year: 2007 ident: 786_CR13 publication-title: Restor Neurol Neurosci – volume: 19 start-page: 543 issue: 6 year: 2006 ident: 786_CR39 publication-title: Curr Opin Neurol doi: 10.1097/WCO.0b013e32801080d1 – volume: 5 start-page: 708 year: 2006 ident: 786_CR5 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(06)70525-7 – volume: 128 start-page: 490 year: 2005 ident: 786_CR14 publication-title: Brain doi: 10.1093/brain/awh369 |
SSID | ssj0017842 |
Score | 2.3782952 |
Snippet | Background
Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain.... Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The... Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain.... Abstract Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103 |
SubjectTerms | Adult Animal Models Biomedical and Life Sciences Biomedicine Brain stimulation Dominance, Cerebral - physiology Electric Stimulation Therapy - instrumentation Electric Stimulation Therapy - methods Hand - physiology Humans Motor Cortex - physiology Motor Skills - physiology Neurobiology Neurosciences Psychomotor Performance - physiology Reaction Time - physiology Reference Values Research Article |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLojwDBXxAKhxCEzt-HUtLVSGVC1TqzfJroVLJoiZ76J0fzoyTLJuiFReOazvaeDzxfDMef0PIm3qhK-PAyfEAxsFBEbrUKfCycaFSKkVmJF4UPvssT8-bTxfiYqPUF-aEDfTAg-AOwJxxBzDeO-8a4Y1ONVeNb6JfgK3P9WpZZarJmRrPD5TOZXNq2HpLxjCHJ5P61FoerNtKA3sQn9mjTNv_9-a8YZ1uZ07eOj7NVunkAbk_wkl6OExjl9xJ7UNy92w8MH9Efh2v3FWZi7ohf0Ci_fHRF7pwYSDnTh39hqgxXdPLHF3IwcKOApKlww3JG9qtPMZqun3aLtsyLofcGYoRdzplsNN-STFxZeOPYOv4MZYGe0zOTz5-PTotx8ILZZCS9aV0pjZR-0pGDg5fYjzWxssIrpEKSeuUi66LaHhSAB95lNILcMUCeEOuiZo_ITvwSukZoULVi1okJ0wQjWuYYzJWSZrEguLwsyDvJ_HbMLKSY3GMK5u9Ey0trpfF9bIG2nhB3q4f-DkQcmwf-gHXcz0MmbRzA-iXHfXL_ku_CrKP2mDxe4cXC268tgDTQ-Yse1hrw7DkV1OQvdlIEHiYdb-e9MliFya3tWm56izGnxQA2e0jpNEAJRWMeDro35-payMUwL6CqJlmziY972kvv2cacYbYU7CCvJt02I77V7dNos__h0RfkHtsJBVmeo_s9Ner9BKQXe9f5Y_4N9EDRxE priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgL4s2WAj4gFQ6BtR2_jmVLVSGVC1TqzfJraaWSRU320Ds_nJnEu2wKe-CYePKwPR5_M7a_IeQNm5up9eDkBADj4KBIU5kcRVX7ONU6J24VHhQ--aKOT-vPZ_KskCThWZjN9Xtm1AcGxrPi4KFXFiyGuE3uSLC6qMozNVsvF2hT88Lb84-HRlNOz8z_t_3dmIBubo68sULaTzxHD8j9ghjpwdDFD8mt3Dwid0_Kmvhj8utw6S-rPm8bUgRk2h3OvtK5jwP_dm7pdwSG-Ype9AGEPh7YUgCrdDgEeU3bZcBwTLtPm0VTpcWwPYZiUJ2uNqnTbkFxb8rGh8A6_CjZv56Q06NP32bHVcmtUEWleFcpb5lNJkxVEuDTZS4Ss0El8H50zMbkPq-6TFZkDQhRJKWCBG8rgsPj62TEU7IDv5SfEyo1mzOZvbRR1r7mnqs0zcpmHrWAywl5v2p-FwvxOOa_uHS9A2KUw_5y2F_Owj0xIW_XD_wcODe2i37E_lyLIVl2fwN0yJWx5wARCQ-eYPDB1zJYk5nQdahTmANcZPCSfdQGh0Mafiz6cjIBqofkWO6AGcsxq1c9IXsjSWjwOCp-vdInh0W4f63Ji2XrMMSkAatul1DWAFrUIPFs0L8_VTdWakB2E6JHmjmq9LikuTjvmcI5wkvJJ-TdSoddMVHtthbd_Q_ZF-QeL_TA3OyRne5qmV8CRuvCq358_gbekTQ7 priority: 102 providerName: Springer Nature |
Title | Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation |
URI | https://link.springer.com/article/10.1186/1471-2202-9-103 https://www.ncbi.nlm.nih.gov/pubmed/18957075 https://www.proquest.com/docview/20277456 https://www.proquest.com/docview/69806376 https://pubmed.ncbi.nlm.nih.gov/PMC2584652 https://doaj.org/article/9103a149baba45b98e1374b4dbf51413 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZoKyEuiDeBEnxAKhy2ZO3164BQSKmqSOVSIvVm-ZW2UthAdiPROz-csXeTdEsjLpGynmz8GNvfjMffIPQun8qBMmDkWADjYKAwmcngaFYYNxAieKJ4vCh8-o2fTIrxOTvfpANqO7C607SL-aQmi9nh71_Xn2HCf0oTXvKPOSywGQErPlOwqtAdtJcOi2IcX7E5UhAyZdJZC7c8P3e8oLNFJSb_f9frGxvW7WDKWyeqaaM6foQetggTDxuVeIzuhfIJun_anqE_RX-OlmaWpTxvkVIg4PpodIanxjV83aHCFxFIhgW-Sg6H5D-sMIBb3FyavMbV0kb3TXWAy3mZ-XkTToOjEx6vgtpxPccxluXGH8Fq8qPNFvYMTY6_fh-dZG0uhsxxTuqMG5UrL-2Aewo2YCDU58pyD9aScEHKkPKwM69oEIAoqefcMrDOHBhIpvCSPke7UKXwEmEm8mnOgmHKscIUxBDuB4GrQJyg8LWHDlfdr11LVB7zZcx0Mlgk13G8dBwvreAZ7aH36x_8bDg6tot-ieO5Fovk2unBfHGh27mqAUFRA5ajNdYUzCoZcioKW3g7BXiZw0sOojboqJRQMWfamwzQvEimpYe5VCRmASt6aL8jCR3uOsVvV_qkY1GMdyvDfFnp6JISgG23S3AlAV0KkHjR6N-m6VIxAUiwh0RHMzuN7paUV5eJWZxEOMpID31Y6bBezchtPfrqvzV8jR6QlkSYyH20Wy-W4Q0gudr20d5wOD4b99HOiI_6yR_ST7MWPidk-BdDIkcv |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagSNAL4t2FQn1AKhyWZu3161hSqgBNL7RSb5ZfgUolQd3kwJ0fzsyuE7KFHDjuevZhezz-Zmx_Q8jraqIHxoGT4wGMg4MidKlT4GXtwkCpFJmReFB4fCpH5_WnC3GRSZLwLMz6-n2l5UEFxrNk4KGXBiwGv03u4LIlkuQP5XC1XKB0zTJvzz8e6k05LTP_3_Z3bQK6uTnyxgppO_EcPyD3M2Kkh10XPyS30vQRuTvOa-KPya-jhbsq27xtSBGQ6Pxo-IVOXOj4t1NDvyIwTNf0sg0gtPHAhgJYpd0hyJ-0WXgMxzT7dDqblnHWbY-hGFSny03qdD6juDdl7UNgHb7n7F9PyPnxh7PhqMy5FcogJZuX0pnKRO0HMnLw6RLjsTJeRvB-VEhapzavuoiGJwUIkUcpvQBvK4DD4-qo-VOyBb-UdggVqppUIjlhgqhdzRyTcZCkSSwoDpcFebdsfhsy8Tjmv7iyrQOipcX-sthf1sA9XpA3qwd-dJwbm0XfY3-uxJAsu70BOmTz2LOAiLgDT9A772rhjU4VV7Wvo58AXKzgJfuoDRaHNPxYcPlkAlQPybHsYaUNw6xedUF2e5LQ4KFXvLfUJ4tFuH9tmmaLxmKISQFW3SwhjQa0qEDiWad_f6qujVCA7AqieprZq3S_ZHr5rWUKZwgvBSvI26UO22yimk0t-vw_ZPfIvdHZ-MSefDz9_IJss0wVzPQu2ZpfL9JLwGtz_6odq78BhiE3Kg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSBUXxLsLhfqAVDiEbvz2celSlUcrJFipN8uvLZVKttpkD9z54YwTZ2kKe-CYePKwPba_GY-_QehVOVdjbcHIcQDGwUDhqlDR04JZP5YyBqJFOih8ciqOZ-zjGT_LsTl1H-3eb0l2ZxoSS1PVHFyFeTfElTgoYUotCNjthYZ5hN5Gdxgs1Cmia0Ym600EqRjJbD7_eGiwELV8_X_PyteWpZshkzf2Tdvl6Og-updxJJ50Hf8A3YrVQ7R9knfKH6Ff05W9LNpsbok4IOJmevgVz63vWLljjc8TXIxLfNG6FVovYY0BwuLuaORPXK9cctLU-7haVEVYdEEzOLnacR-6jpsFThEr1z4Ec8aPnBPsMZodvf92eFzkjAuFF4I0hbC61EG5sQgULL1IaCi1EwFsIumjUrHNts6DplECbqRBCMfBBvNgBlkWFH2CtuCX4g7CXJbzkkfLtefMMmKJCOModCReUrgcobd98xuf6chTVoxL05olSpjUXyb1l9Fwj47Q6_UDVx0Tx2bRd6k_12KJQru9sViemzwiDeAkasE-dNZZxp1WsaSSORbcHEBkCS_ZT9pg0kCHH_M2n1eA6iXKLDMplSYp1xcbod2BJDS4HxTv9fpkUlGKaqviYlWb5HiSgGA3SwitAENKkHja6d-fqivNJeC9EZIDzRxUelhSXXxv-cNJAp2cjNCbXodNnrjqTS367D9k99D2l-mR-fzh9NNzdJdk_mCidtFWs1zFFwDiGveyHaq_AXaiP5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-hemisphere+tDCS+facilitates+greater+improvements+for+healthy+subjects%27+non-dominant+hand+compared+to+uni-hemisphere+stimulation&rft.jtitle=BMC+neuroscience&rft.au=Vines%2C+Bradley+W&rft.au=Cerruti%2C+Carlo&rft.au=Schlaug%2C+Gottfried&rft.date=2008-10-28&rft.issn=1471-2202&rft.eissn=1471-2202&rft.volume=9&rft.spage=103&rft_id=info:doi/10.1186%2F1471-2202-9-103&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2202&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2202&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2202&client=summon |