Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation

Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability...

Full description

Saved in:
Bibliographic Details
Published inBMC neuroscience Vol. 9; no. 1; p. 103
Main Authors Vines, Bradley W, Cerruti, Carlo, Schlaug, Gottfried
Format Journal Article
LanguageEnglish
Published London BioMed Central 28.10.2008
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2202
1471-2202
DOI10.1186/1471-2202-9-103

Cover

Abstract Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere – with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere – with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores. Results A repeated measures ANOVA yielded a significant effect of tDCS condition ( F (2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere ( p = .021) and sham stimulation ( p = .041). Conclusion We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke.
AbstractList Abstract Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere – with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere – with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores. Results A repeated measures ANOVA yielded a significant effect of tDCS condition (F(2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere (p = .021) and sham stimulation (p = .041). Conclusion We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke.
Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere – with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere – with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores. Results A repeated measures ANOVA yielded a significant effect of tDCS condition ( F (2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere ( p = .021) and sham stimulation ( p = .041). Conclusion We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke.
Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere - with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere - with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores.BACKGROUNDTranscranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere - with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere - with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores.A repeated measures ANOVA yielded a significant effect of tDCS condition (F(2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere (p = .021) and sham stimulation (p = .041).RESULTSA repeated measures ANOVA yielded a significant effect of tDCS condition (F(2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere (p = .021) and sham stimulation (p = .041).We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke.CONCLUSIONWe propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke.
Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere - with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere - with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores. Results A repeated measures ANOVA yielded a significant effect of tDCS condition (F(2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere (p = .021) and sham stimulation (p = .041). Conclusion We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke.
Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere - with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere - with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores. A repeated measures ANOVA yielded a significant effect of tDCS condition (F(2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere (p = .021) and sham stimulation (p = .041). We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke.
ArticleNumber 103
Audience Academic
Author Cerruti, Carlo
Vines, Bradley W
Schlaug, Gottfried
AuthorAffiliation 1 Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
2 Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
3 Harvard Graduate School of Education, Cambridge, MA 02138, USA
AuthorAffiliation_xml – name: 1 Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
– name: 3 Harvard Graduate School of Education, Cambridge, MA 02138, USA
– name: 2 Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
Author_xml – sequence: 1
  givenname: Bradley W
  surname: Vines
  fullname: Vines, Bradley W
  organization: Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Institute of Mental Health, Department of Psychiatry, University of British Columbia
– sequence: 2
  givenname: Carlo
  surname: Cerruti
  fullname: Cerruti, Carlo
  organization: Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Harvard Graduate School of Education
– sequence: 3
  givenname: Gottfried
  surname: Schlaug
  fullname: Schlaug, Gottfried
  email: gschlaug@bidmc.harvard.edu
  organization: Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18957075$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1r3DAUNCWl-WjPvRVBIT05kWRZti6FkPQjEOih7VnI0vNaiy1tJTmQe3945W667JaGooPE08xI896cFkfOOyiK1wRfENLyS8IaUlKKaSlKgqtnxcmucrR3Pi5OY1xjTJqW0RfFMWlF3eCmPil-3sxqLAeYbNwMEAClm-uvqFfajjapBBGtAuQ9IDttgr-HCVyKqPcBDaDGNDygOHdr0Cm-Q_lzpfGTdcolNChnkPbTRgUwKHk0O7v_UEx2mkeVrHcvi-e9GiO8etzPiu8fP3y7_lzeffl0e311V2rOaSq5EkSYtsPcVAw3QCtDRMeN4LzR0LZQZatVbUQFTdOwynDe1ZQTzTFXzLTVWXG71TVereUm2EmFB-mVlb8LPqykCsnqEaTI3VSEiU51itWdaIFUDeuY6fqaMFJlrfdbrc3cTWB0bktQ44Ho4Y2zg1z5e0nrlvGaZoHzR4Hgf8wQk8yt0TCOyoGfo-Sixbxq-H-B2XR2Wy_At1vgSmUH1vU-P6wXsLzKE6dUUMwy6uIfqLxMno3O8eptrh8Q3uw73Vn8E6IMqLcAHXyMAXqpl-zkwWZlO0qC5RJWucRRLnGUIteWFl7-xdtJP8nAW0bMSLeCINd-Di5n5knKL8GT-fs
CitedBy_id crossref_primary_10_3389_fnhum_2024_1427091
crossref_primary_10_1007_s10936_017_9516_9
crossref_primary_10_3389_fnbeh_2017_00173
crossref_primary_10_1016_j_neuroimage_2016_01_057
crossref_primary_10_1111_cns_12221
crossref_primary_10_1016_j_brainres_2010_07_062
crossref_primary_10_5535_arm_2013_37_5_603
crossref_primary_10_1007_s40141_020_00262_8
crossref_primary_10_1007_s11055_023_01412_w
crossref_primary_10_1016_j_brs_2014_10_001
crossref_primary_10_1155_2019_1372138
crossref_primary_10_1080_02687038_2016_1240353
crossref_primary_10_1007_s00221_012_3315_1
crossref_primary_10_3389_fpsyg_2017_00224
crossref_primary_10_3389_fpsyg_2023_1211034
crossref_primary_10_3389_fnhum_2024_1305446
crossref_primary_10_1016_j_neuropsychologia_2011_12_011
crossref_primary_10_1027_1016_9040_a000238
crossref_primary_10_1016_j_ijpsycho_2023_01_004
crossref_primary_10_1093_cercor_bhw114
crossref_primary_10_3109_09638288_2010_532283
crossref_primary_10_1016_j_neulet_2017_02_033
crossref_primary_10_3233_NRE_151251
crossref_primary_10_1111_ejn_16173
crossref_primary_10_1186_1743_0003_11_124
crossref_primary_10_1093_brain_awu074
crossref_primary_10_1038_s41598_019_53275_2
crossref_primary_10_1016_j_bbr_2013_04_007
crossref_primary_10_1016_j_cortex_2014_08_015
crossref_primary_10_1523_JNEUROSCI_2282_13_2014
crossref_primary_10_3390_jcm9103369
crossref_primary_10_1016_j_cortex_2023_12_015
crossref_primary_10_1016_j_neulet_2012_03_012
crossref_primary_10_3389_fnins_2016_00128
crossref_primary_10_1371_journal_pone_0114244
crossref_primary_10_1016_j_bandc_2016_06_009
crossref_primary_10_3390_brainsci6030026
crossref_primary_10_5762_KAIS_2015_16_1_445
crossref_primary_10_1016_j_brainres_2018_03_031
crossref_primary_10_1523_JNEUROSCI_3315_13_2014
crossref_primary_10_1016_j_nbd_2009_05_027
crossref_primary_10_3233_RNN_150569
crossref_primary_10_1177_1545968311427568
crossref_primary_10_3389_fnagi_2014_00253
crossref_primary_10_1186_s12984_017_0301_7
crossref_primary_10_1016_j_neuropsychologia_2014_11_012
crossref_primary_10_1016_j_bbr_2022_113833
crossref_primary_10_1177_1545968314521004
crossref_primary_10_1177_1073858410386614
crossref_primary_10_1093_cercor_bhu075
crossref_primary_10_1109_TNSRE_2019_2924742
crossref_primary_10_1152_jn_00606_2012
crossref_primary_10_3389_fpsyg_2018_01758
crossref_primary_10_1007_s00221_019_05477_3
crossref_primary_10_1016_j_neuroimage_2021_118144
crossref_primary_10_3389_fnhum_2018_00441
crossref_primary_10_1016_j_cortex_2017_06_021
crossref_primary_10_1016_j_neulet_2014_11_043
crossref_primary_10_1016_j_brainres_2013_07_026
crossref_primary_10_1016_j_clinbiomech_2019_07_022
crossref_primary_10_1016_j_brs_2012_05_008
crossref_primary_10_1523_JNEUROSCI_0222_09_2009
crossref_primary_10_1523_JNEUROSCI_3770_13_2014
crossref_primary_10_1007_s00221_014_4087_6
crossref_primary_10_1016_j_neuroscience_2025_01_028
crossref_primary_10_1002_hbm_21266
crossref_primary_10_1016_j_neubiorev_2020_09_005
crossref_primary_10_3233_NRE_230099
crossref_primary_10_1371_journal_pone_0222620
crossref_primary_10_1139_apnm_2012_0412
crossref_primary_10_1016_j_bbr_2016_12_044
crossref_primary_10_1016_j_clinph_2017_02_020
crossref_primary_10_1016_j_brs_2024_03_015
crossref_primary_10_1186_s13229_017_0152_x
crossref_primary_10_1016_j_clinph_2015_07_003
crossref_primary_10_1111_ejn_13385
crossref_primary_10_1186_1471_2202_14_64
crossref_primary_10_1007_s40279_013_0027_z
crossref_primary_10_1016_j_brs_2019_08_001
crossref_primary_10_1016_j_jpain_2012_02_001
crossref_primary_10_1080_14737175_2020_1775586
crossref_primary_10_1007_s12152_020_09435_7
crossref_primary_10_1089_brain_2020_0916
crossref_primary_10_1111_j_1600_0404_2010_01417_x
crossref_primary_10_1016_j_neuroimage_2013_05_098
crossref_primary_10_1016_j_neuroimage_2013_05_096
crossref_primary_10_1016_j_jocn_2019_12_022
crossref_primary_10_1016_j_rehab_2018_04_005
crossref_primary_10_1038_s41598_024_62889_0
crossref_primary_10_5535_arm_2014_38_3_297
crossref_primary_10_1002_hbm_24556
crossref_primary_10_1055_a_1198_8525
crossref_primary_10_1586_17434440_5_6_759
crossref_primary_10_1080_10874208_2011_623092
crossref_primary_10_1016_j_clinph_2017_01_004
crossref_primary_10_3389_fneur_2025_1531314
crossref_primary_10_1097_PHM_0b013e3181f70aa7
crossref_primary_10_1016_j_jht_2012_07_002
crossref_primary_10_3389_fnhum_2018_00009
crossref_primary_10_1016_j_apmr_2013_09_002
crossref_primary_10_1371_journal_pone_0016655
crossref_primary_10_1027_1016_9040_a000254
crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_08_008
crossref_primary_10_1007_s11065_011_9181_y
crossref_primary_10_3389_fphys_2021_789886
crossref_primary_10_1177_1545968311413906
crossref_primary_10_3109_09638288_2014_982834
crossref_primary_10_3389_fpsyg_2016_01981
crossref_primary_10_1016_j_clinph_2016_03_018
crossref_primary_10_1523_JNEUROSCI_1170_14_2014
crossref_primary_10_1016_j_pmrj_2018_04_012
crossref_primary_10_1186_s12984_019_0561_5
crossref_primary_10_1038_s41598_017_08928_5
crossref_primary_10_3389_fnins_2021_649459
crossref_primary_10_1016_j_brs_2015_10_001
crossref_primary_10_1016_j_neuropsychologia_2015_02_002
crossref_primary_10_1016_j_neulet_2013_08_064
crossref_primary_10_1080_17434440_2019_1615440
crossref_primary_10_1002_hbm_21104
crossref_primary_10_1371_journal_pone_0226103
crossref_primary_10_1016_j_neuropsychologia_2015_06_021
crossref_primary_10_1016_j_neuropsychologia_2016_04_010
crossref_primary_10_1007_s10072_020_04875_8
crossref_primary_10_1016_j_schres_2011_06_021
crossref_primary_10_1016_j_neuroimage_2017_05_060
crossref_primary_10_1016_j_rehab_2015_04_009
crossref_primary_10_1038_s41598_017_13795_1
crossref_primary_10_1002_jnr_25311
crossref_primary_10_1007_s12311_024_01749_z
crossref_primary_10_3389_fnhum_2018_00268
crossref_primary_10_1038_s41598_024_74941_0
crossref_primary_10_3389_fnins_2021_648354
crossref_primary_10_12674_ptk_2014_21_4_001
crossref_primary_10_1371_journal_pone_0295373
crossref_primary_10_1186_1471_2202_14_35
crossref_primary_10_1002_jnr_24793
crossref_primary_10_1016_j_heliyon_2024_e25905
crossref_primary_10_1002_dev_20508
crossref_primary_10_1038_jcbfm_2011_72
crossref_primary_10_3389_fpain_2024_1353987
crossref_primary_10_1080_17470218_2010_526232
crossref_primary_10_1186_2040_7378_3_4
crossref_primary_10_3390_brainsci10020096
crossref_primary_10_1212_WNL_0b013e318202013a
crossref_primary_10_1007_s00221_025_07045_4
crossref_primary_10_3233_RNN_140490
crossref_primary_10_1002_ana_23761
crossref_primary_10_1016_j_brs_2021_03_014
crossref_primary_10_1007_s00221_015_4547_7
crossref_primary_10_1016_j_jneuroling_2017_07_002
crossref_primary_10_1080_23279095_2022_2164717
crossref_primary_10_1371_journal_pone_0010623
crossref_primary_10_1590_0103_5150_028_001_AR01
crossref_primary_10_1016_j_clinph_2013_12_100
crossref_primary_10_1080_20445911_2014_996569
crossref_primary_10_1016_j_neuropsychologia_2016_12_002
crossref_primary_10_1080_00222895_2019_1646206
crossref_primary_10_3389_fphar_2022_887115
crossref_primary_10_3389_fneur_2021_587771
crossref_primary_10_1371_journal_pone_0160063
crossref_primary_10_1080_13554794_2014_927508
crossref_primary_10_3389_fnhum_2021_674851
crossref_primary_10_1016_j_neulet_2018_12_010
crossref_primary_10_37714_josam_v2i2_40
crossref_primary_10_3389_fnbeh_2017_00130
crossref_primary_10_3389_fnhum_2022_998843
crossref_primary_10_1109_TBME_2015_2407491
crossref_primary_10_1523_JNEUROSCI_2524_18_2018
crossref_primary_10_1523_JNEUROSCI_0055_13_2013
crossref_primary_10_1371_journal_pone_0124509
crossref_primary_10_1016_j_brainres_2016_11_008
crossref_primary_10_1007_s12035_024_04574_x
crossref_primary_10_1016_j_clinph_2015_12_020
crossref_primary_10_1097_WCO_0b013e32834c3db0
crossref_primary_10_3390_geriatrics1040032
crossref_primary_10_1111_ner_13526
crossref_primary_10_1016_j_neucli_2023_102895
crossref_primary_10_1186_s12984_020_00706_1
crossref_primary_10_1177_1073858409336227
crossref_primary_10_1016_j_brs_2011_05_001
crossref_primary_10_1080_02687038_2011_616925
crossref_primary_10_1038_srep22003
crossref_primary_10_3389_fneur_2019_01242
crossref_primary_10_1002_mus_25143
crossref_primary_10_1016_j_clinph_2023_03_009
crossref_primary_10_3389_fnhum_2015_00533
crossref_primary_10_1080_00222895_2022_2090489
crossref_primary_10_1097_WNR_0000000000000845
crossref_primary_10_1080_13554794_2019_1694951
crossref_primary_10_3171_2014_7_JNS131826
crossref_primary_10_1016_j_neuropsychologia_2019_05_023
crossref_primary_10_1111_ejn_12332
crossref_primary_10_1016_j_bandc_2015_11_005
crossref_primary_10_1155_2018_1237962
crossref_primary_10_1016_j_neuropsychologia_2020_107568
crossref_primary_10_1016_j_brs_2017_07_004
crossref_primary_10_3390_brainsci11060691
crossref_primary_10_3389_fnhum_2014_00451
crossref_primary_10_3389_fnins_2022_721987
crossref_primary_10_1016_j_neuroscience_2015_01_061
crossref_primary_10_1186_1471_2202_12_2
crossref_primary_10_3389_fnins_2019_01213
crossref_primary_10_1186_s12984_020_00708_z
crossref_primary_10_1016_j_brs_2022_12_011
crossref_primary_10_1016_j_neuroimage_2011_06_018
crossref_primary_10_24332_aospt_2019_15_1_02
crossref_primary_10_1002_jnr_24908
crossref_primary_10_1093_ijnp_pyaa051
crossref_primary_10_1016_j_neulet_2021_135968
crossref_primary_10_1016_j_neulet_2014_03_022
crossref_primary_10_1016_j_jpain_2019_03_007
crossref_primary_10_1016_j_brs_2011_01_003
crossref_primary_10_31083_j_jin2002036
crossref_primary_10_3389_fnhum_2016_00426
crossref_primary_10_3389_fnhum_2016_00668
crossref_primary_10_1007_s00426_021_01560_z
crossref_primary_10_1152_physiol_00014_2015
crossref_primary_10_3390_a15050169
crossref_primary_10_1080_00222895_2013_808604
crossref_primary_10_1007_s00421_017_3538_8
crossref_primary_10_1371_journal_pone_0085693
crossref_primary_10_1007_s00221_019_05525_y
crossref_primary_10_3389_fphys_2021_788719
crossref_primary_10_1152_jn_00879_2013
crossref_primary_10_3389_fneur_2017_00029
crossref_primary_10_1093_brain_awu336
crossref_primary_10_1177_0284185113491088
Cites_doi 10.1016/j.neuroimage.2005.06.022
10.1113/jphysiol.1992.sp019243
10.1523/JNEUROSCI.1851-05.2005
10.1001/archneur.65.12.1571
10.1097/01.wnr.0000223396.05070.a2
10.1016/j.neulet.2006.05.051
10.1016/0013-4694(87)90206-9
10.1016/j.clinph.2007.12.001
10.1016/j.neuroimage.2003.08.026
10.1016/S1388-2457(00)00284-4
10.1162/089892903321662994
10.1152/jn.01312.2006
10.1212/WNL.41.11.1795
10.1113/jphysiol.2003.049916
10.1093/brain/awf238
10.1016/j.clinph.2005.12.003
10.1007/s00221-003-1719-7
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1016/0028-3932(71)90067-4
10.1007/BF00231987
10.1016/S1053-8119(03)00220-9
10.1111/j.1460-9568.2008.06459.x
10.1212/01.WNL.0000161839.38079.92
10.1007/s00221-006-0440-8
10.1161/01.STR.0000189658.51972.34
10.1097/01.wnr.0000177010.44602.5e
10.1016/j.clinph.2006.04.009
10.1016/S0304-3940(98)00437-6
10.1161/STROKEAHA.107.496935
10.1097/00001756-200604240-00023
10.1016/S1388-2457(03)00157-3
10.1162/jocn.2007.19.5.721
10.1093/brain/121.2.253
10.1177/155005940703800213
10.1073/pnas.210381897
10.1152/jn.00595.2003
10.1097/WCO.0b013e32801080d1
10.1016/S1474-4422(06)70525-7
10.1093/brain/awh369
ContentType Journal Article
Copyright Vines et al; licensee BioMed Central Ltd. 2008 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2008 BioMed Central Ltd.
Copyright © 2008 Vines et al; licensee BioMed Central Ltd. 2008 Vines et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Vines et al; licensee BioMed Central Ltd. 2008 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2008 BioMed Central Ltd.
– notice: Copyright © 2008 Vines et al; licensee BioMed Central Ltd. 2008 Vines et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOA
DOI 10.1186/1471-2202-9-103
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2202
EndPage 103
ExternalDocumentID oai_doaj_org_article_9103a149baba45b98e1374b4dbf51413
PMC2584652
A189229204
18957075
10_1186_1471_2202_9_103
Genre Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Canada
United States
GeographicLocations_xml – name: Canada
– name: United States
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS045049
– fundername: NIDCD NIH HHS
  grantid: R01 DC009823
– fundername: NINDS NIH HHS
  grantid: NS053326
– fundername: NINDS NIH HHS
  grantid: R01 NS045049
– fundername: NINDS NIH HHS
  grantid: F32 NS053326
GroupedDBID ---
0R~
123
23N
2VQ
2WC
4.4
53G
5VS
6J9
6PF
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABIVO
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C1A
C6C
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
IPY
ITC
KQ8
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
NXXTH
7TK
7X8
5PM
ID FETCH-LOGICAL-c662t-6a919d8b06d3407e23d19b6d9667ce88e320235d93e77743d66b5261c606a4d83
IEDL.DBID M48
ISSN 1471-2202
IngestDate Wed Aug 27 01:31:36 EDT 2025
Thu Aug 21 14:10:06 EDT 2025
Thu Sep 04 18:07:00 EDT 2025
Sun Aug 24 04:04:51 EDT 2025
Tue Jun 17 22:21:53 EDT 2025
Tue Jun 10 21:24:13 EDT 2025
Fri May 30 10:59:25 EDT 2025
Thu Apr 24 22:50:47 EDT 2025
Tue Jul 01 02:25:50 EDT 2025
Sat Sep 06 07:28:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Transcranial Magnetic Stimulation
Anodal tDCS
Stimulation Condition
Motor Cortex
Sham Stimulation
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c662t-6a919d8b06d3407e23d19b6d9667ce88e320235d93e77743d66b5261c606a4d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2202-9-103
PMID 18957075
PQID 20277456
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_9103a149baba45b98e1374b4dbf51413
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2584652
proquest_miscellaneous_69806376
proquest_miscellaneous_20277456
gale_infotracmisc_A189229204
gale_infotracacademiconefile_A189229204
pubmed_primary_18957075
crossref_citationtrail_10_1186_1471_2202_9_103
crossref_primary_10_1186_1471_2202_9_103
springer_journals_10_1186_1471_2202_9_103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-28
PublicationDateYYYYMMDD 2008-10-28
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-28
  day: 28
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC neuroscience
PublicationTitleAbbrev BMC Neurosci
PublicationTitleAlternate BMC Neurosci
PublicationYear 2008
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References F Hummel (786_CR5) 2006; 5
M Okamoto (786_CR23) 2004; 21
RW Homan (786_CR22) 1987; 66
G Schlaug (786_CR6) 2008; 65
PC Gandiga (786_CR24) 2006; 117
S Koeneke (786_CR28) 2006; 174
EM Wassermann (786_CR30) 1991; 41
A Flöel (786_CR3) 2008; 69
RC Oldfield (786_CR21) 1971; 9
PS Boggio (786_CR10) 2006; 404
CG Mansur (786_CR37) 2005; 64
W Muellbacher (786_CR35) 2000; 111
K Kansaku (786_CR32) 2005; 28
BW Vines (786_CR1) 2006; 17
M Kobayashi (786_CR29) 2004; 20
P Ragert (786_CR2) 2008; 119
MA Nitsche (786_CR9) 2003; 553
EM Robertson (786_CR36) 2005; 25
MA Nitsche (786_CR11) 2003; 15
MA Nitsche (786_CR40) 2007; 97
J Netz (786_CR18) 1995; 104
F Fregni (786_CR20) 2005; 16
F Hummel (786_CR14) 2005; 128
BW Vines (786_CR12) 2006; 17
A Ferbert (786_CR16) 1992; 453
D Liebetanz (786_CR7) 2002; 125
DG Nair (786_CR15) 2008; 39
BW Vines (786_CR4) 2008; 28
MJ Catalan (786_CR31) 1998; 121
A Gorsler (786_CR17) 2003; 114
P Talelli (786_CR39) 2006; 19
N Takeuchi (786_CR38) 2005; 36
MA Nitsche (786_CR8) 2000; 527
A Rau (786_CR41) 2007; 38
PC Miranda (786_CR25) 2006; 117
L Jäncke (786_CR33) 2004; 155
N Levit-Binnun (786_CR34) 2007; 19
S Hesse (786_CR13) 2007; 25
EM Wassermann (786_CR19) 1998; 250
MI Garry (786_CR27) 2004; 91
H Okano (786_CR26) 2000; 97
References_xml – volume: 28
  start-page: 669
  issue: 3
  year: 2005
  ident: 786_CR32
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.06.022
– volume: 453
  start-page: 525
  year: 1992
  ident: 786_CR16
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1992.sp019243
– volume: 25
  start-page: 6372
  year: 2005
  ident: 786_CR36
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1851-05.2005
– volume: 65
  start-page: 1
  issue: 12
  year: 2008
  ident: 786_CR6
  publication-title: Arch Neurol
  doi: 10.1001/archneur.65.12.1571
– volume: 17
  start-page: 1047
  year: 2006
  ident: 786_CR1
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000223396.05070.a2
– volume: 404
  start-page: 232
  year: 2006
  ident: 786_CR10
  publication-title: Neurosci Let
  doi: 10.1016/j.neulet.2006.05.051
– volume: 66
  start-page: 376
  year: 1987
  ident: 786_CR22
  publication-title: Electroencephalography and Clin Neurophysiol
  doi: 10.1016/0013-4694(87)90206-9
– volume: 119
  start-page: 805
  year: 2008
  ident: 786_CR2
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2007.12.001
– volume: 21
  start-page: 99
  year: 2004
  ident: 786_CR23
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.08.026
– volume: 111
  start-page: 1002
  issue: 6
  year: 2000
  ident: 786_CR35
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(00)00284-4
– volume: 15
  start-page: 619
  year: 2003
  ident: 786_CR11
  publication-title: J Cog Neurosci
  doi: 10.1162/089892903321662994
– volume: 97
  start-page: 3109
  issue: 4
  year: 2007
  ident: 786_CR40
  publication-title: J Neurophysiol
  doi: 10.1152/jn.01312.2006
– volume: 41
  start-page: 1795
  issue: 11
  year: 1991
  ident: 786_CR30
  publication-title: Neurology
  doi: 10.1212/WNL.41.11.1795
– volume: 553
  start-page: 293
  year: 2003
  ident: 786_CR9
  publication-title: J Physiol-London
  doi: 10.1113/jphysiol.2003.049916
– volume: 125
  start-page: 2238
  year: 2002
  ident: 786_CR7
  publication-title: Brain
  doi: 10.1093/brain/awf238
– volume: 117
  start-page: 845
  issue: 4
  year: 2006
  ident: 786_CR24
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.12.003
– volume: 155
  start-page: 196
  year: 2004
  ident: 786_CR33
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1719-7
– volume: 527
  start-page: 633
  year: 2000
  ident: 786_CR8
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– volume: 9
  start-page: 97
  year: 1971
  ident: 786_CR21
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
– volume: 104
  start-page: 527
  year: 1995
  ident: 786_CR18
  publication-title: Exp Brain Res
  doi: 10.1007/BF00231987
– volume: 69
  start-page: 32
  year: 2008
  ident: 786_CR3
  publication-title: J Cogn Neurosci
– volume: 20
  start-page: 2259
  year: 2004
  ident: 786_CR29
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00220-9
– volume: 28
  start-page: 1667
  year: 2008
  ident: 786_CR4
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2008.06459.x
– volume: 64
  start-page: 1802
  year: 2005
  ident: 786_CR37
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000161839.38079.92
– volume: 174
  start-page: 199
  issue: 2
  year: 2006
  ident: 786_CR28
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-006-0440-8
– volume: 36
  start-page: 2681
  year: 2005
  ident: 786_CR38
  publication-title: Stroke
  doi: 10.1161/01.STR.0000189658.51972.34
– volume: 16
  start-page: 1551
  issue: 14
  year: 2005
  ident: 786_CR20
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000177010.44602.5e
– volume: 117
  start-page: 1623
  year: 2006
  ident: 786_CR25
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.04.009
– volume: 250
  start-page: 141
  year: 1998
  ident: 786_CR19
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(98)00437-6
– volume: 39
  start-page: 542
  issue: 2
  year: 2008
  ident: 786_CR15
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.496935
– volume: 17
  start-page: 671
  issue: 6
  year: 2006
  ident: 786_CR12
  publication-title: Neuroreport
  doi: 10.1097/00001756-200604240-00023
– volume: 114
  start-page: 1800
  year: 2003
  ident: 786_CR17
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00157-3
– volume: 19
  start-page: 721
  issue: 5
  year: 2007
  ident: 786_CR34
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.2007.19.5.721
– volume: 121
  start-page: 253
  year: 1998
  ident: 786_CR31
  publication-title: Brain
  doi: 10.1093/brain/121.2.253
– volume: 38
  start-page: 105
  issue: 2
  year: 2007
  ident: 786_CR41
  publication-title: Clin EEG Neurosci
  doi: 10.1177/155005940703800213
– volume: 97
  start-page: 12403
  year: 2000
  ident: 786_CR26
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.210381897
– volume: 91
  start-page: 1570
  year: 2004
  ident: 786_CR27
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00595.2003
– volume: 25
  start-page: 9
  issue: 1
  year: 2007
  ident: 786_CR13
  publication-title: Restor Neurol Neurosci
– volume: 19
  start-page: 543
  issue: 6
  year: 2006
  ident: 786_CR39
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0b013e32801080d1
– volume: 5
  start-page: 708
  year: 2006
  ident: 786_CR5
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(06)70525-7
– volume: 128
  start-page: 490
  year: 2005
  ident: 786_CR14
  publication-title: Brain
  doi: 10.1093/brain/awh369
SSID ssj0017842
Score 2.3782952
Snippet Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain....
Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The...
Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain....
Abstract Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103
SubjectTerms Adult
Animal Models
Biomedical and Life Sciences
Biomedicine
Brain stimulation
Dominance, Cerebral - physiology
Electric Stimulation Therapy - instrumentation
Electric Stimulation Therapy - methods
Hand - physiology
Humans
Motor Cortex - physiology
Motor Skills - physiology
Neurobiology
Neurosciences
Psychomotor Performance - physiology
Reaction Time - physiology
Reference Values
Research Article
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLojwDBXxAKhxCEzt-HUtLVSGVC1TqzfJroVLJoiZ76J0fzoyTLJuiFReOazvaeDzxfDMef0PIm3qhK-PAyfEAxsFBEbrUKfCycaFSKkVmJF4UPvssT8-bTxfiYqPUF-aEDfTAg-AOwJxxBzDeO-8a4Y1ONVeNb6JfgK3P9WpZZarJmRrPD5TOZXNq2HpLxjCHJ5P61FoerNtKA3sQn9mjTNv_9-a8YZ1uZ07eOj7NVunkAbk_wkl6OExjl9xJ7UNy92w8MH9Efh2v3FWZi7ohf0Ci_fHRF7pwYSDnTh39hqgxXdPLHF3IwcKOApKlww3JG9qtPMZqun3aLtsyLofcGYoRdzplsNN-STFxZeOPYOv4MZYGe0zOTz5-PTotx8ILZZCS9aV0pjZR-0pGDg5fYjzWxssIrpEKSeuUi66LaHhSAB95lNILcMUCeEOuiZo_ITvwSukZoULVi1okJ0wQjWuYYzJWSZrEguLwsyDvJ_HbMLKSY3GMK5u9Ey0trpfF9bIG2nhB3q4f-DkQcmwf-gHXcz0MmbRzA-iXHfXL_ku_CrKP2mDxe4cXC268tgDTQ-Yse1hrw7DkV1OQvdlIEHiYdb-e9MliFya3tWm56izGnxQA2e0jpNEAJRWMeDro35-payMUwL6CqJlmziY972kvv2cacYbYU7CCvJt02I77V7dNos__h0RfkHtsJBVmeo_s9Ner9BKQXe9f5Y_4N9EDRxE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgL4s2WAj4gFQ6BtR2_jmVLVSGVC1TqzfJraaWSRU320Ds_nJnEu2wKe-CYePKwPR5_M7a_IeQNm5up9eDkBADj4KBIU5kcRVX7ONU6J24VHhQ--aKOT-vPZ_KskCThWZjN9Xtm1AcGxrPi4KFXFiyGuE3uSLC6qMozNVsvF2hT88Lb84-HRlNOz8z_t_3dmIBubo68sULaTzxHD8j9ghjpwdDFD8mt3Dwid0_Kmvhj8utw6S-rPm8bUgRk2h3OvtK5jwP_dm7pdwSG-Ype9AGEPh7YUgCrdDgEeU3bZcBwTLtPm0VTpcWwPYZiUJ2uNqnTbkFxb8rGh8A6_CjZv56Q06NP32bHVcmtUEWleFcpb5lNJkxVEuDTZS4Ss0El8H50zMbkPq-6TFZkDQhRJKWCBG8rgsPj62TEU7IDv5SfEyo1mzOZvbRR1r7mnqs0zcpmHrWAywl5v2p-FwvxOOa_uHS9A2KUw_5y2F_Owj0xIW_XD_wcODe2i37E_lyLIVl2fwN0yJWx5wARCQ-eYPDB1zJYk5nQdahTmANcZPCSfdQGh0Mafiz6cjIBqofkWO6AGcsxq1c9IXsjSWjwOCp-vdInh0W4f63Ji2XrMMSkAatul1DWAFrUIPFs0L8_VTdWakB2E6JHmjmq9LikuTjvmcI5wkvJJ-TdSoddMVHtthbd_Q_ZF-QeL_TA3OyRne5qmV8CRuvCq358_gbekTQ7
  priority: 102
  providerName: Springer Nature
Title Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation
URI https://link.springer.com/article/10.1186/1471-2202-9-103
https://www.ncbi.nlm.nih.gov/pubmed/18957075
https://www.proquest.com/docview/20277456
https://www.proquest.com/docview/69806376
https://pubmed.ncbi.nlm.nih.gov/PMC2584652
https://doaj.org/article/9103a149baba45b98e1374b4dbf51413
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZoKyEuiDeBEnxAKhy2ZO3164BQSKmqSOVSIvVm-ZW2UthAdiPROz-csXeTdEsjLpGynmz8GNvfjMffIPQun8qBMmDkWADjYKAwmcngaFYYNxAieKJ4vCh8-o2fTIrxOTvfpANqO7C607SL-aQmi9nh71_Xn2HCf0oTXvKPOSywGQErPlOwqtAdtJcOi2IcX7E5UhAyZdJZC7c8P3e8oLNFJSb_f9frGxvW7WDKWyeqaaM6foQetggTDxuVeIzuhfIJun_anqE_RX-OlmaWpTxvkVIg4PpodIanxjV83aHCFxFIhgW-Sg6H5D-sMIBb3FyavMbV0kb3TXWAy3mZ-XkTToOjEx6vgtpxPccxluXGH8Fq8qPNFvYMTY6_fh-dZG0uhsxxTuqMG5UrL-2Aewo2YCDU58pyD9aScEHKkPKwM69oEIAoqefcMrDOHBhIpvCSPke7UKXwEmEm8mnOgmHKscIUxBDuB4GrQJyg8LWHDlfdr11LVB7zZcx0Mlgk13G8dBwvreAZ7aH36x_8bDg6tot-ieO5Fovk2unBfHGh27mqAUFRA5ajNdYUzCoZcioKW3g7BXiZw0sOojboqJRQMWfamwzQvEimpYe5VCRmASt6aL8jCR3uOsVvV_qkY1GMdyvDfFnp6JISgG23S3AlAV0KkHjR6N-m6VIxAUiwh0RHMzuN7paUV5eJWZxEOMpID31Y6bBezchtPfrqvzV8jR6QlkSYyH20Wy-W4Q0gudr20d5wOD4b99HOiI_6yR_ST7MWPidk-BdDIkcv
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagSNAL4t2FQn1AKhyWZu3161hSqgBNL7RSb5ZfgUolQd3kwJ0fzsyuE7KFHDjuevZhezz-Zmx_Q8jraqIHxoGT4wGMg4MidKlT4GXtwkCpFJmReFB4fCpH5_WnC3GRSZLwLMz6-n2l5UEFxrNk4KGXBiwGv03u4LIlkuQP5XC1XKB0zTJvzz8e6k05LTP_3_Z3bQK6uTnyxgppO_EcPyD3M2Kkh10XPyS30vQRuTvOa-KPya-jhbsq27xtSBGQ6Pxo-IVOXOj4t1NDvyIwTNf0sg0gtPHAhgJYpd0hyJ-0WXgMxzT7dDqblnHWbY-hGFSny03qdD6juDdl7UNgHb7n7F9PyPnxh7PhqMy5FcogJZuX0pnKRO0HMnLw6RLjsTJeRvB-VEhapzavuoiGJwUIkUcpvQBvK4DD4-qo-VOyBb-UdggVqppUIjlhgqhdzRyTcZCkSSwoDpcFebdsfhsy8Tjmv7iyrQOipcX-sthf1sA9XpA3qwd-dJwbm0XfY3-uxJAsu70BOmTz2LOAiLgDT9A772rhjU4VV7Wvo58AXKzgJfuoDRaHNPxYcPlkAlQPybHsYaUNw6xedUF2e5LQ4KFXvLfUJ4tFuH9tmmaLxmKISQFW3SwhjQa0qEDiWad_f6qujVCA7AqieprZq3S_ZHr5rWUKZwgvBSvI26UO22yimk0t-vw_ZPfIvdHZ-MSefDz9_IJss0wVzPQu2ZpfL9JLwGtz_6odq78BhiE3Kg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSBUXxLsLhfqAVDiEbvz2celSlUcrJFipN8uvLZVKttpkD9z54YwTZ2kKe-CYePKwPba_GY-_QehVOVdjbcHIcQDGwUDhqlDR04JZP5YyBqJFOih8ciqOZ-zjGT_LsTl1H-3eb0l2ZxoSS1PVHFyFeTfElTgoYUotCNjthYZ5hN5Gdxgs1Cmia0Ym600EqRjJbD7_eGiwELV8_X_PyteWpZshkzf2Tdvl6Og-updxJJ50Hf8A3YrVQ7R9knfKH6Ff05W9LNpsbok4IOJmevgVz63vWLljjc8TXIxLfNG6FVovYY0BwuLuaORPXK9cctLU-7haVEVYdEEzOLnacR-6jpsFThEr1z4Ec8aPnBPsMZodvf92eFzkjAuFF4I0hbC61EG5sQgULL1IaCi1EwFsIumjUrHNts6DplECbqRBCMfBBvNgBlkWFH2CtuCX4g7CXJbzkkfLtefMMmKJCOModCReUrgcobd98xuf6chTVoxL05olSpjUXyb1l9Fwj47Q6_UDVx0Tx2bRd6k_12KJQru9sViemzwiDeAkasE-dNZZxp1WsaSSORbcHEBkCS_ZT9pg0kCHH_M2n1eA6iXKLDMplSYp1xcbod2BJDS4HxTv9fpkUlGKaqviYlWb5HiSgGA3SwitAENKkHja6d-fqivNJeC9EZIDzRxUelhSXXxv-cNJAp2cjNCbXodNnrjqTS367D9k99D2l-mR-fzh9NNzdJdk_mCidtFWs1zFFwDiGveyHaq_AXaiP5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-hemisphere+tDCS+facilitates+greater+improvements+for+healthy+subjects%27+non-dominant+hand+compared+to+uni-hemisphere+stimulation&rft.jtitle=BMC+neuroscience&rft.au=Vines%2C+Bradley+W&rft.au=Cerruti%2C+Carlo&rft.au=Schlaug%2C+Gottfried&rft.date=2008-10-28&rft.issn=1471-2202&rft.eissn=1471-2202&rft.volume=9&rft.spage=103&rft_id=info:doi/10.1186%2F1471-2202-9-103&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2202&client=summon