Quorum Decision-Making Facilitates Information Transfer in Fish Shoals

Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, es...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 19; pp. 6948 - 6953
Main Authors Ward, Ashley J. W., Sumpter, David J. T., Couzin, Iain D., Hart, Paul J. B., Krause, Jens
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 13.05.2008
National Acad Sciences
SeriesFrom the Cover
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.0710344105

Cover

Abstract Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such "quorum responses" in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making.
AbstractList Despite the growing interest in collective phenomena such as “swarm intelligence” and “wisdom of the crowds,” little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such “quorum responses” in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus ). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making. behavior collective decision-making schooling shoaling social
Despite the growing interest in collective phenomena such as “swarm intelligence” and “wisdom of the crowds,” little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such “quorum responses” in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus ). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making.
Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such "quorum responses" in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a Weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making.
Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such "quorum responses" in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making. [PUBLICATION ABSTRACT]
Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such "quorum responses" in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making.Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such "quorum responses" in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making.
Author Sumpter, David J. T.
Krause, Jens
Hart, Paul J. B.
Couzin, Iain D.
Ward, Ashley J. W.
Author_xml – sequence: 1
  givenname: Ashley J. W.
  surname: Ward
  fullname: Ward, Ashley J. W.
– sequence: 2
  givenname: David J. T.
  surname: Sumpter
  fullname: Sumpter, David J. T.
– sequence: 3
  givenname: Iain D.
  surname: Couzin
  fullname: Couzin, Iain D.
– sequence: 4
  givenname: Paul J. B.
  surname: Hart
  fullname: Hart, Paul J. B.
– sequence: 5
  givenname: Jens
  surname: Krause
  fullname: Krause, Jens
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18474860$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-110196$$DView record from Swedish Publication Index
BookMark eNqFkktvEzEUhS1URNPCmhUwYoFYMO31a2xvkKqWQKUihChsLcfxJA4TO9gztPx7HCU0tIt2dRf3O_d5DtBeiMEh9BzDEQZBj1fB5CMQGChjGPgjNMKgcN0wBXtoBEBELRlh--gg5wUAKC7hCdrHkgkmGxih8dchpmFZnTnrs4-h_mx--jCrxsb6zvemd7k6D21MS9OXdHWZTMitS5UP1djnefVtHk2Xn6LHbQnu2TYeou_jD5enn-qLLx_PT08uats0pK8Z0Ja206myTcsnkmEBFjgmChM7lYwSzBrMpKMKG0YombatnVDiiKNSST6hh-jdpm6-cqtholfJL036o6Px-sz_ONExzfQwaIwBq6bg7zd4YZdual3ok-luqW5ngp_rWfytCZVUcV4KvNkWSPHX4HKvlz5b13UmuDhkLcoTiMDkQZCJhnPSiAdBAgoEw7iAr--AizikUK5bGEyEIFIW6OX_C95s9u_BBTjeADbFnJNrdwjotYX02kJ6Z6Gi4HcUdu2D8vxyId_do3u1HWWd2HXhGivdKLYe9u39hG6HruvddV_QFxt0kfuYbljCiz9UafYXSzbrJA
CitedBy_id crossref_primary_10_1016_j_aap_2013_04_027
crossref_primary_10_3390_jintelligence8010009
crossref_primary_10_1038_s41467_017_00035_3
crossref_primary_10_1098_rstb_2008_0233
crossref_primary_10_1103_PhysRevLett_133_188301
crossref_primary_10_1146_annurev_ento_020117_043249
crossref_primary_10_1111_j_1467_2979_2011_00436_x
crossref_primary_10_1098_rspb_2010_0561
crossref_primary_10_1093_cz_zow108
crossref_primary_10_1016_j_tree_2016_03_018
crossref_primary_10_1016_j_biosystems_2016_02_001
crossref_primary_10_1016_j_cub_2008_09_064
crossref_primary_10_1111_j_1439_0310_2010_01818_x
crossref_primary_10_1016_j_beproc_2010_03_005
crossref_primary_10_1016_j_beproc_2010_03_006
crossref_primary_10_1016_j_beproc_2010_03_001
crossref_primary_10_1016_j_biosystems_2018_02_003
crossref_primary_10_1111_gcb_16022
crossref_primary_10_1016_j_anbehav_2018_12_012
crossref_primary_10_1038_s42003_021_01991_9
crossref_primary_10_1086_681084
crossref_primary_10_1063_5_0020034
crossref_primary_10_1242_bio_033613
crossref_primary_10_1111_oik_07148
crossref_primary_10_1016_j_tics_2014_04_005
crossref_primary_10_1098_rspb_2013_1055
crossref_primary_10_1098_rsif_2013_0079
crossref_primary_10_1371_journal_pone_0064668
crossref_primary_10_1103_PhysRevE_97_042125
crossref_primary_10_1007_s10764_011_9524_9
crossref_primary_10_1016_j_jtbi_2019_110000
crossref_primary_10_1038_s41598_019_57191_3
crossref_primary_10_1038_s42005_022_00820_7
crossref_primary_10_1007_s12080_017_0349_9
crossref_primary_10_1016_j_cub_2022_04_032
crossref_primary_10_1016_j_jtbi_2011_06_001
crossref_primary_10_1103_PhysRevLett_125_218302
crossref_primary_10_1073_pnas_1616926114
crossref_primary_10_1007_s12080_011_0124_2
crossref_primary_10_1016_j_anbehav_2014_04_029
crossref_primary_10_1093_beheco_ars154
crossref_primary_10_1007_s00265_010_0971_7
crossref_primary_10_1038_srep43607
crossref_primary_10_1016_j_anbehav_2010_12_018
crossref_primary_10_1016_j_applanim_2023_105920
crossref_primary_10_1126_sciadv_aba3148
crossref_primary_10_1098_rspb_2018_0956
crossref_primary_10_1098_rsos_202288
crossref_primary_10_1371_journal_pone_0147497
crossref_primary_10_1007_s12064_020_00331_5
crossref_primary_10_1063_5_0085222
crossref_primary_10_1111_ele_12406
crossref_primary_10_1371_journal_pone_0140188
crossref_primary_10_1016_j_ecolmodel_2017_07_020
crossref_primary_10_3389_fphy_2024_1472564
crossref_primary_10_1098_rspb_2019_2950
crossref_primary_10_1038_s41598_018_26037_9
crossref_primary_10_1098_rsif_2018_0155
crossref_primary_10_3367_UFNe_2018_10_038433
crossref_primary_10_1088_1742_5468_ad685b
crossref_primary_10_1098_rstb_2008_0204
crossref_primary_10_1111_faf_12084
crossref_primary_10_1126_sciadv_add0635
crossref_primary_10_1111_tops_12150
crossref_primary_10_1016_j_langsci_2017_01_005
crossref_primary_10_3390_e24121819
crossref_primary_10_1103_PhysRevE_109_014105
crossref_primary_10_1371_journal_pone_0065784
crossref_primary_10_1098_rsos_150638
crossref_primary_10_1209_0295_5075_111_68004
crossref_primary_10_1086_681988
crossref_primary_10_1371_journal_pone_0018631
crossref_primary_10_1002_ecs2_4841
crossref_primary_10_1111_j_1365_2435_2009_01562_x
crossref_primary_10_1093_beheco_arx056
crossref_primary_10_1098_rspb_2025_0039
crossref_primary_10_1007_s00265_014_1711_1
crossref_primary_10_1016_j_beproc_2013_10_007
crossref_primary_10_1088_1361_6633_ad49b4
crossref_primary_10_1016_j_chaos_2020_110543
crossref_primary_10_1088_1478_3975_acd298
crossref_primary_10_1088_1478_3975_acd297
crossref_primary_10_1098_rsbl_2019_0335
crossref_primary_10_1371_journal_pcbi_1003762
crossref_primary_10_1016_j_tics_2008_10_002
crossref_primary_10_1016_j_anbehav_2023_01_019
crossref_primary_10_1103_PhysRevE_109_054307
crossref_primary_10_1007_s00265_010_0999_8
crossref_primary_10_1177_26339137221133400
crossref_primary_10_1073_pnas_1703817114
crossref_primary_10_1038_s41559_022_01800_4
crossref_primary_10_1088_1361_6633_aa65ef
crossref_primary_10_1103_PhysRevResearch_7_013286
crossref_primary_10_34133_cbsystems_0032
crossref_primary_10_1016_j_cub_2018_02_070
crossref_primary_10_1038_srep18260
crossref_primary_10_1371_journal_pone_0032411
crossref_primary_10_1098_rsif_2018_0130
crossref_primary_10_3389_fphy_2021_668283
crossref_primary_10_1016_j_physa_2011_10_010
crossref_primary_10_1088_1572_9494_ac71fe
crossref_primary_10_1098_rspb_2013_3305
crossref_primary_10_1098_rspb_2023_2367
crossref_primary_10_1162_jocn_a_01139
crossref_primary_10_1002_mde_2553
crossref_primary_10_1063_1_4953000
crossref_primary_10_1073_pnas_1116141109
crossref_primary_10_1103_PhysRevE_99_032412
crossref_primary_10_1098_rsif_2013_0794
crossref_primary_10_1111_jfb_12520
crossref_primary_10_1080_15384101_2019_1638692
crossref_primary_10_1038_s41598_020_59946_9
crossref_primary_10_1093_beheco_arz059
crossref_primary_10_1007_s10764_011_9526_7
crossref_primary_10_1007_s10071_019_01294_x
crossref_primary_10_1109_JPROC_2011_2165449
crossref_primary_10_1016_j_neubiorev_2023_105500
crossref_primary_10_3390_biomimetics5010010
crossref_primary_10_1098_rsif_2015_0520
crossref_primary_10_1063_1_4966682
crossref_primary_10_1093_beheco_arp121
crossref_primary_10_1371_journal_pone_0076123
crossref_primary_10_3389_fevo_2022_887187
crossref_primary_10_1371_journal_pone_0114687
crossref_primary_10_1038_srep30334
crossref_primary_10_1073_pnas_1610732114
crossref_primary_10_1016_j_anbehav_2023_12_007
crossref_primary_10_1088_1748_3190_acab48
crossref_primary_10_1093_cz_zoae036
crossref_primary_10_1007_s00265_017_2285_5
crossref_primary_10_1103_PhysRevE_104_014301
crossref_primary_10_1098_rspb_2018_0884
crossref_primary_10_1111_j_1095_8649_2010_02582_x
crossref_primary_10_1371_journal_pcbi_1007354
crossref_primary_10_2478_caim_2018_0021
crossref_primary_10_1371_journal_pone_0014487
crossref_primary_10_1103_PhysRevE_94_042413
crossref_primary_10_1007_s12043_018_1621_2
crossref_primary_10_1038_nphys3423
crossref_primary_10_1371_journal_pone_0144060
crossref_primary_10_1098_rsif_2014_0674
crossref_primary_10_1016_j_gde_2010_09_004
crossref_primary_10_1016_j_jtbi_2014_06_010
crossref_primary_10_1098_rspb_2009_0405
crossref_primary_10_3390_e26090775
crossref_primary_10_1073_pnas_1007102108
crossref_primary_10_1073_pnas_1107540108
crossref_primary_10_1038_s41598_023_42080_7
crossref_primary_10_1007_s00265_019_2669_9
crossref_primary_10_1073_pnas_1210664109
crossref_primary_10_1088_1361_6633_ac723d
crossref_primary_10_1111_j_1600_0633_2011_00506_x
crossref_primary_10_1007_s00265_020_02959_1
crossref_primary_10_1103_PhysRevLett_124_078001
crossref_primary_10_1098_rspb_2010_2084
crossref_primary_10_1098_rstb_2020_0306
crossref_primary_10_1016_j_anbehav_2013_08_014
crossref_primary_10_1098_rsos_191220
crossref_primary_10_3758_s13414_017_1303_z
crossref_primary_10_1126_sciadv_aba5881
crossref_primary_10_2502_janip_63_2_1
crossref_primary_10_1007_s00265_011_1270_7
crossref_primary_10_1002_etc_142
crossref_primary_10_1038_srep14556
crossref_primary_10_1088_1367_2630_16_8_083006
crossref_primary_10_1007_s13253_017_0296_3
crossref_primary_10_1016_j_beproc_2010_04_009
crossref_primary_10_1038_s41598_019_49994_1
crossref_primary_10_1140_epjb_e2015_60609_0
crossref_primary_10_1016_j_neucom_2018_12_071
crossref_primary_10_1016_j_anbehav_2015_04_004
crossref_primary_10_1111_j_1365_2656_2012_02012_x
crossref_primary_10_1016_j_ecolmodel_2013_10_029
crossref_primary_10_1098_rspb_2009_0851
crossref_primary_10_1093_beheco_arq152
crossref_primary_10_1098_rsos_140533
crossref_primary_10_4028_www_scientific_net_AMM_461_942
crossref_primary_10_1111_jfb_14872
crossref_primary_10_1371_journal_pcbi_1003960
crossref_primary_10_1016_j_beproc_2018_01_003
crossref_primary_10_1371_journal_pcbi_1008734
crossref_primary_10_1007_s10764_011_9520_0
crossref_primary_10_1098_rsif_2012_0084
crossref_primary_10_1111_pops_12528
crossref_primary_10_1242_jeb_129411
crossref_primary_10_1371_journal_pone_0287845
crossref_primary_10_1093_icesjms_fsx251
crossref_primary_10_1016_j_cbpc_2019_06_002
crossref_primary_10_1073_pnas_1217513110
crossref_primary_10_1093_beheco_arw133
crossref_primary_10_4161_cib_2_4_8471
crossref_primary_10_1016_j_physa_2010_07_025
crossref_primary_10_1098_rsos_150222
crossref_primary_10_1016_j_cub_2022_03_070
crossref_primary_10_1098_rspb_2009_0983
crossref_primary_10_1371_journal_pone_0184622
crossref_primary_10_1016_j_tree_2011_03_015
crossref_primary_10_1098_rspb_2020_2690
crossref_primary_10_1111_jfb_15153
crossref_primary_10_1098_rsif_2018_0335
crossref_primary_10_1088_1367_2630_ad1498
crossref_primary_10_1098_rsos_191681
crossref_primary_10_1098_rspb_2023_0790
crossref_primary_10_1073_pnas_2000840117
crossref_primary_10_1098_rsif_2016_0676
crossref_primary_10_1021_acs_jchemed_0c01507
crossref_primary_10_1016_j_cois_2024_101260
crossref_primary_10_1007_s10614_023_10455_7
crossref_primary_10_1002_jeab_247
crossref_primary_10_1073_pnas_1304917110
crossref_primary_10_1007_s10614_017_9751_z
crossref_primary_10_1039_D4SM00838C
crossref_primary_10_1371_journal_pcbi_1000917
crossref_primary_10_3923_pjbs_2016_65_70
crossref_primary_10_1098_rsif_2023_0127
crossref_primary_10_1016_j_trpro_2014_09_017
crossref_primary_10_1016_j_anbehav_2018_10_022
crossref_primary_10_1371_journal_pone_0259963
crossref_primary_10_1093_beheco_arz069
crossref_primary_10_1103_PhysRevE_93_042411
crossref_primary_10_1016_j_tree_2020_02_009
crossref_primary_10_1371_journal_pone_0031382
crossref_primary_10_1038_s42005_024_01540_w
crossref_primary_10_1093_beheco_arad096
crossref_primary_10_1163_1568539X_00003470
crossref_primary_10_1098_rsif_2015_0037
crossref_primary_10_1016_j_cub_2021_12_013
crossref_primary_10_1007_s00422_021_00892_8
crossref_primary_10_1093_beheco_arq141
crossref_primary_10_1177_26339137221148675
crossref_primary_10_1371_journal_pbio_3001269
crossref_primary_10_3758_s13428_018_1024_9
crossref_primary_10_7554_eLife_40368
crossref_primary_10_1093_beheco_arq149
crossref_primary_10_1098_rsfs_2012_0025
crossref_primary_10_1007_s00265_010_0988_y
crossref_primary_10_1103_PhysRevE_94_022612
crossref_primary_10_1016_j_anbehav_2023_05_012
crossref_primary_10_1016_j_chaos_2018_03_030
crossref_primary_10_1007_s12080_017_0362_z
crossref_primary_10_1093_beheco_art090
crossref_primary_10_1016_j_beproc_2021_104416
crossref_primary_10_1093_beheco_arq198
crossref_primary_10_1073_pnas_1811964115
crossref_primary_10_1039_c0sm01063d
crossref_primary_10_1093_beheco_arr047
crossref_primary_10_1371_journal_pone_0036606
crossref_primary_10_1098_rstb_2008_0276
crossref_primary_10_1007_s00265_014_1799_3
crossref_primary_10_1098_rspb_2010_1739
crossref_primary_10_1073_pnas_1215368110
crossref_primary_10_1098_rspb_2010_2266
crossref_primary_10_1007_s11721_021_00200_x
crossref_primary_10_1371_journal_pone_0015505
crossref_primary_10_1371_journal_pone_0011705
crossref_primary_10_1103_PhysRevE_96_022309
crossref_primary_10_1038_s42254_020_0152_1
crossref_primary_10_1371_journal_pone_0018901
crossref_primary_10_1371_journal_pcbi_1002282
crossref_primary_10_1371_journal_pcbi_1004101
crossref_primary_10_1016_j_cub_2008_12_051
crossref_primary_10_1111_j_1469_185X_2010_00169_x
crossref_primary_10_1007_s11721_023_00224_5
crossref_primary_10_1115_1_4062219
crossref_primary_10_3390_app14031192
crossref_primary_10_1103_PhysRevLett_130_148202
crossref_primary_10_1098_rstb_2017_0006
crossref_primary_10_2139_ssrn_2607312
crossref_primary_10_1016_j_physa_2014_07_062
crossref_primary_10_1098_rstb_2017_0004
crossref_primary_10_1098_rsif_2021_0082
crossref_primary_10_1039_D4SM00625A
crossref_primary_10_1088_1748_3190_ab30d3
crossref_primary_10_1007_s00265_013_1659_6
crossref_primary_10_1038_s44159_022_00054_y
crossref_primary_10_1016_j_tree_2009_06_016
crossref_primary_10_1093_beheco_ars141
crossref_primary_10_1111_j_1365_2656_2012_02007_x
crossref_primary_10_1038_s41598_017_19083_2
crossref_primary_10_1016_j_scitotenv_2023_164939
crossref_primary_10_1093_icesjms_fsaa159
crossref_primary_10_1038_s41598_019_40459_z
crossref_primary_10_1098_rstb_2018_0378
crossref_primary_10_1016_j_anbehav_2021_01_005
crossref_primary_10_1017_apa_2020_41
crossref_primary_10_1371_journal_pone_0127459
crossref_primary_10_1111_jfb_12365
crossref_primary_10_1371_journal_pcbi_1010442
crossref_primary_10_1002_ajp_20915
crossref_primary_10_1111_brv_12932
crossref_primary_10_1086_670242
crossref_primary_10_1016_j_physa_2019_123851
crossref_primary_10_1016_j_tics_2021_08_003
crossref_primary_10_1016_j_bbr_2014_09_015
crossref_primary_10_1002_cplx_21772
crossref_primary_10_1016_j_anbehav_2009_04_007
crossref_primary_10_1209_0295_5075_113_18001
crossref_primary_10_1098_rsos_180172
crossref_primary_10_1016_j_anbehav_2025_123101
crossref_primary_10_1098_rstb_2008_0257
crossref_primary_10_1093_icesjms_fsy209
crossref_primary_10_1890_09_0298_1
crossref_primary_10_1146_annurev_neuro_071714_033857
crossref_primary_10_1007_s00422_018_0787_5
crossref_primary_10_1016_j_biosystems_2021_104394
crossref_primary_10_1016_j_anbehav_2017_08_001
crossref_primary_10_1111_eth_12645
crossref_primary_10_1126_sciadv_1500253
crossref_primary_10_1016_j_ufug_2018_07_005
crossref_primary_10_1016_j_physa_2021_126702
crossref_primary_10_1016_j_physrep_2012_03_004
crossref_primary_10_1098_rspb_2012_2777
crossref_primary_10_1016_j_beproc_2009_11_006
crossref_primary_10_1098_rsif_2016_0684
crossref_primary_10_1007_s00521_010_0355_y
crossref_primary_10_1371_journal_pone_0167223
crossref_primary_10_1103_PhysRevE_108_044603
crossref_primary_10_1103_PhysRevE_92_062706
crossref_primary_10_1038_s42003_024_06037_4
crossref_primary_10_1007_s10905_016_9581_1
crossref_primary_10_1016_j_anbehav_2011_07_034
crossref_primary_10_1016_j_jtbi_2010_02_030
crossref_primary_10_1007_s00265_021_03080_7
crossref_primary_10_1098_rspb_2010_0855
crossref_primary_10_1111_j_1095_8649_2009_02420_x
crossref_primary_10_1371_journal_pone_0132261
crossref_primary_10_1111_ele_12457
crossref_primary_10_1098_rspb_2018_0251
crossref_primary_10_1242_jeb_039016
crossref_primary_10_1016_j_anbehav_2014_07_008
crossref_primary_10_1016_j_tree_2018_03_004
crossref_primary_10_1103_PhysRevE_97_032304
crossref_primary_10_1098_rsfs_2011_0090
crossref_primary_10_1371_journal_pone_0018316
crossref_primary_10_1088_1748_3190_11_5_056020
crossref_primary_10_1016_j_eml_2021_101438
crossref_primary_10_1371_journal_pone_0019888
crossref_primary_10_1139_cjz_2012_0277
crossref_primary_10_1093_cz_zow052
crossref_primary_10_1016_j_anbehav_2021_11_001
Cites_doi 10.2307/1543482
10.1016/j.tree.2005.01.010
10.1016/j.tree.2005.05.008
10.1126/science.1098254
10.1016/S0169-5347(98)01542-0
10.1007/s002650100377
10.1007/s00265-003-0598-z
10.1016/S0003-3472(81)80117-0
10.1098/rspb.1997.0116
10.1016/j.tree.2006.04.001
10.1093/beheco/9.5.493
10.1126/science.1144259
10.1023/A:1006574607845
10.1126/science.284.5411.99
10.1073/pnas.0604801103
10.1098/rstb.2005.1733
10.1016/j.cub.2006.08.087
10.1016/S0169-5347(97)01048-3
10.1073/pnas.0507877103
10.1038/nature03236
10.1007/BF00462870
10.1007/s00265-002-0487-x
10.1098/rspb.2003.2527
10.1006/anbe.2000.1474
10.1126/science.291.5503.478
10.1016/S0065-3454(03)01001-5
10.1068/b2697
10.1007/s00265-004-0814-5
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences May 13, 2008
2008 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences May 13, 2008
– notice: 2008 by The National Academy of Sciences of the USA
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7TN
F1W
H95
L.G
7S9
L.6
7X8
5PM
ADTPV
AOWAS
DF2
DOI 10.1073/pnas.0710344105
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
CrossRef


Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 6953
ExternalDocumentID oai_DiVA_org_uu_110196
PMC2383955
1479601391
18474860
10_1073_pnas_0710344105
105_19_6948
25461905
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7TN
F1W
H95
L.G
7S9
L.6
7X8
5PM
.GJ
3O-
692
6TJ
79B
ACKIV
ADTPV
AFHIN
AFQQW
AOWAS
DF2
HGD
NEJ
NHB
VOH
WHG
ZCG
ID FETCH-LOGICAL-c662t-403f3fdd9c6f5b84170c0512912cd8432146148e391a4232dffcb32e2e38985b3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 06:38:54 EDT 2025
Thu Aug 21 18:09:54 EDT 2025
Thu Sep 04 19:52:08 EDT 2025
Fri Sep 05 05:12:51 EDT 2025
Thu Sep 04 19:30:12 EDT 2025
Mon Jun 30 08:35:11 EDT 2025
Fri Jun 06 04:43:19 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
Tue Jul 01 02:38:57 EDT 2025
Thu May 30 08:52:56 EDT 2019
Wed Nov 11 00:29:26 EST 2020
Thu May 29 08:42:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c662t-403f3fdd9c6f5b84170c0512912cd8432146148e391a4232dffcb32e2e38985b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: A.J.W.W. and J.K. designed research; A.J.W.W. and D.J.T.S. performed research; A.J.W.W., D.J.T.S., I.D.C., P.J.B.H., and J.K. analyzed data; and A.J.W.W., D.J.T.S., and J.K. wrote the paper.
Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved March 21, 2008
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2383955
PMID 18474860
PQID 201277288
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_105_19_6948
proquest_journals_201277288
jstor_primary_25461905
proquest_miscellaneous_47655267
swepub_primary_oai_DiVA_org_uu_110196
proquest_miscellaneous_20907411
crossref_citationtrail_10_1073_pnas_0710344105
proquest_miscellaneous_70732712
pubmed_primary_18474860
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2383955
crossref_primary_10_1073_pnas_0710344105
pnas_primary_105_19_6948_fulltext
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-05-13
PublicationDateYYYYMMDD 2008-05-13
PublicationDate_xml – month: 05
  year: 2008
  text: 2008-05-13
  day: 13
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Camazine S (e_1_3_3_8_2) 2001
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
18006751 - Science. 2007 Nov 16;318(5853):1155-8
21238030 - Trends Ecol Evol. 1997 May;12(5):188-93
15273386 - Science. 2004 Jul 23;305(5683):487-91
15690039 - Nature. 2005 Feb 3;433(7025):513-6
16769429 - Trends Ecol Evol. 2006 Jun;21(6):303-8
17038502 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15906-10
14667335 - Proc Biol Sci. 2003 Dec 7;270(1532):2457-63
10102827 - Science. 1999 Apr 2;284(5411):99-101
11007643 - Anim Behav. 2000 Sep;60(3):341-350
10322509 - Trends Ecol Evol. 1999 Mar;14(3):102-106
16701416 - Trends Ecol Evol. 2005 Aug;20(8):449-56
16553306 - Philos Trans R Soc Lond B Biol Sci. 2006 Jan 29;361(1465):5-22
16581903 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5835-40
12087003 - Biol Bull. 2002 Jun;202(3):296-305
16701367 - Trends Ecol Evol. 2005 Apr;20(4):187-93
17084696 - Curr Biol. 2006 Nov 7;16(21):2123-8
11161200 - Science. 2001 Jan 19;291(5503):478-81
References_xml – ident: e_1_3_3_27_2
  doi: 10.2307/1543482
– ident: e_1_3_3_10_2
  doi: 10.1016/j.tree.2005.01.010
– ident: e_1_3_3_9_2
  doi: 10.1016/j.tree.2005.05.008
– ident: e_1_3_3_11_2
  doi: 10.1126/science.1098254
– ident: e_1_3_3_22_2
  doi: 10.1016/S0169-5347(98)01542-0
– ident: e_1_3_3_17_2
  doi: 10.1007/s002650100377
– ident: e_1_3_3_18_2
  doi: 10.1007/s00265-003-0598-z
– ident: e_1_3_3_21_2
  doi: 10.1016/S0003-3472(81)80117-0
– ident: e_1_3_3_24_2
  doi: 10.1098/rspb.1997.0116
– ident: e_1_3_3_29_2
  doi: 10.1016/j.tree.2006.04.001
– ident: e_1_3_3_13_2
  doi: 10.1093/beheco/9.5.493
– ident: e_1_3_3_15_2
  doi: 10.1126/science.1144259
– ident: e_1_3_3_7_2
  doi: 10.1023/A:1006574607845
– ident: e_1_3_3_3_2
  doi: 10.1126/science.284.5411.99
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.0604801103
– ident: e_1_3_3_4_2
  doi: 10.1098/rstb.2005.1733
– ident: e_1_3_3_26_2
  doi: 10.1016/j.cub.2006.08.087
– ident: e_1_3_3_28_2
  doi: 10.1016/S0169-5347(97)01048-3
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.0507877103
– ident: e_1_3_3_5_2
  doi: 10.1038/nature03236
– ident: e_1_3_3_12_2
  doi: 10.1007/BF00462870
– ident: e_1_3_3_6_2
  doi: 10.1007/s00265-002-0487-x
– ident: e_1_3_3_16_2
  doi: 10.1098/rspb.2003.2527
– ident: e_1_3_3_23_2
  doi: 10.1006/anbe.2000.1474
– volume-title: Self-Organization in Biological Systems, Princeton Studies in Complexity
  year: 2001
  ident: e_1_3_3_8_2
– ident: e_1_3_3_25_2
  doi: 10.1126/science.291.5503.478
– ident: e_1_3_3_1_2
  doi: 10.1016/S0065-3454(03)01001-5
– ident: e_1_3_3_2_2
  doi: 10.1068/b2697
– ident: e_1_3_3_19_2
  doi: 10.1007/s00265-004-0814-5
– reference: 11007643 - Anim Behav. 2000 Sep;60(3):341-350
– reference: 10102827 - Science. 1999 Apr 2;284(5411):99-101
– reference: 17084696 - Curr Biol. 2006 Nov 7;16(21):2123-8
– reference: 16581903 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5835-40
– reference: 14667335 - Proc Biol Sci. 2003 Dec 7;270(1532):2457-63
– reference: 15273386 - Science. 2004 Jul 23;305(5683):487-91
– reference: 10322509 - Trends Ecol Evol. 1999 Mar;14(3):102-106
– reference: 17038502 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15906-10
– reference: 21238030 - Trends Ecol Evol. 1997 May;12(5):188-93
– reference: 11161200 - Science. 2001 Jan 19;291(5503):478-81
– reference: 16769429 - Trends Ecol Evol. 2006 Jun;21(6):303-8
– reference: 16701416 - Trends Ecol Evol. 2005 Aug;20(8):449-56
– reference: 16553306 - Philos Trans R Soc Lond B Biol Sci. 2006 Jan 29;361(1465):5-22
– reference: 18006751 - Science. 2007 Nov 16;318(5853):1155-8
– reference: 16701367 - Trends Ecol Evol. 2005 Apr;20(4):187-93
– reference: 15690039 - Nature. 2005 Feb 3;433(7025):513-6
– reference: 12087003 - Biol Bull. 2002 Jun;202(3):296-305
SSID ssj0009580
Score 2.4521732
Snippet Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying...
Despite the growing interest in collective phenomena such as “swarm intelligence” and “wisdom of the crowds,” little is known about the mechanisms underlying...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6948
SubjectTerms Animal behavior
Animal Communication
Animals
Ants
behavior
Biological Sciences
collective decision-making
Computer Simulation
Conspecifics
Decision Making
Experimentation
Fish
Fishing lines
Gasterosteus aculeatus
Group size
Information transfer
Insect behavior
Insect nests
Models, Biological
NATURAL SCIENCES
NATURVETENSKAP
predation
Predators
Predatory Behavior
risk
schooling
shoaling
Shoals
Simulation
simulation models
Smegmamorpha - physiology
social
Social Behavior
Studies
Title Quorum Decision-Making Facilitates Information Transfer in Fish Shoals
URI https://www.jstor.org/stable/25461905
http://www.pnas.org/content/105/19/6948.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18474860
https://www.proquest.com/docview/201277288
https://www.proquest.com/docview/20907411
https://www.proquest.com/docview/47655267
https://www.proquest.com/docview/70732712
https://pubmed.ncbi.nlm.nih.gov/PMC2383955
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-110196
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAsbECQQBqK0iVxHCePha2MapQhtdA3K5900kinpRHS_nru7Hxuq_h4iar4YiW-6_ls3_1-hLyhbkR9y4vNFCYn02UBNf3Yzkzue36c2SGPJCXL56l3MncnC7YYDH51q0vW0TC-vrOu5H-0CvdAr1gl-w-abTqFG_Ab9AtX0DBc_0rHX0uEUjCSiifH_CmppZBDR2Fvq2SrujwR6SAgSE0xAd3IEMmoWK7Ci6Ibn54181lRZw9M6-3CUVt8UnmEwjCNs2lLZfw9VInyo2KJvmbS7t-A0VQMIDKJ3pi0udmr8lrhGHwK4b2OWpeoiokwddGYvO_tTvh4sK6KS5tqAZgFXVUnPUyVk4UYxfRcRRPaeGGLdc0t6DhVL1BgnNUE7QUKXviW8wdvhYzFeVgg7CJiGdad9mC2p1_EeH56KmbHi9k9ct_hXJ7vf1zYHbRmX9UuVS9fY0Jxenij-144ozJaESYXhO5astzOvO3h08qYZvaIPKwWI_pIWdY2GaT5Y7JdK1c_qDDJ3z0hY2Vq-g1T0zumpndMTa9NDW7qaGq6MrWnZD4-nn04MSsKDjP2PGdtuhbNaJYkQexlLPJdm1uxhTGi7cSJ71JJC-_6KQ3sEI_8kyyLI-qkTgqBsM8iukO28lWe7hI9YAlW6rOQORC1JlYYZJSGEJ2yDFyEyzQyrEdSxBU-PdKkXAiZJ8GpwFEV7dBr5KB54FJBs2wW3ZGqaeSQBQJCYWjYlaLt80zYgUCL08jrTU0iqxKzNLJX61hUfqEQDmZzcMeHHl41reC08SQuzNNViSK4J2XbmyVc7jHmeHyzBIfvdLjtaOSZsqn2TSHiRG45jfCetTUCCCnfb8nPlxJaHgJ4GjAYlrfKLnuPHJ1_G4nV1Q9RlgJWDTB3P__jF-6RB61b2Cdb66syfQFh_Dp6Kf9yvwFbAfEF
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quorum+decision-making+facilitates+information+transfer+in+fish+shoals&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ward%2C+Ashley+JW&rft.au=Sumpter%2C+David+JT&rft.au=Couzin%2C+Iain+D&rft.au=Hart%2C+Paul+JB&rft.date=2008-05-13&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=19&rft.spage=6948&rft.epage=6953&rft_id=info:doi/10.1073%2Fpnas.0710344105&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F19.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F19.cover.gif