Quorum Decision-Making Facilitates Information Transfer in Fish Shoals
Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, es...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 19; pp. 6948 - 6953 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
13.05.2008
National Acad Sciences |
Series | From the Cover |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.0710344105 |
Cover
Abstract | Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such "quorum responses" in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making. |
---|---|
AbstractList | Despite the growing interest in collective phenomena such as “swarm intelligence” and “wisdom of the crowds,” little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such “quorum responses” in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus ). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making. behavior collective decision-making schooling shoaling social Despite the growing interest in collective phenomena such as “swarm intelligence” and “wisdom of the crowds,” little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such “quorum responses” in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus ). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making. Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such "quorum responses" in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a Weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making. Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such "quorum responses" in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making. [PUBLICATION ABSTRACT] Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such "quorum responses" in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making.Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such "quorum responses" in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making. |
Author | Sumpter, David J. T. Krause, Jens Hart, Paul J. B. Couzin, Iain D. Ward, Ashley J. W. |
Author_xml | – sequence: 1 givenname: Ashley J. W. surname: Ward fullname: Ward, Ashley J. W. – sequence: 2 givenname: David J. T. surname: Sumpter fullname: Sumpter, David J. T. – sequence: 3 givenname: Iain D. surname: Couzin fullname: Couzin, Iain D. – sequence: 4 givenname: Paul J. B. surname: Hart fullname: Hart, Paul J. B. – sequence: 5 givenname: Jens surname: Krause fullname: Krause, Jens |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18474860$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-110196$$DView record from Swedish Publication Index |
BookMark | eNqFkktvEzEUhS1URNPCmhUwYoFYMO31a2xvkKqWQKUihChsLcfxJA4TO9gztPx7HCU0tIt2dRf3O_d5DtBeiMEh9BzDEQZBj1fB5CMQGChjGPgjNMKgcN0wBXtoBEBELRlh--gg5wUAKC7hCdrHkgkmGxih8dchpmFZnTnrs4-h_mx--jCrxsb6zvemd7k6D21MS9OXdHWZTMitS5UP1djnefVtHk2Xn6LHbQnu2TYeou_jD5enn-qLLx_PT08uats0pK8Z0Ja206myTcsnkmEBFjgmChM7lYwSzBrMpKMKG0YombatnVDiiKNSST6hh-jdpm6-cqtholfJL036o6Px-sz_ONExzfQwaIwBq6bg7zd4YZdual3ok-luqW5ngp_rWfytCZVUcV4KvNkWSPHX4HKvlz5b13UmuDhkLcoTiMDkQZCJhnPSiAdBAgoEw7iAr--AizikUK5bGEyEIFIW6OX_C95s9u_BBTjeADbFnJNrdwjotYX02kJ6Z6Gi4HcUdu2D8vxyId_do3u1HWWd2HXhGivdKLYe9u39hG6HruvddV_QFxt0kfuYbljCiz9UafYXSzbrJA |
CitedBy_id | crossref_primary_10_1016_j_aap_2013_04_027 crossref_primary_10_3390_jintelligence8010009 crossref_primary_10_1038_s41467_017_00035_3 crossref_primary_10_1098_rstb_2008_0233 crossref_primary_10_1103_PhysRevLett_133_188301 crossref_primary_10_1146_annurev_ento_020117_043249 crossref_primary_10_1111_j_1467_2979_2011_00436_x crossref_primary_10_1098_rspb_2010_0561 crossref_primary_10_1093_cz_zow108 crossref_primary_10_1016_j_tree_2016_03_018 crossref_primary_10_1016_j_biosystems_2016_02_001 crossref_primary_10_1016_j_cub_2008_09_064 crossref_primary_10_1111_j_1439_0310_2010_01818_x crossref_primary_10_1016_j_beproc_2010_03_005 crossref_primary_10_1016_j_beproc_2010_03_006 crossref_primary_10_1016_j_beproc_2010_03_001 crossref_primary_10_1016_j_biosystems_2018_02_003 crossref_primary_10_1111_gcb_16022 crossref_primary_10_1016_j_anbehav_2018_12_012 crossref_primary_10_1038_s42003_021_01991_9 crossref_primary_10_1086_681084 crossref_primary_10_1063_5_0020034 crossref_primary_10_1242_bio_033613 crossref_primary_10_1111_oik_07148 crossref_primary_10_1016_j_tics_2014_04_005 crossref_primary_10_1098_rspb_2013_1055 crossref_primary_10_1098_rsif_2013_0079 crossref_primary_10_1371_journal_pone_0064668 crossref_primary_10_1103_PhysRevE_97_042125 crossref_primary_10_1007_s10764_011_9524_9 crossref_primary_10_1016_j_jtbi_2019_110000 crossref_primary_10_1038_s41598_019_57191_3 crossref_primary_10_1038_s42005_022_00820_7 crossref_primary_10_1007_s12080_017_0349_9 crossref_primary_10_1016_j_cub_2022_04_032 crossref_primary_10_1016_j_jtbi_2011_06_001 crossref_primary_10_1103_PhysRevLett_125_218302 crossref_primary_10_1073_pnas_1616926114 crossref_primary_10_1007_s12080_011_0124_2 crossref_primary_10_1016_j_anbehav_2014_04_029 crossref_primary_10_1093_beheco_ars154 crossref_primary_10_1007_s00265_010_0971_7 crossref_primary_10_1038_srep43607 crossref_primary_10_1016_j_anbehav_2010_12_018 crossref_primary_10_1016_j_applanim_2023_105920 crossref_primary_10_1126_sciadv_aba3148 crossref_primary_10_1098_rspb_2018_0956 crossref_primary_10_1098_rsos_202288 crossref_primary_10_1371_journal_pone_0147497 crossref_primary_10_1007_s12064_020_00331_5 crossref_primary_10_1063_5_0085222 crossref_primary_10_1111_ele_12406 crossref_primary_10_1371_journal_pone_0140188 crossref_primary_10_1016_j_ecolmodel_2017_07_020 crossref_primary_10_3389_fphy_2024_1472564 crossref_primary_10_1098_rspb_2019_2950 crossref_primary_10_1038_s41598_018_26037_9 crossref_primary_10_1098_rsif_2018_0155 crossref_primary_10_3367_UFNe_2018_10_038433 crossref_primary_10_1088_1742_5468_ad685b crossref_primary_10_1098_rstb_2008_0204 crossref_primary_10_1111_faf_12084 crossref_primary_10_1126_sciadv_add0635 crossref_primary_10_1111_tops_12150 crossref_primary_10_1016_j_langsci_2017_01_005 crossref_primary_10_3390_e24121819 crossref_primary_10_1103_PhysRevE_109_014105 crossref_primary_10_1371_journal_pone_0065784 crossref_primary_10_1098_rsos_150638 crossref_primary_10_1209_0295_5075_111_68004 crossref_primary_10_1086_681988 crossref_primary_10_1371_journal_pone_0018631 crossref_primary_10_1002_ecs2_4841 crossref_primary_10_1111_j_1365_2435_2009_01562_x crossref_primary_10_1093_beheco_arx056 crossref_primary_10_1098_rspb_2025_0039 crossref_primary_10_1007_s00265_014_1711_1 crossref_primary_10_1016_j_beproc_2013_10_007 crossref_primary_10_1088_1361_6633_ad49b4 crossref_primary_10_1016_j_chaos_2020_110543 crossref_primary_10_1088_1478_3975_acd298 crossref_primary_10_1088_1478_3975_acd297 crossref_primary_10_1098_rsbl_2019_0335 crossref_primary_10_1371_journal_pcbi_1003762 crossref_primary_10_1016_j_tics_2008_10_002 crossref_primary_10_1016_j_anbehav_2023_01_019 crossref_primary_10_1103_PhysRevE_109_054307 crossref_primary_10_1007_s00265_010_0999_8 crossref_primary_10_1177_26339137221133400 crossref_primary_10_1073_pnas_1703817114 crossref_primary_10_1038_s41559_022_01800_4 crossref_primary_10_1088_1361_6633_aa65ef crossref_primary_10_1103_PhysRevResearch_7_013286 crossref_primary_10_34133_cbsystems_0032 crossref_primary_10_1016_j_cub_2018_02_070 crossref_primary_10_1038_srep18260 crossref_primary_10_1371_journal_pone_0032411 crossref_primary_10_1098_rsif_2018_0130 crossref_primary_10_3389_fphy_2021_668283 crossref_primary_10_1016_j_physa_2011_10_010 crossref_primary_10_1088_1572_9494_ac71fe crossref_primary_10_1098_rspb_2013_3305 crossref_primary_10_1098_rspb_2023_2367 crossref_primary_10_1162_jocn_a_01139 crossref_primary_10_1002_mde_2553 crossref_primary_10_1063_1_4953000 crossref_primary_10_1073_pnas_1116141109 crossref_primary_10_1103_PhysRevE_99_032412 crossref_primary_10_1098_rsif_2013_0794 crossref_primary_10_1111_jfb_12520 crossref_primary_10_1080_15384101_2019_1638692 crossref_primary_10_1038_s41598_020_59946_9 crossref_primary_10_1093_beheco_arz059 crossref_primary_10_1007_s10764_011_9526_7 crossref_primary_10_1007_s10071_019_01294_x crossref_primary_10_1109_JPROC_2011_2165449 crossref_primary_10_1016_j_neubiorev_2023_105500 crossref_primary_10_3390_biomimetics5010010 crossref_primary_10_1098_rsif_2015_0520 crossref_primary_10_1063_1_4966682 crossref_primary_10_1093_beheco_arp121 crossref_primary_10_1371_journal_pone_0076123 crossref_primary_10_3389_fevo_2022_887187 crossref_primary_10_1371_journal_pone_0114687 crossref_primary_10_1038_srep30334 crossref_primary_10_1073_pnas_1610732114 crossref_primary_10_1016_j_anbehav_2023_12_007 crossref_primary_10_1088_1748_3190_acab48 crossref_primary_10_1093_cz_zoae036 crossref_primary_10_1007_s00265_017_2285_5 crossref_primary_10_1103_PhysRevE_104_014301 crossref_primary_10_1098_rspb_2018_0884 crossref_primary_10_1111_j_1095_8649_2010_02582_x crossref_primary_10_1371_journal_pcbi_1007354 crossref_primary_10_2478_caim_2018_0021 crossref_primary_10_1371_journal_pone_0014487 crossref_primary_10_1103_PhysRevE_94_042413 crossref_primary_10_1007_s12043_018_1621_2 crossref_primary_10_1038_nphys3423 crossref_primary_10_1371_journal_pone_0144060 crossref_primary_10_1098_rsif_2014_0674 crossref_primary_10_1016_j_gde_2010_09_004 crossref_primary_10_1016_j_jtbi_2014_06_010 crossref_primary_10_1098_rspb_2009_0405 crossref_primary_10_3390_e26090775 crossref_primary_10_1073_pnas_1007102108 crossref_primary_10_1073_pnas_1107540108 crossref_primary_10_1038_s41598_023_42080_7 crossref_primary_10_1007_s00265_019_2669_9 crossref_primary_10_1073_pnas_1210664109 crossref_primary_10_1088_1361_6633_ac723d crossref_primary_10_1111_j_1600_0633_2011_00506_x crossref_primary_10_1007_s00265_020_02959_1 crossref_primary_10_1103_PhysRevLett_124_078001 crossref_primary_10_1098_rspb_2010_2084 crossref_primary_10_1098_rstb_2020_0306 crossref_primary_10_1016_j_anbehav_2013_08_014 crossref_primary_10_1098_rsos_191220 crossref_primary_10_3758_s13414_017_1303_z crossref_primary_10_1126_sciadv_aba5881 crossref_primary_10_2502_janip_63_2_1 crossref_primary_10_1007_s00265_011_1270_7 crossref_primary_10_1002_etc_142 crossref_primary_10_1038_srep14556 crossref_primary_10_1088_1367_2630_16_8_083006 crossref_primary_10_1007_s13253_017_0296_3 crossref_primary_10_1016_j_beproc_2010_04_009 crossref_primary_10_1038_s41598_019_49994_1 crossref_primary_10_1140_epjb_e2015_60609_0 crossref_primary_10_1016_j_neucom_2018_12_071 crossref_primary_10_1016_j_anbehav_2015_04_004 crossref_primary_10_1111_j_1365_2656_2012_02012_x crossref_primary_10_1016_j_ecolmodel_2013_10_029 crossref_primary_10_1098_rspb_2009_0851 crossref_primary_10_1093_beheco_arq152 crossref_primary_10_1098_rsos_140533 crossref_primary_10_4028_www_scientific_net_AMM_461_942 crossref_primary_10_1111_jfb_14872 crossref_primary_10_1371_journal_pcbi_1003960 crossref_primary_10_1016_j_beproc_2018_01_003 crossref_primary_10_1371_journal_pcbi_1008734 crossref_primary_10_1007_s10764_011_9520_0 crossref_primary_10_1098_rsif_2012_0084 crossref_primary_10_1111_pops_12528 crossref_primary_10_1242_jeb_129411 crossref_primary_10_1371_journal_pone_0287845 crossref_primary_10_1093_icesjms_fsx251 crossref_primary_10_1016_j_cbpc_2019_06_002 crossref_primary_10_1073_pnas_1217513110 crossref_primary_10_1093_beheco_arw133 crossref_primary_10_4161_cib_2_4_8471 crossref_primary_10_1016_j_physa_2010_07_025 crossref_primary_10_1098_rsos_150222 crossref_primary_10_1016_j_cub_2022_03_070 crossref_primary_10_1098_rspb_2009_0983 crossref_primary_10_1371_journal_pone_0184622 crossref_primary_10_1016_j_tree_2011_03_015 crossref_primary_10_1098_rspb_2020_2690 crossref_primary_10_1111_jfb_15153 crossref_primary_10_1098_rsif_2018_0335 crossref_primary_10_1088_1367_2630_ad1498 crossref_primary_10_1098_rsos_191681 crossref_primary_10_1098_rspb_2023_0790 crossref_primary_10_1073_pnas_2000840117 crossref_primary_10_1098_rsif_2016_0676 crossref_primary_10_1021_acs_jchemed_0c01507 crossref_primary_10_1016_j_cois_2024_101260 crossref_primary_10_1007_s10614_023_10455_7 crossref_primary_10_1002_jeab_247 crossref_primary_10_1073_pnas_1304917110 crossref_primary_10_1007_s10614_017_9751_z crossref_primary_10_1039_D4SM00838C crossref_primary_10_1371_journal_pcbi_1000917 crossref_primary_10_3923_pjbs_2016_65_70 crossref_primary_10_1098_rsif_2023_0127 crossref_primary_10_1016_j_trpro_2014_09_017 crossref_primary_10_1016_j_anbehav_2018_10_022 crossref_primary_10_1371_journal_pone_0259963 crossref_primary_10_1093_beheco_arz069 crossref_primary_10_1103_PhysRevE_93_042411 crossref_primary_10_1016_j_tree_2020_02_009 crossref_primary_10_1371_journal_pone_0031382 crossref_primary_10_1038_s42005_024_01540_w crossref_primary_10_1093_beheco_arad096 crossref_primary_10_1163_1568539X_00003470 crossref_primary_10_1098_rsif_2015_0037 crossref_primary_10_1016_j_cub_2021_12_013 crossref_primary_10_1007_s00422_021_00892_8 crossref_primary_10_1093_beheco_arq141 crossref_primary_10_1177_26339137221148675 crossref_primary_10_1371_journal_pbio_3001269 crossref_primary_10_3758_s13428_018_1024_9 crossref_primary_10_7554_eLife_40368 crossref_primary_10_1093_beheco_arq149 crossref_primary_10_1098_rsfs_2012_0025 crossref_primary_10_1007_s00265_010_0988_y crossref_primary_10_1103_PhysRevE_94_022612 crossref_primary_10_1016_j_anbehav_2023_05_012 crossref_primary_10_1016_j_chaos_2018_03_030 crossref_primary_10_1007_s12080_017_0362_z crossref_primary_10_1093_beheco_art090 crossref_primary_10_1016_j_beproc_2021_104416 crossref_primary_10_1093_beheco_arq198 crossref_primary_10_1073_pnas_1811964115 crossref_primary_10_1039_c0sm01063d crossref_primary_10_1093_beheco_arr047 crossref_primary_10_1371_journal_pone_0036606 crossref_primary_10_1098_rstb_2008_0276 crossref_primary_10_1007_s00265_014_1799_3 crossref_primary_10_1098_rspb_2010_1739 crossref_primary_10_1073_pnas_1215368110 crossref_primary_10_1098_rspb_2010_2266 crossref_primary_10_1007_s11721_021_00200_x crossref_primary_10_1371_journal_pone_0015505 crossref_primary_10_1371_journal_pone_0011705 crossref_primary_10_1103_PhysRevE_96_022309 crossref_primary_10_1038_s42254_020_0152_1 crossref_primary_10_1371_journal_pone_0018901 crossref_primary_10_1371_journal_pcbi_1002282 crossref_primary_10_1371_journal_pcbi_1004101 crossref_primary_10_1016_j_cub_2008_12_051 crossref_primary_10_1111_j_1469_185X_2010_00169_x crossref_primary_10_1007_s11721_023_00224_5 crossref_primary_10_1115_1_4062219 crossref_primary_10_3390_app14031192 crossref_primary_10_1103_PhysRevLett_130_148202 crossref_primary_10_1098_rstb_2017_0006 crossref_primary_10_2139_ssrn_2607312 crossref_primary_10_1016_j_physa_2014_07_062 crossref_primary_10_1098_rstb_2017_0004 crossref_primary_10_1098_rsif_2021_0082 crossref_primary_10_1039_D4SM00625A crossref_primary_10_1088_1748_3190_ab30d3 crossref_primary_10_1007_s00265_013_1659_6 crossref_primary_10_1038_s44159_022_00054_y crossref_primary_10_1016_j_tree_2009_06_016 crossref_primary_10_1093_beheco_ars141 crossref_primary_10_1111_j_1365_2656_2012_02007_x crossref_primary_10_1038_s41598_017_19083_2 crossref_primary_10_1016_j_scitotenv_2023_164939 crossref_primary_10_1093_icesjms_fsaa159 crossref_primary_10_1038_s41598_019_40459_z crossref_primary_10_1098_rstb_2018_0378 crossref_primary_10_1016_j_anbehav_2021_01_005 crossref_primary_10_1017_apa_2020_41 crossref_primary_10_1371_journal_pone_0127459 crossref_primary_10_1111_jfb_12365 crossref_primary_10_1371_journal_pcbi_1010442 crossref_primary_10_1002_ajp_20915 crossref_primary_10_1111_brv_12932 crossref_primary_10_1086_670242 crossref_primary_10_1016_j_physa_2019_123851 crossref_primary_10_1016_j_tics_2021_08_003 crossref_primary_10_1016_j_bbr_2014_09_015 crossref_primary_10_1002_cplx_21772 crossref_primary_10_1016_j_anbehav_2009_04_007 crossref_primary_10_1209_0295_5075_113_18001 crossref_primary_10_1098_rsos_180172 crossref_primary_10_1016_j_anbehav_2025_123101 crossref_primary_10_1098_rstb_2008_0257 crossref_primary_10_1093_icesjms_fsy209 crossref_primary_10_1890_09_0298_1 crossref_primary_10_1146_annurev_neuro_071714_033857 crossref_primary_10_1007_s00422_018_0787_5 crossref_primary_10_1016_j_biosystems_2021_104394 crossref_primary_10_1016_j_anbehav_2017_08_001 crossref_primary_10_1111_eth_12645 crossref_primary_10_1126_sciadv_1500253 crossref_primary_10_1016_j_ufug_2018_07_005 crossref_primary_10_1016_j_physa_2021_126702 crossref_primary_10_1016_j_physrep_2012_03_004 crossref_primary_10_1098_rspb_2012_2777 crossref_primary_10_1016_j_beproc_2009_11_006 crossref_primary_10_1098_rsif_2016_0684 crossref_primary_10_1007_s00521_010_0355_y crossref_primary_10_1371_journal_pone_0167223 crossref_primary_10_1103_PhysRevE_108_044603 crossref_primary_10_1103_PhysRevE_92_062706 crossref_primary_10_1038_s42003_024_06037_4 crossref_primary_10_1007_s10905_016_9581_1 crossref_primary_10_1016_j_anbehav_2011_07_034 crossref_primary_10_1016_j_jtbi_2010_02_030 crossref_primary_10_1007_s00265_021_03080_7 crossref_primary_10_1098_rspb_2010_0855 crossref_primary_10_1111_j_1095_8649_2009_02420_x crossref_primary_10_1371_journal_pone_0132261 crossref_primary_10_1111_ele_12457 crossref_primary_10_1098_rspb_2018_0251 crossref_primary_10_1242_jeb_039016 crossref_primary_10_1016_j_anbehav_2014_07_008 crossref_primary_10_1016_j_tree_2018_03_004 crossref_primary_10_1103_PhysRevE_97_032304 crossref_primary_10_1098_rsfs_2011_0090 crossref_primary_10_1371_journal_pone_0018316 crossref_primary_10_1088_1748_3190_11_5_056020 crossref_primary_10_1016_j_eml_2021_101438 crossref_primary_10_1371_journal_pone_0019888 crossref_primary_10_1139_cjz_2012_0277 crossref_primary_10_1093_cz_zow052 crossref_primary_10_1016_j_anbehav_2021_11_001 |
Cites_doi | 10.2307/1543482 10.1016/j.tree.2005.01.010 10.1016/j.tree.2005.05.008 10.1126/science.1098254 10.1016/S0169-5347(98)01542-0 10.1007/s002650100377 10.1007/s00265-003-0598-z 10.1016/S0003-3472(81)80117-0 10.1098/rspb.1997.0116 10.1016/j.tree.2006.04.001 10.1093/beheco/9.5.493 10.1126/science.1144259 10.1023/A:1006574607845 10.1126/science.284.5411.99 10.1073/pnas.0604801103 10.1098/rstb.2005.1733 10.1016/j.cub.2006.08.087 10.1016/S0169-5347(97)01048-3 10.1073/pnas.0507877103 10.1038/nature03236 10.1007/BF00462870 10.1007/s00265-002-0487-x 10.1098/rspb.2003.2527 10.1006/anbe.2000.1474 10.1126/science.291.5503.478 10.1016/S0065-3454(03)01001-5 10.1068/b2697 10.1007/s00265-004-0814-5 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences May 13, 2008 2008 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences May 13, 2008 – notice: 2008 by The National Academy of Sciences of the USA |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7TN F1W H95 L.G 7S9 L.6 7X8 5PM ADTPV AOWAS DF2 |
DOI | 10.1073/pnas.0710344105 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 6953 |
ExternalDocumentID | oai_DiVA_org_uu_110196 PMC2383955 1479601391 18474860 10_1073_pnas_0710344105 105_19_6948 25461905 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7TN F1W H95 L.G 7S9 L.6 7X8 5PM .GJ 3O- 692 6TJ 79B ACKIV ADTPV AFHIN AFQQW AOWAS DF2 HGD NEJ NHB VOH WHG ZCG |
ID | FETCH-LOGICAL-c662t-403f3fdd9c6f5b84170c0512912cd8432146148e391a4232dffcb32e2e38985b3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 06:38:54 EDT 2025 Thu Aug 21 18:09:54 EDT 2025 Thu Sep 04 19:52:08 EDT 2025 Fri Sep 05 05:12:51 EDT 2025 Thu Sep 04 19:30:12 EDT 2025 Mon Jun 30 08:35:11 EDT 2025 Fri Jun 06 04:43:19 EDT 2025 Thu Apr 24 23:11:13 EDT 2025 Tue Jul 01 02:38:57 EDT 2025 Thu May 30 08:52:56 EDT 2019 Wed Nov 11 00:29:26 EST 2020 Thu May 29 08:42:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c662t-403f3fdd9c6f5b84170c0512912cd8432146148e391a4232dffcb32e2e38985b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: A.J.W.W. and J.K. designed research; A.J.W.W. and D.J.T.S. performed research; A.J.W.W., D.J.T.S., I.D.C., P.J.B.H., and J.K. analyzed data; and A.J.W.W., D.J.T.S., and J.K. wrote the paper. Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved March 21, 2008 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2383955 |
PMID | 18474860 |
PQID | 201277288 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_105_19_6948 proquest_journals_201277288 jstor_primary_25461905 proquest_miscellaneous_47655267 swepub_primary_oai_DiVA_org_uu_110196 proquest_miscellaneous_20907411 crossref_citationtrail_10_1073_pnas_0710344105 proquest_miscellaneous_70732712 pubmed_primary_18474860 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2383955 crossref_primary_10_1073_pnas_0710344105 pnas_primary_105_19_6948_fulltext |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-05-13 |
PublicationDateYYYYMMDD | 2008-05-13 |
PublicationDate_xml | – month: 05 year: 2008 text: 2008-05-13 day: 13 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Camazine S (e_1_3_3_8_2) 2001 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 18006751 - Science. 2007 Nov 16;318(5853):1155-8 21238030 - Trends Ecol Evol. 1997 May;12(5):188-93 15273386 - Science. 2004 Jul 23;305(5683):487-91 15690039 - Nature. 2005 Feb 3;433(7025):513-6 16769429 - Trends Ecol Evol. 2006 Jun;21(6):303-8 17038502 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15906-10 14667335 - Proc Biol Sci. 2003 Dec 7;270(1532):2457-63 10102827 - Science. 1999 Apr 2;284(5411):99-101 11007643 - Anim Behav. 2000 Sep;60(3):341-350 10322509 - Trends Ecol Evol. 1999 Mar;14(3):102-106 16701416 - Trends Ecol Evol. 2005 Aug;20(8):449-56 16553306 - Philos Trans R Soc Lond B Biol Sci. 2006 Jan 29;361(1465):5-22 16581903 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5835-40 12087003 - Biol Bull. 2002 Jun;202(3):296-305 16701367 - Trends Ecol Evol. 2005 Apr;20(4):187-93 17084696 - Curr Biol. 2006 Nov 7;16(21):2123-8 11161200 - Science. 2001 Jan 19;291(5503):478-81 |
References_xml | – ident: e_1_3_3_27_2 doi: 10.2307/1543482 – ident: e_1_3_3_10_2 doi: 10.1016/j.tree.2005.01.010 – ident: e_1_3_3_9_2 doi: 10.1016/j.tree.2005.05.008 – ident: e_1_3_3_11_2 doi: 10.1126/science.1098254 – ident: e_1_3_3_22_2 doi: 10.1016/S0169-5347(98)01542-0 – ident: e_1_3_3_17_2 doi: 10.1007/s002650100377 – ident: e_1_3_3_18_2 doi: 10.1007/s00265-003-0598-z – ident: e_1_3_3_21_2 doi: 10.1016/S0003-3472(81)80117-0 – ident: e_1_3_3_24_2 doi: 10.1098/rspb.1997.0116 – ident: e_1_3_3_29_2 doi: 10.1016/j.tree.2006.04.001 – ident: e_1_3_3_13_2 doi: 10.1093/beheco/9.5.493 – ident: e_1_3_3_15_2 doi: 10.1126/science.1144259 – ident: e_1_3_3_7_2 doi: 10.1023/A:1006574607845 – ident: e_1_3_3_3_2 doi: 10.1126/science.284.5411.99 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.0604801103 – ident: e_1_3_3_4_2 doi: 10.1098/rstb.2005.1733 – ident: e_1_3_3_26_2 doi: 10.1016/j.cub.2006.08.087 – ident: e_1_3_3_28_2 doi: 10.1016/S0169-5347(97)01048-3 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.0507877103 – ident: e_1_3_3_5_2 doi: 10.1038/nature03236 – ident: e_1_3_3_12_2 doi: 10.1007/BF00462870 – ident: e_1_3_3_6_2 doi: 10.1007/s00265-002-0487-x – ident: e_1_3_3_16_2 doi: 10.1098/rspb.2003.2527 – ident: e_1_3_3_23_2 doi: 10.1006/anbe.2000.1474 – volume-title: Self-Organization in Biological Systems, Princeton Studies in Complexity year: 2001 ident: e_1_3_3_8_2 – ident: e_1_3_3_25_2 doi: 10.1126/science.291.5503.478 – ident: e_1_3_3_1_2 doi: 10.1016/S0065-3454(03)01001-5 – ident: e_1_3_3_2_2 doi: 10.1068/b2697 – ident: e_1_3_3_19_2 doi: 10.1007/s00265-004-0814-5 – reference: 11007643 - Anim Behav. 2000 Sep;60(3):341-350 – reference: 10102827 - Science. 1999 Apr 2;284(5411):99-101 – reference: 17084696 - Curr Biol. 2006 Nov 7;16(21):2123-8 – reference: 16581903 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5835-40 – reference: 14667335 - Proc Biol Sci. 2003 Dec 7;270(1532):2457-63 – reference: 15273386 - Science. 2004 Jul 23;305(5683):487-91 – reference: 10322509 - Trends Ecol Evol. 1999 Mar;14(3):102-106 – reference: 17038502 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15906-10 – reference: 21238030 - Trends Ecol Evol. 1997 May;12(5):188-93 – reference: 11161200 - Science. 2001 Jan 19;291(5503):478-81 – reference: 16769429 - Trends Ecol Evol. 2006 Jun;21(6):303-8 – reference: 16701416 - Trends Ecol Evol. 2005 Aug;20(8):449-56 – reference: 16553306 - Philos Trans R Soc Lond B Biol Sci. 2006 Jan 29;361(1465):5-22 – reference: 18006751 - Science. 2007 Nov 16;318(5853):1155-8 – reference: 16701367 - Trends Ecol Evol. 2005 Apr;20(4):187-93 – reference: 15690039 - Nature. 2005 Feb 3;433(7025):513-6 – reference: 12087003 - Biol Bull. 2002 Jun;202(3):296-305 |
SSID | ssj0009580 |
Score | 2.4521732 |
Snippet | Despite the growing interest in collective phenomena such as "swarm intelligence" and "wisdom of the crowds," little is known about the mechanisms underlying... Despite the growing interest in collective phenomena such as “swarm intelligence” and “wisdom of the crowds,” little is known about the mechanisms underlying... |
SourceID | swepub pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6948 |
SubjectTerms | Animal behavior Animal Communication Animals Ants behavior Biological Sciences collective decision-making Computer Simulation Conspecifics Decision Making Experimentation Fish Fishing lines Gasterosteus aculeatus Group size Information transfer Insect behavior Insect nests Models, Biological NATURAL SCIENCES NATURVETENSKAP predation Predators Predatory Behavior risk schooling shoaling Shoals Simulation simulation models Smegmamorpha - physiology social Social Behavior Studies |
Title | Quorum Decision-Making Facilitates Information Transfer in Fish Shoals |
URI | https://www.jstor.org/stable/25461905 http://www.pnas.org/content/105/19/6948.abstract https://www.ncbi.nlm.nih.gov/pubmed/18474860 https://www.proquest.com/docview/201277288 https://www.proquest.com/docview/20907411 https://www.proquest.com/docview/47655267 https://www.proquest.com/docview/70732712 https://pubmed.ncbi.nlm.nih.gov/PMC2383955 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-110196 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAsbECQQBqK0iVxHCePha2MapQhtdA3K5900kinpRHS_nru7Hxuq_h4iar4YiW-6_ls3_1-hLyhbkR9y4vNFCYn02UBNf3Yzkzue36c2SGPJCXL56l3MncnC7YYDH51q0vW0TC-vrOu5H-0CvdAr1gl-w-abTqFG_Ab9AtX0DBc_0rHX0uEUjCSiifH_CmppZBDR2Fvq2SrujwR6SAgSE0xAd3IEMmoWK7Ci6Ibn54181lRZw9M6-3CUVt8UnmEwjCNs2lLZfw9VInyo2KJvmbS7t-A0VQMIDKJ3pi0udmr8lrhGHwK4b2OWpeoiokwddGYvO_tTvh4sK6KS5tqAZgFXVUnPUyVk4UYxfRcRRPaeGGLdc0t6DhVL1BgnNUE7QUKXviW8wdvhYzFeVgg7CJiGdad9mC2p1_EeH56KmbHi9k9ct_hXJ7vf1zYHbRmX9UuVS9fY0Jxenij-144ozJaESYXhO5astzOvO3h08qYZvaIPKwWI_pIWdY2GaT5Y7JdK1c_qDDJ3z0hY2Vq-g1T0zumpndMTa9NDW7qaGq6MrWnZD4-nn04MSsKDjP2PGdtuhbNaJYkQexlLPJdm1uxhTGi7cSJ71JJC-_6KQ3sEI_8kyyLI-qkTgqBsM8iukO28lWe7hI9YAlW6rOQORC1JlYYZJSGEJ2yDFyEyzQyrEdSxBU-PdKkXAiZJ8GpwFEV7dBr5KB54FJBs2wW3ZGqaeSQBQJCYWjYlaLt80zYgUCL08jrTU0iqxKzNLJX61hUfqEQDmZzcMeHHl41reC08SQuzNNViSK4J2XbmyVc7jHmeHyzBIfvdLjtaOSZsqn2TSHiRG45jfCetTUCCCnfb8nPlxJaHgJ4GjAYlrfKLnuPHJ1_G4nV1Q9RlgJWDTB3P__jF-6RB61b2Cdb66syfQFh_Dp6Kf9yvwFbAfEF |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quorum+decision-making+facilitates+information+transfer+in+fish+shoals&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ward%2C+Ashley+JW&rft.au=Sumpter%2C+David+JT&rft.au=Couzin%2C+Iain+D&rft.au=Hart%2C+Paul+JB&rft.date=2008-05-13&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=19&rft.spage=6948&rft.epage=6953&rft_id=info:doi/10.1073%2Fpnas.0710344105&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F19.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F19.cover.gif |