CytoPy: An autonomous cytometry analysis framework

Cytometry analysis has seen a considerable expansion in recent years in the maximum number of parameters that can be acquired in a single experiment. In response to this technological advance there has been an increased effort to develop new computational methodologies for handling high-dimensional...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 17; no. 6; p. e1009071
Main Authors Burton, Ross J., Ahmed, Raya, Cuff, Simone M., Baker, Sarah, Artemiou, Andreas, Eberl, Matthias
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.06.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1009071

Cover

Abstract Cytometry analysis has seen a considerable expansion in recent years in the maximum number of parameters that can be acquired in a single experiment. In response to this technological advance there has been an increased effort to develop new computational methodologies for handling high-dimensional single cell data acquired by flow or mass cytometry. Despite the success of numerous algorithms and published packages to replicate and outperform traditional manual analysis, widespread adoption of these techniques has yet to be realised in the field of immunology. Here we present CytoPy, a Python framework for automated analysis of cytometry data that integrates a document-based database for a data-centric and iterative analytical environment. In addition, our algorithm-agnostic design provides a platform for open-source cytometry bioinformatics in the Python ecosystem. We demonstrate the ability of CytoPy to phenotype T cell subsets in whole blood samples even in the presence of significant batch effects due to technical and user variation. The complete analytical pipeline was then used to immunophenotype the local inflammatory infiltrate in individuals with and without acute bacterial infection. CytoPy is open-source and licensed under the MIT license. CytoPy is available at https://github.com/burtonrj/CytoPy , with notebooks accompanying this manuscript ( https://github.com/burtonrj/CytoPyManuscript ) and software documentation at https://cytopy.readthedocs.io/ .
AbstractList Cytometry analysis has seen a considerable expansion in recent years in the maximum number of parameters that can be acquired in a single experiment. In response to this technological advance there has been an increased effort to develop new computational methodologies for handling high-dimensional single cell data acquired by flow or mass cytometry. Despite the success of numerous algorithms and published packages to replicate and outperform traditional manual analysis, widespread adoption of these techniques has yet to be realised in the field of immunology. Here we present CytoPy, a Python framework for automated analysis of cytometry data that integrates a document-based database for a data-centric and iterative analytical environment. In addition, our algorithm-agnostic design provides a platform for open-source cytometry bioinformatics in the Python ecosystem. We demonstrate the ability of CytoPy to phenotype T cell subsets in whole blood samples even in the presence of significant batch effects due to technical and user variation. The complete analytical pipeline was then used to immunophenotype the local inflammatory infiltrate in individuals with and without acute bacterial infection. CytoPy is open-source and licensed under the MIT license. CytoPy is available at https://github.com/burtonrj/CytoPy, with notebooks accompanying this manuscript (https://github.com/burtonrj/CytoPyManuscript) and software documentation at https://cytopy.readthedocs.io/.Cytometry analysis has seen a considerable expansion in recent years in the maximum number of parameters that can be acquired in a single experiment. In response to this technological advance there has been an increased effort to develop new computational methodologies for handling high-dimensional single cell data acquired by flow or mass cytometry. Despite the success of numerous algorithms and published packages to replicate and outperform traditional manual analysis, widespread adoption of these techniques has yet to be realised in the field of immunology. Here we present CytoPy, a Python framework for automated analysis of cytometry data that integrates a document-based database for a data-centric and iterative analytical environment. In addition, our algorithm-agnostic design provides a platform for open-source cytometry bioinformatics in the Python ecosystem. We demonstrate the ability of CytoPy to phenotype T cell subsets in whole blood samples even in the presence of significant batch effects due to technical and user variation. The complete analytical pipeline was then used to immunophenotype the local inflammatory infiltrate in individuals with and without acute bacterial infection. CytoPy is open-source and licensed under the MIT license. CytoPy is available at https://github.com/burtonrj/CytoPy, with notebooks accompanying this manuscript (https://github.com/burtonrj/CytoPyManuscript) and software documentation at https://cytopy.readthedocs.io/.
Cytometry analysis has seen a considerable expansion in recent years in the maximum number of parameters that can be acquired in a single experiment. In response to this technological advance there has been an increased effort to develop new computational methodologies for handling high-dimensional single cell data acquired by flow or mass cytometry. Despite the success of numerous algorithms and published packages to replicate and outperform traditional manual analysis, widespread adoption of these techniques has yet to be realised in the field of immunology. Here we present CytoPy, a Python framework for automated analysis of cytometry data that integrates a document-based database for a data-centric and iterative analytical environment. In addition, our algorithm-agnostic design provides a platform for open-source cytometry bioinformatics in the Python ecosystem. We demonstrate the ability of CytoPy to phenotype T cell subsets in whole blood samples even in the presence of significant batch effects due to technical and user variation. The complete analytical pipeline was then used to immunophenotype the local inflammatory infiltrate in individuals with and without acute bacterial infection. CytoPy is open-source and licensed under the MIT license. CytoPy is available at https://github.com/burtonrj/CytoPy, with notebooks accompanying this manuscript (https://github.com/burtonrj/CytoPyManuscript) and software documentation at https://cytopy.readthedocs.io/.
Cytometry analysis has seen a considerable expansion in recent years in the maximum number of parameters that can be acquired in a single experiment. In response to this technological advance there has been an increased effort to develop new computational methodologies for handling high-dimensional single cell data acquired by flow or mass cytometry. Despite the success of numerous algorithms and published packages to replicate and outperform traditional manual analysis, widespread adoption of these techniques has yet to be realised in the field of immunology. Here we present CytoPy, a Python framework for automated analysis of cytometry data that integrates a document-based database for a data-centric and iterative analytical environment. In addition, our algorithm-agnostic design provides a platform for open-source cytometry bioinformatics in the Python ecosystem. We demonstrate the ability of CytoPy to phenotype T cell subsets in whole blood samples even in the presence of significant batch effects due to technical and user variation. The complete analytical pipeline was then used to immunophenotype the local inflammatory infiltrate in individuals with and without acute bacterial infection. CytoPy is open-source and licensed under the MIT license. CytoPy is available at https://github.com/burtonrj/CytoPy , with notebooks accompanying this manuscript ( https://github.com/burtonrj/CytoPyManuscript ) and software documentation at https://cytopy.readthedocs.io/ . Cytometry is a popular technology used to quantify biological material. In recent years, the capabilities of cytometry have expanded, resulting in ever larger datasets. In order to analyse these data, new approaches are required, giving rise to the field of cytometry bioinformatics. Despite the success of numerous algorithms and tools in this domain, widespread adoption by the scientific community has yet to be realised. Here we introduce CytoPy, a comprehensive cytometry data analysis framework deployed in Python, a beginner-friendly programming language. We validate CytoPy’s ability to handle batch effects and identify immune cell populations in human blood. Subsequently, we apply CytoPy to the analysis of drain fluid from patients undergoing peritoneal dialysis and compare the local immune response of stable patients to those presenting with acute peritonitis. CytoPy is open-source and available online: https://cytopy.readthedocs.io/en/latest/ .
Cytometry analysis has seen a considerable expansion in recent years in the maximum number of parameters that can be acquired in a single experiment. In response to this technological advance there has been an increased effort to develop new computational methodologies for handling high-dimensional single cell data acquired by flow or mass cytometry. Despite the success of numerous algorithms and published packages to replicate and outperform traditional manual analysis, widespread adoption of these techniques has yet to be realised in the field of immunology. Here we present CytoPy, a Python framework for automated analysis of cytometry data that integrates a document-based database for a data-centric and iterative analytical environment. In addition, our algorithm-agnostic design provides a platform for open-source cytometry bioinformatics in the Python ecosystem. We demonstrate the ability of CytoPy to phenotype T cell subsets in whole blood samples even in the presence of significant batch effects due to technical and user variation. The complete analytical pipeline was then used to immunophenotype the local inflammatory infiltrate in individuals with and without acute bacterial infection. CytoPy is open-source and licensed under the MIT license. CytoPy is available at
Cytometry analysis has seen a considerable expansion in recent years in the maximum number of parameters that can be acquired in a single experiment. In response to this technological advance there has been an increased effort to develop new computational methodologies for handling high-dimensional single cell data acquired by flow or mass cytometry. Despite the success of numerous algorithms and published packages to replicate and outperform traditional manual analysis, widespread adoption of these techniques has yet to be realised in the field of immunology. Here we present CytoPy, a Python framework for automated analysis of cytometry data that integrates a document-based database for a data-centric and iterative analytical environment. In addition, our algorithm-agnostic design provides a platform for open-source cytometry bioinformatics in the Python ecosystem. We demonstrate the ability of CytoPy to phenotype T cell subsets in whole blood samples even in the presence of significant batch effects due to technical and user variation. The complete analytical pipeline was then used to immunophenotype the local inflammatory infiltrate in individuals with and without acute bacterial infection. CytoPy is open-source and licensed under the MIT license. CytoPy is available at https://github.com/burtonrj/CytoPy , with notebooks accompanying this manuscript ( https://github.com/burtonrj/CytoPyManuscript ) and software documentation at https://cytopy.readthedocs.io/ .
Audience Academic
Author Cuff, Simone M.
Eberl, Matthias
Artemiou, Andreas
Burton, Ross J.
Baker, Sarah
Ahmed, Raya
AuthorAffiliation 1 Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
2 School of Mathematics, Cardiff University, Cardiff, United Kingdom
bioinformatics, GERMANY
AuthorAffiliation_xml – name: 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
– name: bioinformatics, GERMANY
– name: 1 Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
– name: 2 School of Mathematics, Cardiff University, Cardiff, United Kingdom
Author_xml – sequence: 1
  givenname: Ross J.
  orcidid: 0000-0002-1516-7749
  surname: Burton
  fullname: Burton, Ross J.
– sequence: 2
  givenname: Raya
  surname: Ahmed
  fullname: Ahmed, Raya
– sequence: 3
  givenname: Simone M.
  orcidid: 0000-0002-0546-3579
  surname: Cuff
  fullname: Cuff, Simone M.
– sequence: 4
  givenname: Sarah
  orcidid: 0000-0002-7474-9757
  surname: Baker
  fullname: Baker, Sarah
– sequence: 5
  givenname: Andreas
  orcidid: 0000-0002-7501-4090
  surname: Artemiou
  fullname: Artemiou, Andreas
– sequence: 6
  givenname: Matthias
  orcidid: 0000-0002-9390-5348
  surname: Eberl
  fullname: Eberl, Matthias
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34101722$$D View this record in MEDLINE/PubMed
BookMark eNqVkluL1DAUx4OsuLuj30C04Is-zJhrL_sgDIOXgUXFy3M4TZMxY9uMSar225txusvOsgiSQsLp7_8_OSfnHJ30rtcIPSZ4QVhBXm7d4HtoFztV2wXBuMIFuYfOiBBsXjBRntw4n6LzELYYp2OVP0CnjBNMCkrPEF2N0X0cL7Jln8EQXe86N4RMpWinox8zSDnGYENmPHT6l_PfH6L7BtqgH037DH198_rL6t388sPb9Wp5OVd5TuLcYChEiY0iDYVG1YY1otYVEw1UqgYqCtDc4BJ4UfGSlcSkRbgwNbCqrjWboacH313rgpzKDZIKQWlZiYonYn0gGgdbufO2Az9KB1b-DTi_keCjVa2WBtdgKOSMc8VV0lMNSiioCdeaUJa8Xk3ZhrrTjdJ99NAemR7_6e03uXE_ZUkJI3mRDJ5PBt79GHSIsrNB6baFXqeWpnuzKt2c8jyhz26hd1c3URtIBdjeuJRX7U3lMk8JMd9_M7S4g0qr0Z1VaWSMTfEjwYsjQWKi_h03MIQg158__Qf7_ph9crOB1527mrUE8AOgvAvBa3ONECz3I33VBbkfaTmNdJJd3JIpGyFat38G2_5b_Afnn_zB
CitedBy_id crossref_primary_10_1002_cyto_a_24913
crossref_primary_10_3390_neuroglia5020010
crossref_primary_10_1093_bioadv_vbad103
crossref_primary_10_1002_advs_202207061
crossref_primary_10_1016_j_mcpro_2023_100592
crossref_primary_10_1093_bioinformatics_btac751
crossref_primary_10_1093_cei_uxae019
crossref_primary_10_3389_fimmu_2021_768541
crossref_primary_10_1038_s41581_021_00466_8
Cites_doi 10.1016/j.cell.2015.05.047
10.1016/j.kint.2017.01.017
10.1371/journal.pcbi.1005112
10.1093/bioinformatics/bty082
10.25080/Majora-92bf1922-00a
10.1073/pnas.2003026117
10.1038/nmeth.4295
10.1093/bioinformatics/bty768
10.1111/ijlh.13016
10.1002/cyto.a.22433
10.1093/bioinformatics/btx448
10.1371/journal.ppat.1000308
10.1681/ASN.2013040332
10.1002/cyto.a.20823
10.1073/pnas.1321405111
10.1145/2939672.2939785
10.1002/cyto.a.22732
10.1002/cyto.a.22625
10.1016/j.kint.2016.10.030
10.1038/nmeth.3863
10.1038/s41592-019-0686-2
10.1038/nbt.1991
10.1093/bioinformatics/btx054
10.1038/ncomms14825
10.1093/bioinformatics/btz625
10.1093/bioinformatics/btu677
10.1371/journal.pcbi.1003806
10.1038/s41592-019-0619-0
10.1038/s41592-019-0576-7
10.1038/nbt.4314
10.1038/s41587-019-0336-3
10.1093/bioinformatics/btw191
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Burton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Burton et al 2021 Burton et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Burton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Burton et al 2021 Burton et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1009071
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate CytoPy: An autonomous cytometry analysis framework
EISSN 1553-7358
ExternalDocumentID 2552289594
oai_doaj_org_article_f0baf2a6344c4c2892eac5cab14ee123
PMC8213167
A667304304
34101722
10_1371_journal_pcbi_1009071
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/N023145/1
– fundername: ;
– fundername: ;
  grantid: 11838
– fundername: ;
  grantid: PR-0013
– fundername: ;
  grantid: MR/N023145/1
– fundername: ;
  grantid: PhD Studentship
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
PUEGO
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
M~E
PRINS
ID FETCH-LOGICAL-c661t-f0a7580fc1d2adcbf3d5be935da9cba257ae4f08a47948381f1f1145fba39bbe3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:13:02 EST 2021
Wed Aug 27 01:18:50 EDT 2025
Thu Aug 21 14:08:29 EDT 2025
Thu Sep 04 21:08:11 EDT 2025
Fri Jul 25 12:05:26 EDT 2025
Tue Jun 17 21:50:02 EDT 2025
Tue Jun 10 20:46:37 EDT 2025
Fri Jun 27 03:39:57 EDT 2025
Fri Jun 27 04:37:48 EDT 2025
Mon Jul 21 06:00:18 EDT 2025
Thu Apr 24 22:51:56 EDT 2025
Tue Jul 01 01:26:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c661t-f0a7580fc1d2adcbf3d5be935da9cba257ae4f08a47948381f1f1145fba39bbe3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-1516-7749
0000-0002-7501-4090
0000-0002-7474-9757
0000-0002-9390-5348
0000-0002-0546-3579
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1009071
PMID 34101722
PQID 2552289594
PQPubID 1436340
ParticipantIDs plos_journals_2552289594
doaj_primary_oai_doaj_org_article_f0baf2a6344c4c2892eac5cab14ee123
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8213167
proquest_miscellaneous_2539522246
proquest_journals_2552289594
gale_infotracmisc_A667304304
gale_infotracacademiconefile_A667304304
gale_incontextgauss_ISR_A667304304
gale_incontextgauss_ISN_A667304304
pubmed_primary_34101722
crossref_primary_10_1371_journal_pcbi_1009071
crossref_citationtrail_10_1371_journal_pcbi_1009071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Lux (pcbi.1009071.ref007) 2018; 34
G Monaco (pcbi.1009071.ref023) 2016; 32
P Qiu (pcbi.1009071.ref006) 2011; 29
M Malek (pcbi.1009071.ref001) 2015; 31
JH Levine (pcbi.1009071.ref004) 2015; 162
M Eberl (pcbi.1009071.ref035) 2009; 5
E Arvaniti (pcbi.1009071.ref011) 2017; 8
J Zhang (pcbi.1009071.ref033) 2017; 92
KR Moon (pcbi.1009071.ref018) 2019; 37
H Thi (pcbi.1009071.ref029) 2020
H Li (pcbi.1009071.ref009) 2017; 33
F Pedregosa (pcbi.1009071.ref016) 2011; 12
M Abadi (pcbi.1009071.ref017) 2016; 2016
SM Lundberg (pcbi.1009071.ref026) 2017; 2017
G Finak (pcbi.1009071.ref028) 2014; 85
pcbi.1009071.ref020
K Shekhar (pcbi.1009071.ref010) 2014; 111
S Montante (pcbi.1009071.ref014) 2019; 41
F Hahne (pcbi.1009071.ref027) 2010; 77
Z Hu (pcbi.1009071.ref012) 2019; 35
Z Hu (pcbi.1009071.ref013) 2020; 117
G Finak (pcbi.1009071.ref002) 2014; 10
C Te Liao (pcbi.1009071.ref034) 2017; 91
H Chen (pcbi.1009071.ref037) 2016; 12
ATL Lun (pcbi.1009071.ref038) 2017; 14
M Amodio (pcbi.1009071.ref030) 2019; 16
S Van Gassen (pcbi.1009071.ref003) 2015; 87
P Virtanen (pcbi.1009071.ref022) 2020; 17
N Samusik (pcbi.1009071.ref005) 2016; 13
M Harry (pcbi.1009071.ref021) 2020
HC Lee (pcbi.1009071.ref008) 2017; 33
T Chen (pcbi.1009071.ref031) 2016
W McKinney (pcbi.1009071.ref015) 2010
K Slowikowski (pcbi.1009071.ref025) 2020
E Becht (pcbi.1009071.ref019) 2019; 37
I Korsunsky (pcbi.1009071.ref024) 2019; 16
N Aghaeepour (pcbi.1009071.ref032) 2016; 89
CY Lin (pcbi.1009071.ref036) 2013; 24
K Polański (pcbi.1009071.ref039) 2020; 36
References_xml – volume: 2017
  start-page: 4766
  issue: Section 2
  year: 2017
  ident: pcbi.1009071.ref026
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inf Process Syst
– volume: 162
  start-page: 184
  issue: 1
  year: 2015
  ident: pcbi.1009071.ref004
  article-title: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.047
– year: 2020
  ident: pcbi.1009071.ref025
  article-title: Harmonypy
  publication-title: Zenodo
– volume: 92
  start-page: 179
  issue: 1
  year: 2017
  ident: pcbi.1009071.ref033
  article-title: Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections
  publication-title: Kidney Int
  doi: 10.1016/j.kint.2017.01.017
– volume: 12
  start-page: 1
  issue: 9
  year: 2016
  ident: pcbi.1009071.ref037
  article-title: Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005112
– volume: 34
  start-page: 2245
  issue: 13
  year: 2018
  ident: pcbi.1009071.ref007
  article-title: flowLearn: fast and precise identification and quality checking of cell populations in flow cytometry
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty082
– start-page: 56
  year: 2010
  ident: pcbi.1009071.ref015
  article-title: Data Structures for Statistical Computing in Python
  publication-title: SciPy
  doi: 10.25080/Majora-92bf1922-00a
– start-page: 1
  year: 2020
  ident: pcbi.1009071.ref029
  article-title: A benchmark of batch-effect correction methods for single-cell RNA sequencing data
  publication-title: Genome Biol
– volume: 117
  start-page: 21373
  issue: 35
  year: 2020
  ident: pcbi.1009071.ref013
  article-title: A robust and interpretable end-to-end deep learning model for cytometry data
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2003026117
– volume: 14
  start-page: 707
  issue: 7
  year: 2017
  ident: pcbi.1009071.ref038
  article-title: Testing for differential abundance in mass cytometry data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4295
– volume: 35
  start-page: 1197
  issue: 7
  year: 2019
  ident: pcbi.1009071.ref012
  article-title: Robust prediction of clinical outcomes using cytometry data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty768
– volume: 41
  start-page: 56
  issue: Suppl 1
  year: 2019
  ident: pcbi.1009071.ref014
  article-title: Flow cytometry data analysis: Recent tools and algorithms.
  publication-title: Int J Lab Hematol
  doi: 10.1111/ijlh.13016
– volume: 85
  start-page: 277
  issue: 3
  year: 2014
  ident: pcbi.1009071.ref028
  article-title: High-throughput flow cytometry data normalization for clinical trials
  publication-title: Cytom Part A
  doi: 10.1002/cyto.a.22433
– volume: 33
  start-page: 3423
  issue: 21
  year: 2017
  ident: pcbi.1009071.ref009
  article-title: Gating mass cytometry data by deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx448
– volume: 5
  issue: 2
  year: 2009
  ident: pcbi.1009071.ref035
  article-title: A rapid crosstalk of human γδ T cells and monocytes drives the acute inflammation in bacterial infections
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000308
– volume: 24
  start-page: 2002
  issue: 12
  year: 2013
  ident: pcbi.1009071.ref036
  article-title: Pathogen-specific local immune fingerprints diagnose bacterial infection in peritoneal dialysis patients
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2013040332
– volume: 77
  start-page: 121
  issue: 2
  year: 2010
  ident: pcbi.1009071.ref027
  article-title: Per-channel basis normalization methods for flow cytometry data
  publication-title: Cytom Part A
  doi: 10.1002/cyto.a.20823
– volume: 111
  start-page: 202
  issue: 1
  year: 2014
  ident: pcbi.1009071.ref010
  article-title: Automatic Classification of Cellular Expression by Nonlinear Stochastic Embedding (ACCENSE)
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1321405111
– start-page: 785
  year: 2016
  ident: pcbi.1009071.ref031
  article-title: XGBoost: A scalable tree boosting system
  publication-title: Proc ACM SIGKDD Int Conf Knowl Discov Data Min
  doi: 10.1145/2939672.2939785
– volume: 89
  start-page: 16
  issue: 1
  year: 2016
  ident: pcbi.1009071.ref032
  article-title: A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes
  publication-title: Cytom Part A
  doi: 10.1002/cyto.a.22732
– volume: 87
  start-page: 636
  issue: 7
  year: 2015
  ident: pcbi.1009071.ref003
  article-title: FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22625
– volume: 91
  start-page: 1088
  issue: 5
  year: 2017
  ident: pcbi.1009071.ref034
  article-title: Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes
  publication-title: Kidney Int
  doi: 10.1016/j.kint.2016.10.030
– volume: 13
  start-page: 493
  issue: 6
  year: 2016
  ident: pcbi.1009071.ref005
  article-title: Automated mapping of phenotype space with single-cell data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3863
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: pcbi.1009071.ref022
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat Methods.
  doi: 10.1038/s41592-019-0686-2
– volume: 12
  start-page: 2825
  year: 2011
  ident: pcbi.1009071.ref016
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J Mach Learn Res
– volume: 29
  start-page: 886
  issue: 10
  year: 2011
  ident: pcbi.1009071.ref006
  article-title: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1991
– volume: 33
  start-page: 1689
  issue: 11
  year: 2017
  ident: pcbi.1009071.ref008
  article-title: Automated cell type discovery and classification through knowledge transfer
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx054
– volume: 8
  start-page: 14825
  year: 2017
  ident: pcbi.1009071.ref011
  article-title: Sensitive detection of rare disease-associated cell subsets via representation learning
  publication-title: Nat Commun
  doi: 10.1038/ncomms14825
– volume: 36
  start-page: 964
  issue: 3
  year: 2020
  ident: pcbi.1009071.ref039
  article-title: BBKNN: Fast batch alignment of single cell transcriptomes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz625
– ident: pcbi.1009071.ref020
– volume: 2016
  start-page: 265
  year: 2016
  ident: pcbi.1009071.ref017
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc 12th USENIX Symp Oper Syst Des Implementation, OSDI
– volume: 31
  start-page: 606
  issue: 4
  year: 2015
  ident: pcbi.1009071.ref001
  article-title: flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu677
– volume: 10
  start-page: e1003806
  issue: 8
  year: 2014
  ident: pcbi.1009071.ref002
  article-title: OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003806
– volume: 16
  start-page: 1289
  issue: 12
  year: 2019
  ident: pcbi.1009071.ref024
  article-title: Fast, sensitive and accurate integration of single-cell data with Harmony
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0619-0
– volume: 16
  start-page: 1139
  issue: 11
  year: 2019
  ident: pcbi.1009071.ref030
  article-title: Exploring single-cell data with deep multitasking neural networks.
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0576-7
– year: 2020
  ident: pcbi.1009071.ref021
  publication-title: Mongoengine.
– volume: 37
  start-page: 38
  issue: 1
  year: 2019
  ident: pcbi.1009071.ref019
  article-title: Dimensionality reduction for visualizing single-cell data using UMAP
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4314
– volume: 37
  start-page: 1482
  issue: 12
  year: 2019
  ident: pcbi.1009071.ref018
  article-title: Visualizing structure and transitions in high-dimensional biological data
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0336-3
– volume: 32
  start-page: 2473
  issue: 16
  year: 2016
  ident: pcbi.1009071.ref023
  article-title: FlowAI: Automatic and interactive anomaly discerning tools for flow cytometry data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw191
SSID ssj0035896
Score 2.414135
Snippet Cytometry analysis has seen a considerable expansion in recent years in the maximum number of parameters that can be acquired in a single experiment. In...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009071
SubjectTerms Algorithms
Application programming interface
Automation
Bacterial diseases
Bioinformatics
Biology and Life Sciences
Classification
Clustering
Collaboration
Computational Biology
Computer and Information Sciences
Computer applications
Computer programs
Cytometry
Data acquisition
Data analysis
Databases, Factual
Design
Engineering and Technology
Experiments
Flow cytometry
Genotype & phenotype
Humans
Image Cytometry - statistics & numerical data
Immunology
Immunophenotyping - statistics & numerical data
Inflammation
Iterative methods
Lymphocytes
Lymphocytes T
Machine Learning
Mathematical analysis
Medicine and Health Sciences
Metadata
Peritoneal Dialysis - adverse effects
Peritonitis - diagnosis
Peritonitis - immunology
Peritonitis - pathology
Phenotypes
Physical Sciences
Programming Languages
Research and Analysis Methods
Science
Software
Source code
T-Lymphocyte Subsets - immunology
T-Lymphocyte Subsets - pathology
Technology application
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEF_koNCX0tZaY22JpdCn1M1-5MO3qyhaUEqtcG_L7ma3Cpo7vNzD_ffOJJtgiuKL3Ft2Em5nZnfnl8z8hpBvBkKIzJQiEZUEgCJYnhguXeKNE05QV9EKC5zPzrOTS_FrJmcPWn1hTlhHD9wpbt9Toz3TGRfCCgvwgMFWIa02qXAOtl3cfWlJezDV7cFcFm1nLmyKk-RczELRHM_T_WCjHwtrrjFHANBhOjqUWu7-YYeeLG7my8fCz_-zKB8cS8dvyZsQT8bTbh7vyIar35NXXYfJ9SZhh-tm_nt9EE_rWK8arGAAqB9buHrrmrt1rAMpSez7LK0P5PL46O_hSRLaJCQWDtcm8VRD0E-9TSumK2s8r6RxJZeVLq3RsCa1E54WGsnkCzihPfxSIb3RvDTG8S0yqee12yYxwGHtmCtybi1WwAGYKTKd0QrCEgM2iAjv9aRs4BDHVhY3qv0wlgOW6KatULsqaDciyXDXouPQeEb-J5pgkEUG7PYC-IUKfqGe84uIfEUDKuS4qDGJ5p9eLZfq9OJcTbHVKXKdiSeF_oyEvgchP4fJWh0KF0BlyJ01ktwdScJKtaPhbXSmfs5LBXCOwT-XJd7ZO9jjw3vDMD4UE-NqB_4CMrwEKSayiHzs_HHQGwQoiPBZRPKRp44UOx6pr69aivGCpUiRsPMSlvhEXjNMBGpfXe2SSXO3cp8hkmvMl3bR3gO2UUYg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEF_qFcEv4rvRKlEEP8Um-8hDELmWlip4lGrhvoV91kJNzkvuw_33ziSbaKQq-ZadhOzs7Dw2M78h5LUCFyJVBY-4ERCgcJpFigkbOWW55bE1scEC58-L9PSCf1qK5Q5ZDLUwmFY56MROUZta4xn5Abi-FIIDUfAPqx8Rdo3Cv6tDCw3pWyuY9x3E2C2yCypZxDOye3i8ODsfdDMTedexC5vlRBnjS19Mx7LkwK_d25VWV5g7AFFjMjFWHab_qLlnq-u6uckt_TO78jdzdXKP3PV-ZjjvBeM-2bHVA3K77zy5fUjo0batz7bvwnkVyk2LlQ31pgk13P1u2_U2lB6sJHRD9tYjcnFy_PXoNPLtEyINRreNXCwhGIidTgyVRivHjFC2YMLIQisJe1Va7uJcIsh8DpbbwZVw4ZRkhVKWPSazqq7sHgkhTJaW2jxjWmNlHAQ5eSrT2IC7omTKAsIGPpXaY4tji4vrsvthlkGM0U-7RO6WnrsBicanVj22xn_oD3EJRlpExu5u1OvL0m-00sVKOgrfxLnmGiSGgmkRWqqEWwtmOiCvcAFLxL6oMLnmUm6apvz4ZVHOsQUqYqDxvxKdT4jeeCJXw2S19AUNwDLE1JpQ7k8oYQfryfAeCtMw56b8Jevw5CBgNw-_HIfxpZgwV1mQF6BhBVBRngbkSS-PI9_AccHInwYkm0jqhLHTkerqWwc9ntMEoROe_vuznpE7FFN_usOqfTJr1xv7HHy3Vr3wG_InVHlDNQ
  priority: 102
  providerName: ProQuest
Title CytoPy: An autonomous cytometry analysis framework
URI https://www.ncbi.nlm.nih.gov/pubmed/34101722
https://www.proquest.com/docview/2552289594
https://www.proquest.com/docview/2539522246
https://pubmed.ncbi.nlm.nih.gov/PMC8213167
https://doaj.org/article/f0baf2a6344c4c2892eac5cab14ee123
http://dx.doi.org/10.1371/journal.pcbi.1009071
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ta9swEBZdymBfxt7rrQveGOyTiyPLb4Mxkq5ZN1go3QL5JiRZaguZncUOzP9-d_IL80jZCCTEOjnW-ZS7xzo9R8gbCSFEJFPmsSwEgMJo7Mkg1J6Rmmnm68zPcIPz10V0vmRfVuHqgHQ1W1sFlnuhHdaTWm7XJ79-1h9gwr-3VRviSdfpZKPkDa76A94DPHRoV4wwmY_16wpBmNiKXVgsx4vhW7uZ7razDJyV5fTv_7lHm3VR7gtL_86u_MNdzR-Q-22c6U4bw3hIDnT-iNxtKk_Wjwk9ravion7nTnNX7Crc2VDsSlfB0R-62tauaMlKXNNlbz0hy_nZ99Nzry2f4ClwupVnfAFgwDdqklGRKWmCLJQ6DcJMpEoKmKtCM-MnAknmE_DcBl4TFhopglRKHTwlo7zI9RFxASYLTXUSB0rhzjgAOUkkIj-DcEWKKHBI0OmJq5ZbHEtcrLldMIsBYzTD5qhd3mrXIV7fa9Nwa_xDfoa3oJdFZmx7oNhe8XaiceNLYShcE2OKKYCTFFxLqIScMK3BTTvkNd5AjtwXOSbXXIldWfLP3xZ8iiVQkQON3Sp0ORB62wqZAgarRLuhAVSGnFoDyeOBJMxgNWg-QmPqxlxygHkUrjxMsWdnYPubX_XNeFJMmMs12AvIBClIURY55Fljj73eIHBB5E8dEg8sdaDYYUt-c22pxxM6QeqE5__xuy_IPYr5P_aJ1TEZVdudfgkBXCXH5E68iuE9mX8ak8Pp7ONsDp-zs8XF5dg-FBnbWfsbDGxKAg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviO8VBgQE4ilbYjtfSBPqxqaVbdU0NqlvxnbsMWkkpUmF-s_xt3GXOoWgAU9T3uyLFZ_Pvjvn7neEvFZgQsQq4z7PI3BQOE18xSLjW2W44YHJgxwTnI9G8f4Z_ziOxivkR5sLg2GV7ZnYHNR5qfGOfBNMXwrOQZTx95NvPlaNwr-rbQkN6Uor5FsNxJhL7Dgw8-_gwlVbww-w3m8o3ds93dn3XZUBX4Nuqn0bSLCZA6vDnMpcK8vySJmMRbnMtJIg0tJwG6QSsdhTUHAWnpBHVkmWKWUYjHuDrHK8QOmR1e3d0fFJqwtYlDYVwrA4j58wPnbJeywJN52sbEy0usBYBfBSw45ybGoILDVFb3JZVleZwX9Gc_6mHvfukjvOrvUGC0G8R1ZMcZ_cXFS6nD8gdGdel8fzd96g8OSsxkyKclZ5Glq_mno696QDR_FsGy32kJxdCyMfkV5RFmaNeOCWS0NNmjCtMRMPnKo0lnGQg3mkZMz6hLV8EtphmWNJjUvR_KBLwKdZTFsgd4Xjbp_4y7cmCyyP_9Bv4xIsaRGJu2kop-fCbWxhAyUthW_iXHMNEkpBlUVaqpAbA2ZBn7zCBRSItVFgMM-5nFWVGH4aiQGWXEXMNf5XopMO0VtHZEuYrJYugQJYhhheHcr1DiWcGLrTvYbC1M65Er_2FrzZCtjV3S-X3TgoBugVBuQFaFgGVJTHffJ4IY9LvoGhhDcNtE-SjqR2GNvtKS6-NFDnKQ0RquHJvz_rBbm1f3p0KA6Ho4On5DbFsKPmomyd9OrpzDwDu7FWz93m9Mjn6z4PfgKjBYIU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviO8VBgQE4ilrYjtfSBPqPqqVQVUNJvUt2I49Jo2kNKlQ_kX-Ku5SpxA04GnKW3yJ4vP5Ppy73xHyUoILEcqEuzwLIEDhNHIlC7RrpOaaezrzMixw_jAJj075u1kw2yA_2loYTKtsdWKjqLNC4Rn5AFxfCsFBkPCBsWkR04PR2_k3FztI4Z_Wtp2GsG0Wst0GbswWeRzr-juEc-Xu-ADW_hWlo8NP-0eu7TjgKrBTlWs8Af6zZ5SfUZEpaVgWSJ2wIBOJkgLEW2huvFggLnsMxs7A5fPASMESKTWD914jmxFYfQgEN_cOJ9OT1i6wIG66hWGjHjdifGYL-VjkD6zc7MyVPMe8BYhY_Y6hbPoJrK1Gb35RlJe5xH9mdv5mKke3yS3r4zrDlVDeIRs6v0uur7pe1vcI3a-rYlq_cYa5I5YVVlUUy9JRcPerrha1IyxQimPazLH75PRKGPmA9PIi11vEgRBdaKrjiCmFVXkQYMWhCL0MXCUpQtYnrOVTqiyuObbXuEibn3URxDeraafI3dRyt0_c9VPzFa7Hf-j3cAnWtIjK3dwoFmep3eSp8aQwFL6Jc8UVSCsFsxYoIX2uNbgIffICFzBF3I0cJfhMLMsyHX-cpENsv4r4a_yvRCcdoteWyBQwWSVsMQWwDPG8OpTbHUrQHqozvIXC1M65TH_tM3iyFbDLh5-vh_GlmKyXa5AXoGEJUFEe9snDlTyu-QZOE5460D6JOpLaYWx3JD__0sCex9RH2IZH__6sZ-QG6IX0_Xhy_JjcpJiB1JyZbZNetVjqJ-BCVvKp3ZsO-XzV6uAn5xuGWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CytoPy%3A+An+autonomous+cytometry+analysis+framework&rft.jtitle=PLoS+computational+biology&rft.au=Burton%2C+Ross+J&rft.au=Ahmed%2C+Raya&rft.au=Cuff%2C+Simone+M&rft.au=Baker%2C+Sarah&rft.date=2021-06-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=17&rft.issue=6&rft.spage=e1009071&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009071&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon