Effect of Surface Coating on the Photocatalytic Function of Hybrid CdS-Au Nanorods

Hybrid semiconductor–metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects o...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 11; no. 4; pp. 462 - 471
Main Authors Ben-Shahar, Yuval, Scotognella, Francesco, Waiskopf, Nir, Kriegel, Ilka, Dal Conte, Stefano, Cerullo, Giulio, Banin, Uri
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.201402262

Cover

Abstract Hybrid semiconductor–metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au‐tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L‐glutathione and poly(styrene‐co‐maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI‐coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady‐state emission and time‐resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts. Surface coating effects on the photocatalytic properties of hybrid CdS‐Au nanorods are studied by comparing the hydrogen evolution rate and efficiencies in the water splitting reaction. Thiolated‐alkyl ligands show low yields, while polymer coatings with polyethyleneimine provide a significant increase in the apparent quantum yield due to the improved surface passivation reducing the competing surface trapping of charge carriers.
AbstractList Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au-tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L-glutathione and poly(styrene-co-maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI-coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady-state emission and time-resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts.Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au-tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L-glutathione and poly(styrene-co-maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI-coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady-state emission and time-resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts.
Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au-tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L-glutathione and poly(styrene-co-maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI-coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady-state emission and time-resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts.
Hybrid semiconductor–metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au‐tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L‐glutathione and poly(styrene‐co‐maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI‐coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady‐state emission and time‐resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts. Surface coating effects on the photocatalytic properties of hybrid CdS‐Au nanorods are studied by comparing the hydrogen evolution rate and efficiencies in the water splitting reaction. Thiolated‐alkyl ligands show low yields, while polymer coatings with polyethyleneimine provide a significant increase in the apparent quantum yield due to the improved surface passivation reducing the competing surface trapping of charge carriers.
Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au-tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L-glutathione and poly(styrene-co-maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI-coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady-state emission and time-resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts. Surface coating effects on the photocatalytic properties of hybrid CdS-Au nanorods are studied by comparing the hydrogen evolution rate and efficiencies in the water splitting reaction. Thiolated-alkyl ligands show low yields, while polymer coatings with polyethyleneimine provide a significant increase in the apparent quantum yield due to the improved surface passivation reducing the competing surface trapping of charge carriers.
Author Dal Conte, Stefano
Cerullo, Giulio
Waiskopf, Nir
Kriegel, Ilka
Banin, Uri
Ben-Shahar, Yuval
Scotognella, Francesco
Author_xml – sequence: 1
  givenname: Yuval
  surname: Ben-Shahar
  fullname: Ben-Shahar, Yuval
  organization: The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
– sequence: 2
  givenname: Francesco
  surname: Scotognella
  fullname: Scotognella, Francesco
  organization: IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, 20133, Milan, Italy
– sequence: 3
  givenname: Nir
  surname: Waiskopf
  fullname: Waiskopf, Nir
  organization: The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
– sequence: 4
  givenname: Ilka
  surname: Kriegel
  fullname: Kriegel, Ilka
  organization: IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, 20133, Milan, Italy
– sequence: 5
  givenname: Stefano
  surname: Dal Conte
  fullname: Dal Conte, Stefano
  organization: IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, 20133, Milan, Italy
– sequence: 6
  givenname: Giulio
  surname: Cerullo
  fullname: Cerullo, Giulio
  organization: IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, 20133, Milan, Italy
– sequence: 7
  givenname: Uri
  surname: Banin
  fullname: Banin, Uri
  email: Uri.Banin@mail.huji.ac.il
  organization: The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25207751$$D View this record in MEDLINE/PubMed
BookMark eNqNkdtrFDEUh4O02Iu--igBX3yZNbdJJo9lbbvCtBW3KvgSMrnY1NlJTTLo_vfOsu1SCqJPCeT7zjk5vyOwN8TBAfAKoxlGiLzLq76fEYQZIoSTZ-AQc0wr3hC5t7tjdACOcr5FiGLCxHNwQGqChKjxIfh06r0zBUYPl2Py2jg4j7qE4TuMAyw3Dn68iSUaXXS_LsHAs3EwJUxvk7FYdylYOLfL6mSEl3qIKdr8Aux73Wf38v48Bp_PTq_ni6q9Ov8wP2krwzkmFSO8k8IwYZHpamGJtBZbLLVHHWk0k9Z73dSippJg7iTzRlBmDG4wM43m9Bi83da9S_Hn6HJRq5CN63s9uDhmhTlHqBEUy_9AazLNQ-kGffMEvY1jGqaPTBTjsmkQRhP1-p4au5Wz6i6FlU5r9bDYCZhtAZNizsn5HYKR2iSnNsmpXXKTwJ4IJhS92XRJOvR_1-RW-xV6t_5HE7W8aNvHbrV1Qy7u987V6Yfigopafb08V9cX7XvBF1_UN_oH3Ne6Fg
CitedBy_id crossref_primary_10_1088_1361_6528_abbce8
crossref_primary_10_1007_s11467_024_1413_8
crossref_primary_10_1021_acs_iecr_6b01511
crossref_primary_10_1021_acsenergylett_4c02526
crossref_primary_10_1021_acs_jpclett_7b00106
crossref_primary_10_1021_acssuschemeng_2c05022
crossref_primary_10_1021_acs_jpclett_6b01904
crossref_primary_10_1007_s41061_016_0052_0
crossref_primary_10_1021_acs_chemmater_6b03779
crossref_primary_10_1016_j_colsurfa_2015_06_018
crossref_primary_10_3390_polym16142032
crossref_primary_10_1039_C7TA06026B
crossref_primary_10_1021_acs_chemrev_2c00688
crossref_primary_10_1039_C8CY00067K
crossref_primary_10_3762_bjnano_10_71
crossref_primary_10_1039_D2TA08783A
crossref_primary_10_1016_j_cej_2020_126178
crossref_primary_10_1016_j_chemphys_2015_08_002
crossref_primary_10_1063_1_5099666
crossref_primary_10_1016_j_jece_2019_103179
crossref_primary_10_1021_acsami_1c17304
crossref_primary_10_1002_slct_202303631
crossref_primary_10_1002_adma_201706697
crossref_primary_10_1002_solr_202200299
crossref_primary_10_1002_smll_201600382
crossref_primary_10_1007_s10854_022_08188_8
crossref_primary_10_3390_nano13091579
crossref_primary_10_1016_j_nanoen_2021_106306
crossref_primary_10_1021_acs_jpcc_3c07693
crossref_primary_10_1016_j_cej_2021_132740
crossref_primary_10_1016_j_cclet_2025_111115
crossref_primary_10_1039_D4TA00411F
crossref_primary_10_1016_j_chemosphere_2021_130485
crossref_primary_10_1088_1361_648X_aa60f3
crossref_primary_10_3390_molecules29194758
crossref_primary_10_1021_acs_nanolett_7b04020
crossref_primary_10_3390_nano12193343
crossref_primary_10_1186_s40712_025_00248_1
crossref_primary_10_1016_j_physrep_2017_01_003
crossref_primary_10_1007_s12274_021_3983_x
crossref_primary_10_1021_acsnano_2c12676
crossref_primary_10_1002_adma_201803351
crossref_primary_10_1021_acs_nanolett_6b01298
crossref_primary_10_1021_jacs_0c10554
crossref_primary_10_1021_acsami_0c07820
crossref_primary_10_1039_C9TC03538A
crossref_primary_10_1016_j_nanoen_2017_03_005
crossref_primary_10_1021_acs_jpcc_7b02949
crossref_primary_10_1021_acs_nanolett_3c00250
crossref_primary_10_1002_cjoc_202300191
crossref_primary_10_1021_acs_jpcc_8b12054
crossref_primary_10_1002_smll_202208108
crossref_primary_10_1016_j_jlumin_2016_09_011
crossref_primary_10_1021_acs_jpcc_8b11363
crossref_primary_10_1016_j_apcatb_2021_120946
crossref_primary_10_1016_j_jphotochem_2019_111919
crossref_primary_10_1039_D4NR03148B
crossref_primary_10_1088_1361_6463_aa50cd
crossref_primary_10_1002_smll_201902231
crossref_primary_10_1021_acsnano_1c10430
crossref_primary_10_1039_C4NR07343F
crossref_primary_10_1016_j_jphotochem_2022_113771
crossref_primary_10_1021_acs_chemrev_2c00770
crossref_primary_10_1039_C5RA14889H
crossref_primary_10_1002_aenm_202300282
crossref_primary_10_1021_acs_langmuir_7b02756
crossref_primary_10_1021_acs_jpclett_5b01687
crossref_primary_10_1021_acs_jpcc_8b01206
crossref_primary_10_1021_acs_chemmater_8b04614
crossref_primary_10_1016_j_cej_2020_126533
crossref_primary_10_1039_C6RA25823A
crossref_primary_10_1016_j_matlet_2017_03_174
crossref_primary_10_1021_acs_nanolett_7b01101
crossref_primary_10_1039_C8TA00385H
crossref_primary_10_1021_acscatal_5b01812
crossref_primary_10_1021_acs_jpcc_6b09265
crossref_primary_10_1038_ncomms10413
crossref_primary_10_1016_j_nanoen_2021_106348
crossref_primary_10_1021_acsomega_7b00767
crossref_primary_10_1007_s12274_022_5055_2
crossref_primary_10_1088_1361_6463_abfb18
crossref_primary_10_1002_adma_201506358
crossref_primary_10_1039_C5RA22014A
crossref_primary_10_1039_D0CY00308E
crossref_primary_10_1021_acsnano_4c13603
crossref_primary_10_1039_C9TA07569K
crossref_primary_10_1016_j_cej_2018_03_155
crossref_primary_10_1002_chem_201902148
crossref_primary_10_1016_j_jcat_2015_05_009
crossref_primary_10_1021_acsenergylett_6b00665
crossref_primary_10_1007_s11164_019_03904_2
crossref_primary_10_1039_C9TA03862K
crossref_primary_10_1002_celc_201700798
crossref_primary_10_1007_s12274_017_1827_5
crossref_primary_10_1002_cssc_202200200
crossref_primary_10_1021_acs_nanolett_0c01913
crossref_primary_10_1021_acs_nanolett_7b01870
crossref_primary_10_1007_s10854_019_01266_4
crossref_primary_10_1002_ejic_201801464
crossref_primary_10_1016_S1872_2067_17_62769_4
crossref_primary_10_1016_j_jcis_2020_07_035
crossref_primary_10_1016_j_physb_2016_11_021
crossref_primary_10_1016_j_jallcom_2023_171325
crossref_primary_10_1016_j_cej_2021_133026
crossref_primary_10_1016_j_nantod_2022_101681
crossref_primary_10_1039_C9NR03086G
crossref_primary_10_1039_D1MA00748C
crossref_primary_10_1016_j_jpcs_2022_110993
crossref_primary_10_1039_C6NR07356E
crossref_primary_10_1002_cctc_201901190
crossref_primary_10_1039_C9TA03059J
crossref_primary_10_1016_j_spmi_2017_07_025
crossref_primary_10_1021_acs_nanolett_0c04614
crossref_primary_10_1016_j_cattod_2018_09_010
crossref_primary_10_1016_j_apcatb_2022_121219
crossref_primary_10_1016_j_jcis_2021_10_038
crossref_primary_10_1021_acs_nanolett_8b02169
crossref_primary_10_1039_C8TA05539D
crossref_primary_10_1039_D0CY00483A
crossref_primary_10_1002_adsu_202400782
crossref_primary_10_1016_j_jallcom_2018_11_271
crossref_primary_10_1016_j_jtice_2019_05_027
crossref_primary_10_1021_acsomega_3c00324
crossref_primary_10_1002_cctc_201801306
crossref_primary_10_1002_cphc_201600239
crossref_primary_10_1021_acs_chemrev_2c00676
Cites_doi 10.1021/nn402597p
10.1002/ijch.201200073
10.1021/ja3042367
10.1038/nmat3118
10.1021/jz2013193
10.1021/nn302810y
10.1021/cm801702x
10.1007/128_2011_138
10.1002/anie.201104412
10.1002/smll.201101317
10.1039/b414807j
10.1021/ja303306u
10.1021/ja9077733
10.1021/cn1000827
10.1021/nl204166a
10.1126/science.281.5385.2016
10.1126/science.1097830
10.1007/s12668-012-0072-3
10.1021/jz401985k
10.1021/jz201629p
10.1021/nl901679q
10.1039/b606572b
10.1063/1.3480613
10.1021/nl072003g
10.1021/nn900144n
10.1021/ja907984r
10.1126/science.1227775
10.1021/ja101031r
10.1021/nl0717661
10.1021/ja303698e
10.1021/ja016424q
10.1021/nn302089h
10.1021/jp065594s
10.1021/ja0169670
10.1021/jp960484e
10.1021/jz1007966
10.1021/jp047787q
10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G
10.1039/B800489G
10.1002/cphc.200800874
10.1557/mrs.2012.200
10.1002/anie.200906010
10.1002/anie.201006407
10.1021/cm402131n
10.1021/nl9017918
10.1021/nn305823w
10.1021/cm7029344
10.1021/jz100075c
10.1021/nl200409x
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
DOI 10.1002/smll.201402262
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 471
ExternalDocumentID 3563476591
25207751
10_1002_smll_201402262
SMLL201402262
ark_67375_WNG_TMLD76HV_Z
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ERC
  funderid: 246841
– fundername: European Research Council under the European Union's Seventh Framework Programme
  funderid: FP7/2007–2013
– fundername: Ministry of Science and Technology, Israel & The Directorate General for Political and Security Affairs of the Ministry of Foreign Affairs, Italy
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
AAHHS
AAYOK
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
ID FETCH-LOGICAL-c6612-426b97c47d0cb57d29dd1d19af0b28a49dffa857539216e94fc734cc1814c8a63
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 04:12:56 EDT 2025
Fri Sep 05 07:37:17 EDT 2025
Fri Jul 25 12:29:50 EDT 2025
Mon Jul 21 05:35:48 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Tue Jul 01 02:10:15 EDT 2025
Tue Sep 09 05:07:53 EDT 2025
Tue Sep 09 05:32:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords hydrogen evolution
surface coatings
photocatalysis
charge transfer dynamics
hybrid nanoparticles
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6612-426b97c47d0cb57d29dd1d19af0b28a49dffa857539216e94fc734cc1814c8a63
Notes European Research Council under the European Union's Seventh Framework Programme - No. FP7/2007-2013
Ministry of Science and Technology, Israel & The Directorate General for Political and Security Affairs of the Ministry of Foreign Affairs, Italy
ERC - No. 246841
ark:/67375/WNG-TMLD76HV-Z
ArticleID:SMLL201402262
istex:1DFA918060BF79E97230AB0575D507FA134FE751
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://hdl.handle.net/11311/970823
PMID 25207751
PQID 1646988010
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_1660087319
proquest_miscellaneous_1652426339
proquest_journals_1646988010
pubmed_primary_25207751
crossref_primary_10_1002_smll_201402262
crossref_citationtrail_10_1002_smll_201402262
wiley_primary_10_1002_smll_201402262_SMLL201402262
istex_primary_ark_67375_WNG_TMLD76HV_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-00-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015-00-00
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References P. D. Yang, MRS Bull. 2012, 37, 806-813.
W. W. Yu, X. G. Peng, Angew. Chem. Int. Ed. 2002, 41, 2368-2371.
N. Waiskopf, R. Rotem, I. Shweky, L. Yedidya, H. Soreq, U. Banin, BioNanoScience 2013, 3, 1-11.
N. Z. Bao, L. M. Shen, T. Takata, K. Domen, Chem. Mater. 2008, 20, 110-117.
K. F. Wu, H. M. Zhu, Z. Liu, W. Rodriguez-Cordoba, T. Q. Lian, J. Am. Chem. Soc. 2012, 134, 10337-10340.
A. Thibert, F. A. Frame, E. Busby, M. A. Holmes, F. E. Osterloh, D. S. Larsen, J. Phys. Chem. Lett. 2011, 2, 2688-2694.
B. L. Greene, C. A. Joseph, M. J. Maroney, R. B. Dyer, J. Am. Chem. Soc. 2012, 134, 11108-11111.
M. Berr, A. Vaneski, A. S. Susha, J. Rodriguez-Fernandez, M. Doblinger, F. Jackel, A. L. Rogach, J. Feldmann, Appl. Phys. Lett. 2010, 97, 093108.
A. M. Smith, H. W. Duan, M. N. Rhyner, G. Ruan, S. M. Nie, Phys. Chem. Chem. Phys. 2006, 8, 3895-3903.
M. B. Wilker, K. J. Schnitzenbaumer, G. Dukovic, Israel J. Chem. 2012, 52, 1002-1015.
R. Costi, A. E. Saunders, U. Banin, Angew. Chem. Int. Ed. 2010, 49, 4878-4897.
A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253-278.
K. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655-2661.
T. S. Ahmadi, S. L. Logunov, M. A. El-Sayed, J. Phys. Chem. 1996, 100, 8053-8056.
K. A. Brown, S. Dayal, X. Ai, G. Rumbles, P. W. King, J. Am. Chem. Soc. 2010, 132, 9672-9680.
A. Sitt, F. Della Sala, G. Menagen, U. Banin, Nano Lett. 2009, 9, 3470-3476.
Y. Shemesh, J. E. Macdonald, G. Menagen, U. Banin, Angew. Chem. Int. Ed. 2011, 50, 1185-1189.
J. Aldana, Y. A. Wang, X. G. Peng, J. Am. Chem. Soc. 2001, 123, 8844-8850.
E. Shaviv, A. Salant, U. Banin, ChemPhysChem 2009, 10, 1028-1031.
W. C. W. Chan, S. M. Nie, Science 1998, 281, 2016-2018.
Z. J. Han, F. Qiu, R. Eisenberg, P. L. Holland, T. D. Krauss, Science 2012, 338, 1321-1324.
E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, M. Zamkov, Nano Lett. 2011, 11, 1792-1799.
L. Amirav, A. P. Alivisatos, J. Phys. Chem. Lett. 2010, 1, 1051-1054.
G. Menagen, D. Mocatta, A. Salant, I. Popov, D. Dorfs, U. Banin, Chem. Mater. 2008, 20, 6900-6902.
T. O'Connor, M. S. Panov, A. Mereshchenko, A. N. Tarnovsky, R. Lorek, D. Perera, G. Diederich, S. Lambright, P. Moroz, M. Zamkov, ACS Nano 2012, 6, 8156-8165.
T. Nann, Chem. Commun. 2005, 1735-1736.
D. Mongin, E. Shaviv, P. Maioli, A. Crut, U. Banin, N. Del Fatti, F. Vallee, ACS Nano 2012, 6, 7034-7043.
L. Carbone, C. Nobile, M. De Giorgi, F. D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, L. Manna, Nano Lett. 2007, 7, 2942-2950.
D. V. Talapin, J. H. Nelson, E. V. Shevchenko, S. Aloni, B. Sadtler, A. P. Alivisatos, Nano Lett. 2007, 7, 2951-2959.
M. J. Berr, A. Vaneski, C. Mauser, S. Fischbach, A. S. Susha, A. L. Rogach, F. Jackel, J. Feldmann, Small 2012, 8, 291-297.
M. Shim, A. Javey, N. W. S. Kam, H. J. Dai, J. Am. Chem. Soc. 2001, 123, 11512-11513.
K. P. Acharya, R. S. Khnayzer, T. O'Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, M. Zamkov, Nano Lett. 2012, 12, 522-522.
P. Yu, X. Wen, Y.-C. Lee, W.-C. Lee, C.-C. Kang, J. Tang, J. Phys. Chem. Lett. 2013, 4, 3596-3601.
R. Zhou, R. Stalder, D. Xie, W. Cao, Y. Zheng, Y. Yang, M. Plaisant, P. H. Holloway, K. S. Schanze, J. R. Reynolds, J. Xue, ACS Nano 2013, 7, 4846-4854.
J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, Nat. Mater. 2011, 10, 765-771.
K. Maeda, K. Domen, Top. Curr. Chem. 2011, 303, 95-119.
K. Wu, W. E. Rodríguez-Córdoba, Z. Liu, H. Zhu, T. Lian, ACS Nano 2013, 7, 7173-7185.
L. Carbone, A. Jakab, Y. Khalavka, C. Sonnichsen, Nano Lett. 2009, 9, 3710-3714.
O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, T. Goodson, J. Am. Chem. Soc. 2010, 132, 16-17.
M. L. Tang, D. C. Grauer, B. Lassalle-Kaiser, V. K. Yachandra, L. Amirav, J. R. Long, J. Yano, A. P. Alivisatos, Angew. Chem. Int. Ed. 2011, 50, 10203-10207.
U. Banin, Y. Ben-Shahar, K. Vinokurov, Chem. Mater. 2013, 26, 97-110.
H. M. Zhu, N. H. Song, H. J. Lv, C. L. Hill, T. Q. Lian, J. Am. Chem. Soc. 2012, 134, 11701-11708.
E. E. Lees, T. L. Nguyen, A. H. A. Clayton, P. Mulvaney, B. W. Muir, ACS Nano 2009, 3, 1121-1128.
J. He, W. Ji, G. H. Ma, S. H. Tang, E. S. W. Kong, S. Y. Chow, X. H. Zhang, Z. L. Hua, J. L. Shi, J. Phys. .Chem B 2005, 109, 4373-4376.
N. Waiskopf, I. Shweky, I. Lieberman, U. Banin, H. Soreq, ACS Chem. Neurosci. 2011, 2 (3), 141-150.
G. Menagen, J. E. Macdonald, Y. Shemesh, I. Popov, U. Banin, J. Am. Chem. Soc. 2009, 131, 17406-17411.
T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Science 2004, 304 (5678), 1787-1790.
P. V. Kamat, J. Phys. Chem. Lett. 2012, 3, 663-672.
A. E. Saunders, I. Popov, U. Banin, J. Phys. Chem. B 2006, 110(50), 25421-25429.
1998; 281
2010; 97
2001; 123
2013; 26
2013; 3
2013; 4
2011; 2
2006; 8
2011; 11
2011; 10
2005
1996; 100
2012; 37
2009; 131
2013; 7
2012; 12
2004; 304
2012; 52
2011; 303
2010; 49
2012; 3
2010; 1
2012; 134
2009; 10
2002; 41
2011; 50
2010; 132
2009; 9
2005; 109
2007; 7
2008; 20
2012; 6
2009; 3
2006; 110(50)
2012; 338
2009; 38
2012; 8
Chan (10.1002/smll.201402262-BIB0024|smll201402262-cit-0024) 1998; 281
Yu (10.1002/smll.201402262-BIB0047|smll201402262-cit-0047) 2002; 41
Tang (10.1002/smll.201402262-BIB0014|smll201402262-cit-0014) 2011; 50
Wu (10.1002/smll.201402262-BIB0043|smll201402262-cit-0043) 2013; 7
Ahmadi (10.1002/smll.201402262-BIB0038|smll201402262-cit-0038) 1996; 100
Han (10.1002/smll.201402262-BIB0003|smll201402262-cit-0003) 2012; 338
Carbone (10.1002/smll.201402262-BIB0022|smll201402262-cit-0022) 2009; 9
Zhou (10.1002/smll.201402262-BIB0046|smll201402262-cit-0046) 2013; 7
Yang (10.1002/smll.201402262-BIB0001|smll201402262-cit-0001) 2012; 37
Nann (10.1002/smll.201402262-BIB0025|smll201402262-cit-0025) 2005
Bao (10.1002/smll.201402262-BIB0011|smll201402262-cit-0011) 2008; 20
O'Connor (10.1002/smll.201402262-BIB0019|smll201402262-cit-0019) 2012; 6
Khon (10.1002/smll.201402262-BIB0039|smll201402262-cit-0039) 2011; 11
He (10.1002/smll.201402262-BIB0041|smll201402262-cit-0041) 2005; 109
Lees (10.1002/smll.201402262-BIB0026|smll201402262-cit-0026) 2009; 3
Mokari (10.1002/smll.201402262-BIB0030|smll201402262-cit-0030) 2004; 304
Yu (10.1002/smll.201402262-BIB0040|smll201402262-cit-0040) 2013; 4
Tang (10.1002/smll.201402262-BIB0045|smll201402262-cit-0045) 2011; 10
Kamat (10.1002/smll.201402262-BIB0018|smll201402262-cit-0018) 2012; 3
Menagen (10.1002/smll.201402262-BIB0023|smll201402262-cit-0023) 2009; 131
Brown (10.1002/smll.201402262-BIB0016|smll201402262-cit-0016) 2010; 132
Maeda (10.1002/smll.201402262-BIB0002|smll201402262-cit-0002) 2010; 1
Berr (10.1002/smll.201402262-BIB0013|smll201402262-cit-0013) 2010; 97
Saunders (10.1002/smll.201402262-BIB0029|smll201402262-cit-0029) 2006; 110(50)
Shim (10.1002/smll.201402262-BIB0034|smll201402262-cit-0034) 2001; 123
Zhu (10.1002/smll.201402262-BIB0006|smll201402262-cit-0006) 2012; 134
Shemesh (10.1002/smll.201402262-BIB0012|smll201402262-cit-0012) 2011; 50
Smith (10.1002/smll.201402262-BIB0035|smll201402262-cit-0035) 2006; 8
Costi (10.1002/smll.201402262-BIB0004|smll201402262-cit-0004) 2010; 49
Wilker (10.1002/smll.201402262-BIB0007|smll201402262-cit-0007) 2012; 52
Banin (10.1002/smll.201402262-BIB0008|smll201402262-cit-0008) 2013; 26
Amirav (10.1002/smll.201402262-BIB0009|smll201402262-cit-0009) 2010; 1
Shaviv (10.1002/smll.201402262-BIB0049|smll201402262-cit-0049) 2009; 10
Carbone (10.1002/smll.201402262-BIB0027|smll201402262-cit-0027) 2007; 7
Thibert (10.1002/smll.201402262-BIB0044|smll201402262-cit-0044) 2011; 2
Aldana (10.1002/smll.201402262-BIB0036|smll201402262-cit-0036) 2001; 123
Acharya (10.1002/smll.201402262-BIB0010|smll201402262-cit-0010) 2012; 12
Wu (10.1002/smll.201402262-BIB0020|smll201402262-cit-0020) 2012; 134
Maeda (10.1002/smll.201402262-BIB0015|smll201402262-cit-0015) 2011; 303
Berr (10.1002/smll.201402262-BIB0021|smll201402262-cit-0021) 2012; 8
Menagen (10.1002/smll.201402262-BIB0048|smll201402262-cit-0048) 2008; 20
Sitt (10.1002/smll.201402262-BIB0042|smll201402262-cit-0042) 2009; 9
Kudo (10.1002/smll.201402262-BIB0005|smll201402262-cit-0005) 2009; 38
Greene (10.1002/smll.201402262-BIB0017|smll201402262-cit-0017) 2012; 134
Mongin (10.1002/smll.201402262-BIB0037|smll201402262-cit-0037) 2012; 6
Talapin (10.1002/smll.201402262-BIB0028|smll201402262-cit-0028) 2007; 7
Varnavski (10.1002/smll.201402262-BIB0031|smll201402262-cit-0031) 2010; 132
Waiskopf (10.1002/smll.201402262-BIB0032|smll201402262-cit-0032) 2013; 3
Waiskopf (10.1002/smll.201402262-BIB0033|smll201402262-cit-0033) 2011; 2
References_xml – reference: L. Amirav, A. P. Alivisatos, J. Phys. Chem. Lett. 2010, 1, 1051-1054.
– reference: O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, T. Goodson, J. Am. Chem. Soc. 2010, 132, 16-17.
– reference: D. V. Talapin, J. H. Nelson, E. V. Shevchenko, S. Aloni, B. Sadtler, A. P. Alivisatos, Nano Lett. 2007, 7, 2951-2959.
– reference: R. Costi, A. E. Saunders, U. Banin, Angew. Chem. Int. Ed. 2010, 49, 4878-4897.
– reference: J. Aldana, Y. A. Wang, X. G. Peng, J. Am. Chem. Soc. 2001, 123, 8844-8850.
– reference: K. Wu, W. E. Rodríguez-Córdoba, Z. Liu, H. Zhu, T. Lian, ACS Nano 2013, 7, 7173-7185.
– reference: K. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655-2661.
– reference: Z. J. Han, F. Qiu, R. Eisenberg, P. L. Holland, T. D. Krauss, Science 2012, 338, 1321-1324.
– reference: H. M. Zhu, N. H. Song, H. J. Lv, C. L. Hill, T. Q. Lian, J. Am. Chem. Soc. 2012, 134, 11701-11708.
– reference: E. Shaviv, A. Salant, U. Banin, ChemPhysChem 2009, 10, 1028-1031.
– reference: M. L. Tang, D. C. Grauer, B. Lassalle-Kaiser, V. K. Yachandra, L. Amirav, J. R. Long, J. Yano, A. P. Alivisatos, Angew. Chem. Int. Ed. 2011, 50, 10203-10207.
– reference: T. Nann, Chem. Commun. 2005, 1735-1736.
– reference: J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, Nat. Mater. 2011, 10, 765-771.
– reference: M. Berr, A. Vaneski, A. S. Susha, J. Rodriguez-Fernandez, M. Doblinger, F. Jackel, A. L. Rogach, J. Feldmann, Appl. Phys. Lett. 2010, 97, 093108.
– reference: A. E. Saunders, I. Popov, U. Banin, J. Phys. Chem. B 2006, 110(50), 25421-25429.
– reference: A. Thibert, F. A. Frame, E. Busby, M. A. Holmes, F. E. Osterloh, D. S. Larsen, J. Phys. Chem. Lett. 2011, 2, 2688-2694.
– reference: Y. Shemesh, J. E. Macdonald, G. Menagen, U. Banin, Angew. Chem. Int. Ed. 2011, 50, 1185-1189.
– reference: W. W. Yu, X. G. Peng, Angew. Chem. Int. Ed. 2002, 41, 2368-2371.
– reference: J. He, W. Ji, G. H. Ma, S. H. Tang, E. S. W. Kong, S. Y. Chow, X. H. Zhang, Z. L. Hua, J. L. Shi, J. Phys. .Chem B 2005, 109, 4373-4376.
– reference: N. Z. Bao, L. M. Shen, T. Takata, K. Domen, Chem. Mater. 2008, 20, 110-117.
– reference: G. Menagen, J. E. Macdonald, Y. Shemesh, I. Popov, U. Banin, J. Am. Chem. Soc. 2009, 131, 17406-17411.
– reference: P. Yu, X. Wen, Y.-C. Lee, W.-C. Lee, C.-C. Kang, J. Tang, J. Phys. Chem. Lett. 2013, 4, 3596-3601.
– reference: L. Carbone, C. Nobile, M. De Giorgi, F. D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, L. Manna, Nano Lett. 2007, 7, 2942-2950.
– reference: U. Banin, Y. Ben-Shahar, K. Vinokurov, Chem. Mater. 2013, 26, 97-110.
– reference: R. Zhou, R. Stalder, D. Xie, W. Cao, Y. Zheng, Y. Yang, M. Plaisant, P. H. Holloway, K. S. Schanze, J. R. Reynolds, J. Xue, ACS Nano 2013, 7, 4846-4854.
– reference: E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, M. Zamkov, Nano Lett. 2011, 11, 1792-1799.
– reference: T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Science 2004, 304 (5678), 1787-1790.
– reference: A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253-278.
– reference: E. E. Lees, T. L. Nguyen, A. H. A. Clayton, P. Mulvaney, B. W. Muir, ACS Nano 2009, 3, 1121-1128.
– reference: K. P. Acharya, R. S. Khnayzer, T. O'Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, M. Zamkov, Nano Lett. 2012, 12, 522-522.
– reference: K. F. Wu, H. M. Zhu, Z. Liu, W. Rodriguez-Cordoba, T. Q. Lian, J. Am. Chem. Soc. 2012, 134, 10337-10340.
– reference: N. Waiskopf, R. Rotem, I. Shweky, L. Yedidya, H. Soreq, U. Banin, BioNanoScience 2013, 3, 1-11.
– reference: G. Menagen, D. Mocatta, A. Salant, I. Popov, D. Dorfs, U. Banin, Chem. Mater. 2008, 20, 6900-6902.
– reference: K. A. Brown, S. Dayal, X. Ai, G. Rumbles, P. W. King, J. Am. Chem. Soc. 2010, 132, 9672-9680.
– reference: D. Mongin, E. Shaviv, P. Maioli, A. Crut, U. Banin, N. Del Fatti, F. Vallee, ACS Nano 2012, 6, 7034-7043.
– reference: N. Waiskopf, I. Shweky, I. Lieberman, U. Banin, H. Soreq, ACS Chem. Neurosci. 2011, 2 (3), 141-150.
– reference: M. J. Berr, A. Vaneski, C. Mauser, S. Fischbach, A. S. Susha, A. L. Rogach, F. Jackel, J. Feldmann, Small 2012, 8, 291-297.
– reference: T. O'Connor, M. S. Panov, A. Mereshchenko, A. N. Tarnovsky, R. Lorek, D. Perera, G. Diederich, S. Lambright, P. Moroz, M. Zamkov, ACS Nano 2012, 6, 8156-8165.
– reference: L. Carbone, A. Jakab, Y. Khalavka, C. Sonnichsen, Nano Lett. 2009, 9, 3710-3714.
– reference: A. Sitt, F. Della Sala, G. Menagen, U. Banin, Nano Lett. 2009, 9, 3470-3476.
– reference: T. S. Ahmadi, S. L. Logunov, M. A. El-Sayed, J. Phys. Chem. 1996, 100, 8053-8056.
– reference: P. D. Yang, MRS Bull. 2012, 37, 806-813.
– reference: A. M. Smith, H. W. Duan, M. N. Rhyner, G. Ruan, S. M. Nie, Phys. Chem. Chem. Phys. 2006, 8, 3895-3903.
– reference: W. C. W. Chan, S. M. Nie, Science 1998, 281, 2016-2018.
– reference: M. B. Wilker, K. J. Schnitzenbaumer, G. Dukovic, Israel J. Chem. 2012, 52, 1002-1015.
– reference: P. V. Kamat, J. Phys. Chem. Lett. 2012, 3, 663-672.
– reference: M. Shim, A. Javey, N. W. S. Kam, H. J. Dai, J. Am. Chem. Soc. 2001, 123, 11512-11513.
– reference: B. L. Greene, C. A. Joseph, M. J. Maroney, R. B. Dyer, J. Am. Chem. Soc. 2012, 134, 11108-11111.
– reference: K. Maeda, K. Domen, Top. Curr. Chem. 2011, 303, 95-119.
– volume: 11
  start-page: 1792
  year: 2011
  end-page: 1799
  publication-title: Nano Lett.
– volume: 7
  start-page: 2942
  year: 2007
  end-page: 2950
  publication-title: Nano Lett.
– volume: 110(50)
  start-page: 25421
  year: 2006
  end-page: 25429
  publication-title: J. Phys. Chem. B
– volume: 7
  start-page: 2951
  year: 2007
  end-page: 2959
  publication-title: Nano Lett.
– volume: 8
  start-page: 291
  year: 2012
  end-page: 297
  publication-title: Small
– volume: 50
  start-page: 1185
  year: 2011
  end-page: 1189
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 4846
  year: 2013
  end-page: 4854
  publication-title: ACS Nano
– volume: 49
  start-page: 4878
  year: 2010
  end-page: 4897
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 1002
  year: 2012
  end-page: 1015
  publication-title: Israel J. Chem.
– volume: 2
  start-page: 141
  issue: 3
  year: 2011
  end-page: 150
  publication-title: ACS Chem. Neurosci.
– volume: 8
  start-page: 3895
  year: 2006
  end-page: 3903
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 2655
  year: 2010
  end-page: 2661
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 8156
  year: 2012
  end-page: 8165
  publication-title: ACS Nano
– volume: 50
  start-page: 10203
  year: 2011
  end-page: 10207
  publication-title: Angew. Chem. Int. Ed.
– volume: 134
  start-page: 11108
  year: 2012
  end-page: 11111
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 17406
  year: 2009
  end-page: 17411
  publication-title: J. Am. Chem. Soc.
– start-page: 1735
  year: 2005
  end-page: 1736
  publication-title: Chem. Commun.
– volume: 37
  start-page: 806
  year: 2012
  end-page: 813
  publication-title: MRS Bull.
– volume: 1
  start-page: 1051
  year: 2010
  end-page: 1054
  publication-title: J. Phys. Chem. Lett.
– volume: 281
  start-page: 2016
  year: 1998
  end-page: 2018
  publication-title: Science
– volume: 9
  start-page: 3470
  year: 2009
  end-page: 3476
  publication-title: Nano Lett.
– volume: 123
  start-page: 8844
  year: 2001
  end-page: 8850
  publication-title: J. Am. Chem. Soc.
– volume: 303
  start-page: 95
  year: 2011
  end-page: 119
  publication-title: Top. Curr. Chem.
– volume: 123
  start-page: 11512
  year: 2001
  end-page: 11513
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 4373
  year: 2005
  end-page: 4376
  publication-title: J. Phys. .Chem B
– volume: 10
  start-page: 765
  year: 2011
  end-page: 771
  publication-title: Nat. Mater.
– volume: 12
  start-page: 522
  year: 2012
  end-page: 522
  publication-title: Nano Lett.
– volume: 134
  start-page: 10337
  year: 2012
  end-page: 10340
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 7034
  year: 2012
  end-page: 7043
  publication-title: ACS Nano
– volume: 26
  start-page: 97
  year: 2013
  end-page: 110
  publication-title: Chem. Mater.
– volume: 304
  start-page: 1787
  issue: 5678
  year: 2004
  end-page: 1790
  publication-title: Science
– volume: 2
  start-page: 2688
  year: 2011
  end-page: 2694
  publication-title: J. Phys. Chem. Lett.
– volume: 132
  start-page: 9672
  year: 2010
  end-page: 9680
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 11701
  year: 2012
  end-page: 11708
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 2368
  year: 2002
  end-page: 2371
  publication-title: Angew. Chem. Int. Ed.
– volume: 338
  start-page: 1321
  year: 2012
  end-page: 1324
  publication-title: Science
– volume: 3
  start-page: 1
  year: 2013
  end-page: 11
  publication-title: BioNanoScience
– volume: 9
  start-page: 3710
  year: 2009
  end-page: 3714
  publication-title: Nano Lett.
– volume: 3
  start-page: 1121
  year: 2009
  end-page: 1128
  publication-title: ACS Nano
– volume: 100
  start-page: 8053
  year: 1996
  end-page: 8056
  publication-title: J. Phys. Chem.
– volume: 4
  start-page: 3596
  year: 2013
  end-page: 3601
  publication-title: J. Phys. Chem. Lett.
– volume: 38
  start-page: 253
  year: 2009
  end-page: 278
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 1028
  year: 2009
  end-page: 1031
  publication-title: ChemPhysChem
– volume: 7
  start-page: 7173
  year: 2013
  end-page: 7185
  publication-title: ACS Nano
– volume: 3
  start-page: 663
  year: 2012
  end-page: 672
  publication-title: J. Phys. Chem. Lett.
– volume: 20
  start-page: 110
  year: 2008
  end-page: 117
  publication-title: Chem. Mater.
– volume: 20
  start-page: 6900
  year: 2008
  end-page: 6902
  publication-title: Chem. Mater.
– volume: 97
  start-page: 093108
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 132
  start-page: 16
  year: 2010
  end-page: 17
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 7173
  year: 2013
  ident: 10.1002/smll.201402262-BIB0043|smll201402262-cit-0043
  publication-title: ACS Nano
  doi: 10.1021/nn402597p
– volume: 52
  start-page: 1002
  year: 2012
  ident: 10.1002/smll.201402262-BIB0007|smll201402262-cit-0007
  publication-title: Israel J. Chem.
  doi: 10.1002/ijch.201200073
– volume: 134
  start-page: 11108
  year: 2012
  ident: 10.1002/smll.201402262-BIB0017|smll201402262-cit-0017
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3042367
– volume: 10
  start-page: 765
  year: 2011
  ident: 10.1002/smll.201402262-BIB0045|smll201402262-cit-0045
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3118
– volume: 2
  start-page: 2688
  year: 2011
  ident: 10.1002/smll.201402262-BIB0044|smll201402262-cit-0044
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2013193
– volume: 6
  start-page: 8156
  year: 2012
  ident: 10.1002/smll.201402262-BIB0019|smll201402262-cit-0019
  publication-title: ACS Nano
  doi: 10.1021/nn302810y
– volume: 20
  start-page: 6900
  year: 2008
  ident: 10.1002/smll.201402262-BIB0048|smll201402262-cit-0048
  publication-title: Chem. Mater.
  doi: 10.1021/cm801702x
– volume: 303
  start-page: 95
  year: 2011
  ident: 10.1002/smll.201402262-BIB0015|smll201402262-cit-0015
  publication-title: Top. Curr. Chem.
  doi: 10.1007/128_2011_138
– volume: 50
  start-page: 10203
  year: 2011
  ident: 10.1002/smll.201402262-BIB0014|smll201402262-cit-0014
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201104412
– volume: 8
  start-page: 291
  year: 2012
  ident: 10.1002/smll.201402262-BIB0021|smll201402262-cit-0021
  publication-title: Small
  doi: 10.1002/smll.201101317
– start-page: 1735
  year: 2005
  ident: 10.1002/smll.201402262-BIB0025|smll201402262-cit-0025
  publication-title: Chem. Commun.
  doi: 10.1039/b414807j
– volume: 134
  start-page: 10337
  year: 2012
  ident: 10.1002/smll.201402262-BIB0020|smll201402262-cit-0020
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303306u
– volume: 131
  start-page: 17406
  year: 2009
  ident: 10.1002/smll.201402262-BIB0023|smll201402262-cit-0023
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9077733
– volume: 2
  start-page: 141
  issue: 3
  year: 2011
  ident: 10.1002/smll.201402262-BIB0033|smll201402262-cit-0033
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/cn1000827
– volume: 12
  start-page: 522
  year: 2012
  ident: 10.1002/smll.201402262-BIB0010|smll201402262-cit-0010
  publication-title: Nano Lett.
  doi: 10.1021/nl204166a
– volume: 281
  start-page: 2016
  year: 1998
  ident: 10.1002/smll.201402262-BIB0024|smll201402262-cit-0024
  publication-title: Science
  doi: 10.1126/science.281.5385.2016
– volume: 304
  start-page: 1787
  issue: 5678
  year: 2004
  ident: 10.1002/smll.201402262-BIB0030|smll201402262-cit-0030
  publication-title: Science
  doi: 10.1126/science.1097830
– volume: 3
  start-page: 1
  year: 2013
  ident: 10.1002/smll.201402262-BIB0032|smll201402262-cit-0032
  publication-title: BioNanoScience
  doi: 10.1007/s12668-012-0072-3
– volume: 4
  start-page: 3596
  year: 2013
  ident: 10.1002/smll.201402262-BIB0040|smll201402262-cit-0040
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401985k
– volume: 3
  start-page: 663
  year: 2012
  ident: 10.1002/smll.201402262-BIB0018|smll201402262-cit-0018
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz201629p
– volume: 9
  start-page: 3470
  year: 2009
  ident: 10.1002/smll.201402262-BIB0042|smll201402262-cit-0042
  publication-title: Nano Lett.
  doi: 10.1021/nl901679q
– volume: 8
  start-page: 3895
  year: 2006
  ident: 10.1002/smll.201402262-BIB0035|smll201402262-cit-0035
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b606572b
– volume: 97
  start-page: 093108
  year: 2010
  ident: 10.1002/smll.201402262-BIB0013|smll201402262-cit-0013
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3480613
– volume: 7
  start-page: 2951
  year: 2007
  ident: 10.1002/smll.201402262-BIB0028|smll201402262-cit-0028
  publication-title: Nano Lett.
  doi: 10.1021/nl072003g
– volume: 3
  start-page: 1121
  year: 2009
  ident: 10.1002/smll.201402262-BIB0026|smll201402262-cit-0026
  publication-title: ACS Nano
  doi: 10.1021/nn900144n
– volume: 132
  start-page: 16
  year: 2010
  ident: 10.1002/smll.201402262-BIB0031|smll201402262-cit-0031
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907984r
– volume: 338
  start-page: 1321
  year: 2012
  ident: 10.1002/smll.201402262-BIB0003|smll201402262-cit-0003
  publication-title: Science
  doi: 10.1126/science.1227775
– volume: 132
  start-page: 9672
  year: 2010
  ident: 10.1002/smll.201402262-BIB0016|smll201402262-cit-0016
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101031r
– volume: 7
  start-page: 2942
  year: 2007
  ident: 10.1002/smll.201402262-BIB0027|smll201402262-cit-0027
  publication-title: Nano Lett.
  doi: 10.1021/nl0717661
– volume: 134
  start-page: 11701
  year: 2012
  ident: 10.1002/smll.201402262-BIB0006|smll201402262-cit-0006
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303698e
– volume: 123
  start-page: 8844
  year: 2001
  ident: 10.1002/smll.201402262-BIB0036|smll201402262-cit-0036
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja016424q
– volume: 6
  start-page: 7034
  year: 2012
  ident: 10.1002/smll.201402262-BIB0037|smll201402262-cit-0037
  publication-title: ACS Nano
  doi: 10.1021/nn302089h
– volume: 110(50)
  start-page: 25421
  year: 2006
  ident: 10.1002/smll.201402262-BIB0029|smll201402262-cit-0029
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp065594s
– volume: 123
  start-page: 11512
  year: 2001
  ident: 10.1002/smll.201402262-BIB0034|smll201402262-cit-0034
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0169670
– volume: 100
  start-page: 8053
  year: 1996
  ident: 10.1002/smll.201402262-BIB0038|smll201402262-cit-0038
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp960484e
– volume: 1
  start-page: 2655
  year: 2010
  ident: 10.1002/smll.201402262-BIB0002|smll201402262-cit-0002
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1007966
– volume: 109
  start-page: 4373
  year: 2005
  ident: 10.1002/smll.201402262-BIB0041|smll201402262-cit-0041
  publication-title: J. Phys. .Chem B
  doi: 10.1021/jp047787q
– volume: 41
  start-page: 2368
  year: 2002
  ident: 10.1002/smll.201402262-BIB0047|smll201402262-cit-0047
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G
– volume: 38
  start-page: 253
  year: 2009
  ident: 10.1002/smll.201402262-BIB0005|smll201402262-cit-0005
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B800489G
– volume: 10
  start-page: 1028
  year: 2009
  ident: 10.1002/smll.201402262-BIB0049|smll201402262-cit-0049
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200800874
– volume: 37
  start-page: 806
  year: 2012
  ident: 10.1002/smll.201402262-BIB0001|smll201402262-cit-0001
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.200
– volume: 49
  start-page: 4878
  year: 2010
  ident: 10.1002/smll.201402262-BIB0004|smll201402262-cit-0004
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200906010
– volume: 50
  start-page: 1185
  year: 2011
  ident: 10.1002/smll.201402262-BIB0012|smll201402262-cit-0012
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201006407
– volume: 26
  start-page: 97
  year: 2013
  ident: 10.1002/smll.201402262-BIB0008|smll201402262-cit-0008
  publication-title: Chem. Mater.
  doi: 10.1021/cm402131n
– volume: 9
  start-page: 3710
  year: 2009
  ident: 10.1002/smll.201402262-BIB0022|smll201402262-cit-0022
  publication-title: Nano Lett.
  doi: 10.1021/nl9017918
– volume: 7
  start-page: 4846
  year: 2013
  ident: 10.1002/smll.201402262-BIB0046|smll201402262-cit-0046
  publication-title: ACS Nano
  doi: 10.1021/nn305823w
– volume: 20
  start-page: 110
  year: 2008
  ident: 10.1002/smll.201402262-BIB0011|smll201402262-cit-0011
  publication-title: Chem. Mater.
  doi: 10.1021/cm7029344
– volume: 1
  start-page: 1051
  year: 2010
  ident: 10.1002/smll.201402262-BIB0009|smll201402262-cit-0009
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100075c
– volume: 11
  start-page: 1792
  year: 2011
  ident: 10.1002/smll.201402262-BIB0039|smll201402262-cit-0039
  publication-title: Nano Lett.
  doi: 10.1021/nl200409x
SSID ssj0031247
Score 2.5103607
Snippet Hybrid semiconductor–metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their...
Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 462
SubjectTerms Charge
charge transfer dynamics
Coatings
hybrid nanoparticles
Hydrogen evolution
Ligands
Mathematical models
Nanoparticles
Nanorods
Nanotechnology
Photocatalysis
surface coatings
Title Effect of Surface Coating on the Photocatalytic Function of Hybrid CdS-Au Nanorods
URI https://api.istex.fr/ark:/67375/WNG-TMLD76HV-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201402262
https://www.ncbi.nlm.nih.gov/pubmed/25207751
https://www.proquest.com/docview/1646988010
https://www.proquest.com/docview/1652426339
https://www.proquest.com/docview/1660087319
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1613-6810
  databaseCode: DR2
  dateStart: 20050101
  customDbUrl:
  isFulltext: true
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFB6hcoED-2IoaJAQnNza42U8xyolRCipEEmh4jKaVUgtNkpiifbU_8A_5Jf0vXFiGsQiwc2W31izvOWb7XuEPOfWGO9SFSOVOkxQDJiUdiLOCq99aXmVZHhReHJQjg7zN0fF0aVb_B0_RL_ghpYR_DUauNKL3R-koYvPJ7h1ABMEQBDohNOsCPu073r-qAyCV8iuAjErRuKtNWtjwnY3i29EpavYwV9_BTk3EWwIQcObRK0r3508Od5pl3rHnP3E6_g_rbtFbqzwKd3rFOo2ueLqO-T6JdbCu2TWMR7TxtNpO_fKODpoFB6fpk1NAVDSt5-aZRMWhk7hN3QIsRPHH0uMTvGKGB3Y6ffzb3stBe_egA9f3COHw1ezwSheJWeIDYR0FkNk14KbnNvE6IJbJqxNbSqUTzSrVC6s9wrTfwIAS0sncm94lhsDiCI3lSqz-2Srbmr3kFDHqkqY0lcKsA3TQpjKs9yXTgtwEQmPSLweHGlWzOWYQONEdpzLTGJvyb63IvKyl__ScXb8VvJFGOteTM2P8aQbL-SHg9dyNhnv83L0Xn6MyPZaGeTKyBcSqdkE-L80iciz_jOYJ-65qNo1LcoUgRM_E3-SKZEZEJxhRB50itZXiBUMSQrTiLCgLn9pkJxOxuP-7dG_FHpMrsFz0S0zbZOt5bx1TwB4LfXTYFwX2tIjeg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFH5CMwfgwL4EBjASglNmEmf1cdShFGgrRDuAuFi2Y2ukmUlQ20gMJ_4D_5BfwntJEyhikeCY5Dny8pbPz_ZngEdZYYyzofKJSh0nKAZNSlvhR4nTLi2yPIjooPBkmo4O4xfvkm43IZ2Fafkh-oQbWUbjr8nAKSG99501dHl6QmsHOENACIFeeJsW6cg2D173DFIRhq_mfhWMWj5Rb3W8jQHf2yy_EZe2qYs__gp0bmLYJggNL4Puqt_uPTnerVd613z6idnxv9p3BS6tISrbb3XqKpyz5TW4-ANx4XWYt6THrHJsVi-cMpYNKkU7qFlVMsSU7NVRtaqa3NAZ_oYNMXySClCJ0RmdEmODYvb185f9mqGDr9CNL2_A4fDpfDDy1_cz-AajOvcxuGuRmTgrAqOTrOCiKMIiFMoFmucqFoVzim4ARQwWplbEzmRRbAyCitjkKo1uwlZZlfY2MMvzXJjU5QrhDddCmNzx2KVWC_QSQeaB342ONGvycrpD40S2tMtcUm_Jvrc8eNLLf2hpO34r-bgZ7F5MLY5ps1uWyLfTZ3I-GR9k6eiNfO_BTqcNcm3nS0nsbAJdYBh48LD_jBZKyy6qtFVNMklDix-JP8mkRA6I_tCDW62m9RXiCSeewtAD3ujLXxokZ5PxuH-68y-FHsD5ETZcjp9PX96FC_g-abNOO7C1WtT2HuKwlb7fWNo3DZwnlg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFH5CrYTgwL4YCgwSgpNbe7zOsUoJAZKoIilUXEbjWVSprV0lsUQ58R_4h_wS3rMT0yAWCY6231izvOWb7XsAzzKjtbOh8olKHScoGk2qsMKPEle41GR5ENFF4dE4HRzEbw6Twwu3-Ft-iG7BjSyj8ddk4GfG7fwgDZ2fntDWAU4QEEGgE96MU5xiESx61xFIRRi9mvQqGLR8Yt5a0TYGfGe9_FpY2qQe_vQrzLkOYZsY1L8OalX79ujJ8Xa9KLb155-IHf-neTfg2hKgst1Wo27CJVvegqsXaAtvw7SlPGaVY5N65pS2rFcpOj_NqpIhomT7R9WialaGzvE3rI_BkxSASgzO6Y4Y65nJty9fd2uG7r1CJz6_Awf9l9PewF9mZ_A1xnTuY2gvRKbjzAS6SDLDhTGhCYVyQcFzFQvjnKL8n4jAwtSK2OksirVGSBHrXKXRXdgoq9LeB2Z5ngudulwhuOGFEDp3PHapLQT6iCDzwF8NjtRL6nLKoHEiW9JlLqm3ZNdbHrzo5M9a0o7fSj5vxroTU7NjOuqWJfLD-JWcjoZ7WTp4Lz96sLVSBrm08rkkbjaBDjAMPHjafUb7pE0XVdqqJpmkIcWPxJ9kUqIGRG_owb1W0boK8YQTS2HoAW_U5S8NkpPRcNg9PfiXQk_g8v5eXw5fj98-hCv4OmmXnLZgYzGr7SMEYYvicWNn3wFstiZF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Surface+Coating+on+the+Photocatalytic+Function+of+Hybrid+CdS-Au+Nanorods&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ben-Shahar%2C+Yuval&rft.au=Scotognella%2C+Francesco&rft.au=Waiskopf%2C+Nir&rft.au=Kriegel%2C+Ilka&rft.date=2015&rft.issn=1613-6810&rft.volume=11&rft.issue=4&rft.spage=462&rft.epage=471&rft_id=info:doi/10.1002%2Fsmll.201402262&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201402262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon