Effect of Surface Coating on the Photocatalytic Function of Hybrid CdS-Au Nanorods
Hybrid semiconductor–metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects o...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 11; no. 4; pp. 462 - 471 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.201402262 |
Cover
Abstract | Hybrid semiconductor–metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au‐tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L‐glutathione and poly(styrene‐co‐maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI‐coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady‐state emission and time‐resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts.
Surface coating effects on the photocatalytic properties of hybrid CdS‐Au nanorods are studied by comparing the hydrogen evolution rate and efficiencies in the water splitting reaction. Thiolated‐alkyl ligands show low yields, while polymer coatings with polyethyleneimine provide a significant increase in the apparent quantum yield due to the improved surface passivation reducing the competing surface trapping of charge carriers. |
---|---|
AbstractList | Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au-tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L-glutathione and poly(styrene-co-maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI-coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady-state emission and time-resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts.Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au-tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L-glutathione and poly(styrene-co-maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI-coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady-state emission and time-resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts. Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au-tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L-glutathione and poly(styrene-co-maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI-coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady-state emission and time-resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts. Hybrid semiconductor–metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au‐tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L‐glutathione and poly(styrene‐co‐maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI‐coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady‐state emission and time‐resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts. Surface coating effects on the photocatalytic properties of hybrid CdS‐Au nanorods are studied by comparing the hydrogen evolution rate and efficiencies in the water splitting reaction. Thiolated‐alkyl ligands show low yields, while polymer coatings with polyethyleneimine provide a significant increase in the apparent quantum yield due to the improved surface passivation reducing the competing surface trapping of charge carriers. Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au-tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L-glutathione and poly(styrene-co-maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI-coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady-state emission and time-resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts. Surface coating effects on the photocatalytic properties of hybrid CdS-Au nanorods are studied by comparing the hydrogen evolution rate and efficiencies in the water splitting reaction. Thiolated-alkyl ligands show low yields, while polymer coatings with polyethyleneimine provide a significant increase in the apparent quantum yield due to the improved surface passivation reducing the competing surface trapping of charge carriers. |
Author | Dal Conte, Stefano Cerullo, Giulio Waiskopf, Nir Kriegel, Ilka Banin, Uri Ben-Shahar, Yuval Scotognella, Francesco |
Author_xml | – sequence: 1 givenname: Yuval surname: Ben-Shahar fullname: Ben-Shahar, Yuval organization: The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel – sequence: 2 givenname: Francesco surname: Scotognella fullname: Scotognella, Francesco organization: IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, 20133, Milan, Italy – sequence: 3 givenname: Nir surname: Waiskopf fullname: Waiskopf, Nir organization: The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel – sequence: 4 givenname: Ilka surname: Kriegel fullname: Kriegel, Ilka organization: IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, 20133, Milan, Italy – sequence: 5 givenname: Stefano surname: Dal Conte fullname: Dal Conte, Stefano organization: IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, 20133, Milan, Italy – sequence: 6 givenname: Giulio surname: Cerullo fullname: Cerullo, Giulio organization: IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, 20133, Milan, Italy – sequence: 7 givenname: Uri surname: Banin fullname: Banin, Uri email: Uri.Banin@mail.huji.ac.il organization: The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25207751$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkdtrFDEUh4O02Iu--igBX3yZNbdJJo9lbbvCtBW3KvgSMrnY1NlJTTLo_vfOsu1SCqJPCeT7zjk5vyOwN8TBAfAKoxlGiLzLq76fEYQZIoSTZ-AQc0wr3hC5t7tjdACOcr5FiGLCxHNwQGqChKjxIfh06r0zBUYPl2Py2jg4j7qE4TuMAyw3Dn68iSUaXXS_LsHAs3EwJUxvk7FYdylYOLfL6mSEl3qIKdr8Aux73Wf38v48Bp_PTq_ni6q9Ov8wP2krwzkmFSO8k8IwYZHpamGJtBZbLLVHHWk0k9Z73dSippJg7iTzRlBmDG4wM43m9Bi83da9S_Hn6HJRq5CN63s9uDhmhTlHqBEUy_9AazLNQ-kGffMEvY1jGqaPTBTjsmkQRhP1-p4au5Wz6i6FlU5r9bDYCZhtAZNizsn5HYKR2iSnNsmpXXKTwJ4IJhS92XRJOvR_1-RW-xV6t_5HE7W8aNvHbrV1Qy7u987V6Yfigopafb08V9cX7XvBF1_UN_oH3Ne6Fg |
CitedBy_id | crossref_primary_10_1088_1361_6528_abbce8 crossref_primary_10_1007_s11467_024_1413_8 crossref_primary_10_1021_acs_iecr_6b01511 crossref_primary_10_1021_acsenergylett_4c02526 crossref_primary_10_1021_acs_jpclett_7b00106 crossref_primary_10_1021_acssuschemeng_2c05022 crossref_primary_10_1021_acs_jpclett_6b01904 crossref_primary_10_1007_s41061_016_0052_0 crossref_primary_10_1021_acs_chemmater_6b03779 crossref_primary_10_1016_j_colsurfa_2015_06_018 crossref_primary_10_3390_polym16142032 crossref_primary_10_1039_C7TA06026B crossref_primary_10_1021_acs_chemrev_2c00688 crossref_primary_10_1039_C8CY00067K crossref_primary_10_3762_bjnano_10_71 crossref_primary_10_1039_D2TA08783A crossref_primary_10_1016_j_cej_2020_126178 crossref_primary_10_1016_j_chemphys_2015_08_002 crossref_primary_10_1063_1_5099666 crossref_primary_10_1016_j_jece_2019_103179 crossref_primary_10_1021_acsami_1c17304 crossref_primary_10_1002_slct_202303631 crossref_primary_10_1002_adma_201706697 crossref_primary_10_1002_solr_202200299 crossref_primary_10_1002_smll_201600382 crossref_primary_10_1007_s10854_022_08188_8 crossref_primary_10_3390_nano13091579 crossref_primary_10_1016_j_nanoen_2021_106306 crossref_primary_10_1021_acs_jpcc_3c07693 crossref_primary_10_1016_j_cej_2021_132740 crossref_primary_10_1016_j_cclet_2025_111115 crossref_primary_10_1039_D4TA00411F crossref_primary_10_1016_j_chemosphere_2021_130485 crossref_primary_10_1088_1361_648X_aa60f3 crossref_primary_10_3390_molecules29194758 crossref_primary_10_1021_acs_nanolett_7b04020 crossref_primary_10_3390_nano12193343 crossref_primary_10_1186_s40712_025_00248_1 crossref_primary_10_1016_j_physrep_2017_01_003 crossref_primary_10_1007_s12274_021_3983_x crossref_primary_10_1021_acsnano_2c12676 crossref_primary_10_1002_adma_201803351 crossref_primary_10_1021_acs_nanolett_6b01298 crossref_primary_10_1021_jacs_0c10554 crossref_primary_10_1021_acsami_0c07820 crossref_primary_10_1039_C9TC03538A crossref_primary_10_1016_j_nanoen_2017_03_005 crossref_primary_10_1021_acs_jpcc_7b02949 crossref_primary_10_1021_acs_nanolett_3c00250 crossref_primary_10_1002_cjoc_202300191 crossref_primary_10_1021_acs_jpcc_8b12054 crossref_primary_10_1002_smll_202208108 crossref_primary_10_1016_j_jlumin_2016_09_011 crossref_primary_10_1021_acs_jpcc_8b11363 crossref_primary_10_1016_j_apcatb_2021_120946 crossref_primary_10_1016_j_jphotochem_2019_111919 crossref_primary_10_1039_D4NR03148B crossref_primary_10_1088_1361_6463_aa50cd crossref_primary_10_1002_smll_201902231 crossref_primary_10_1021_acsnano_1c10430 crossref_primary_10_1039_C4NR07343F crossref_primary_10_1016_j_jphotochem_2022_113771 crossref_primary_10_1021_acs_chemrev_2c00770 crossref_primary_10_1039_C5RA14889H crossref_primary_10_1002_aenm_202300282 crossref_primary_10_1021_acs_langmuir_7b02756 crossref_primary_10_1021_acs_jpclett_5b01687 crossref_primary_10_1021_acs_jpcc_8b01206 crossref_primary_10_1021_acs_chemmater_8b04614 crossref_primary_10_1016_j_cej_2020_126533 crossref_primary_10_1039_C6RA25823A crossref_primary_10_1016_j_matlet_2017_03_174 crossref_primary_10_1021_acs_nanolett_7b01101 crossref_primary_10_1039_C8TA00385H crossref_primary_10_1021_acscatal_5b01812 crossref_primary_10_1021_acs_jpcc_6b09265 crossref_primary_10_1038_ncomms10413 crossref_primary_10_1016_j_nanoen_2021_106348 crossref_primary_10_1021_acsomega_7b00767 crossref_primary_10_1007_s12274_022_5055_2 crossref_primary_10_1088_1361_6463_abfb18 crossref_primary_10_1002_adma_201506358 crossref_primary_10_1039_C5RA22014A crossref_primary_10_1039_D0CY00308E crossref_primary_10_1021_acsnano_4c13603 crossref_primary_10_1039_C9TA07569K crossref_primary_10_1016_j_cej_2018_03_155 crossref_primary_10_1002_chem_201902148 crossref_primary_10_1016_j_jcat_2015_05_009 crossref_primary_10_1021_acsenergylett_6b00665 crossref_primary_10_1007_s11164_019_03904_2 crossref_primary_10_1039_C9TA03862K crossref_primary_10_1002_celc_201700798 crossref_primary_10_1007_s12274_017_1827_5 crossref_primary_10_1002_cssc_202200200 crossref_primary_10_1021_acs_nanolett_0c01913 crossref_primary_10_1021_acs_nanolett_7b01870 crossref_primary_10_1007_s10854_019_01266_4 crossref_primary_10_1002_ejic_201801464 crossref_primary_10_1016_S1872_2067_17_62769_4 crossref_primary_10_1016_j_jcis_2020_07_035 crossref_primary_10_1016_j_physb_2016_11_021 crossref_primary_10_1016_j_jallcom_2023_171325 crossref_primary_10_1016_j_cej_2021_133026 crossref_primary_10_1016_j_nantod_2022_101681 crossref_primary_10_1039_C9NR03086G crossref_primary_10_1039_D1MA00748C crossref_primary_10_1016_j_jpcs_2022_110993 crossref_primary_10_1039_C6NR07356E crossref_primary_10_1002_cctc_201901190 crossref_primary_10_1039_C9TA03059J crossref_primary_10_1016_j_spmi_2017_07_025 crossref_primary_10_1021_acs_nanolett_0c04614 crossref_primary_10_1016_j_cattod_2018_09_010 crossref_primary_10_1016_j_apcatb_2022_121219 crossref_primary_10_1016_j_jcis_2021_10_038 crossref_primary_10_1021_acs_nanolett_8b02169 crossref_primary_10_1039_C8TA05539D crossref_primary_10_1039_D0CY00483A crossref_primary_10_1002_adsu_202400782 crossref_primary_10_1016_j_jallcom_2018_11_271 crossref_primary_10_1016_j_jtice_2019_05_027 crossref_primary_10_1021_acsomega_3c00324 crossref_primary_10_1002_cctc_201801306 crossref_primary_10_1002_cphc_201600239 crossref_primary_10_1021_acs_chemrev_2c00676 |
Cites_doi | 10.1021/nn402597p 10.1002/ijch.201200073 10.1021/ja3042367 10.1038/nmat3118 10.1021/jz2013193 10.1021/nn302810y 10.1021/cm801702x 10.1007/128_2011_138 10.1002/anie.201104412 10.1002/smll.201101317 10.1039/b414807j 10.1021/ja303306u 10.1021/ja9077733 10.1021/cn1000827 10.1021/nl204166a 10.1126/science.281.5385.2016 10.1126/science.1097830 10.1007/s12668-012-0072-3 10.1021/jz401985k 10.1021/jz201629p 10.1021/nl901679q 10.1039/b606572b 10.1063/1.3480613 10.1021/nl072003g 10.1021/nn900144n 10.1021/ja907984r 10.1126/science.1227775 10.1021/ja101031r 10.1021/nl0717661 10.1021/ja303698e 10.1021/ja016424q 10.1021/nn302089h 10.1021/jp065594s 10.1021/ja0169670 10.1021/jp960484e 10.1021/jz1007966 10.1021/jp047787q 10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G 10.1039/B800489G 10.1002/cphc.200800874 10.1557/mrs.2012.200 10.1002/anie.200906010 10.1002/anie.201006407 10.1021/cm402131n 10.1021/nl9017918 10.1021/nn305823w 10.1021/cm7029344 10.1021/jz100075c 10.1021/nl200409x |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 |
DOI | 10.1002/smll.201402262 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 471 |
ExternalDocumentID | 3563476591 25207751 10_1002_smll_201402262 SMLL201402262 ark_67375_WNG_TMLD76HV_Z |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ERC funderid: 246841 – fundername: European Research Council under the European Union's Seventh Framework Programme funderid: FP7/2007–2013 – fundername: Ministry of Science and Technology, Israel & The Directorate General for Political and Security Affairs of the Ministry of Foreign Affairs, Italy |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- AAHHS AAYOK AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c6612-426b97c47d0cb57d29dd1d19af0b28a49dffa857539216e94fc734cc1814c8a63 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Sep 05 04:12:56 EDT 2025 Fri Sep 05 07:37:17 EDT 2025 Fri Jul 25 12:29:50 EDT 2025 Mon Jul 21 05:35:48 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Tue Jul 01 02:10:15 EDT 2025 Tue Sep 09 05:07:53 EDT 2025 Tue Sep 09 05:32:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | hydrogen evolution surface coatings photocatalysis charge transfer dynamics hybrid nanoparticles |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6612-426b97c47d0cb57d29dd1d19af0b28a49dffa857539216e94fc734cc1814c8a63 |
Notes | European Research Council under the European Union's Seventh Framework Programme - No. FP7/2007-2013 Ministry of Science and Technology, Israel & The Directorate General for Political and Security Affairs of the Ministry of Foreign Affairs, Italy ERC - No. 246841 ark:/67375/WNG-TMLD76HV-Z ArticleID:SMLL201402262 istex:1DFA918060BF79E97230AB0575D507FA134FE751 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://hdl.handle.net/11311/970823 |
PMID | 25207751 |
PQID | 1646988010 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1660087319 proquest_miscellaneous_1652426339 proquest_journals_1646988010 pubmed_primary_25207751 crossref_primary_10_1002_smll_201402262 crossref_citationtrail_10_1002_smll_201402262 wiley_primary_10_1002_smll_201402262_SMLL201402262 istex_primary_ark_67375_WNG_TMLD76HV_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-00-00 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | P. D. Yang, MRS Bull. 2012, 37, 806-813. W. W. Yu, X. G. Peng, Angew. Chem. Int. Ed. 2002, 41, 2368-2371. N. Waiskopf, R. Rotem, I. Shweky, L. Yedidya, H. Soreq, U. Banin, BioNanoScience 2013, 3, 1-11. N. Z. Bao, L. M. Shen, T. Takata, K. Domen, Chem. Mater. 2008, 20, 110-117. K. F. Wu, H. M. Zhu, Z. Liu, W. Rodriguez-Cordoba, T. Q. Lian, J. Am. Chem. Soc. 2012, 134, 10337-10340. A. Thibert, F. A. Frame, E. Busby, M. A. Holmes, F. E. Osterloh, D. S. Larsen, J. Phys. Chem. Lett. 2011, 2, 2688-2694. B. L. Greene, C. A. Joseph, M. J. Maroney, R. B. Dyer, J. Am. Chem. Soc. 2012, 134, 11108-11111. M. Berr, A. Vaneski, A. S. Susha, J. Rodriguez-Fernandez, M. Doblinger, F. Jackel, A. L. Rogach, J. Feldmann, Appl. Phys. Lett. 2010, 97, 093108. A. M. Smith, H. W. Duan, M. N. Rhyner, G. Ruan, S. M. Nie, Phys. Chem. Chem. Phys. 2006, 8, 3895-3903. M. B. Wilker, K. J. Schnitzenbaumer, G. Dukovic, Israel J. Chem. 2012, 52, 1002-1015. R. Costi, A. E. Saunders, U. Banin, Angew. Chem. Int. Ed. 2010, 49, 4878-4897. A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253-278. K. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655-2661. T. S. Ahmadi, S. L. Logunov, M. A. El-Sayed, J. Phys. Chem. 1996, 100, 8053-8056. K. A. Brown, S. Dayal, X. Ai, G. Rumbles, P. W. King, J. Am. Chem. Soc. 2010, 132, 9672-9680. A. Sitt, F. Della Sala, G. Menagen, U. Banin, Nano Lett. 2009, 9, 3470-3476. Y. Shemesh, J. E. Macdonald, G. Menagen, U. Banin, Angew. Chem. Int. Ed. 2011, 50, 1185-1189. J. Aldana, Y. A. Wang, X. G. Peng, J. Am. Chem. Soc. 2001, 123, 8844-8850. E. Shaviv, A. Salant, U. Banin, ChemPhysChem 2009, 10, 1028-1031. W. C. W. Chan, S. M. Nie, Science 1998, 281, 2016-2018. Z. J. Han, F. Qiu, R. Eisenberg, P. L. Holland, T. D. Krauss, Science 2012, 338, 1321-1324. E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, M. Zamkov, Nano Lett. 2011, 11, 1792-1799. L. Amirav, A. P. Alivisatos, J. Phys. Chem. Lett. 2010, 1, 1051-1054. G. Menagen, D. Mocatta, A. Salant, I. Popov, D. Dorfs, U. Banin, Chem. Mater. 2008, 20, 6900-6902. T. O'Connor, M. S. Panov, A. Mereshchenko, A. N. Tarnovsky, R. Lorek, D. Perera, G. Diederich, S. Lambright, P. Moroz, M. Zamkov, ACS Nano 2012, 6, 8156-8165. T. Nann, Chem. Commun. 2005, 1735-1736. D. Mongin, E. Shaviv, P. Maioli, A. Crut, U. Banin, N. Del Fatti, F. Vallee, ACS Nano 2012, 6, 7034-7043. L. Carbone, C. Nobile, M. De Giorgi, F. D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, L. Manna, Nano Lett. 2007, 7, 2942-2950. D. V. Talapin, J. H. Nelson, E. V. Shevchenko, S. Aloni, B. Sadtler, A. P. Alivisatos, Nano Lett. 2007, 7, 2951-2959. M. J. Berr, A. Vaneski, C. Mauser, S. Fischbach, A. S. Susha, A. L. Rogach, F. Jackel, J. Feldmann, Small 2012, 8, 291-297. M. Shim, A. Javey, N. W. S. Kam, H. J. Dai, J. Am. Chem. Soc. 2001, 123, 11512-11513. K. P. Acharya, R. S. Khnayzer, T. O'Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, M. Zamkov, Nano Lett. 2012, 12, 522-522. P. Yu, X. Wen, Y.-C. Lee, W.-C. Lee, C.-C. Kang, J. Tang, J. Phys. Chem. Lett. 2013, 4, 3596-3601. R. Zhou, R. Stalder, D. Xie, W. Cao, Y. Zheng, Y. Yang, M. Plaisant, P. H. Holloway, K. S. Schanze, J. R. Reynolds, J. Xue, ACS Nano 2013, 7, 4846-4854. J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, Nat. Mater. 2011, 10, 765-771. K. Maeda, K. Domen, Top. Curr. Chem. 2011, 303, 95-119. K. Wu, W. E. Rodríguez-Córdoba, Z. Liu, H. Zhu, T. Lian, ACS Nano 2013, 7, 7173-7185. L. Carbone, A. Jakab, Y. Khalavka, C. Sonnichsen, Nano Lett. 2009, 9, 3710-3714. O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, T. Goodson, J. Am. Chem. Soc. 2010, 132, 16-17. M. L. Tang, D. C. Grauer, B. Lassalle-Kaiser, V. K. Yachandra, L. Amirav, J. R. Long, J. Yano, A. P. Alivisatos, Angew. Chem. Int. Ed. 2011, 50, 10203-10207. U. Banin, Y. Ben-Shahar, K. Vinokurov, Chem. Mater. 2013, 26, 97-110. H. M. Zhu, N. H. Song, H. J. Lv, C. L. Hill, T. Q. Lian, J. Am. Chem. Soc. 2012, 134, 11701-11708. E. E. Lees, T. L. Nguyen, A. H. A. Clayton, P. Mulvaney, B. W. Muir, ACS Nano 2009, 3, 1121-1128. J. He, W. Ji, G. H. Ma, S. H. Tang, E. S. W. Kong, S. Y. Chow, X. H. Zhang, Z. L. Hua, J. L. Shi, J. Phys. .Chem B 2005, 109, 4373-4376. N. Waiskopf, I. Shweky, I. Lieberman, U. Banin, H. Soreq, ACS Chem. Neurosci. 2011, 2 (3), 141-150. G. Menagen, J. E. Macdonald, Y. Shemesh, I. Popov, U. Banin, J. Am. Chem. Soc. 2009, 131, 17406-17411. T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Science 2004, 304 (5678), 1787-1790. P. V. Kamat, J. Phys. Chem. Lett. 2012, 3, 663-672. A. E. Saunders, I. Popov, U. Banin, J. Phys. Chem. B 2006, 110(50), 25421-25429. 1998; 281 2010; 97 2001; 123 2013; 26 2013; 3 2013; 4 2011; 2 2006; 8 2011; 11 2011; 10 2005 1996; 100 2012; 37 2009; 131 2013; 7 2012; 12 2004; 304 2012; 52 2011; 303 2010; 49 2012; 3 2010; 1 2012; 134 2009; 10 2002; 41 2011; 50 2010; 132 2009; 9 2005; 109 2007; 7 2008; 20 2012; 6 2009; 3 2006; 110(50) 2012; 338 2009; 38 2012; 8 Chan (10.1002/smll.201402262-BIB0024|smll201402262-cit-0024) 1998; 281 Yu (10.1002/smll.201402262-BIB0047|smll201402262-cit-0047) 2002; 41 Tang (10.1002/smll.201402262-BIB0014|smll201402262-cit-0014) 2011; 50 Wu (10.1002/smll.201402262-BIB0043|smll201402262-cit-0043) 2013; 7 Ahmadi (10.1002/smll.201402262-BIB0038|smll201402262-cit-0038) 1996; 100 Han (10.1002/smll.201402262-BIB0003|smll201402262-cit-0003) 2012; 338 Carbone (10.1002/smll.201402262-BIB0022|smll201402262-cit-0022) 2009; 9 Zhou (10.1002/smll.201402262-BIB0046|smll201402262-cit-0046) 2013; 7 Yang (10.1002/smll.201402262-BIB0001|smll201402262-cit-0001) 2012; 37 Nann (10.1002/smll.201402262-BIB0025|smll201402262-cit-0025) 2005 Bao (10.1002/smll.201402262-BIB0011|smll201402262-cit-0011) 2008; 20 O'Connor (10.1002/smll.201402262-BIB0019|smll201402262-cit-0019) 2012; 6 Khon (10.1002/smll.201402262-BIB0039|smll201402262-cit-0039) 2011; 11 He (10.1002/smll.201402262-BIB0041|smll201402262-cit-0041) 2005; 109 Lees (10.1002/smll.201402262-BIB0026|smll201402262-cit-0026) 2009; 3 Mokari (10.1002/smll.201402262-BIB0030|smll201402262-cit-0030) 2004; 304 Yu (10.1002/smll.201402262-BIB0040|smll201402262-cit-0040) 2013; 4 Tang (10.1002/smll.201402262-BIB0045|smll201402262-cit-0045) 2011; 10 Kamat (10.1002/smll.201402262-BIB0018|smll201402262-cit-0018) 2012; 3 Menagen (10.1002/smll.201402262-BIB0023|smll201402262-cit-0023) 2009; 131 Brown (10.1002/smll.201402262-BIB0016|smll201402262-cit-0016) 2010; 132 Maeda (10.1002/smll.201402262-BIB0002|smll201402262-cit-0002) 2010; 1 Berr (10.1002/smll.201402262-BIB0013|smll201402262-cit-0013) 2010; 97 Saunders (10.1002/smll.201402262-BIB0029|smll201402262-cit-0029) 2006; 110(50) Shim (10.1002/smll.201402262-BIB0034|smll201402262-cit-0034) 2001; 123 Zhu (10.1002/smll.201402262-BIB0006|smll201402262-cit-0006) 2012; 134 Shemesh (10.1002/smll.201402262-BIB0012|smll201402262-cit-0012) 2011; 50 Smith (10.1002/smll.201402262-BIB0035|smll201402262-cit-0035) 2006; 8 Costi (10.1002/smll.201402262-BIB0004|smll201402262-cit-0004) 2010; 49 Wilker (10.1002/smll.201402262-BIB0007|smll201402262-cit-0007) 2012; 52 Banin (10.1002/smll.201402262-BIB0008|smll201402262-cit-0008) 2013; 26 Amirav (10.1002/smll.201402262-BIB0009|smll201402262-cit-0009) 2010; 1 Shaviv (10.1002/smll.201402262-BIB0049|smll201402262-cit-0049) 2009; 10 Carbone (10.1002/smll.201402262-BIB0027|smll201402262-cit-0027) 2007; 7 Thibert (10.1002/smll.201402262-BIB0044|smll201402262-cit-0044) 2011; 2 Aldana (10.1002/smll.201402262-BIB0036|smll201402262-cit-0036) 2001; 123 Acharya (10.1002/smll.201402262-BIB0010|smll201402262-cit-0010) 2012; 12 Wu (10.1002/smll.201402262-BIB0020|smll201402262-cit-0020) 2012; 134 Maeda (10.1002/smll.201402262-BIB0015|smll201402262-cit-0015) 2011; 303 Berr (10.1002/smll.201402262-BIB0021|smll201402262-cit-0021) 2012; 8 Menagen (10.1002/smll.201402262-BIB0048|smll201402262-cit-0048) 2008; 20 Sitt (10.1002/smll.201402262-BIB0042|smll201402262-cit-0042) 2009; 9 Kudo (10.1002/smll.201402262-BIB0005|smll201402262-cit-0005) 2009; 38 Greene (10.1002/smll.201402262-BIB0017|smll201402262-cit-0017) 2012; 134 Mongin (10.1002/smll.201402262-BIB0037|smll201402262-cit-0037) 2012; 6 Talapin (10.1002/smll.201402262-BIB0028|smll201402262-cit-0028) 2007; 7 Varnavski (10.1002/smll.201402262-BIB0031|smll201402262-cit-0031) 2010; 132 Waiskopf (10.1002/smll.201402262-BIB0032|smll201402262-cit-0032) 2013; 3 Waiskopf (10.1002/smll.201402262-BIB0033|smll201402262-cit-0033) 2011; 2 |
References_xml | – reference: L. Amirav, A. P. Alivisatos, J. Phys. Chem. Lett. 2010, 1, 1051-1054. – reference: O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, T. Goodson, J. Am. Chem. Soc. 2010, 132, 16-17. – reference: D. V. Talapin, J. H. Nelson, E. V. Shevchenko, S. Aloni, B. Sadtler, A. P. Alivisatos, Nano Lett. 2007, 7, 2951-2959. – reference: R. Costi, A. E. Saunders, U. Banin, Angew. Chem. Int. Ed. 2010, 49, 4878-4897. – reference: J. Aldana, Y. A. Wang, X. G. Peng, J. Am. Chem. Soc. 2001, 123, 8844-8850. – reference: K. Wu, W. E. Rodríguez-Córdoba, Z. Liu, H. Zhu, T. Lian, ACS Nano 2013, 7, 7173-7185. – reference: K. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655-2661. – reference: Z. J. Han, F. Qiu, R. Eisenberg, P. L. Holland, T. D. Krauss, Science 2012, 338, 1321-1324. – reference: H. M. Zhu, N. H. Song, H. J. Lv, C. L. Hill, T. Q. Lian, J. Am. Chem. Soc. 2012, 134, 11701-11708. – reference: E. Shaviv, A. Salant, U. Banin, ChemPhysChem 2009, 10, 1028-1031. – reference: M. L. Tang, D. C. Grauer, B. Lassalle-Kaiser, V. K. Yachandra, L. Amirav, J. R. Long, J. Yano, A. P. Alivisatos, Angew. Chem. Int. Ed. 2011, 50, 10203-10207. – reference: T. Nann, Chem. Commun. 2005, 1735-1736. – reference: J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, Nat. Mater. 2011, 10, 765-771. – reference: M. Berr, A. Vaneski, A. S. Susha, J. Rodriguez-Fernandez, M. Doblinger, F. Jackel, A. L. Rogach, J. Feldmann, Appl. Phys. Lett. 2010, 97, 093108. – reference: A. E. Saunders, I. Popov, U. Banin, J. Phys. Chem. B 2006, 110(50), 25421-25429. – reference: A. Thibert, F. A. Frame, E. Busby, M. A. Holmes, F. E. Osterloh, D. S. Larsen, J. Phys. Chem. Lett. 2011, 2, 2688-2694. – reference: Y. Shemesh, J. E. Macdonald, G. Menagen, U. Banin, Angew. Chem. Int. Ed. 2011, 50, 1185-1189. – reference: W. W. Yu, X. G. Peng, Angew. Chem. Int. Ed. 2002, 41, 2368-2371. – reference: J. He, W. Ji, G. H. Ma, S. H. Tang, E. S. W. Kong, S. Y. Chow, X. H. Zhang, Z. L. Hua, J. L. Shi, J. Phys. .Chem B 2005, 109, 4373-4376. – reference: N. Z. Bao, L. M. Shen, T. Takata, K. Domen, Chem. Mater. 2008, 20, 110-117. – reference: G. Menagen, J. E. Macdonald, Y. Shemesh, I. Popov, U. Banin, J. Am. Chem. Soc. 2009, 131, 17406-17411. – reference: P. Yu, X. Wen, Y.-C. Lee, W.-C. Lee, C.-C. Kang, J. Tang, J. Phys. Chem. Lett. 2013, 4, 3596-3601. – reference: L. Carbone, C. Nobile, M. De Giorgi, F. D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, L. Manna, Nano Lett. 2007, 7, 2942-2950. – reference: U. Banin, Y. Ben-Shahar, K. Vinokurov, Chem. Mater. 2013, 26, 97-110. – reference: R. Zhou, R. Stalder, D. Xie, W. Cao, Y. Zheng, Y. Yang, M. Plaisant, P. H. Holloway, K. S. Schanze, J. R. Reynolds, J. Xue, ACS Nano 2013, 7, 4846-4854. – reference: E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, M. Zamkov, Nano Lett. 2011, 11, 1792-1799. – reference: T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Science 2004, 304 (5678), 1787-1790. – reference: A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253-278. – reference: E. E. Lees, T. L. Nguyen, A. H. A. Clayton, P. Mulvaney, B. W. Muir, ACS Nano 2009, 3, 1121-1128. – reference: K. P. Acharya, R. S. Khnayzer, T. O'Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, M. Zamkov, Nano Lett. 2012, 12, 522-522. – reference: K. F. Wu, H. M. Zhu, Z. Liu, W. Rodriguez-Cordoba, T. Q. Lian, J. Am. Chem. Soc. 2012, 134, 10337-10340. – reference: N. Waiskopf, R. Rotem, I. Shweky, L. Yedidya, H. Soreq, U. Banin, BioNanoScience 2013, 3, 1-11. – reference: G. Menagen, D. Mocatta, A. Salant, I. Popov, D. Dorfs, U. Banin, Chem. Mater. 2008, 20, 6900-6902. – reference: K. A. Brown, S. Dayal, X. Ai, G. Rumbles, P. W. King, J. Am. Chem. Soc. 2010, 132, 9672-9680. – reference: D. Mongin, E. Shaviv, P. Maioli, A. Crut, U. Banin, N. Del Fatti, F. Vallee, ACS Nano 2012, 6, 7034-7043. – reference: N. Waiskopf, I. Shweky, I. Lieberman, U. Banin, H. Soreq, ACS Chem. Neurosci. 2011, 2 (3), 141-150. – reference: M. J. Berr, A. Vaneski, C. Mauser, S. Fischbach, A. S. Susha, A. L. Rogach, F. Jackel, J. Feldmann, Small 2012, 8, 291-297. – reference: T. O'Connor, M. S. Panov, A. Mereshchenko, A. N. Tarnovsky, R. Lorek, D. Perera, G. Diederich, S. Lambright, P. Moroz, M. Zamkov, ACS Nano 2012, 6, 8156-8165. – reference: L. Carbone, A. Jakab, Y. Khalavka, C. Sonnichsen, Nano Lett. 2009, 9, 3710-3714. – reference: A. Sitt, F. Della Sala, G. Menagen, U. Banin, Nano Lett. 2009, 9, 3470-3476. – reference: T. S. Ahmadi, S. L. Logunov, M. A. El-Sayed, J. Phys. Chem. 1996, 100, 8053-8056. – reference: P. D. Yang, MRS Bull. 2012, 37, 806-813. – reference: A. M. Smith, H. W. Duan, M. N. Rhyner, G. Ruan, S. M. Nie, Phys. Chem. Chem. Phys. 2006, 8, 3895-3903. – reference: W. C. W. Chan, S. M. Nie, Science 1998, 281, 2016-2018. – reference: M. B. Wilker, K. J. Schnitzenbaumer, G. Dukovic, Israel J. Chem. 2012, 52, 1002-1015. – reference: P. V. Kamat, J. Phys. Chem. Lett. 2012, 3, 663-672. – reference: M. Shim, A. Javey, N. W. S. Kam, H. J. Dai, J. Am. Chem. Soc. 2001, 123, 11512-11513. – reference: B. L. Greene, C. A. Joseph, M. J. Maroney, R. B. Dyer, J. Am. Chem. Soc. 2012, 134, 11108-11111. – reference: K. Maeda, K. Domen, Top. Curr. Chem. 2011, 303, 95-119. – volume: 11 start-page: 1792 year: 2011 end-page: 1799 publication-title: Nano Lett. – volume: 7 start-page: 2942 year: 2007 end-page: 2950 publication-title: Nano Lett. – volume: 110(50) start-page: 25421 year: 2006 end-page: 25429 publication-title: J. Phys. Chem. B – volume: 7 start-page: 2951 year: 2007 end-page: 2959 publication-title: Nano Lett. – volume: 8 start-page: 291 year: 2012 end-page: 297 publication-title: Small – volume: 50 start-page: 1185 year: 2011 end-page: 1189 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 4846 year: 2013 end-page: 4854 publication-title: ACS Nano – volume: 49 start-page: 4878 year: 2010 end-page: 4897 publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 1002 year: 2012 end-page: 1015 publication-title: Israel J. Chem. – volume: 2 start-page: 141 issue: 3 year: 2011 end-page: 150 publication-title: ACS Chem. Neurosci. – volume: 8 start-page: 3895 year: 2006 end-page: 3903 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 2655 year: 2010 end-page: 2661 publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 8156 year: 2012 end-page: 8165 publication-title: ACS Nano – volume: 50 start-page: 10203 year: 2011 end-page: 10207 publication-title: Angew. Chem. Int. Ed. – volume: 134 start-page: 11108 year: 2012 end-page: 11111 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 17406 year: 2009 end-page: 17411 publication-title: J. Am. Chem. Soc. – start-page: 1735 year: 2005 end-page: 1736 publication-title: Chem. Commun. – volume: 37 start-page: 806 year: 2012 end-page: 813 publication-title: MRS Bull. – volume: 1 start-page: 1051 year: 2010 end-page: 1054 publication-title: J. Phys. Chem. Lett. – volume: 281 start-page: 2016 year: 1998 end-page: 2018 publication-title: Science – volume: 9 start-page: 3470 year: 2009 end-page: 3476 publication-title: Nano Lett. – volume: 123 start-page: 8844 year: 2001 end-page: 8850 publication-title: J. Am. Chem. Soc. – volume: 303 start-page: 95 year: 2011 end-page: 119 publication-title: Top. Curr. Chem. – volume: 123 start-page: 11512 year: 2001 end-page: 11513 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 4373 year: 2005 end-page: 4376 publication-title: J. Phys. .Chem B – volume: 10 start-page: 765 year: 2011 end-page: 771 publication-title: Nat. Mater. – volume: 12 start-page: 522 year: 2012 end-page: 522 publication-title: Nano Lett. – volume: 134 start-page: 10337 year: 2012 end-page: 10340 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 7034 year: 2012 end-page: 7043 publication-title: ACS Nano – volume: 26 start-page: 97 year: 2013 end-page: 110 publication-title: Chem. Mater. – volume: 304 start-page: 1787 issue: 5678 year: 2004 end-page: 1790 publication-title: Science – volume: 2 start-page: 2688 year: 2011 end-page: 2694 publication-title: J. Phys. Chem. Lett. – volume: 132 start-page: 9672 year: 2010 end-page: 9680 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 11701 year: 2012 end-page: 11708 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 2368 year: 2002 end-page: 2371 publication-title: Angew. Chem. Int. Ed. – volume: 338 start-page: 1321 year: 2012 end-page: 1324 publication-title: Science – volume: 3 start-page: 1 year: 2013 end-page: 11 publication-title: BioNanoScience – volume: 9 start-page: 3710 year: 2009 end-page: 3714 publication-title: Nano Lett. – volume: 3 start-page: 1121 year: 2009 end-page: 1128 publication-title: ACS Nano – volume: 100 start-page: 8053 year: 1996 end-page: 8056 publication-title: J. Phys. Chem. – volume: 4 start-page: 3596 year: 2013 end-page: 3601 publication-title: J. Phys. Chem. Lett. – volume: 38 start-page: 253 year: 2009 end-page: 278 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 1028 year: 2009 end-page: 1031 publication-title: ChemPhysChem – volume: 7 start-page: 7173 year: 2013 end-page: 7185 publication-title: ACS Nano – volume: 3 start-page: 663 year: 2012 end-page: 672 publication-title: J. Phys. Chem. Lett. – volume: 20 start-page: 110 year: 2008 end-page: 117 publication-title: Chem. Mater. – volume: 20 start-page: 6900 year: 2008 end-page: 6902 publication-title: Chem. Mater. – volume: 97 start-page: 093108 year: 2010 publication-title: Appl. Phys. Lett. – volume: 132 start-page: 16 year: 2010 end-page: 17 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 7173 year: 2013 ident: 10.1002/smll.201402262-BIB0043|smll201402262-cit-0043 publication-title: ACS Nano doi: 10.1021/nn402597p – volume: 52 start-page: 1002 year: 2012 ident: 10.1002/smll.201402262-BIB0007|smll201402262-cit-0007 publication-title: Israel J. Chem. doi: 10.1002/ijch.201200073 – volume: 134 start-page: 11108 year: 2012 ident: 10.1002/smll.201402262-BIB0017|smll201402262-cit-0017 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3042367 – volume: 10 start-page: 765 year: 2011 ident: 10.1002/smll.201402262-BIB0045|smll201402262-cit-0045 publication-title: Nat. Mater. doi: 10.1038/nmat3118 – volume: 2 start-page: 2688 year: 2011 ident: 10.1002/smll.201402262-BIB0044|smll201402262-cit-0044 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2013193 – volume: 6 start-page: 8156 year: 2012 ident: 10.1002/smll.201402262-BIB0019|smll201402262-cit-0019 publication-title: ACS Nano doi: 10.1021/nn302810y – volume: 20 start-page: 6900 year: 2008 ident: 10.1002/smll.201402262-BIB0048|smll201402262-cit-0048 publication-title: Chem. Mater. doi: 10.1021/cm801702x – volume: 303 start-page: 95 year: 2011 ident: 10.1002/smll.201402262-BIB0015|smll201402262-cit-0015 publication-title: Top. Curr. Chem. doi: 10.1007/128_2011_138 – volume: 50 start-page: 10203 year: 2011 ident: 10.1002/smll.201402262-BIB0014|smll201402262-cit-0014 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201104412 – volume: 8 start-page: 291 year: 2012 ident: 10.1002/smll.201402262-BIB0021|smll201402262-cit-0021 publication-title: Small doi: 10.1002/smll.201101317 – start-page: 1735 year: 2005 ident: 10.1002/smll.201402262-BIB0025|smll201402262-cit-0025 publication-title: Chem. Commun. doi: 10.1039/b414807j – volume: 134 start-page: 10337 year: 2012 ident: 10.1002/smll.201402262-BIB0020|smll201402262-cit-0020 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303306u – volume: 131 start-page: 17406 year: 2009 ident: 10.1002/smll.201402262-BIB0023|smll201402262-cit-0023 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9077733 – volume: 2 start-page: 141 issue: 3 year: 2011 ident: 10.1002/smll.201402262-BIB0033|smll201402262-cit-0033 publication-title: ACS Chem. Neurosci. doi: 10.1021/cn1000827 – volume: 12 start-page: 522 year: 2012 ident: 10.1002/smll.201402262-BIB0010|smll201402262-cit-0010 publication-title: Nano Lett. doi: 10.1021/nl204166a – volume: 281 start-page: 2016 year: 1998 ident: 10.1002/smll.201402262-BIB0024|smll201402262-cit-0024 publication-title: Science doi: 10.1126/science.281.5385.2016 – volume: 304 start-page: 1787 issue: 5678 year: 2004 ident: 10.1002/smll.201402262-BIB0030|smll201402262-cit-0030 publication-title: Science doi: 10.1126/science.1097830 – volume: 3 start-page: 1 year: 2013 ident: 10.1002/smll.201402262-BIB0032|smll201402262-cit-0032 publication-title: BioNanoScience doi: 10.1007/s12668-012-0072-3 – volume: 4 start-page: 3596 year: 2013 ident: 10.1002/smll.201402262-BIB0040|smll201402262-cit-0040 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401985k – volume: 3 start-page: 663 year: 2012 ident: 10.1002/smll.201402262-BIB0018|smll201402262-cit-0018 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201629p – volume: 9 start-page: 3470 year: 2009 ident: 10.1002/smll.201402262-BIB0042|smll201402262-cit-0042 publication-title: Nano Lett. doi: 10.1021/nl901679q – volume: 8 start-page: 3895 year: 2006 ident: 10.1002/smll.201402262-BIB0035|smll201402262-cit-0035 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b606572b – volume: 97 start-page: 093108 year: 2010 ident: 10.1002/smll.201402262-BIB0013|smll201402262-cit-0013 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3480613 – volume: 7 start-page: 2951 year: 2007 ident: 10.1002/smll.201402262-BIB0028|smll201402262-cit-0028 publication-title: Nano Lett. doi: 10.1021/nl072003g – volume: 3 start-page: 1121 year: 2009 ident: 10.1002/smll.201402262-BIB0026|smll201402262-cit-0026 publication-title: ACS Nano doi: 10.1021/nn900144n – volume: 132 start-page: 16 year: 2010 ident: 10.1002/smll.201402262-BIB0031|smll201402262-cit-0031 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907984r – volume: 338 start-page: 1321 year: 2012 ident: 10.1002/smll.201402262-BIB0003|smll201402262-cit-0003 publication-title: Science doi: 10.1126/science.1227775 – volume: 132 start-page: 9672 year: 2010 ident: 10.1002/smll.201402262-BIB0016|smll201402262-cit-0016 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101031r – volume: 7 start-page: 2942 year: 2007 ident: 10.1002/smll.201402262-BIB0027|smll201402262-cit-0027 publication-title: Nano Lett. doi: 10.1021/nl0717661 – volume: 134 start-page: 11701 year: 2012 ident: 10.1002/smll.201402262-BIB0006|smll201402262-cit-0006 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303698e – volume: 123 start-page: 8844 year: 2001 ident: 10.1002/smll.201402262-BIB0036|smll201402262-cit-0036 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja016424q – volume: 6 start-page: 7034 year: 2012 ident: 10.1002/smll.201402262-BIB0037|smll201402262-cit-0037 publication-title: ACS Nano doi: 10.1021/nn302089h – volume: 110(50) start-page: 25421 year: 2006 ident: 10.1002/smll.201402262-BIB0029|smll201402262-cit-0029 publication-title: J. Phys. Chem. B doi: 10.1021/jp065594s – volume: 123 start-page: 11512 year: 2001 ident: 10.1002/smll.201402262-BIB0034|smll201402262-cit-0034 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0169670 – volume: 100 start-page: 8053 year: 1996 ident: 10.1002/smll.201402262-BIB0038|smll201402262-cit-0038 publication-title: J. Phys. Chem. doi: 10.1021/jp960484e – volume: 1 start-page: 2655 year: 2010 ident: 10.1002/smll.201402262-BIB0002|smll201402262-cit-0002 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1007966 – volume: 109 start-page: 4373 year: 2005 ident: 10.1002/smll.201402262-BIB0041|smll201402262-cit-0041 publication-title: J. Phys. .Chem B doi: 10.1021/jp047787q – volume: 41 start-page: 2368 year: 2002 ident: 10.1002/smll.201402262-BIB0047|smll201402262-cit-0047 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G – volume: 38 start-page: 253 year: 2009 ident: 10.1002/smll.201402262-BIB0005|smll201402262-cit-0005 publication-title: Chem. Soc. Rev. doi: 10.1039/B800489G – volume: 10 start-page: 1028 year: 2009 ident: 10.1002/smll.201402262-BIB0049|smll201402262-cit-0049 publication-title: ChemPhysChem doi: 10.1002/cphc.200800874 – volume: 37 start-page: 806 year: 2012 ident: 10.1002/smll.201402262-BIB0001|smll201402262-cit-0001 publication-title: MRS Bull. doi: 10.1557/mrs.2012.200 – volume: 49 start-page: 4878 year: 2010 ident: 10.1002/smll.201402262-BIB0004|smll201402262-cit-0004 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200906010 – volume: 50 start-page: 1185 year: 2011 ident: 10.1002/smll.201402262-BIB0012|smll201402262-cit-0012 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201006407 – volume: 26 start-page: 97 year: 2013 ident: 10.1002/smll.201402262-BIB0008|smll201402262-cit-0008 publication-title: Chem. Mater. doi: 10.1021/cm402131n – volume: 9 start-page: 3710 year: 2009 ident: 10.1002/smll.201402262-BIB0022|smll201402262-cit-0022 publication-title: Nano Lett. doi: 10.1021/nl9017918 – volume: 7 start-page: 4846 year: 2013 ident: 10.1002/smll.201402262-BIB0046|smll201402262-cit-0046 publication-title: ACS Nano doi: 10.1021/nn305823w – volume: 20 start-page: 110 year: 2008 ident: 10.1002/smll.201402262-BIB0011|smll201402262-cit-0011 publication-title: Chem. Mater. doi: 10.1021/cm7029344 – volume: 1 start-page: 1051 year: 2010 ident: 10.1002/smll.201402262-BIB0009|smll201402262-cit-0009 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100075c – volume: 11 start-page: 1792 year: 2011 ident: 10.1002/smll.201402262-BIB0039|smll201402262-cit-0039 publication-title: Nano Lett. doi: 10.1021/nl200409x |
SSID | ssj0031247 |
Score | 2.5103607 |
Snippet | Hybrid semiconductor–metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their... Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 462 |
SubjectTerms | Charge charge transfer dynamics Coatings hybrid nanoparticles Hydrogen evolution Ligands Mathematical models Nanoparticles Nanorods Nanotechnology Photocatalysis surface coatings |
Title | Effect of Surface Coating on the Photocatalytic Function of Hybrid CdS-Au Nanorods |
URI | https://api.istex.fr/ark:/67375/WNG-TMLD76HV-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201402262 https://www.ncbi.nlm.nih.gov/pubmed/25207751 https://www.proquest.com/docview/1646988010 https://www.proquest.com/docview/1652426339 https://www.proquest.com/docview/1660087319 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1613-6810 databaseCode: DR2 dateStart: 20050101 customDbUrl: isFulltext: true eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFB6hcoED-2IoaJAQnNza42U8xyolRCipEEmh4jKaVUgtNkpiifbU_8A_5Jf0vXFiGsQiwc2W31izvOWb7XuEPOfWGO9SFSOVOkxQDJiUdiLOCq99aXmVZHhReHJQjg7zN0fF0aVb_B0_RL_ghpYR_DUauNKL3R-koYvPJ7h1ABMEQBDohNOsCPu073r-qAyCV8iuAjErRuKtNWtjwnY3i29EpavYwV9_BTk3EWwIQcObRK0r3508Od5pl3rHnP3E6_g_rbtFbqzwKd3rFOo2ueLqO-T6JdbCu2TWMR7TxtNpO_fKODpoFB6fpk1NAVDSt5-aZRMWhk7hN3QIsRPHH0uMTvGKGB3Y6ffzb3stBe_egA9f3COHw1ezwSheJWeIDYR0FkNk14KbnNvE6IJbJqxNbSqUTzSrVC6s9wrTfwIAS0sncm94lhsDiCI3lSqz-2Srbmr3kFDHqkqY0lcKsA3TQpjKs9yXTgtwEQmPSLweHGlWzOWYQONEdpzLTGJvyb63IvKyl__ScXb8VvJFGOteTM2P8aQbL-SHg9dyNhnv83L0Xn6MyPZaGeTKyBcSqdkE-L80iciz_jOYJ-65qNo1LcoUgRM_E3-SKZEZEJxhRB50itZXiBUMSQrTiLCgLn9pkJxOxuP-7dG_FHpMrsFz0S0zbZOt5bx1TwB4LfXTYFwX2tIjeg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFH5CMwfgwL4EBjASglNmEmf1cdShFGgrRDuAuFi2Y2ukmUlQ20gMJ_4D_5BfwntJEyhikeCY5Dny8pbPz_ZngEdZYYyzofKJSh0nKAZNSlvhR4nTLi2yPIjooPBkmo4O4xfvkm43IZ2Fafkh-oQbWUbjr8nAKSG99501dHl6QmsHOENACIFeeJsW6cg2D173DFIRhq_mfhWMWj5Rb3W8jQHf2yy_EZe2qYs__gp0bmLYJggNL4Puqt_uPTnerVd613z6idnxv9p3BS6tISrbb3XqKpyz5TW4-ANx4XWYt6THrHJsVi-cMpYNKkU7qFlVMsSU7NVRtaqa3NAZ_oYNMXySClCJ0RmdEmODYvb185f9mqGDr9CNL2_A4fDpfDDy1_cz-AajOvcxuGuRmTgrAqOTrOCiKMIiFMoFmucqFoVzim4ARQwWplbEzmRRbAyCitjkKo1uwlZZlfY2MMvzXJjU5QrhDddCmNzx2KVWC_QSQeaB342ONGvycrpD40S2tMtcUm_Jvrc8eNLLf2hpO34r-bgZ7F5MLY5ps1uWyLfTZ3I-GR9k6eiNfO_BTqcNcm3nS0nsbAJdYBh48LD_jBZKyy6qtFVNMklDix-JP8mkRA6I_tCDW62m9RXiCSeewtAD3ujLXxokZ5PxuH-68y-FHsD5ETZcjp9PX96FC_g-abNOO7C1WtT2HuKwlb7fWNo3DZwnlg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFH5CrYTgwL4YCgwSgpNbe7zOsUoJAZKoIilUXEbjWVSprV0lsUQ58R_4h_wS3rMT0yAWCY6231izvOWb7XsAzzKjtbOh8olKHScoGk2qsMKPEle41GR5ENFF4dE4HRzEbw6Twwu3-Ft-iG7BjSyj8ddk4GfG7fwgDZ2fntDWAU4QEEGgE96MU5xiESx61xFIRRi9mvQqGLR8Yt5a0TYGfGe9_FpY2qQe_vQrzLkOYZsY1L8OalX79ujJ8Xa9KLb155-IHf-neTfg2hKgst1Wo27CJVvegqsXaAtvw7SlPGaVY5N65pS2rFcpOj_NqpIhomT7R9WialaGzvE3rI_BkxSASgzO6Y4Y65nJty9fd2uG7r1CJz6_Awf9l9PewF9mZ_A1xnTuY2gvRKbjzAS6SDLDhTGhCYVyQcFzFQvjnKL8n4jAwtSK2OksirVGSBHrXKXRXdgoq9LeB2Z5ngudulwhuOGFEDp3PHapLQT6iCDzwF8NjtRL6nLKoHEiW9JlLqm3ZNdbHrzo5M9a0o7fSj5vxroTU7NjOuqWJfLD-JWcjoZ7WTp4Lz96sLVSBrm08rkkbjaBDjAMPHjafUb7pE0XVdqqJpmkIcWPxJ9kUqIGRG_owb1W0boK8YQTS2HoAW_U5S8NkpPRcNg9PfiXQk_g8v5eXw5fj98-hCv4OmmXnLZgYzGr7SMEYYvicWNn3wFstiZF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Surface+Coating+on+the+Photocatalytic+Function+of+Hybrid+CdS-Au+Nanorods&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ben-Shahar%2C+Yuval&rft.au=Scotognella%2C+Francesco&rft.au=Waiskopf%2C+Nir&rft.au=Kriegel%2C+Ilka&rft.date=2015&rft.issn=1613-6810&rft.volume=11&rft.issue=4&rft.spage=462&rft.epage=471&rft_id=info:doi/10.1002%2Fsmll.201402262&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201402262 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |