Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy
Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat to cause cell death, mainly via apoptosis and necrosis. Modulating PPTT to induce cell apoptosis is more favorable than necrosis. Herein, we u...
Saved in:
Published in | Biomaterials Vol. 102; pp. 1 - 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.09.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0142-9612 1878-5905 |
DOI | 10.1016/j.biomaterials.2016.06.017 |
Cover
Abstract | Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat to cause cell death, mainly via apoptosis and necrosis. Modulating PPTT to induce cell apoptosis is more favorable than necrosis. Herein, we used a mild treatment condition using gold nanorods (AuNRs) to trigger apoptosis and tested how different cell lines responded to it. Three different cancer cell lines of epithelial origin: HSC (oral), MCF-7 (breast) and Huh7.5 (liver) had comparable AuNRs uptake and were heated to same environmental temperature (under 50 °C). However, Huh7.5 cells displayed a significant increase in cell apoptosis after PPTT as compared to the other two cell lines. As HSP70 is known to increase cellular resistance to heat, we determined relative HSP70 levels in these cells and results indicated that Huh7.5 cells had ten-fold decreased levels of HSP70 as compared with HSC and MCF-7 cells. We then down-regulated HSP70 with a siRNA and observed that all three cell lines displayed significant reduction in viability and an increase in apoptosis after PPTT. As an enhancement to PPTT, we conjugated AuNRs with Quercetin, an inhibitor of HSP70 which displayed anti-cancer effects via apoptosis. |
---|---|
AbstractList | Abstract Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat to cause cell death, mainly via apoptosis and necrosis. Modulating PPTT to induce cell apoptosis is more favorable than necrosis. Herein, we used a mild treatment condition using gold nanorods (AuNRs) to trigger apoptosis and tested how different cell lines responded to it. Three different cancer cell lines of epithelial origin: HSC (oral), MCF-7 (breast) and Huh7.5 (liver) had comparable AuNRs uptake and were heated to same environmental temperature (under 50 °C). However, Huh7.5 cells displayed a significant increase in cell apoptosis after PPTT as compared to the other two cell lines. As HSP70 is known to increase cellular resistance to heat, we determined relative HSP70 levels in these cells and results indicated that Huh7.5 cells had ten-fold decreased levels of HSP70 as compared with HSC and MCF-7 cells. We then down-regulated HSP70 with a siRNA and observed that all three cell lines displayed significant reduction in viability and an increase in apoptosis after PPTT. As an enhancement to PPTT, we conjugated AuNRs with Quercetin, an inhibitor of HSP70 which displayed anti-cancer effects via apoptosis. Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat to cause cell death, mainly via apoptosis and necrosis. Modulating PPTT to induce cell apoptosis is more favorable than necrosis. Herein, we used a mild treatment condition using gold nanorods (AuNRs) to trigger apoptosis and tested how different cell lines responded to it. Three different cancer cell lines of epithelial origin: HSC (oral), MCF-7 (breast) and Huh7.5 (liver) had comparable AuNRs uptake and were heated to same environmental temperature (under 50 degree C). However, Huh7.5 cells displayed a significant increase in cell apoptosis after PPTT as compared to the other two cell lines. As HSP70 is known to increase cellular resistance to heat, we determined relative HSP70 levels in these cells and results indicated that Huh7.5 cells had ten-fold decreased levels of HSP70 as compared with HSC and MCF-7 cells. We then down-regulated HSP70 with a siRNA and observed that all three cell lines displayed significant reduction in viability and an increase in apoptosis after PPTT. As an enhancement to PPTT, we conjugated AuNRs with Quercetin, an inhibitor of HSP70 which displayed anti-cancer effects via apoptosis. Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat to cause cell death, mainly via apoptosis and necrosis. Modulating PPTT to induce cell apoptosis is more favorable than necrosis. Herein, we used a mild treatment condition using gold nanorods (AuNRs) to trigger apoptosis and tested how different cell lines responded to it. Three different cancer cell lines of epithelial origin: HSC (oral), MCF-7 (breast) and Huh7.5 (liver) had comparable AuNRs uptake and were heated to same environmental temperature (under 50 °C). However, Huh7.5 cells displayed a significant increase in cell apoptosis after PPTT as compared to the other two cell lines. As HSP70 is known to increase cellular resistance to heat, we determined relative HSP70 levels in these cells and results indicated that Huh7.5 cells had ten-fold decreased levels of HSP70 as compared with HSC and MCF-7 cells. We then down-regulated HSP70 with a siRNA and observed that all three cell lines displayed significant reduction in viability and an increase in apoptosis after PPTT. As an enhancement to PPTT, we conjugated AuNRs with Quercetin, an inhibitor of HSP70 which displayed anti-cancer effects via apoptosis. Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat to cause cell death, mainly via apoptosis and necrosis. Modulating PPTT to induce cell apoptosis is more favorable than necrosis. Herein, we used a mild treatment condition using gold nanorods (AuNRs) to trigger apoptosis and tested how different cell lines responded to it. Three different cancer cell lines of epithelial origin: HSC (oral), MCF-7 (breast) and Huh7.5 (liver) had comparable AuNRs uptake and were heated to same environmental temperature (under 50 °C). However, Huh7.5 cells displayed a significant increase in cell apoptosis after PPTT as compared to the other two cell lines. As HSP70 is known to increase cellular resistance to heat, we determined relative HSP70 levels in these cells and results indicated that Huh7.5 cells had ten-fold decreased levels of HSP70 as compared with HSC and MCF-7 cells. We then down-regulated HSP70 with a siRNA and observed that all three cell lines displayed significant reduction in viability and an increase in apoptosis after PPTT. As an enhancement to PPTT, we conjugated AuNRs with Quercetin, an inhibitor of HSP70 which displayed anti-cancer effects via apoptosis. |
Author | El-Sayed, Mostafa A. Ali, Moustafa R.K. Rankin, Carl R. Ali, Hala R. |
Author_xml | – sequence: 1 givenname: Moustafa R.K. surname: Ali fullname: Ali, Moustafa R.K. organization: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA – sequence: 2 givenname: Hala R. surname: Ali fullname: Ali, Hala R. organization: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA – sequence: 3 givenname: Carl R. surname: Rankin fullname: Rankin, Carl R. organization: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA – sequence: 4 givenname: Mostafa A. surname: El-Sayed fullname: El-Sayed, Mostafa A. email: melsayed@gatech.edu organization: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27318931$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk2LFDEQDbLizq7-BQmevMyYpDtJtwdR109Y8OAK3kI6XZnJbHfSJhllDvvfN83sgiyIAwVFkvdeVeXVGTrxwQNCLyhZUULFq-2qc2HUGaLTQ1qxcrciJah8hBa0kc2St4SfoAWhNVu2grJTdJbSlpQzqdkTdMpkRZu2ogt0c6XjGrLza7wBnXHaBHONpxgyOI8lwbs0v63D0GOvfYihTxj8RnsDCZs5RWxgGLCewpRDcgkX4hD-4D4kwNOg0xi8M3jahBzyBuKoBzxnPe2fose2jADP7vI5-vHp49XFl-Xlt89fL95dLo3gbV423NbAQLamo4Jb0XFBqSGSSNnb2raiE5XpLDNgmO3AQGMr22vT8UaI3srqHL086JbBfu0gZTW6NHetPYRdUowQwiinpPkvlDaMc163VBwBJaW-kIwW6PM76K4boVdTdKOOe3VvRAG8PQBMDClFsMq4rLMLPkftBkWJmr1XW_W392r2XpESdB7y9QOJ-ypHkT8cyFBs-O0gqmQcFHd7F8Fk1Qd3nMybBzJmcMV9PVzDHtI27KKfOVQlpoj6Pm_ovKDlNwmT9GcReP9vgWO7uAViNwCG |
CitedBy_id | crossref_primary_10_1016_j_matdes_2023_111731 crossref_primary_10_1016_j_apsb_2018_05_011 crossref_primary_10_1039_C9NR10039C crossref_primary_10_1039_D0CS00097C crossref_primary_10_2147_IJN_S432928 crossref_primary_10_1016_j_bbrc_2025_151288 crossref_primary_10_1016_j_colsurfb_2018_06_021 crossref_primary_10_1098_rsos_180159 crossref_primary_10_1039_D2BM01281B crossref_primary_10_1002_mco2_746 crossref_primary_10_1007_s42765_022_00199_8 crossref_primary_10_1073_pnas_1619302114 crossref_primary_10_1186_s12951_024_02326_6 crossref_primary_10_1016_j_snb_2022_131485 crossref_primary_10_1002_adma_202100599 crossref_primary_10_1088_1748_605X_ac5a23 crossref_primary_10_1002_adma_202400416 crossref_primary_10_1002_smll_202003398 crossref_primary_10_1038_s41598_022_25289_w crossref_primary_10_1016_j_jcis_2020_01_098 crossref_primary_10_1016_j_biomaterials_2018_06_006 crossref_primary_10_1038_s41598_020_72534_1 crossref_primary_10_1021_jacs_6b08787 crossref_primary_10_1021_acsnano_7b05858 crossref_primary_10_1039_C8TB02484G crossref_primary_10_1002_ijc_31717 crossref_primary_10_1039_D0TB00696C crossref_primary_10_34133_2022_9854342 crossref_primary_10_1080_21655979_2022_2025517 crossref_primary_10_1002_adfm_202003891 crossref_primary_10_1039_D4BM00057A crossref_primary_10_3390_ma11040623 crossref_primary_10_1021_acsnano_6b08345 crossref_primary_10_1016_j_actbio_2020_08_007 crossref_primary_10_3389_fchem_2021_736468 crossref_primary_10_1039_C6TB02872A crossref_primary_10_1039_D1CP03804D crossref_primary_10_1016_j_msec_2020_111127 crossref_primary_10_1002_nano_202400107 crossref_primary_10_1002_smll_202307078 crossref_primary_10_1177_0885328220916968 crossref_primary_10_1021_acs_analchem_9b02248 crossref_primary_10_1039_C7NR08509E crossref_primary_10_1016_j_colsurfb_2017_10_027 crossref_primary_10_1016_j_jcis_2024_05_149 crossref_primary_10_1002_jemt_23213 crossref_primary_10_1038_s41419_021_04463_4 crossref_primary_10_1039_D4CP03607G crossref_primary_10_31857_S0132342324030027 crossref_primary_10_1021_acsami_8b11645 crossref_primary_10_1080_17455030_2020_1738589 crossref_primary_10_1039_D1QM00630D crossref_primary_10_1016_j_bbagen_2019_129435 crossref_primary_10_1038_s42004_024_01256_6 crossref_primary_10_3390_pharmaceutics14112279 crossref_primary_10_3390_bios14120593 crossref_primary_10_1021_acs_analchem_9b05366 crossref_primary_10_3390_ijms19113385 crossref_primary_10_1039_C8TB00148K crossref_primary_10_1042_BSR20200079 crossref_primary_10_1002_advs_201902576 crossref_primary_10_1039_D0NR08845E crossref_primary_10_1002_mabi_202200161 crossref_primary_10_1002_smll_201902636 crossref_primary_10_1039_D2NR06692K crossref_primary_10_1016_j_biomaterials_2020_119771 crossref_primary_10_1016_j_cej_2019_123043 crossref_primary_10_3390_cancers11060851 crossref_primary_10_1002_adts_201800100 crossref_primary_10_1021_jacs_1c02537 crossref_primary_10_1098_rstb_2016_0526 crossref_primary_10_1021_acs_jpcc_9b01961 crossref_primary_10_1002_adfm_202100738 crossref_primary_10_1016_j_ijleo_2020_165174 crossref_primary_10_3390_app12147097 crossref_primary_10_1039_C8BM00691A crossref_primary_10_1016_j_biomaterials_2019_119463 crossref_primary_10_1021_acsabm_9b00764 crossref_primary_10_1039_D0TB01794A crossref_primary_10_3389_fbioe_2022_878524 crossref_primary_10_1088_2515_7655_ad2cf2 crossref_primary_10_1002_adfm_201706398 crossref_primary_10_1021_acssensors_9b00524 crossref_primary_10_1002_macp_202200140 crossref_primary_10_2147_IJN_S269321 crossref_primary_10_34133_2021_9816594 crossref_primary_10_2217_nnm_2018_0409 crossref_primary_10_1002_anbr_202100029 crossref_primary_10_1007_s00339_018_2302_1 crossref_primary_10_3389_fbioe_2020_599040 crossref_primary_10_2147_IJN_S487683 crossref_primary_10_1021_acsnano_8b04128 crossref_primary_10_1063_5_0073208 crossref_primary_10_1007_s11051_017_3992_6 crossref_primary_10_1016_j_pdpdt_2020_102139 crossref_primary_10_1039_C7NR05278B crossref_primary_10_1039_D1TB01469B crossref_primary_10_1021_acs_bioconjchem_6b00430 crossref_primary_10_1186_s11671_022_03706_3 crossref_primary_10_1038_s41598_018_26978_1 crossref_primary_10_1016_j_ijbiomac_2021_06_172 crossref_primary_10_1016_j_cclet_2021_08_023 crossref_primary_10_1039_C9SC04389F crossref_primary_10_1007_s11468_017_0614_1 crossref_primary_10_1016_j_jtherbio_2020_102615 crossref_primary_10_1073_pnas_1703151114 crossref_primary_10_1039_D0TB00539H crossref_primary_10_1016_j_jphotobiol_2016_09_012 crossref_primary_10_1021_acsbiomaterials_7b00359 crossref_primary_10_1021_acsnano_8b09496 crossref_primary_10_1038_s41598_021_02697_y crossref_primary_10_1021_acs_chemrev_0c00356 crossref_primary_10_1021_acsami_8b14649 crossref_primary_10_3390_pharmaceutics14030560 crossref_primary_10_1007_s11468_016_0495_8 crossref_primary_10_1016_j_biomaterials_2024_122514 crossref_primary_10_1007_s10118_022_2857_3 crossref_primary_10_1016_j_colsurfb_2024_114128 crossref_primary_10_1002_adtp_202200248 crossref_primary_10_1016_j_matdes_2022_110467 crossref_primary_10_1039_C6NR07598C crossref_primary_10_2147_IJN_S249252 crossref_primary_10_1021_acs_bioconjchem_2c00011 crossref_primary_10_1021_acsbiomaterials_1c01311 crossref_primary_10_1038_s41598_022_15660_2 crossref_primary_10_1039_D1BM01245B crossref_primary_10_1021_acs_nanolett_0c00147 crossref_primary_10_1021_acsami_6b13808 crossref_primary_10_3390_cancers11060764 crossref_primary_10_1016_j_ijpharm_2019_05_056 crossref_primary_10_1021_acsami_0c21332 crossref_primary_10_1016_j_nantod_2021_101363 crossref_primary_10_1088_1361_6528_aa75ad crossref_primary_10_2147_IJN_S388996 crossref_primary_10_1177_15330338211039126 crossref_primary_10_1021_acs_analchem_9b04470 crossref_primary_10_1039_C7NR04983H crossref_primary_10_1134_S1068162024030038 crossref_primary_10_1002_adfm_201909391 crossref_primary_10_1021_acsami_8b19042 crossref_primary_10_1007_s40846_023_00836_6 crossref_primary_10_1016_j_actbio_2024_06_034 crossref_primary_10_1016_j_jcis_2024_03_108 crossref_primary_10_1016_j_jconrel_2023_01_009 crossref_primary_10_1002_adfm_202008171 crossref_primary_10_1016_j_ijbiomac_2024_137430 crossref_primary_10_1016_j_snb_2021_129554 crossref_primary_10_3390_molecules25030490 crossref_primary_10_1002_admi_202101369 crossref_primary_10_1186_s12951_022_01740_y crossref_primary_10_1021_acs_molpharmaceut_4c00188 crossref_primary_10_1002_smtd_201800007 crossref_primary_10_1016_j_cej_2022_134886 crossref_primary_10_1039_D0NR01690J crossref_primary_10_2147_IJN_S459400 crossref_primary_10_1039_D1TB01753E crossref_primary_10_1080_09205063_2022_2112310 crossref_primary_10_1038_s41427_018_0040_7 crossref_primary_10_3390_nano12193318 |
Cites_doi | 10.1039/C6NR00056H 10.1002/adfm.201401642 10.1186/1748-717X-8-42 10.3109/02656736.2011.607485 10.1096/fasebj.9.15.8529835 10.1379/1466-1268(2001)006<0136:TNMIAT>2.0.CO;2 10.1016/j.biomaterials.2010.08.096 10.1074/jbc.M113.524801 10.4161/cc.9.1.10354 10.1002/adhm.201400103 10.3892/ijo.2014.2399 10.1038/nmeth.2534 10.1016/j.bbapap.2014.12.019 10.1084/jem.177.5.1391 10.1016/j.biomaterials.2010.08.068 10.1007/s10495-014-1083-z 10.1111/j.1349-7006.2008.01072.x 10.1016/S0092-8674(00)80928-9 10.1002/anie.201506115 10.1074/jbc.M112.440909 10.1117/1.3486538 10.1073/pnas.0905195106 10.1038/nnano.2015.28 10.1152/japplphysiol.01267.2001 10.1016/j.jconrel.2013.04.006 10.1158/0008-5472.CAN-10-0250 10.1515/hsz-2014-0164 10.1073/pnas.1204391109 10.1021/am508837v 10.1007/BF01784843 10.1016/j.addr.2011.03.005 10.1002/adfm.201504884 10.1021/la301387p 10.1016/j.canlet.2008.04.026 10.1021/am508117e 10.1021/ja4124412 10.1097/CAD.0b013e3280145274 10.1021/nn900904h 10.1006/excr.1997.3494 10.1080/0265673031000065042 10.1021/nl400536d 10.1002/adma.200802789 10.1016/j.canlet.2014.11.022 10.1002/adma.201104797 10.1021/nn505468v 10.1379/CSC-99r.1 10.1021/nn500840x 10.1002/lsm.20110 10.1002/adfm.201301015 10.1021/jp409298f 10.1021/nn4033757 |
ContentType | Journal Article |
Copyright | 2016 Published by Elsevier Ltd. |
Copyright_xml | – notice: 2016 – notice: Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2016.06.017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 8 |
ExternalDocumentID | 27318931 10_1016_j_biomaterials_2016_06_017 S014296121630271X 1_s2_0_S014296121630271X |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c659t-85f4e2e79cb165f6b5611c07077df4f96b63cbf2cec2fbece8f3fdacb5866df73 |
IEDL.DBID | AIKHN |
ISSN | 0142-9612 |
IngestDate | Fri Sep 05 10:06:21 EDT 2025 Fri Sep 05 10:06:29 EDT 2025 Fri Sep 05 09:26:07 EDT 2025 Wed Feb 19 02:43:30 EST 2025 Tue Jul 01 01:19:27 EDT 2025 Thu Apr 24 22:53:48 EDT 2025 Fri Feb 23 02:31:38 EST 2024 Tue Feb 25 19:57:21 EST 2025 Tue Aug 26 17:20:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Plasmonic photothermal therapy (PPTT) Quercetin (QE) Heat shock protein 70 (HSP70) Protein refolding Gold nanorods (AuNRs) |
Language | English |
License | Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c659t-85f4e2e79cb165f6b5611c07077df4f96b63cbf2cec2fbece8f3fdacb5866df73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27318931 |
PQID | 1808666721 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000215108 proquest_miscellaneous_1825554916 proquest_miscellaneous_1808666721 pubmed_primary_27318931 crossref_citationtrail_10_1016_j_biomaterials_2016_06_017 crossref_primary_10_1016_j_biomaterials_2016_06_017 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2016_06_017 elsevier_clinicalkeyesjournals_1_s2_0_S014296121630271X elsevier_clinicalkey_doi_10_1016_j_biomaterials_2016_06_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bonfil, Bustuoabad, Ruggiero, Meiss, Pasqualini (bib20) 1988; 6 Rylander, Stafford, Hazle, Whitney, Diller (bib32) 2011; 27 Feng, Zhou, Nie, Chen, Qiu, Zhang (bib42) 2015; 7 Kannadorai, Chiew, Luo, Liu (bib16) 2015; 357 Bukau, Horwich (bib28) 1998; 92 Bharti, Rani, Bhatia, Arya (bib25) 2015; 20 Mackey, Ali, Austin, Near, El-Sayed (bib38) 2014; 118 Nakamoto, Fujita, Ohtaki, Watanabe, Narumi, Maruyama (bib45) 2014; 289 Kang, Austin, El-Sayed (bib43) 2014; 8 Davidovich, Kearney, Martin (bib21) 2014; 395 Li, Gu (bib22) 2010; 31 Shen, Kim, Mu, Gentile, Mai, Wolfram (bib11) 2014; 3 Zhu, Zou, Hu, Li, Gu, Cao (bib14) 2016; 26 Kregel (bib27) 2002; 92 Huang, El-Sayed, El-Sayed (bib5) 2010 Larson, Gormley, Frazier, Ghandehari (bib33) 2013; 170 Shao, Xuan, Dai, Si, Li, He (bib15) 2015; 54 Ali, Snyder, El-Sayed (bib7) 2012; 28 Miyako, Deguchi, Nakajima, Yudasaka, Hagihara, Horie (bib29) 2012; 109 Lin, Liu, Zhao, Xie, Lin, Li (bib40) 2015; 10 Ye, Yang, Chen, Wu, Yang, Zhao (bib50) 2007; 18 Milanovic, Firat, Grosu, Niedermann (bib37) 2013; 8 Ciocca, Calderwood (bib26) 2005; 10 Bagley, Hill, Rogers, Bhatia (bib3) 2013; 7 Dickerson, Dreaden, Huang, El-Sayed, Chu, Pushpanketh (bib1) 2008; 269 Huang, Kang, Qian, Mackey, Chen, Oyelere (bib12) 2010; 15 Yang, Liu, Liu, Pu, Ren, Qu (bib13) 2012; 24 Fisher, Sarkar, Buchanan, Szot, Whitney, Hatcher (bib31) 2010; 70 Sun, Liu, Zhu, Wang, Hu, Liu (bib10) 2016; 8 Wang, Chen, Zhou, Zhang (bib44) 2014; 45 Gibson, Seiler, Veitia (bib49) 2013; 10 Yang, Tseng, Suo, Chen, Yu, Chiu (bib36) 2015; 7 Lepock, Frey, Heynen, Senisterra, Warters (bib46) 2001; 6 Ito, Saito, Mitobe, Minamiya, Takahashi, Maruyama (bib35) 2009; 100 Ali, Panikkanvalappil, El-Sayed (bib39) 2014; 136 Li, Sun, Wang, Wang, Zhai, Liang (bib2) 2013; 13 Burke, Ding, Singh, Kraft, Levi-Polyachenko, Rylander (bib30) 2009; 106 He, Fox (bib48) 1997; 232 Perez-Hernandez, del Pino, Mitchell, Moros, Stepien, Pelaz (bib17) 2015; 9 Bakthisaran, Tangirala, Rao (bib24) 2015; 1854 Kudryavets (bib19) 1998; 20 Huang, Kang, Qian, Mackey, Chen, Oyelere (bib55) 2010; 15 Wong, Luna, Ferrario, Gomer (bib34) 2004; 35 Rankin, Hilgarth, Leoni, Kwon, Den Beste, Parkos (bib54) 2013; 288 Lepock (bib47) 2003; 19 Shichiri, Tanaka (bib52) 2010; 9 Zhou, Yu, Zhang, Wang, Wu, Zhou (bib4) 2014; 24 Shi, Li, Ren, Qu (bib9) 2013; 23 Hendrick, Hartl (bib23) 1995; 9 Wei, Zhao, Kariya, Fukata, Teshigawara, Uchida (bib51) 1994; 54 Moon, Lee, Choi (bib41) 2009; 3 Orosz, Echtenacher, Falk, Ruschoff, Weber, Mannel (bib18) 1993; 177 Huang, Neretina, El-Sayed (bib8) 2009; 21 Liu, Tao, Yang, Zhang, Lee, Liu (bib53) 2011; 32 Alkilany, Thompson, Boulos, Sisco, Murphy (bib6) 2012; 64 Shen (10.1016/j.biomaterials.2016.06.017_bib11) 2014; 3 Yang (10.1016/j.biomaterials.2016.06.017_bib13) 2012; 24 Davidovich (10.1016/j.biomaterials.2016.06.017_bib21) 2014; 395 Huang (10.1016/j.biomaterials.2016.06.017_bib55) 2010; 15 Hendrick (10.1016/j.biomaterials.2016.06.017_bib23) 1995; 9 Bukau (10.1016/j.biomaterials.2016.06.017_bib28) 1998; 92 Nakamoto (10.1016/j.biomaterials.2016.06.017_bib45) 2014; 289 Shao (10.1016/j.biomaterials.2016.06.017_bib15) 2015; 54 Kudryavets (10.1016/j.biomaterials.2016.06.017_bib19) 1998; 20 Mackey (10.1016/j.biomaterials.2016.06.017_bib38) 2014; 118 Shichiri (10.1016/j.biomaterials.2016.06.017_bib52) 2010; 9 Wong (10.1016/j.biomaterials.2016.06.017_bib34) 2004; 35 Feng (10.1016/j.biomaterials.2016.06.017_bib42) 2015; 7 Perez-Hernandez (10.1016/j.biomaterials.2016.06.017_bib17) 2015; 9 Zhou (10.1016/j.biomaterials.2016.06.017_bib4) 2014; 24 Orosz (10.1016/j.biomaterials.2016.06.017_bib18) 1993; 177 Bagley (10.1016/j.biomaterials.2016.06.017_bib3) 2013; 7 Kang (10.1016/j.biomaterials.2016.06.017_bib43) 2014; 8 Milanovic (10.1016/j.biomaterials.2016.06.017_bib37) 2013; 8 Dickerson (10.1016/j.biomaterials.2016.06.017_bib1) 2008; 269 Rankin (10.1016/j.biomaterials.2016.06.017_bib54) 2013; 288 Liu (10.1016/j.biomaterials.2016.06.017_bib53) 2011; 32 Zhu (10.1016/j.biomaterials.2016.06.017_bib14) 2016; 26 Huang (10.1016/j.biomaterials.2016.06.017_bib5) 2010 Wei (10.1016/j.biomaterials.2016.06.017_bib51) 1994; 54 Rylander (10.1016/j.biomaterials.2016.06.017_bib32) 2011; 27 Huang (10.1016/j.biomaterials.2016.06.017_bib8) 2009; 21 Kannadorai (10.1016/j.biomaterials.2016.06.017_bib16) 2015; 357 Huang (10.1016/j.biomaterials.2016.06.017_bib12) 2010; 15 Yang (10.1016/j.biomaterials.2016.06.017_bib36) 2015; 7 Bakthisaran (10.1016/j.biomaterials.2016.06.017_bib24) 2015; 1854 Bonfil (10.1016/j.biomaterials.2016.06.017_bib20) 1988; 6 Moon (10.1016/j.biomaterials.2016.06.017_bib41) 2009; 3 Burke (10.1016/j.biomaterials.2016.06.017_bib30) 2009; 106 Lepock (10.1016/j.biomaterials.2016.06.017_bib47) 2003; 19 Ye (10.1016/j.biomaterials.2016.06.017_bib50) 2007; 18 Wang (10.1016/j.biomaterials.2016.06.017_bib44) 2014; 45 Sun (10.1016/j.biomaterials.2016.06.017_bib10) 2016; 8 Fisher (10.1016/j.biomaterials.2016.06.017_bib31) 2010; 70 Li (10.1016/j.biomaterials.2016.06.017_bib2) 2013; 13 Alkilany (10.1016/j.biomaterials.2016.06.017_bib6) 2012; 64 Lepock (10.1016/j.biomaterials.2016.06.017_bib46) 2001; 6 Kregel (10.1016/j.biomaterials.2016.06.017_bib27) 2002; 92 Gibson (10.1016/j.biomaterials.2016.06.017_bib49) 2013; 10 Ali (10.1016/j.biomaterials.2016.06.017_bib7) 2012; 28 Ali (10.1016/j.biomaterials.2016.06.017_bib39) 2014; 136 Larson (10.1016/j.biomaterials.2016.06.017_bib33) 2013; 170 Miyako (10.1016/j.biomaterials.2016.06.017_bib29) 2012; 109 Lin (10.1016/j.biomaterials.2016.06.017_bib40) 2015; 10 Ciocca (10.1016/j.biomaterials.2016.06.017_bib26) 2005; 10 Ito (10.1016/j.biomaterials.2016.06.017_bib35) 2009; 100 Li (10.1016/j.biomaterials.2016.06.017_bib22) 2010; 31 He (10.1016/j.biomaterials.2016.06.017_bib48) 1997; 232 Shi (10.1016/j.biomaterials.2016.06.017_bib9) 2013; 23 Bharti (10.1016/j.biomaterials.2016.06.017_bib25) 2015; 20 |
References_xml | – volume: 54 start-page: 4952 year: 1994 end-page: 4957 ident: bib51 article-title: Induction of apoptosis by quercetin - involvement of heat-shock protein publication-title: Cancer Res. – volume: 70 start-page: 9855 year: 2010 end-page: 9864 ident: bib31 article-title: Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation publication-title: Cancer Res. – volume: 170 start-page: 41 year: 2013 end-page: 50 ident: bib33 article-title: Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia publication-title: J. Control. Release – volume: 395 start-page: 1163 year: 2014 end-page: 1171 ident: bib21 article-title: Inflammatory outcomes of apoptosis, necrosis and necroptosis publication-title: Biol. Chem. – volume: 24 start-page: 2890 year: 2012 end-page: 2895 ident: bib13 article-title: Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles publication-title: Adv. Mater. – volume: 118 start-page: 1319 year: 2014 end-page: 1326 ident: bib38 article-title: The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments publication-title: J. Phys. Chem. B – volume: 7 start-page: 4354 year: 2015 end-page: 4367 ident: bib42 article-title: Au/Polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study publication-title: Acs Appl. Mater. Interfaces – volume: 269 start-page: 57 year: 2008 end-page: 66 ident: bib1 article-title: Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice publication-title: Cancer Lett. – volume: 9 start-page: 1559 year: 1995 end-page: 1569 ident: bib23 article-title: The role of molecular chaperones in protein folding publication-title: Faseb J. – volume: 13 start-page: 2477 year: 2013 end-page: 2484 ident: bib2 article-title: Achieving a new controllable male contraception by the photothermal effect of gold nanorods publication-title: Nano Lett. – volume: 54 start-page: 12782 year: 2015 end-page: 12787 ident: bib15 article-title: Near-infrared-activated nanocalorifiers in microcapsules: vapor bubble generation for in vivo enhanced cancer therapy publication-title: Angew. Chem. Int. Ed. – volume: 177 start-page: 1391 year: 1993 end-page: 1398 ident: bib18 article-title: Enhancement of experimental metastasis by tumor-necrosis-factor publication-title: J. Exp. Med. – volume: 64 start-page: 190 year: 2012 end-page: 199 ident: bib6 article-title: Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions publication-title: Adv. Drug Deliv. Rev. – volume: 1854 start-page: 291 year: 2015 end-page: 319 ident: bib24 article-title: Small heat shock proteins: role in cellular functions and pathology publication-title: BBA-Proteins Proteom. – volume: 8 start-page: 4883 year: 2014 end-page: 4892 ident: bib43 article-title: Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes publication-title: ACS Nano – volume: 32 start-page: 144 year: 2011 end-page: 151 ident: bib53 article-title: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors publication-title: Biomaterials – volume: 109 start-page: 7523 year: 2012 end-page: 7528 ident: bib29 article-title: Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 15 start-page: 7 year: 2010 ident: bib12 article-title: Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers publication-title: J. Biomed. Opt. – volume: 232 start-page: 64 year: 1997 end-page: 71 ident: bib48 article-title: Variation of heat shock protein 70 through the cell cycle in HL-60 cells and its relationship to apoptosis publication-title: Exp. Cell Res. – volume: 26 start-page: 1793 year: 2016 end-page: 1802 ident: bib14 article-title: Near-infrared plasmonic 2D semimetals for applications in communication and biology publication-title: Adv. Funct. Mater. – start-page: 343 year: 2010 end-page: 357 ident: bib5 article-title: Applications of gold nanorods for cancer imaging and photothermal therapy publication-title: Cancer Nanotechnology: Methods and Protocols – volume: 289 start-page: 6110 year: 2014 end-page: 6119 ident: bib45 article-title: Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins publication-title: J. Biol. Chem. – volume: 10 start-page: 715 year: 2013 end-page: 721 ident: bib49 article-title: The transience of transient overexpression publication-title: Nat. Methods – volume: 9 start-page: 52 year: 2015 end-page: 61 ident: bib17 article-title: Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms publication-title: ACS Nano – volume: 106 start-page: 12897 year: 2009 end-page: 12902 ident: bib30 article-title: Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 year: 2013 ident: bib37 article-title: Increased radiosensitivity and radiothermosensitivity of human pancreatic MIA PaCa-2 and U251 glioblastoma cell lines treated with the novel Hsp90 inhibitor NVP-HSP990 publication-title: Radiat. Oncol. – volume: 27 start-page: 791 year: 2011 end-page: 801 ident: bib32 article-title: Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells publication-title: Int. J. Hyperth. – volume: 3 start-page: 1629 year: 2014 end-page: 1637 ident: bib11 article-title: Multifunctional gold nanorods for siRNA gene silencing and photothermal therapy publication-title: Adv. Healthc. Mater. – volume: 100 start-page: 558 year: 2009 end-page: 564 ident: bib35 article-title: Inhibition of heat shock protein 90 sensitizes melanoma cells to thermosensitive ferromagnetic particle-mediated hyperthermia with low Curie temperature publication-title: Cancer Sci. – volume: 136 start-page: 4464 year: 2014 end-page: 4467 ident: bib39 article-title: Enhancing the efficiency of gold nanoparticles treatment of cancer by increasing their rate of endocytosis and cell accumulation using rifampicin publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 455 year: 2015 end-page: 465 ident: bib25 article-title: 5-HT2B receptor blockade attenuates beta-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs publication-title: Apoptosis – volume: 10 start-page: 86 year: 2005 end-page: 103 ident: bib26 article-title: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications publication-title: Cell Stress & Chaperones – volume: 3 start-page: 3707 year: 2009 end-page: 3713 ident: bib41 article-title: In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes publication-title: ACS Nano – volume: 7 start-page: 8089 year: 2013 end-page: 8097 ident: bib3 article-title: Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source publication-title: ACS Nano – volume: 28 start-page: 9807 year: 2012 end-page: 9815 ident: bib7 article-title: Synthesis and optical properties of small Au nanorods using a seedless growth technique publication-title: Langmuir – volume: 288 start-page: 15229 year: 2013 end-page: 15239 ident: bib54 article-title: Annexin A2 regulates beta1 integrin internalization and intestinal epithelial cell migration publication-title: J. Biol. Chem. – volume: 6 start-page: 136 year: 2001 end-page: 147 ident: bib46 article-title: The nuclear matrix is a thermolabile cellular structure publication-title: Cell Stress & Chaperones – volume: 357 start-page: 152 year: 2015 end-page: 159 ident: bib16 article-title: Dual functions of gold nanorods as photothermal agent and autofluorescence enhancer to track cell death during plasmonic photothermal therapy publication-title: Cancer Lett. – volume: 24 start-page: 6922 year: 2014 end-page: 6932 ident: bib4 article-title: Inhibition of cancer cell migration by gold nanorods: molecular mechanisms and implications for cancer therapy publication-title: Adv. Funct. Mater. – volume: 20 start-page: 114 year: 1998 end-page: 118 ident: bib19 article-title: Enhancement of tumor colony formation in lungs of mice by tumor necrosis factor publication-title: Exp. Oncol. – volume: 7 start-page: 5097 year: 2015 end-page: 5106 ident: bib36 article-title: Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-Hybridized graphene oxide under NIR illumination publication-title: Acs Appl. Mater. Interfaces – volume: 23 start-page: 5412 year: 2013 end-page: 5419 ident: bib9 article-title: Gold nanocage-based dual responsive “caged metal chelator” release system: noninvasive remote control with near infrared for potential treatment of Alzheimer's disease publication-title: Adv. Funct. Mater. – volume: 6 start-page: 121 year: 1988 end-page: 129 ident: bib20 article-title: Tumor necrosis can facilitate the appearance of metastases publication-title: Clin. Exp. Metastasis – volume: 31 start-page: 9492 year: 2010 end-page: 9498 ident: bib22 article-title: Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells publication-title: Biomaterials – volume: 10 start-page: 465 year: 2015 end-page: 471 ident: bib40 article-title: Carbon nanotube-assisted optical activation of TGF-beta signalling by near-infrared light publication-title: Nat. Nanotechnol. – volume: 9 start-page: 64 year: 2010 end-page: 68 ident: bib52 article-title: Inhibition of cancer progression by rifampicin Involvement of antiangiogenic and anti-tumor effects publication-title: Cell Cycle – volume: 15 year: 2010 ident: bib55 article-title: Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers publication-title: J. Biomed. Opt. – volume: 35 start-page: 336 year: 2004 end-page: 341 ident: bib34 article-title: CHOP activation by photodynamic therapy increases treatment induced photosensitization publication-title: Lasers Surg. Med. – volume: 18 start-page: 1165 year: 2007 end-page: 1171 ident: bib50 article-title: Induction of apoptosis by phenylisocyanate derivative of quercetin: involvement of heat shock protein publication-title: Anti Cancer Drugs – volume: 45 start-page: 18 year: 2014 end-page: 30 ident: bib44 article-title: HSP27,70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review) publication-title: Int. J. Oncol. – volume: 21 start-page: 4880 year: 2009 end-page: 4910 ident: bib8 article-title: Gold nanorods: from synthesis and properties to biological and biomedical applications publication-title: Adv. Mater. – volume: 8 start-page: 4452 year: 2016 end-page: 4457 ident: bib10 article-title: Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer publication-title: Nanoscale – volume: 92 start-page: 351 year: 1998 end-page: 366 ident: bib28 article-title: The Hsp70 and Hsp60 chaperone machines publication-title: Cell. – volume: 19 start-page: 252 year: 2003 end-page: 266 ident: bib47 article-title: Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage publication-title: Int. J. Hyperth. – volume: 92 start-page: 2177 year: 2002 end-page: 2186 ident: bib27 article-title: Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance publication-title: J. Appl. Physiol. – volume: 8 start-page: 4452 year: 2016 ident: 10.1016/j.biomaterials.2016.06.017_bib10 article-title: Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer publication-title: Nanoscale doi: 10.1039/C6NR00056H – volume: 24 start-page: 6922 year: 2014 ident: 10.1016/j.biomaterials.2016.06.017_bib4 article-title: Inhibition of cancer cell migration by gold nanorods: molecular mechanisms and implications for cancer therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401642 – volume: 8 year: 2013 ident: 10.1016/j.biomaterials.2016.06.017_bib37 article-title: Increased radiosensitivity and radiothermosensitivity of human pancreatic MIA PaCa-2 and U251 glioblastoma cell lines treated with the novel Hsp90 inhibitor NVP-HSP990 publication-title: Radiat. Oncol. doi: 10.1186/1748-717X-8-42 – volume: 27 start-page: 791 year: 2011 ident: 10.1016/j.biomaterials.2016.06.017_bib32 article-title: Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2011.607485 – volume: 9 start-page: 1559 year: 1995 ident: 10.1016/j.biomaterials.2016.06.017_bib23 article-title: The role of molecular chaperones in protein folding publication-title: Faseb J. doi: 10.1096/fasebj.9.15.8529835 – volume: 6 start-page: 136 year: 2001 ident: 10.1016/j.biomaterials.2016.06.017_bib46 article-title: The nuclear matrix is a thermolabile cellular structure publication-title: Cell Stress & Chaperones doi: 10.1379/1466-1268(2001)006<0136:TNMIAT>2.0.CO;2 – volume: 32 start-page: 144 year: 2011 ident: 10.1016/j.biomaterials.2016.06.017_bib53 article-title: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.08.096 – volume: 289 start-page: 6110 year: 2014 ident: 10.1016/j.biomaterials.2016.06.017_bib45 article-title: Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.524801 – volume: 9 start-page: 64 year: 2010 ident: 10.1016/j.biomaterials.2016.06.017_bib52 article-title: Inhibition of cancer progression by rifampicin Involvement of antiangiogenic and anti-tumor effects publication-title: Cell Cycle doi: 10.4161/cc.9.1.10354 – volume: 3 start-page: 1629 year: 2014 ident: 10.1016/j.biomaterials.2016.06.017_bib11 article-title: Multifunctional gold nanorods for siRNA gene silencing and photothermal therapy publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201400103 – volume: 45 start-page: 18 year: 2014 ident: 10.1016/j.biomaterials.2016.06.017_bib44 article-title: HSP27,70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review) publication-title: Int. J. Oncol. doi: 10.3892/ijo.2014.2399 – volume: 10 start-page: 715 year: 2013 ident: 10.1016/j.biomaterials.2016.06.017_bib49 article-title: The transience of transient overexpression publication-title: Nat. Methods doi: 10.1038/nmeth.2534 – start-page: 343 year: 2010 ident: 10.1016/j.biomaterials.2016.06.017_bib5 article-title: Applications of gold nanorods for cancer imaging and photothermal therapy – volume: 1854 start-page: 291 year: 2015 ident: 10.1016/j.biomaterials.2016.06.017_bib24 article-title: Small heat shock proteins: role in cellular functions and pathology publication-title: BBA-Proteins Proteom. doi: 10.1016/j.bbapap.2014.12.019 – volume: 177 start-page: 1391 year: 1993 ident: 10.1016/j.biomaterials.2016.06.017_bib18 article-title: Enhancement of experimental metastasis by tumor-necrosis-factor publication-title: J. Exp. Med. doi: 10.1084/jem.177.5.1391 – volume: 31 start-page: 9492 year: 2010 ident: 10.1016/j.biomaterials.2016.06.017_bib22 article-title: Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.08.068 – volume: 20 start-page: 455 year: 2015 ident: 10.1016/j.biomaterials.2016.06.017_bib25 article-title: 5-HT2B receptor blockade attenuates beta-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs publication-title: Apoptosis doi: 10.1007/s10495-014-1083-z – volume: 100 start-page: 558 year: 2009 ident: 10.1016/j.biomaterials.2016.06.017_bib35 article-title: Inhibition of heat shock protein 90 sensitizes melanoma cells to thermosensitive ferromagnetic particle-mediated hyperthermia with low Curie temperature publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2008.01072.x – volume: 92 start-page: 351 year: 1998 ident: 10.1016/j.biomaterials.2016.06.017_bib28 article-title: The Hsp70 and Hsp60 chaperone machines publication-title: Cell. doi: 10.1016/S0092-8674(00)80928-9 – volume: 54 start-page: 12782 year: 2015 ident: 10.1016/j.biomaterials.2016.06.017_bib15 article-title: Near-infrared-activated nanocalorifiers in microcapsules: vapor bubble generation for in vivo enhanced cancer therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506115 – volume: 288 start-page: 15229 year: 2013 ident: 10.1016/j.biomaterials.2016.06.017_bib54 article-title: Annexin A2 regulates beta1 integrin internalization and intestinal epithelial cell migration publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.440909 – volume: 15 start-page: 7 year: 2010 ident: 10.1016/j.biomaterials.2016.06.017_bib12 article-title: Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers publication-title: J. Biomed. Opt. doi: 10.1117/1.3486538 – volume: 106 start-page: 12897 year: 2009 ident: 10.1016/j.biomaterials.2016.06.017_bib30 article-title: Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0905195106 – volume: 10 start-page: 465 year: 2015 ident: 10.1016/j.biomaterials.2016.06.017_bib40 article-title: Carbon nanotube-assisted optical activation of TGF-beta signalling by near-infrared light publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.28 – volume: 92 start-page: 2177 year: 2002 ident: 10.1016/j.biomaterials.2016.06.017_bib27 article-title: Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01267.2001 – volume: 170 start-page: 41 year: 2013 ident: 10.1016/j.biomaterials.2016.06.017_bib33 article-title: Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.04.006 – volume: 70 start-page: 9855 year: 2010 ident: 10.1016/j.biomaterials.2016.06.017_bib31 article-title: Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-0250 – volume: 395 start-page: 1163 year: 2014 ident: 10.1016/j.biomaterials.2016.06.017_bib21 article-title: Inflammatory outcomes of apoptosis, necrosis and necroptosis publication-title: Biol. Chem. doi: 10.1515/hsz-2014-0164 – volume: 109 start-page: 7523 year: 2012 ident: 10.1016/j.biomaterials.2016.06.017_bib29 article-title: Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1204391109 – volume: 20 start-page: 114 year: 1998 ident: 10.1016/j.biomaterials.2016.06.017_bib19 article-title: Enhancement of tumor colony formation in lungs of mice by tumor necrosis factor publication-title: Exp. Oncol. – volume: 7 start-page: 4354 year: 2015 ident: 10.1016/j.biomaterials.2016.06.017_bib42 article-title: Au/Polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study publication-title: Acs Appl. Mater. Interfaces doi: 10.1021/am508837v – volume: 6 start-page: 121 year: 1988 ident: 10.1016/j.biomaterials.2016.06.017_bib20 article-title: Tumor necrosis can facilitate the appearance of metastases publication-title: Clin. Exp. Metastasis doi: 10.1007/BF01784843 – volume: 64 start-page: 190 year: 2012 ident: 10.1016/j.biomaterials.2016.06.017_bib6 article-title: Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.03.005 – volume: 26 start-page: 1793 year: 2016 ident: 10.1016/j.biomaterials.2016.06.017_bib14 article-title: Near-infrared plasmonic 2D semimetals for applications in communication and biology publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504884 – volume: 28 start-page: 9807 year: 2012 ident: 10.1016/j.biomaterials.2016.06.017_bib7 article-title: Synthesis and optical properties of small Au nanorods using a seedless growth technique publication-title: Langmuir doi: 10.1021/la301387p – volume: 269 start-page: 57 year: 2008 ident: 10.1016/j.biomaterials.2016.06.017_bib1 article-title: Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice publication-title: Cancer Lett. doi: 10.1016/j.canlet.2008.04.026 – volume: 7 start-page: 5097 year: 2015 ident: 10.1016/j.biomaterials.2016.06.017_bib36 article-title: Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-Hybridized graphene oxide under NIR illumination publication-title: Acs Appl. Mater. Interfaces doi: 10.1021/am508117e – volume: 136 start-page: 4464 year: 2014 ident: 10.1016/j.biomaterials.2016.06.017_bib39 article-title: Enhancing the efficiency of gold nanoparticles treatment of cancer by increasing their rate of endocytosis and cell accumulation using rifampicin publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4124412 – volume: 18 start-page: 1165 year: 2007 ident: 10.1016/j.biomaterials.2016.06.017_bib50 article-title: Induction of apoptosis by phenylisocyanate derivative of quercetin: involvement of heat shock protein publication-title: Anti Cancer Drugs doi: 10.1097/CAD.0b013e3280145274 – volume: 3 start-page: 3707 year: 2009 ident: 10.1016/j.biomaterials.2016.06.017_bib41 article-title: In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes publication-title: ACS Nano doi: 10.1021/nn900904h – volume: 232 start-page: 64 year: 1997 ident: 10.1016/j.biomaterials.2016.06.017_bib48 article-title: Variation of heat shock protein 70 through the cell cycle in HL-60 cells and its relationship to apoptosis publication-title: Exp. Cell Res. doi: 10.1006/excr.1997.3494 – volume: 19 start-page: 252 year: 2003 ident: 10.1016/j.biomaterials.2016.06.017_bib47 article-title: Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage publication-title: Int. J. Hyperth. doi: 10.1080/0265673031000065042 – volume: 13 start-page: 2477 year: 2013 ident: 10.1016/j.biomaterials.2016.06.017_bib2 article-title: Achieving a new controllable male contraception by the photothermal effect of gold nanorods publication-title: Nano Lett. doi: 10.1021/nl400536d – volume: 15 year: 2010 ident: 10.1016/j.biomaterials.2016.06.017_bib55 article-title: Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers publication-title: J. Biomed. Opt. doi: 10.1117/1.3486538 – volume: 54 start-page: 4952 year: 1994 ident: 10.1016/j.biomaterials.2016.06.017_bib51 article-title: Induction of apoptosis by quercetin - involvement of heat-shock protein publication-title: Cancer Res. – volume: 21 start-page: 4880 year: 2009 ident: 10.1016/j.biomaterials.2016.06.017_bib8 article-title: Gold nanorods: from synthesis and properties to biological and biomedical applications publication-title: Adv. Mater. doi: 10.1002/adma.200802789 – volume: 357 start-page: 152 year: 2015 ident: 10.1016/j.biomaterials.2016.06.017_bib16 article-title: Dual functions of gold nanorods as photothermal agent and autofluorescence enhancer to track cell death during plasmonic photothermal therapy publication-title: Cancer Lett. doi: 10.1016/j.canlet.2014.11.022 – volume: 24 start-page: 2890 year: 2012 ident: 10.1016/j.biomaterials.2016.06.017_bib13 article-title: Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles publication-title: Adv. Mater. doi: 10.1002/adma.201104797 – volume: 9 start-page: 52 year: 2015 ident: 10.1016/j.biomaterials.2016.06.017_bib17 article-title: Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms publication-title: ACS Nano doi: 10.1021/nn505468v – volume: 10 start-page: 86 year: 2005 ident: 10.1016/j.biomaterials.2016.06.017_bib26 article-title: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications publication-title: Cell Stress & Chaperones doi: 10.1379/CSC-99r.1 – volume: 8 start-page: 4883 year: 2014 ident: 10.1016/j.biomaterials.2016.06.017_bib43 article-title: Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes publication-title: ACS Nano doi: 10.1021/nn500840x – volume: 35 start-page: 336 year: 2004 ident: 10.1016/j.biomaterials.2016.06.017_bib34 article-title: CHOP activation by photodynamic therapy increases treatment induced photosensitization publication-title: Lasers Surg. Med. doi: 10.1002/lsm.20110 – volume: 23 start-page: 5412 year: 2013 ident: 10.1016/j.biomaterials.2016.06.017_bib9 article-title: Gold nanocage-based dual responsive “caged metal chelator” release system: noninvasive remote control with near infrared for potential treatment of Alzheimer's disease publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201301015 – volume: 118 start-page: 1319 year: 2014 ident: 10.1016/j.biomaterials.2016.06.017_bib38 article-title: The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments publication-title: J. Phys. Chem. B doi: 10.1021/jp409298f – volume: 7 start-page: 8089 year: 2013 ident: 10.1016/j.biomaterials.2016.06.017_bib3 article-title: Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source publication-title: ACS Nano doi: 10.1021/nn4033757 |
SSID | ssj0014042 |
Score | 2.5886166 |
Snippet | Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat... Abstract Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Advanced Basic Science ambient temperature antineoplastic activity Apoptosis Biotechnology Cancer Cell Line, Tumor Cellular Dentistry epithelium gene expression regulation Gold Gold - chemistry Gold - therapeutic use Gold nanorods (AuNRs) heat Heat shock protein 70 (HSP70) heat tolerance heat-shock protein 70 HSP70 Heat-Shock Proteins - metabolism Humans Hyperthermia, Induced - methods liver MCF-7 Cells nanoparticles Nanorods Nanotubes - chemistry Nanotubes - ultrastructure necrosis neoplasms Neoplasms - metabolism Neoplasms - therapy Phototherapy - methods Plasmonic photothermal therapy (PPTT) Plasmonics Protein refolding quercetin Quercetin (QE) small interfering RNA therapeutics Therapy viability |
Title | Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S014296121630271X https://www.clinicalkey.es/playcontent/1-s2.0-S014296121630271X https://dx.doi.org/10.1016/j.biomaterials.2016.06.017 https://www.ncbi.nlm.nih.gov/pubmed/27318931 https://www.proquest.com/docview/1808666721 https://www.proquest.com/docview/1825554916 https://www.proquest.com/docview/2000215108 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB4SB0pzKG36iJs2bKFX1V49VitKDiE0uC3JKQHfFmm1G7s4kogUSg_tb-_MamVSmhRDT8ZiB8k7o3l4v_kG4D0aTUisIkERWRPEtiyD3MY6MFJygcVbLF2H3Nm5mF3GX-bJfAtOhl4YglV639_7dOet_ZWJ381Js1xOCJYUZkSAJejsjc-3YSfEaC9HsHP8-evsfH2YEE_dDB1aH5DAwD3qYF7U5Z53vbYJ6SUcnaebX3ZvnHooD3Xx6PQpPPGJJDvun_UZbJlqD3bv0AvuwaMzf3D-HH5eOMQ3XmbkfVm7QD_IHEnDsmLplBH-_Ypd1auSVXlVo1ttmakWZBMt0_Rxw-hPfpY3ddPV7bJlKLiqv7Oybg1rMAm_JpZd1izqznV1XePT9d1dP17A5emni5NZ4CcvBFokWRfIxMYmNGmmCy4SKwrMsrgmZqC0tLHNRCEiXdhQGx1atAIjbWTLXBeJFKK0afQSRlVdmX1gRhKK0eY6DS36i5wmzGBcloaI3bOIjyEb9llpT0tO0zFWasCffVN3daRIR4rAeDwdQ7SWbXpyjo2kPg7qVEP7KTpMhTFkI-n0PmnT-ne_VVy1oZqqv-xzDEdryT9MfOM7vxtsT6EPIJ3nlalv8Y4SC1MhsJj_1xosHpMYq4GH11DbFqWAUzmGV71xr_cV01yOuS1__Z-_4gAe07cepvcGRt3NrXmLeV1XHML2h1_80L-9vwHYFFHF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5SB_o4hDZ9OX1toVdh67VaEXoIocFpYp8c8G2RVruxiyOJSKH00P_emdXKJDQphp4E0g6SdkazM9pvvgH4gkYTEKuIl4dGe5EpCi8zkfK0ED7H5C0StkJuOuOTi-j7Il7swHFfC0OwSuf7O59uvbU7M3KzOapXqxHBkoKUCLA47b35i0ewG1FT6wHsHp2eTWabzYRobHvo0HiPBHruUQvzoir3rO20TUgvbuk8bf-ye9eph-JQux6dPIc9F0iyo-5ZX8COLvfh2S16wX14PHUb5y_h99wivvE0I-_LmiX6QWZJGlYlS8aM8O-X7LJaF6zMygrdasN0uSSbaJiiwzWjn_wsq6u6rZpVw1BwXf1kRdVoVmMQfkUsu6xeVq2t6rrCp-uqu369gouTb_Pjiec6L3iKx2nridhEOtBJqnKfx4bnGGX5ipiBksJEJuU5D1VuAqVVYNAKtDChKTKVx4LzwiThaxiUVanfAtOCUIwmU0lg0F9k1GEG12Whidg9Df0hpP08S-Voyak7xlr2-LMf8raOJOlIEhjPT4YQbmTrjpxjK6nDXp2yLz9FhylxDdlKOrlPWjfu22-kL5tAjuVf9jmErxvJOya-9Z0_97Yn0QeQzrNSVzd4R4GJKeeYzP9rDCaPcYTZwMNjqGyLQsCxGMKbzrg384phro-xrX_wn2_xCZ5M5tNzeX46O3sHT-lKB9l7D4P2-kZ_wBivzT-6b_gPxLRTqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+heat+shock+protein+70+using+gold+nanorods+enhances+cancer+cell+apoptosis+in+low+dose+plasmonic+photothermal+therapy&rft.jtitle=Biomaterials&rft.au=Ali%2C+Moustafa+RK&rft.au=Ali%2C+Hala+R&rft.au=Rankin%2C+Carl+R&rft.au=El-Sayed%2C+Mostafa+A&rft.date=2016-09-01&rft.issn=0142-9612&rft.volume=102&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1016%2Fj.biomaterials.2016.06.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961216X0021X%2Fcov150h.gif |