A method for functional network connectivity among spatially independent resting-state components in schizophrenia
Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 39; no. 4; pp. 1666 - 1681 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
15.02.2008
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2007.11.001 |
Cover
| Abstract | Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of
functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients. |
|---|---|
| AbstractList | Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of
functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients. Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in patients versus controls. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject’s ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients. Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients. Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure offunctional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients. Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients.Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients. |
| Author | Pearlson, Godfrey D. Stevens, Michael Calhoun, Vince D. Jafri, Madiha J. |
| AuthorAffiliation | 1 Olin Neuropsychiatry Research Center, Institute of Living, Hartford, Connecticut, 06106 3 The MIND Institute, Albuquerque, New Mexico 87131 2 Dept. of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06520 4 Dept. of ECE, University of New Mexico, Albuquerque, New Mexico 87131 |
| AuthorAffiliation_xml | – name: 2 Dept. of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06520 – name: 3 The MIND Institute, Albuquerque, New Mexico 87131 – name: 1 Olin Neuropsychiatry Research Center, Institute of Living, Hartford, Connecticut, 06106 – name: 4 Dept. of ECE, University of New Mexico, Albuquerque, New Mexico 87131 |
| Author_xml | – sequence: 1 givenname: Madiha J. surname: Jafri fullname: Jafri, Madiha J. organization: Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA – sequence: 2 givenname: Godfrey D. surname: Pearlson fullname: Pearlson, Godfrey D. organization: Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA – sequence: 3 givenname: Michael surname: Stevens fullname: Stevens, Michael organization: Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA – sequence: 4 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. email: vcalhoun@unm.edu organization: Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18082428$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVUkuP0zAYjNAi9gF_AVlC4pZgOy_7gthd8ZJW4gJn66vzpXU3sYPtdFV-Pa5aqdAL5WJb9szomxlfZxfWWcwywmjBKGverQuLs3dmhCUWnNK2YKyglD3LrhiVdS7rll_sznWZC8bkZXYdwppSKlklXmSXTFDBKy6uMn9LRowr15HeedLPVkfjLAzEYnxy_pFoZy2my42JWwKjs0sSJogGhmFLjO1wwrTYSDyGaOwyDxEiJto4pZltDAlEgl6ZX25aebQGXmbPexgCvjrsN9mPTx-_33_JH759_np_-5DrppYx57zvuYBGcAmikkArWktZtgtsQVZtt-iaHtpysaih0xygo1Wje1myvq9aqLC8yeRed7YTbJ_SwGryKTK_VYyqXY5qrY45ql2OijGVckzc93vuNC9G7HQy4uHId2DU3y_WrNTSbVTJmkpUNAm8PQh493NO0ajRBI3DABbdHFRLeSN3fv4F5IwmTdYk4JsT4NrNPlUVFKtp05ZN24qEev3n4EfHh8aPzrR3IXjslTapsVR68mGGc6IRJwL_kerdnoqp9o1Br4I2aDV2xqc_pjpnzhH5cCKiB2ONhuERt-dJ_AZX0Au6 |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0054512 crossref_primary_10_1002_hbm_24580 crossref_primary_10_1002_hbm_22162 crossref_primary_10_1002_acn3_51989 crossref_primary_10_1007_s11682_019_00255_9 crossref_primary_10_1002_hbm_22164 crossref_primary_10_1002_hbm_23256 crossref_primary_10_1016_j_media_2022_102413 crossref_primary_10_1016_j_neuroimage_2014_12_020 crossref_primary_10_1016_j_neuroimage_2009_10_080 crossref_primary_10_1111_cns_13430 crossref_primary_10_1111_cns_13433 crossref_primary_10_1016_j_neuroimage_2017_02_019 crossref_primary_10_1016_j_neuroimage_2010_05_067 crossref_primary_10_1109_ACCESS_2018_2879487 crossref_primary_10_1016_j_neuroimage_2010_05_063 crossref_primary_10_1016_j_neuroimage_2020_117349 crossref_primary_10_1002_hbm_25548 crossref_primary_10_1007_s11055_023_01545_y crossref_primary_10_1097_WNR_0b013e32835b6edf crossref_primary_10_3389_fnins_2017_00249 crossref_primary_10_1093_scan_nst185 crossref_primary_10_1002_hbm_23126 crossref_primary_10_1016_j_neuroimage_2011_06_037 crossref_primary_10_1002_aur_2476 crossref_primary_10_1016_j_jad_2024_03_141 crossref_primary_10_1016_j_jneumeth_2017_10_016 crossref_primary_10_1016_j_neuroimage_2009_08_036 crossref_primary_10_1109_MSP_2022_3163870 crossref_primary_10_1016_j_neulet_2013_05_029 crossref_primary_10_3389_fnins_2022_848363 crossref_primary_10_1007_s10334_010_0197_8 crossref_primary_10_1007_s12021_022_09570_x crossref_primary_10_1016_j_neulet_2009_04_040 crossref_primary_10_1038_s41598_017_05774_3 crossref_primary_10_1016_j_neuroimage_2014_12_034 crossref_primary_10_3389_fpsyt_2017_00239 crossref_primary_10_1016_j_bbr_2020_113018 crossref_primary_10_1017_S0033291719001132 crossref_primary_10_1016_j_neucom_2017_01_106 crossref_primary_10_1002_brb3_2477 crossref_primary_10_1016_j_nicl_2025_103772 crossref_primary_10_3389_fncom_2017_00038 crossref_primary_10_1016_j_pscychresns_2017_04_003 crossref_primary_10_1016_j_neuroimage_2010_05_053 crossref_primary_10_1371_journal_pone_0190220 crossref_primary_10_3389_fnins_2022_828651 crossref_primary_10_1038_s41537_024_00456_2 crossref_primary_10_1186_s12984_025_01590_3 crossref_primary_10_1155_2012_412512 crossref_primary_10_1142_S0219635212500203 crossref_primary_10_1007_s00429_019_01850_8 crossref_primary_10_1016_j_neures_2009_01_015 crossref_primary_10_1016_j_brainres_2013_12_022 crossref_primary_10_3390_agronomy13040951 crossref_primary_10_1155_2021_6681903 crossref_primary_10_1371_journal_pone_0279260 crossref_primary_10_1016_j_neuroimage_2024_120617 crossref_primary_10_1038_s41537_017_0023_7 crossref_primary_10_1016_j_neuroimage_2022_119193 crossref_primary_10_1017_S0033291716001410 crossref_primary_10_1016_j_cortex_2018_12_019 crossref_primary_10_1089_brain_2020_0815 crossref_primary_10_1016_j_neunet_2025_107335 crossref_primary_10_1016_j_neuroimage_2024_120971 crossref_primary_10_1002_hbm_26781 crossref_primary_10_1038_s41598_017_11729_5 crossref_primary_10_1038_s41598_017_12964_6 crossref_primary_10_1016_j_neuroimage_2014_05_052 crossref_primary_10_1016_j_nicl_2024_103584 crossref_primary_10_1016_j_jad_2021_12_129 crossref_primary_10_1016_j_pnpbp_2017_04_017 crossref_primary_10_1016_j_addbeh_2017_01_021 crossref_primary_10_1152_jn_00891_2011 crossref_primary_10_1371_journal_pone_0176494 crossref_primary_10_3389_fnins_2019_00204 crossref_primary_10_1016_j_neuroimage_2015_05_018 crossref_primary_10_1016_j_neuroimage_2016_02_079 crossref_primary_10_1016_j_bbr_2024_115414 crossref_primary_10_1038_s41598_017_14248_5 crossref_primary_10_1002_hbm_25205 crossref_primary_10_1016_j_schres_2018_06_007 crossref_primary_10_1002_hbm_24591 crossref_primary_10_1016_j_nicl_2016_02_010 crossref_primary_10_1089_brain_2019_0734 crossref_primary_10_1002_hbm_26773 crossref_primary_10_1016_j_neuroimage_2015_07_071 crossref_primary_10_1111_j_1601_5215_2010_00491_x crossref_primary_10_1016_j_jpsychires_2025_02_055 crossref_primary_10_1017_S0033291724002885 crossref_primary_10_1016_j_neuroimage_2017_10_002 crossref_primary_10_1002_nbm_2803 crossref_primary_10_1142_S1793545811500039 crossref_primary_10_1089_brain_2020_0950 crossref_primary_10_1093_schbul_sbp131 crossref_primary_10_1002_hbm_25799 crossref_primary_10_1016_j_jad_2024_11_036 crossref_primary_10_1016_j_pscychresns_2011_09_012 crossref_primary_10_1371_journal_pone_0177443 crossref_primary_10_1002_brb3_1476 crossref_primary_10_1007_s11682_017_9801_0 crossref_primary_10_1109_TBME_2020_3011363 crossref_primary_10_1111_biom_12111 crossref_primary_10_1016_j_psychres_2021_114270 crossref_primary_10_1093_cercor_bhr146 crossref_primary_10_3109_02699052_2013_823561 crossref_primary_10_1186_s12868_020_00590_4 crossref_primary_10_1016_j_jpain_2013_04_003 crossref_primary_10_1155_2016_3279050 crossref_primary_10_1007_s10334_010_0228_5 crossref_primary_10_1093_scan_nss053 crossref_primary_10_1002_hbm_22118 crossref_primary_10_1186_s10194_024_01920_1 crossref_primary_10_1038_nrneurol_2009_198 crossref_primary_10_1371_journal_pone_0073186 crossref_primary_10_1209_0295_5075_128_50005 crossref_primary_10_3389_fneur_2021_786734 crossref_primary_10_1007_s12311_020_01144_4 crossref_primary_10_1016_j_cortex_2012_09_017 crossref_primary_10_1016_j_schres_2019_07_015 crossref_primary_10_1093_cercor_bhs352 crossref_primary_10_1109_TCDS_2020_2991414 crossref_primary_10_3389_fneur_2022_896204 crossref_primary_10_1093_scan_nss048 crossref_primary_10_1007_s11682_022_00674_1 crossref_primary_10_1016_j_euroneuro_2019_06_002 crossref_primary_10_1016_j_neuroimage_2016_10_045 crossref_primary_10_4103_1673_5374_253526 crossref_primary_10_1016_j_neuroimage_2013_10_062 crossref_primary_10_1016_j_ynirp_2022_100097 crossref_primary_10_1016_j_pscychresns_2017_05_005 crossref_primary_10_1038_s41598_023_30672_2 crossref_primary_10_1093_schbul_sby045 crossref_primary_10_3390_jcm13092556 crossref_primary_10_1109_JBHI_2020_3015471 crossref_primary_10_1002_hbm_21379 crossref_primary_10_1002_hbm_22469 crossref_primary_10_1093_schbul_sbx194 crossref_primary_10_1159_000363351 crossref_primary_10_1002_hbm_25890 crossref_primary_10_1007_s11065_009_9108_z crossref_primary_10_1016_j_neuroimage_2014_04_009 crossref_primary_10_1016_j_neuroimage_2011_04_004 crossref_primary_10_1002_hbm_21055 crossref_primary_10_1371_journal_pone_0140134 crossref_primary_10_1093_schbul_sbn133 crossref_primary_10_1016_j_ijpsycho_2024_112354 crossref_primary_10_1016_j_biopsych_2011_06_029 crossref_primary_10_1016_j_neuroimage_2019_01_080 crossref_primary_10_1016_j_brs_2011_08_006 crossref_primary_10_1073_pnas_1414293111 crossref_primary_10_1371_journal_pone_0041376 crossref_primary_10_1016_j_jneumeth_2019_108359 crossref_primary_10_1186_s13742_014_0042_5 crossref_primary_10_1093_schbul_sbz103 crossref_primary_10_1016_j_bandc_2009_02_007 crossref_primary_10_1002_hbm_23469 crossref_primary_10_1016_j_schres_2009_09_030 crossref_primary_10_1097_YCO_0b013e328337d78d crossref_primary_10_1016_j_neuroscience_2014_12_075 crossref_primary_10_1007_s11571_013_9274_9 crossref_primary_10_1515_tnsci_2022_0356 crossref_primary_10_1016_j_neubiorev_2021_02_011 crossref_primary_10_3389_fpsyt_2017_00014 crossref_primary_10_1002_hbm_24551 crossref_primary_10_3389_fnins_2022_852822 crossref_primary_10_1002_hbm_21286 crossref_primary_10_1016_j_neuroimage_2017_01_024 crossref_primary_10_1523_JNEUROSCI_5401_11_2012 crossref_primary_10_1371_journal_pone_0024271 crossref_primary_10_1007_s11682_024_00858_x crossref_primary_10_3390_brainsci13020274 crossref_primary_10_1038_s41598_017_11792_y crossref_primary_10_1162_jocn_a_00269 crossref_primary_10_1080_23279095_2020_1852565 crossref_primary_10_1159_000522002 crossref_primary_10_1371_journal_pone_0064489 crossref_primary_10_1016_j_dcn_2017_06_003 crossref_primary_10_1016_j_neuroimage_2010_03_039 crossref_primary_10_1089_brain_2023_0083 crossref_primary_10_1093_cercor_bhs124 crossref_primary_10_1016_j_nicl_2020_102284 crossref_primary_10_1016_j_neuroimage_2013_08_037 crossref_primary_10_1007_s00429_017_1451_x crossref_primary_10_1016_j_neuroimage_2013_08_038 crossref_primary_10_1007_s00406_021_01337_w crossref_primary_10_3389_fnhum_2020_564272 crossref_primary_10_1017_S0033291708004443 crossref_primary_10_1016_j_chb_2023_108052 crossref_primary_10_1109_ACCESS_2019_2938681 crossref_primary_10_1016_j_neuroimage_2014_03_067 crossref_primary_10_1016_j_bcp_2010_12_029 crossref_primary_10_1186_s10194_022_01446_4 crossref_primary_10_1002_hbm_25949 crossref_primary_10_1016_j_neuroimage_2016_10_011 crossref_primary_10_1007_s12264_016_0090_1 crossref_primary_10_1016_j_neuroimage_2014_11_054 crossref_primary_10_1016_j_neuroimage_2021_118310 crossref_primary_10_3389_fnins_2021_729218 crossref_primary_10_1093_schbul_sby112 crossref_primary_10_1002_hbm_21469 crossref_primary_10_1002_hbm_22437 crossref_primary_10_1007_s00429_015_1010_2 crossref_primary_10_3389_fnins_2015_00203 crossref_primary_10_1212_WNL_0b013e31826d5f10 crossref_primary_10_1002_hbm_22670 crossref_primary_10_1109_TBME_2020_3022335 crossref_primary_10_1016_j_neuroimage_2014_03_058 crossref_primary_10_1371_journal_pone_0066572 crossref_primary_10_1016_j_brainres_2010_01_042 crossref_primary_10_1016_j_bpsc_2024_07_025 crossref_primary_10_2967_jnumed_119_234930 crossref_primary_10_3389_fnins_2018_00959 crossref_primary_10_3389_fnins_2018_00600 crossref_primary_10_1016_j_neuroscience_2017_08_028 crossref_primary_10_1007_s00429_017_1479_y crossref_primary_10_1007_s10548_017_0546_2 crossref_primary_10_1017_S1355617716000060 crossref_primary_10_1177_0284185120983978 crossref_primary_10_1371_journal_pone_0120861 crossref_primary_10_1038_srep14655 crossref_primary_10_3389_fnhum_2017_00199 crossref_primary_10_1002_hbm_22663 crossref_primary_10_1007_s11571_022_09899_8 crossref_primary_10_1002_hbm_23517 crossref_primary_10_1016_j_neuroscience_2021_05_014 crossref_primary_10_1007_s11682_012_9168_1 crossref_primary_10_1186_1471_2202_10_137 crossref_primary_10_1016_j_neuroimage_2017_12_018 crossref_primary_10_1093_cercor_bhae401 crossref_primary_10_1212_WNL_0000000000003327 crossref_primary_10_2139_ssrn_4124144 crossref_primary_10_1002_hbm_21250 crossref_primary_10_1016_j_neuroimage_2023_120097 crossref_primary_10_1002_mrm_22818 crossref_primary_10_1002_hbm_22583 crossref_primary_10_1002_hbm_23430 crossref_primary_10_1007_s11596_020_2287_9 crossref_primary_10_3389_fncom_2019_00094 crossref_primary_10_1016_j_schres_2010_01_019 crossref_primary_10_1002_brb3_1333 crossref_primary_10_1109_TNSRE_2023_3320135 crossref_primary_10_1007_s12264_018_0315_6 crossref_primary_10_1016_j_ejrad_2020_109324 crossref_primary_10_1002_hbm_24519 crossref_primary_10_1109_JPROC_2018_2825200 crossref_primary_10_30773_pi_2018_11_18 crossref_primary_10_1186_s11689_018_9232_2 crossref_primary_10_1093_schbul_sbv188 crossref_primary_10_1007_s12021_018_9413_x crossref_primary_10_1002_hbm_21249 crossref_primary_10_1007_s11682_016_9539_0 crossref_primary_10_1016_j_neuroimage_2014_10_037 crossref_primary_10_1089_brain_2014_0256 crossref_primary_10_1016_j_jad_2014_12_020 crossref_primary_10_3389_fneur_2021_645974 crossref_primary_10_1186_s10194_021_01272_0 crossref_primary_10_3758_s13415_019_00718_y crossref_primary_10_1089_brain_2014_0260 crossref_primary_10_3390_jpm10030089 crossref_primary_10_1371_journal_pone_0139018 crossref_primary_10_1016_j_schres_2013_09_016 crossref_primary_10_1007_s11571_020_09659_6 crossref_primary_10_1016_j_jad_2022_02_050 crossref_primary_10_1148_radiol_14132388 crossref_primary_10_3389_fnins_2019_00603 crossref_primary_10_3390_brainsci12091219 crossref_primary_10_1016_j_neulet_2011_12_036 crossref_primary_10_1093_braincomms_fcad129 crossref_primary_10_1016_j_nicl_2024_103729 crossref_primary_10_1186_s10194_016_0693_y crossref_primary_10_3389_fncom_2019_00075 crossref_primary_10_1016_j_cortex_2017_08_014 crossref_primary_10_1007_s00415_022_10983_6 crossref_primary_10_3389_fnagi_2020_00199 crossref_primary_10_3389_fnagi_2015_00237 crossref_primary_10_1016_j_pnpbp_2020_110194 crossref_primary_10_1016_j_brainresbull_2021_04_025 crossref_primary_10_1038_s41537_025_00593_2 crossref_primary_10_3389_fnsys_2017_00007 crossref_primary_10_1111_srt_13626 crossref_primary_10_1016_j_jad_2017_11_044 crossref_primary_10_3390_s24030814 crossref_primary_10_1155_2014_864979 crossref_primary_10_1177_02698811241257877 crossref_primary_10_3389_fnsys_2020_00049 crossref_primary_10_1002_oby_22731 crossref_primary_10_1016_j_nicl_2015_04_014 crossref_primary_10_1186_s11689_018_9254_9 crossref_primary_10_1016_j_neuroimage_2014_04_062 crossref_primary_10_1002_hbm_21303 crossref_primary_10_1016_j_biopsych_2012_12_025 crossref_primary_10_1186_s12888_022_04509_7 crossref_primary_10_1007_s00702_022_02477_6 crossref_primary_10_1016_j_schres_2020_01_001 crossref_primary_10_1007_s00429_018_1786_y crossref_primary_10_1016_j_biopsych_2011_10_035 crossref_primary_10_1016_j_neuroscience_2021_11_018 crossref_primary_10_1044_2019_PERS_SIG6_2019_0001 crossref_primary_10_1016_j_bspc_2024_107073 crossref_primary_10_1007_s12021_022_09617_z crossref_primary_10_1016_j_biopsych_2018_07_020 crossref_primary_10_1016_j_drugalcdep_2017_05_045 crossref_primary_10_1016_j_pnpbp_2009_07_032 crossref_primary_10_1002_brb3_2832 crossref_primary_10_1016_j_cortex_2016_11_017 crossref_primary_10_1016_j_neuroimage_2010_05_010 crossref_primary_10_1016_j_nicl_2016_06_012 crossref_primary_10_17116_jnevro2023123051165 crossref_primary_10_1038_s41380_024_02669_4 crossref_primary_10_1109_ACCESS_2024_3445580 crossref_primary_10_1016_j_bandc_2017_08_005 crossref_primary_10_1016_j_compbiomed_2021_105190 crossref_primary_10_1093_schbul_sbu080 crossref_primary_10_1002_hbm_24801 crossref_primary_10_1111_epi_13342 crossref_primary_10_1089_brain_2016_0429 crossref_primary_10_1371_journal_pone_0099166 crossref_primary_10_3389_fpsyt_2019_00966 crossref_primary_10_1186_1471_2202_11_145 crossref_primary_10_1016_j_neuroimage_2010_05_047 crossref_primary_10_1017_S0033291718000028 crossref_primary_10_1007_s00234_015_1561_1 crossref_primary_10_1002_nau_22767 crossref_primary_10_1002_hbm_23507 crossref_primary_10_1089_brain_2018_0608 crossref_primary_10_3389_fnins_2021_565029 crossref_primary_10_3233_JAD_210541 crossref_primary_10_1016_j_pscychresns_2015_03_001 crossref_primary_10_1016_j_neuroimage_2009_11_072 crossref_primary_10_1038_s41380_022_01569_9 crossref_primary_10_1007_s00415_009_5187_2 crossref_primary_10_1089_brain_2016_0419 crossref_primary_10_1016_j_neuroimage_2011_07_049 crossref_primary_10_1016_j_schres_2012_06_023 crossref_primary_10_1016_j_neuroimage_2018_01_045 crossref_primary_10_1002_jnr_24915 crossref_primary_10_1007_s41237_019_00086_4 crossref_primary_10_1212_WNL_0000000000001442 crossref_primary_10_1093_cercor_bhab237 crossref_primary_10_1007_s11682_017_9718_7 crossref_primary_10_1038_srep21001 crossref_primary_10_1016_j_bbr_2024_114893 crossref_primary_10_1007_s00429_012_0382_9 crossref_primary_10_30773_pi_2022_0091 crossref_primary_10_1155_2022_3941049 crossref_primary_10_1038_s42003_021_02592_2 crossref_primary_10_52294_001c_129695 crossref_primary_10_1016_j_schres_2011_12_003 crossref_primary_10_1016_j_bbr_2019_112381 crossref_primary_10_1007_s10517_017_3837_4 crossref_primary_10_1016_j_neuroimage_2011_10_010 crossref_primary_10_1007_s11682_015_9484_3 crossref_primary_10_1016_j_jneumeth_2020_109039 crossref_primary_10_1212_WNL_0000000000209606 crossref_primary_10_1371_journal_pone_0083516 crossref_primary_10_1097_WCO_0b013e328306f2c5 crossref_primary_10_1016_j_neuroimage_2011_11_059 crossref_primary_10_1016_j_neuroimage_2020_116802 crossref_primary_10_1016_j_psychres_2019_112713 crossref_primary_10_3389_fnins_2023_1249008 crossref_primary_10_1002_hbm_22839 crossref_primary_10_1016_j_neuroimage_2012_05_078 crossref_primary_10_1016_j_nicl_2023_103400 crossref_primary_10_1093_schbul_sbt180 crossref_primary_10_1177_03331024241313377 crossref_primary_10_1007_s11682_016_9597_3 crossref_primary_10_1159_000507630 crossref_primary_10_1016_j_nicl_2015_03_017 crossref_primary_10_1002_jmri_25322 crossref_primary_10_1192_bjp_2019_255 crossref_primary_10_1002_jmri_27740 crossref_primary_10_1038_tp_2016_149 crossref_primary_10_1002_hbm_26075 crossref_primary_10_1093_cercor_bhw233 crossref_primary_10_1162_netn_a_00155 crossref_primary_10_1016_j_mri_2008_05_008 crossref_primary_10_1192_bjo_2023_636 crossref_primary_10_1093_schbul_sbt077 crossref_primary_10_1016_j_nicl_2022_103230 crossref_primary_10_3389_fneur_2023_1157931 crossref_primary_10_1016_j_brainres_2023_148634 crossref_primary_10_1371_journal_pone_0049847 crossref_primary_10_1111_pcn_13162 crossref_primary_10_1371_journal_pone_0289735 crossref_primary_10_1038_s44220_023_00115_y crossref_primary_10_1371_journal_pone_0096834 crossref_primary_10_1371_journal_pone_0267608 crossref_primary_10_1002_hbm_20888 crossref_primary_10_1016_j_clinph_2017_06_246 crossref_primary_10_1371_journal_pone_0024642 crossref_primary_10_1016_j_neuroimage_2016_04_006 crossref_primary_10_3389_fnhum_2014_00897 crossref_primary_10_1093_cercor_bhw027 crossref_primary_10_1093_cercor_bhac190 crossref_primary_10_1007_s10072_011_0636_y crossref_primary_10_1109_RBME_2012_2211076 crossref_primary_10_1371_journal_pone_0107829 crossref_primary_10_3389_fnins_2022_889105 crossref_primary_10_1016_j_apnu_2014_09_009 crossref_primary_10_1016_j_ynirp_2021_100064 crossref_primary_10_1002_hbm_20673 crossref_primary_10_1016_j_cortex_2014_01_017 crossref_primary_10_1017_S0033291713002596 crossref_primary_10_1093_scan_nsy059 crossref_primary_10_1186_s13244_021_00993_9 crossref_primary_10_1016_j_jad_2013_01_051 crossref_primary_10_1016_j_cortex_2011_02_011 crossref_primary_10_1371_journal_pone_0163980 crossref_primary_10_1162_imag_a_00187 crossref_primary_10_1002_hbm_20678 crossref_primary_10_1186_1471_2202_11_54 crossref_primary_10_1109_TBME_2011_2167149 crossref_primary_10_1016_j_nicl_2015_11_011 crossref_primary_10_17116_jnevro202012009180 crossref_primary_10_1007_s10072_023_07255_0 crossref_primary_10_1016_j_eswa_2024_125922 crossref_primary_10_1016_j_neuroimage_2014_09_055 crossref_primary_10_1016_j_neuroimage_2016_11_012 crossref_primary_10_12688_f1000research_16405_2 crossref_primary_10_1002_hbm_21517 crossref_primary_10_1002_hbm_22849 crossref_primary_10_1016_j_nicl_2023_103434 crossref_primary_10_1111_j_1460_9568_2012_08035_x crossref_primary_10_1002_hbm_24905 crossref_primary_10_1371_journal_pone_0228334 crossref_primary_10_3174_ajnr_A2330 crossref_primary_10_1002_hbm_20668 crossref_primary_10_1002_hbm_21514 crossref_primary_10_1016_j_nicl_2015_11_015 crossref_primary_10_1002_hbm_25199 crossref_primary_10_1007_s11055_017_0520_1 crossref_primary_10_24835_1607_0763_1374 crossref_primary_10_1007_s11682_021_00554_0 crossref_primary_10_1016_j_nicl_2014_08_027 crossref_primary_10_3389_fnins_2016_00466 crossref_primary_10_1016_j_nicl_2014_08_022 crossref_primary_10_1093_schbul_sbaa021 crossref_primary_10_1111_ejn_14227 crossref_primary_10_1016_j_jneumeth_2024_110109 crossref_primary_10_3371_CSRP_4_4_3 crossref_primary_10_22172_cogbio_2017_29_2_001 crossref_primary_10_3389_fnins_2018_00413 crossref_primary_10_1016_j_nicl_2017_06_023 crossref_primary_10_1093_schbul_sbu116 crossref_primary_10_3389_fnins_2023_1252732 crossref_primary_10_1016_j_schres_2010_11_009 crossref_primary_10_17816_rmmar623485 crossref_primary_10_1016_j_neuroimage_2021_118473 crossref_primary_10_1007_s10072_022_06275_6 crossref_primary_10_1177_2164956120906092 crossref_primary_10_1155_2015_343720 crossref_primary_10_1016_j_bandl_2022_105202 crossref_primary_10_1371_journal_pone_0244756 crossref_primary_10_1016_j_neuron_2014_10_015 crossref_primary_10_1109_TMI_2013_2272976 crossref_primary_10_1109_JBHI_2022_3212479 crossref_primary_10_1093_scan_nsw085 crossref_primary_10_1007_s11571_010_9126_9 crossref_primary_10_1371_journal_pone_0014801 crossref_primary_10_1016_j_neuroimage_2012_11_008 crossref_primary_10_1016_j_neuroimage_2016_04_051 crossref_primary_10_1016_j_pscychresns_2024_111802 crossref_primary_10_1089_brain_2018_0579 crossref_primary_10_1162_netn_a_00196 crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_3389_fnins_2022_972730 crossref_primary_10_1007_s00415_019_09639_9 crossref_primary_10_1093_schbul_sbt037 crossref_primary_10_1002_nau_22458 crossref_primary_10_1016_j_neuropsychologia_2009_09_020 crossref_primary_10_1002_mds_26320 crossref_primary_10_1016_j_jneumeth_2015_03_019 crossref_primary_10_1093_texcom_tgad018 crossref_primary_10_1186_1475_925X_11_50 crossref_primary_10_3174_ajnr_A3608 crossref_primary_10_1016_j_brainres_2014_03_024 crossref_primary_10_1111_pcn_12495 crossref_primary_10_1523_JNEUROSCI_2987_11_2011 crossref_primary_10_1152_jn_00675_2015 crossref_primary_10_3389_fnins_2016_00440 crossref_primary_10_1016_j_jneumeth_2024_110207 crossref_primary_10_1093_scan_nsaa114 crossref_primary_10_1016_j_jpsychires_2020_10_047 crossref_primary_10_1016_j_neuroimage_2011_08_105 crossref_primary_10_1016_j_nicl_2013_07_004 crossref_primary_10_1016_j_neuropsychologia_2023_108708 crossref_primary_10_1371_journal_pone_0063727 crossref_primary_10_1002_hbm_20993 crossref_primary_10_1016_j_jns_2015_04_054 crossref_primary_10_1371_journal_pcbi_1010634 crossref_primary_10_1002_hbm_20876 crossref_primary_10_1093_cercor_bhad131 crossref_primary_10_3389_fphy_2021_822915 crossref_primary_10_1038_s41537_023_00375_8 crossref_primary_10_1155_2020_6872508 crossref_primary_10_1016_j_neuroimage_2011_10_002 crossref_primary_10_1016_j_neuroimage_2020_117190 crossref_primary_10_1371_journal_pone_0051975 crossref_primary_10_1007_s00429_016_1247_4 crossref_primary_10_1371_journal_pone_0028196 crossref_primary_10_3389_fnhum_2023_1100431 crossref_primary_10_1016_j_brainres_2014_09_066 crossref_primary_10_1016_j_neuroimage_2022_119737 crossref_primary_10_3389_fpsyt_2016_00029 crossref_primary_10_1088_1741_2552_ab7ad3 crossref_primary_10_1016_j_mri_2010_10_008 crossref_primary_10_1016_j_pscychresns_2023_111766 crossref_primary_10_1016_j_jneumeth_2023_110049 crossref_primary_10_1002_hbm_22929 crossref_primary_10_1371_journal_pone_0096850 crossref_primary_10_3233_BPL_200115 crossref_primary_10_1016_j_schres_2010_11_013 crossref_primary_10_1097_GME_0000000000002321 crossref_primary_10_1016_j_jad_2015_10_042 crossref_primary_10_1016_j_neuri_2022_100091 crossref_primary_10_1016_j_schres_2016_12_008 crossref_primary_10_1016_j_biopsycho_2018_03_005 crossref_primary_10_1088_2057_1976_ab0390 crossref_primary_10_1016_j_clinph_2013_01_005 crossref_primary_10_1016_j_neuroimage_2010_03_062 crossref_primary_10_1016_j_jneumeth_2019_108451 crossref_primary_10_1002_hbm_20813 crossref_primary_10_1093_schbul_sbq074 crossref_primary_10_1016_j_neuroimage_2015_07_002 crossref_primary_10_3389_fnhum_2020_00031 crossref_primary_10_1177_0269881117705071 crossref_primary_10_1016_j_jneumeth_2018_02_013 crossref_primary_10_1088_1741_2552_ad27ee crossref_primary_10_1093_schbul_sbae142 crossref_primary_10_1097_PRS_0000000000011689 crossref_primary_10_1371_journal_pone_0071009 crossref_primary_10_3389_fnins_2020_00032 crossref_primary_10_1089_brain_2017_0538 crossref_primary_10_1016_j_schres_2024_06_044 crossref_primary_10_1155_2010_868976 crossref_primary_10_1002_hbm_25020 crossref_primary_10_3389_fnhum_2014_00104 crossref_primary_10_1016_j_biopsych_2015_08_029 crossref_primary_10_1093_cercor_bht366 crossref_primary_10_1007_s12671_020_01502_7 crossref_primary_10_1016_j_sleep_2018_05_040 crossref_primary_10_1109_ACCESS_2024_3393968 crossref_primary_10_1002_hbm_23081 crossref_primary_10_1016_j_nicl_2020_102534 crossref_primary_10_1109_MSP_2012_2233865 crossref_primary_10_1016_j_pscychresns_2022_111444 crossref_primary_10_1089_brain_2015_0411 crossref_primary_10_1002_hbm_20807 crossref_primary_10_1089_brain_2020_0779 crossref_primary_10_1016_j_jneumeth_2008_04_012 crossref_primary_10_1016_j_pscychresns_2012_01_002 crossref_primary_10_2215_CJN_00420117 crossref_primary_10_1016_j_neuroimage_2018_10_004 crossref_primary_10_1089_brain_2013_0190 crossref_primary_10_3389_fnhum_2015_00467 crossref_primary_10_3389_fphys_2018_00475 crossref_primary_10_1016_j_biopsych_2010_11_009 crossref_primary_10_1007_s11682_019_00236_y crossref_primary_10_1016_j_tics_2012_03_008 crossref_primary_10_1016_j_bionps_2020_100022 crossref_primary_10_1111_acps_12141 crossref_primary_10_1017_S0033291714000579 crossref_primary_10_1016_j_neuroimage_2009_09_004 crossref_primary_10_1007_s11357_023_00805_6 crossref_primary_10_1016_j_neurobiolaging_2013_03_004 crossref_primary_10_1259_bjr_20210826 crossref_primary_10_1016_j_pscychresns_2024_111910 crossref_primary_10_1371_journal_pone_0091075 crossref_primary_10_1016_j_nicl_2014_07_003 crossref_primary_10_1002_brb3_876 crossref_primary_10_3389_fnins_2022_957620 crossref_primary_10_1016_j_biopsych_2013_04_024 crossref_primary_10_3389_fnins_2019_00055 crossref_primary_10_1080_21681163_2023_2227736 crossref_primary_10_1007_s00429_010_0276_7 crossref_primary_10_3389_fnagi_2022_964349 crossref_primary_10_18632_aging_102204 crossref_primary_10_1002_ima_22348 crossref_primary_10_1016_j_schres_2019_05_007 crossref_primary_10_3390_bs10110175 crossref_primary_10_3390_app11083636 crossref_primary_10_3389_fneur_2023_1288801 crossref_primary_10_1007_s11682_015_9489_y crossref_primary_10_1098_rstb_2013_0521 crossref_primary_10_1016_j_jneumeth_2022_109478 crossref_primary_10_1089_brain_2020_0794 crossref_primary_10_1089_brain_2023_0040 crossref_primary_10_1016_j_neuroimage_2017_04_014 crossref_primary_10_1016_j_clinph_2014_10_004 crossref_primary_10_3389_fnins_2017_00075 crossref_primary_10_1016_j_neuroimage_2011_05_090 crossref_primary_10_1016_j_neuroimage_2018_06_024 crossref_primary_10_1089_brain_2011_0029 crossref_primary_10_1371_journal_pone_0293053 crossref_primary_10_1007_s10548_018_0678_z crossref_primary_10_1016_j_neuroimage_2011_02_063 crossref_primary_10_1002_hbm_26200 crossref_primary_10_1038_nrn_2016_113 crossref_primary_10_1146_annurev_clinpsy_032511_143049 crossref_primary_10_1212_WNL_0000000000007577 crossref_primary_10_1016_j_neuropsychologia_2016_11_003 crossref_primary_10_1093_cercor_bhad067 crossref_primary_10_1016_j_neuroimage_2013_12_063 crossref_primary_10_1007_s00429_024_02867_4 crossref_primary_10_1016_j_expneurol_2012_06_014 crossref_primary_10_1016_j_schres_2010_07_020 crossref_primary_10_1038_s41398_023_02344_2 crossref_primary_10_1016_j_schres_2015_07_025 crossref_primary_10_3389_fnhum_2018_00515 crossref_primary_10_3389_fnins_2015_00095 crossref_primary_10_3389_fnins_2018_00015 crossref_primary_10_1111_jon_12909 crossref_primary_10_1016_j_neubiorev_2013_10_004 crossref_primary_10_1016_j_neuroimage_2011_02_056 crossref_primary_10_1016_j_neuroimage_2012_06_078 crossref_primary_10_1089_brain_2020_0748 crossref_primary_10_1109_JSTSP_2016_2594945 crossref_primary_10_1109_TBME_2024_3423703 crossref_primary_10_3389_fneur_2019_00033 crossref_primary_10_1016_j_jneumeth_2010_07_028 crossref_primary_10_1111_bdi_13261 crossref_primary_10_1001_jamaoto_2023_0824 crossref_primary_10_1002_hbm_22198 crossref_primary_10_1007_s00702_014_1237_8 crossref_primary_10_1162_imag_a_00339 crossref_primary_10_1089_brain_2021_0079 crossref_primary_10_1016_j_jneumeth_2019_03_015 crossref_primary_10_2139_ssrn_4107158 crossref_primary_10_1016_j_jneumeth_2019_03_011 crossref_primary_10_1111_j_1530_0277_2009_01112_x crossref_primary_10_1016_j_neuroimage_2014_07_045 crossref_primary_10_1016_j_neuroimage_2018_06_081 crossref_primary_10_1258_ar_2011_110262 crossref_primary_10_1016_j_neuroimage_2012_05_048 crossref_primary_10_1002_ima_20276 crossref_primary_10_1016_j_nicl_2018_04_026 crossref_primary_10_1371_journal_pone_0076604 crossref_primary_10_3389_fnins_2021_746264 crossref_primary_10_1038_jcbfm_2013_238 crossref_primary_10_1016_j_dcn_2016_06_002 crossref_primary_10_1016_j_jtcms_2015_10_001 crossref_primary_10_1016_j_neuron_2012_06_002 crossref_primary_10_1016_j_pscychresns_2017_03_012 crossref_primary_10_1038_s41598_023_49415_4 crossref_primary_10_1016_j_neurobiolaging_2020_04_021 crossref_primary_10_3233_RNN_150497 crossref_primary_10_1002_hbm_25013 crossref_primary_10_1371_journal_pone_0145668 crossref_primary_10_1111_ejn_16266 crossref_primary_10_1186_s11689_016_9135_z crossref_primary_10_1016_j_neuroscience_2024_05_021 crossref_primary_10_3389_fpsyt_2024_1423008 crossref_primary_10_1016_j_neuroimage_2013_05_019 crossref_primary_10_1002_art_42691 crossref_primary_10_3389_fnhum_2022_928315 crossref_primary_10_1007_s00422_009_0350_5 crossref_primary_10_1016_j_expneurol_2009_01_025 crossref_primary_10_1016_j_neuroimage_2016_01_005 crossref_primary_10_1155_2021_8876873 crossref_primary_10_1371_journal_pone_0071061 crossref_primary_10_1016_j_neuroimage_2022_119451 crossref_primary_10_1016_j_nicl_2020_102319 crossref_primary_10_1038_s41598_017_06866_w crossref_primary_10_1002_hbm_25125 crossref_primary_10_1007_s10517_018_4161_3 crossref_primary_10_1089_brain_2011_0060 crossref_primary_10_1097_MD_0000000000008897 crossref_primary_10_1016_j_brainresbull_2024_111098 crossref_primary_10_1093_scan_nsu160 crossref_primary_10_1002_hbm_26454 crossref_primary_10_1016_j_ynirp_2024_100197 crossref_primary_10_1109_TMI_2011_2166083 crossref_primary_10_1016_j_neuroimage_2011_03_051 crossref_primary_10_1017_S0033291712001638 crossref_primary_10_1016_j_neuroimage_2022_119459 crossref_primary_10_1002_jmri_21621 crossref_primary_10_1016_j_bcp_2013_06_011 crossref_primary_10_1155_2018_7058953 crossref_primary_10_1002_hbm_20901 crossref_primary_10_1523_JNEUROSCI_3296_15_2016 crossref_primary_10_1016_j_bpsc_2017_07_003 crossref_primary_10_1016_j_spl_2008_11_007 crossref_primary_10_1093_schbul_sbac174 crossref_primary_10_1007_s00406_016_0721_6 crossref_primary_10_1007_s00234_021_02713_y crossref_primary_10_1155_2012_608501 crossref_primary_10_1016_j_neuroimage_2013_05_009 crossref_primary_10_1016_j_biopsych_2012_01_025 crossref_primary_10_1016_j_nic_2017_06_012 crossref_primary_10_1038_s41598_017_02127_y |
| Cites_doi | 10.1016/S0006-3223(99)00152-3 10.1037/t07827-000 10.1098/rstb.2005.1634 10.1192/bjp.167.3.343 10.1016/0920-9964(94)00061-C 10.1073/pnas.98.2.676 10.1016/S0006-3223(02)01316-1 10.1002/hbm.1024 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7 10.1016/j.schres.2005.09.020 10.1371/journal.pbio.0020176 10.1162/neco.1995.7.6.1129 10.1093/cercor/bhg107 10.1016/S1053-8119(03)00411-7 10.1016/S0920-9964(99)00122-X 10.1109/ISBI.2007.357030 10.1002/1531-8249(200010)48:4<556::AID-ANA2>3.0.CO;2-2 10.1093/brain/awl051 10.1016/j.neuroimage.2005.03.001 10.1073/pnas.0308627101 10.1192/bjp.160.2.179 10.1016/S0920-9964(02)00529-7 10.1080/00207450500505761 10.1002/mrm.1910340409 10.1093/brain/awh632 10.1002/hbm.460020107 10.1037/0894-4105.12.3.426 10.1007/s00127-005-0991-x 10.1109/TMI.2005.846852 10.1002/hbm.20204 10.1176/appi.ajp.158.11.1809 10.1002/1522-2594(200012)44:6<947::AID-MRM17>3.0.CO;2-5 10.1016/j.biopsych.2004.01.011 10.1006/nimg.1996.0030 10.1097/01.wnr.0000198434.06518.b8 10.1176/appi.ajp.164.3.450 10.1016/S0730-725X(02)00503-9 10.1016/S0006-3223(01)01358-0 10.1176/appi.ajp.158.4.646 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 10.1016/j.schres.2004.09.025 10.1002/hbm.1048 10.1007/s004220000197 10.1109/MEMB.2006.1607674 10.1002/hbm.20022 10.1016/j.neuroimage.2005.08.060 10.1006/nimg.2001.1037 10.1109/MEMB.2006.1607672 10.1002/hbm.20359 10.1016/j.schres.2004.10.011 10.1016/j.neuroimage.2004.10.042 10.1006/nimg.1997.0315 10.1192/bjp.161.6.861b |
| ContentType | Journal Article |
| Copyright | 2007 Elsevier Inc. Copyright Elsevier Limited Feb 15, 2008 2007 Elsevier Inc. All rights reserved. 2007 |
| Copyright_xml | – notice: 2007 Elsevier Inc. – notice: Copyright Elsevier Limited Feb 15, 2008 – notice: 2007 Elsevier Inc. All rights reserved. 2007 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7QO 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.neuroimage.2007.11.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts Biotechnology Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Biotechnology Research Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 1681 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:3164840 PMC3164840 3244572261 18082428 10_1016_j_neuroimage_2007_11_001 S1053811907010282 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: 5 R01 MH 52886 – fundername: NIBIB NIH HHS grantid: R01 EB005846 – fundername: NIBIB NIH HHS grantid: 1 R01 EB 005846 – fundername: NIMH NIH HHS grantid: 2 R01 MH 43775 – fundername: NIBIB NIH HHS grantid: R01 EB020407 – fundername: NIMH NIH HHS grantid: R01 MH052886 – fundername: NIBIB NIH HHS grantid: R01 EB006841 – fundername: NIMH NIH HHS grantid: R01 MH043775 – fundername: NIBIB NIH HHS grantid: 1 R01 EB 000840 – fundername: NIBIB NIH HHS grantid: R01 EB000840 – fundername: National Institute of Mental Health : NIMH grantid: R01 MH043775-13 || MH – fundername: National Institute of Mental Health : NIMH grantid: R01 MH043775-11 || MH – fundername: National Institute of Mental Health : NIMH grantid: R01 MH052886-04A1 || MH – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB005846-03 || EB – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB000840-02 || EB – fundername: National Institute of Mental Health : NIMH grantid: R01 MH052886-05 || MH – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB000840-06 || EB – fundername: National Institute of Mental Health : NIMH grantid: R01 MH052886-07 || MH – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB005846-04 || EB – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB000840-03 || EB |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 AAYXX CITATION PUEGO AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7QO 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c659t-22ff28a6829a849a04059937be7a947dbd6fa73bb5adc2aad046cf931ff47a4e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Sun Oct 26 04:15:41 EDT 2025 Tue Sep 30 16:57:28 EDT 2025 Sun Sep 28 11:38:44 EDT 2025 Mon Oct 06 18:04:26 EDT 2025 Tue Oct 07 06:20:21 EDT 2025 Mon Jul 21 05:44:54 EDT 2025 Wed Oct 01 02:57:42 EDT 2025 Thu Apr 24 23:16:11 EDT 2025 Fri Feb 23 02:30:10 EST 2024 Tue Oct 14 19:31:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c659t-22ff28a6829a849a04059937be7a947dbd6fa73bb5adc2aad046cf931ff47a4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3164840 |
| PMID | 18082428 |
| PQID | 1506736778 |
| PQPubID | 2031077 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neuroimage_2007_11_001 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3164840 proquest_miscellaneous_70269599 proquest_miscellaneous_21031616 proquest_journals_1506736778 pubmed_primary_18082428 crossref_citationtrail_10_1016_j_neuroimage_2007_11_001 crossref_primary_10_1016_j_neuroimage_2007_11_001 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2007_11_001 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2007_11_001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-02-15 |
| PublicationDateYYYYMMDD | 2008-02-15 |
| PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-15 day: 15 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2008 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Mikula, Niebur (bib52) 2006; 116 Calhoun, Adali, Pearlson, Pekar (bib12) 2001; 14 Biswal, Van Kylen, Hyde (bib6) 1997; 10 Calhoun, Adali, Kraut, Pearlson (bib11) 2000; 44 Li, Adali, Calhoun (bib42) 2007; 28 Rajapakse, Tan, Zheng, Mukhopadhyay, Yang (bib56) 2006; 25 Jorm, Mackinnon, Christensen, Griffiths (bib36) 2005; 40 Andreasen, Nopoulos, O'Leary, Miller, Wassink, Flaum (bib1) 1999; 46 Cordes, Haughton, Carew, Arfanakis, Maravilla (bib18) 2002; 20 Josin, Liddle (bib37) 2001; 84 Dickey, McCarley, Voglmaier, Niznikiewicz, Seidman, Frumin, Toner, Demeo, Shenton (bib21) 2003; 64 Liddle (bib44) 1992; 161 Biswal, Yetkin, Haughton, Hyde (bib5) 1995; 34 Calhoun, Adali, Pearlson, Pekar (bib13) 2001; 13 Calhoun, Adali (bib9) 2006; 25 McKeown, Makeig, Brown, Jung, Kindermann, Bell, Sejnowski (bib49) 1998; 6 Ganzevles, Haenen (bib28) 1995; 16 Calhoun, Adali, Pekar, Pearlson (bib14) 2003; 20 Menon, Anagnoson, Glover, Pfefferbaum (bib50) 2001; 158 Friston (bib25) 1995; 2 First M.B., Spitzer R.L., Gibbon M., Williams J.B.W., 1995. Structured Clinical interview for DSM-IV axis I disorders—patient edition (SCID-I/P, Version 2.0). New York: Biometrics Research Department, New York State Psychiatric Institute. Genovese, Lazar, Nichols (bib31) 2002; 15 Stevens, Kiehl, Pearlson, Calhoun (bib58) 2006 Lawrie, Buechel, Whalley, Frith, Friston, Johnstone (bib40) 2002; 51 Kivinienri, Kantola, Biswal, Jauhiainen, Hyvarinen, Tervonen (bib39) 2001 Spitzer R.L., Williams J.B., Gibbon M. 1996. Structured Clinical interview for DSM-IV: Non-patient edition (SCID-NP). New York: Biometrics Research Department, New York State Psychiatric Institute. APA (bib2) 2000 Herbster, Nichols, Wiseman, Mintun, DeKosky, Becker (bib34) 1996; 4 Bokde, Lopez-Bayo, Meindl, Pechler, Born, Faltraco, Teipel, Moller, Hampel (bib7) 2006; 129 Gaser, Nenadic, Volz, Buchel, Sauer (bib30) 2004; 14 Liddle, Friston, Frith, Hirsch, Jones, Frackowiak (bib45) 1992; 160 Chan, Chen, Law (bib17) 2006; 82 Calhoun, Kiehl, Liddle, Pearlson (bib15) 2004; 55 Lowe, Mock, Sorenson (bib47) 1998; 7 Van de Ven, Formisano, Prvulovic, Roeder, Linden (bib61) 2004; 22 Boksman, Theberge, Williamson, Drost, Malla, Densmore, Takhar, Pavlosky, Menon, Neufeld (bib8) 2005; 75 Liu, J., Calhoun, V.D., 2007. Parallel independent component analysis for multimodal analysis: application to fMRI and EEG DATA. Honey, Pomarol-Clotet, Corlett, Honey, McKenna, Bullmore (bib35) 2005; 128 Cordes, Haughton, Arfanakis, Carew, Turski, Moritz, Quigley, Meyerand (bib19) 2001; 22 Pearlson (bib54) 2000; 48 Meyer-Lindenberg, Poline, Kohn, Holt, Egan, Weinberger, Berman (bib51) 2001; 158 Calhoun, Pearlson, Kiehl (bib16) 2006; 30 Makeig, Delorme, Westerfield, Jung, Townsend, Courchesne, Sejnowski (bib48) 2004; 2 Calhoun, Adali, Kiehl, Astur, Pekar, Pearlson (bib10) 2006; 27 Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib55) 2001; 98 Garrity, Pearlson, McKiernan, Lloyd, Kiehl, Calhoun (bib29) 2007; 164 Heinrichs, Zakzanis (bib33) 1998; 12 Paulus, Hozack, Zauscher, Frank, Brown, McDowell, Braff (bib53) 2002; 51 Talairach, Tournoux (bib59) 1988 Cordes, Haughton, Arfanakis, Wendt, Turski, Moritz, Quigley, Meyerand (bib20) 2000; 21 Liang, Zhou, Jiang, Liu, Tian, Liu, Hao (bib43) 2006; 17 Levy, Lajonchere, Dorogusker, Min, Lee, Tartaglini, Lieberman, Mendell (bib41) 2000; 42 Bell, Sejnowski (bib4) 1995; 7 Kim, Zemon, Saperstein, Butler, Javitt (bib38) 2005; 76 Beckmann, De Luca, Devlin, Smith (bib3) 2005; 360 Greicius, Srivastava, Reiss, Menon (bib32) 2004; 101 Friston, Frith (bib26) 1995; 3 Esposito, Scarabino, Hyvarinen, Himberg, Formisano, Comani, Tedeschi, Goebel, Seifritz, Di (bib22) 2005; 25 Ford, Johnson, Whitfield, Faustman, Mathalon (bib24) 2005; 26 Frith, Friston, Herold, Silbersweig, Fletcher, Cahill, Dolan, Frackowiak, Liddle (bib27) 1995; 167 Turner, Twieg (bib60) 2005; 24 Turner (10.1016/j.neuroimage.2007.11.001_bib60) 2005; 24 Genovese (10.1016/j.neuroimage.2007.11.001_bib31) 2002; 15 Makeig (10.1016/j.neuroimage.2007.11.001_bib48) 2004; 2 Beckmann (10.1016/j.neuroimage.2007.11.001_bib3) 2005; 360 Li (10.1016/j.neuroimage.2007.11.001_bib42) 2007; 28 Calhoun (10.1016/j.neuroimage.2007.11.001_bib11) 2000; 44 Dickey (10.1016/j.neuroimage.2007.11.001_bib21) 2003; 64 Van de Ven (10.1016/j.neuroimage.2007.11.001_bib61) 2004; 22 Chan (10.1016/j.neuroimage.2007.11.001_bib17) 2006; 82 Lawrie (10.1016/j.neuroimage.2007.11.001_bib40) 2002; 51 Liddle (10.1016/j.neuroimage.2007.11.001_bib45) 1992; 160 Friston (10.1016/j.neuroimage.2007.11.001_bib25) 1995; 2 10.1016/j.neuroimage.2007.11.001_bib46 Frith (10.1016/j.neuroimage.2007.11.001_bib27) 1995; 167 Calhoun (10.1016/j.neuroimage.2007.11.001_bib10) 2006; 27 Liddle (10.1016/j.neuroimage.2007.11.001_bib44) 1992; 161 APA (10.1016/j.neuroimage.2007.11.001_bib2) 2000 Herbster (10.1016/j.neuroimage.2007.11.001_bib34) 1996; 4 Paulus (10.1016/j.neuroimage.2007.11.001_bib53) 2002; 51 Kim (10.1016/j.neuroimage.2007.11.001_bib38) 2005; 76 Menon (10.1016/j.neuroimage.2007.11.001_bib50) 2001; 158 Boksman (10.1016/j.neuroimage.2007.11.001_bib8) 2005; 75 Rajapakse (10.1016/j.neuroimage.2007.11.001_bib56) 2006; 25 Josin (10.1016/j.neuroimage.2007.11.001_bib37) 2001; 84 Garrity (10.1016/j.neuroimage.2007.11.001_bib29) 2007; 164 Andreasen (10.1016/j.neuroimage.2007.11.001_bib1) 1999; 46 Ford (10.1016/j.neuroimage.2007.11.001_bib24) 2005; 26 Liang (10.1016/j.neuroimage.2007.11.001_bib43) 2006; 17 Calhoun (10.1016/j.neuroimage.2007.11.001_bib9) 2006; 25 Raichle (10.1016/j.neuroimage.2007.11.001_bib55) 2001; 98 Biswal (10.1016/j.neuroimage.2007.11.001_bib6) 1997; 10 McKeown (10.1016/j.neuroimage.2007.11.001_bib49) 1998; 6 Biswal (10.1016/j.neuroimage.2007.11.001_bib5) 1995; 34 Heinrichs (10.1016/j.neuroimage.2007.11.001_bib33) 1998; 12 Mikula (10.1016/j.neuroimage.2007.11.001_bib52) 2006; 116 Cordes (10.1016/j.neuroimage.2007.11.001_bib20) 2000; 21 Greicius (10.1016/j.neuroimage.2007.11.001_bib32) 2004; 101 Honey (10.1016/j.neuroimage.2007.11.001_bib35) 2005; 128 Esposito (10.1016/j.neuroimage.2007.11.001_bib22) 2005; 25 Lowe (10.1016/j.neuroimage.2007.11.001_bib47) 1998; 7 Ganzevles (10.1016/j.neuroimage.2007.11.001_bib28) 1995; 16 Calhoun (10.1016/j.neuroimage.2007.11.001_bib16) 2006; 30 Calhoun (10.1016/j.neuroimage.2007.11.001_bib15) 2004; 55 Cordes (10.1016/j.neuroimage.2007.11.001_bib19) 2001; 22 Gaser (10.1016/j.neuroimage.2007.11.001_bib30) 2004; 14 Bell (10.1016/j.neuroimage.2007.11.001_bib4) 1995; 7 Calhoun (10.1016/j.neuroimage.2007.11.001_bib13) 2001; 13 10.1016/j.neuroimage.2007.11.001_bib23 Calhoun (10.1016/j.neuroimage.2007.11.001_bib12) 2001; 14 Friston (10.1016/j.neuroimage.2007.11.001_bib26) 1995; 3 Jorm (10.1016/j.neuroimage.2007.11.001_bib36) 2005; 40 Pearlson (10.1016/j.neuroimage.2007.11.001_bib54) 2000; 48 Bokde (10.1016/j.neuroimage.2007.11.001_bib7) 2006; 129 Meyer-Lindenberg (10.1016/j.neuroimage.2007.11.001_bib51) 2001; 158 Kivinienri (10.1016/j.neuroimage.2007.11.001_bib39) 2001 Stevens (10.1016/j.neuroimage.2007.11.001_bib58) 2006 10.1016/j.neuroimage.2007.11.001_bib57 Calhoun (10.1016/j.neuroimage.2007.11.001_bib14) 2003; 20 Cordes (10.1016/j.neuroimage.2007.11.001_bib18) 2002; 20 Talairach (10.1016/j.neuroimage.2007.11.001_bib59) 1988 Levy (10.1016/j.neuroimage.2007.11.001_bib41) 2000; 42 |
| References_xml | – volume: 27 start-page: 598 year: 2006 end-page: 610 ident: bib10 article-title: A method for multi-task fMRI data fusion applied to schizophrenia publication-title: Hum. Brain Mapp. – volume: 76 start-page: 55 year: 2005 end-page: 65 ident: bib38 article-title: Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis publication-title: Schizophr. Res. – volume: 158 start-page: 646 year: 2001 end-page: 649 ident: bib50 article-title: Functional magnetic resonance imaging evidence for disrupted basal ganglia function in schizophrenia publication-title: Am. J. Psychiatry – reference: Spitzer R.L., Williams J.B., Gibbon M. 1996. Structured Clinical interview for DSM-IV: Non-patient edition (SCID-NP). New York: Biometrics Research Department, New York State Psychiatric Institute. – volume: 7 start-page: 119 year: 1998 end-page: 132 ident: bib47 article-title: Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations publication-title: NeuroImage – volume: 20 start-page: 305 year: 2002 end-page: 317 ident: bib18 article-title: Hierarchical clustering to measure connectivity in fMRI resting-state data publication-title: Magn. Reson. Imaging – volume: 160 start-page: 179 year: 1992 end-page: 186 ident: bib45 article-title: Patterns of cerebral blood flow in schizophrenia publication-title: Br. J. Psychiatry – volume: 17 start-page: 209 year: 2006 end-page: 213 ident: bib43 article-title: Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging publication-title: NeuroReport – volume: 48 start-page: 556 year: 2000 end-page: 566 ident: bib54 article-title: Neurobiology of schizophrenia publication-title: Ann. Neurol. – volume: 10 start-page: 165 year: 1997 end-page: 170 ident: bib6 article-title: Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps publication-title: NMR Biomed. – volume: 12 start-page: 426 year: 1998 end-page: 445 ident: bib33 article-title: Neurocognitive deficit in schizophrenia: a quantitative review of the evidence publication-title: Neuropsychology – volume: 55 start-page: 842 year: 2004 end-page: 849 ident: bib15 article-title: Aberrant localization of synchronous hemodynamic activity in auditory cortex reliably characterizes schizophrenia publication-title: Biol. Psychiatry – volume: 21 start-page: 1636 year: 2000 end-page: 1644 ident: bib20 article-title: Mapping functionally related regions of brain with functional connectivity MR imaging publication-title: AJNR Am. J. Neuroradiol. – volume: 167 start-page: 343 year: 1995 end-page: 349 ident: bib27 article-title: Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. publication-title: Br. J. Psychiatry – volume: 3 start-page: 89 year: 1995 end-page: 97 ident: bib26 article-title: Schizophrenia: a disconnection syndrome? publication-title: Clin. Neurosci. – volume: 16 start-page: 67 year: 1995 end-page: 71 ident: bib28 article-title: A preliminary study of externally and self-ordered task performance in schizophrenia publication-title: Schizophr. Res. – year: 2000 ident: bib2 article-title: Diagnostic and Statistical Manual of Mental Disorders: American Psychiatry Publishing Inc. – volume: 44 start-page: 947 year: 2000 end-page: 954 ident: bib11 article-title: A weighted-least squares algorithm for estimation and visualization of relative latencies in event-related functional MRI publication-title: Magn. Res. Med. – year: 1988 ident: bib59 article-title: A Co-Planar Sterotaxic Atlas of a Human Brain – volume: 25 start-page: 102 year: 2006 end-page: 111 ident: bib56 article-title: Exploratory analysis of brain connectivity with ICA publication-title: IEEE Eng. Med. Biol. Mag. – volume: 30 start-page: 544 year: 2006 end-page: 553 ident: bib16 article-title: Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data publication-title: NeuroImage – volume: 82 start-page: 51 year: 2006 end-page: 64 ident: bib17 article-title: Specific executive dysfunction in patients with first-episode medication-naive schizophrenia publication-title: Schizophr. Res. – volume: 42 start-page: 171 year: 2000 end-page: 185 ident: bib41 article-title: Quantitative characterization of eye tracking dysfunction in schizophrenia publication-title: Schizophr. Res. – volume: 161 start-page: 861 year: 1992 ident: bib44 article-title: Syndromes of schizophrenia on factor analysis publication-title: Br. J. Psychiatry – volume: 24 start-page: 712 year: 2005 end-page: 718 ident: bib60 article-title: Study of temporal stationarity and spatial consistency of fMRI noise using independent component analysis publication-title: IEEE Trans. Med. Imag. – volume: 64 start-page: 35 year: 2003 end-page: 39 ident: bib21 article-title: A MRI study of fusiform gyrus in schizotypal personality disorder publication-title: Schizophr. Res. – volume: 28 start-page: 1251 year: 2007 end-page: 1266 ident: bib42 article-title: Estimating the number of independent components for fMRI data publication-title: Hum. Brain Map. – volume: 158 start-page: 1809 year: 2001 end-page: 1817 ident: bib51 article-title: Evidence for abnormal cortical functional connectivity during working memory in schizophrenia publication-title: Am. J. Psychiatry – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bib3 article-title: Investigations into resting-state connectivity using Independent Component Analysis publication-title: Philos. Trans. R. Soc. Lond., B Biol. Sci. – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bib5 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Res. Med. – volume: 128 start-page: 2597 year: 2005 end-page: 2611 ident: bib35 article-title: Functional disconnectivity in schizophrenia associated with attentional modulation of motor function publication-title: Brain – volume: 22 start-page: 1326 year: 2001 end-page: 1333 ident: bib19 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data publication-title: AJNR Am. J. Neuroradiol. – volume: 20 start-page: 1661 year: 2003 end-page: 1669 ident: bib14 article-title: Latency (in)sensitive ICA: group independent component analysis of fMRI data in the temporal frequency domain publication-title: NeuroImage – volume: 129 start-page: 1113 year: 2006 end-page: 1124 ident: bib7 article-title: Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment publication-title: Brain – volume: 40 start-page: 877 year: 2005 end-page: 883 ident: bib36 article-title: Structure of beliefs about the helpfulness of interventions for depression and schizophrenia. Results from a national survey of the Australian public publication-title: Soc. Psychiatry Psychiatr. Epidemiol. – reference: First M.B., Spitzer R.L., Gibbon M., Williams J.B.W., 1995. Structured Clinical interview for DSM-IV axis I disorders—patient edition (SCID-I/P, Version 2.0). New York: Biometrics Research Department, New York State Psychiatric Institute. – volume: 51 start-page: 995 year: 2002 end-page: 1004 ident: bib53 article-title: Parietal dysfunction is associated with increased outcome-related decision-making in schizophrenia patients publication-title: Biol. Psychiatry – volume: 4 start-page: 67 year: 1996 end-page: 77 ident: bib34 article-title: Functional connectivity in auditory–verbal short-term memory in Alzheimer's disease publication-title: NeuroImage – volume: 25 start-page: 79 year: 2006 end-page: 90 ident: bib9 article-title: ‘Unmixing’ functional magnetic resonance imaging with independent component analysis publication-title: IEEE Eng. Med. Biol. – volume: 25 start-page: 193 year: 2005 end-page: 205 ident: bib22 article-title: Independent component analysis of fMRI group studies by self-organizing clustering publication-title: NeuroImage – volume: 98 start-page: 676 year: 2001 end-page: 682 ident: bib55 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 75 start-page: 247 year: 2005 end-page: 263 ident: bib8 article-title: A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia publication-title: Schizophr. Res. – volume: 14 start-page: 140 year: 2001 end-page: 151 ident: bib12 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. – volume: 2 start-page: 56 year: 1995 end-page: 78 ident: bib25 article-title: Functional and effective connectivity in neuroimaging: a synthesis publication-title: Hum. Brain Mapp. – volume: 164 start-page: 450 year: 2007 end-page: 457 ident: bib29 article-title: Aberrant ‘default mode’ functional connectivity in schizophrenia publication-title: Am. J. Psychiatry – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: bib4 article-title: An information maximisation approach to blind separation and blind deconvolution publication-title: Neural Comput. – volume: 15 start-page: 870 year: 2002 end-page: 878 ident: bib31 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: NeuroImage – volume: 26 start-page: 922 year: 2005 end-page: 931 ident: bib24 article-title: Delayed hemodynamic responses in schizophrenia publication-title: NeuroImage – volume: 2 start-page: e176 year: 2004 ident: bib48 article-title: Electroencephalographic brain dynamics following manually responded visual targets publication-title: PLoS Biol. – volume: 46 start-page: 908 year: 1999 end-page: 920 ident: bib1 article-title: Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms publication-title: Biol. Psychiatry – volume: 6 start-page: 160 year: 1998 end-page: 188 ident: bib49 article-title: Analysis of fMRI data by blind separation into independent spatial components publication-title: Hum. Brain Mapp. – volume: 22 start-page: 165 year: 2004 end-page: 178 ident: bib61 article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest publication-title: Hum. Brain Mapp. – volume: 13 start-page: 43 year: 2001 end-page: 53 ident: bib13 article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms publication-title: Hum. Brain Mapp. – volume: 14 start-page: 91 year: 2004 end-page: 96 ident: bib30 article-title: Neuroanatomy of “hearing voices”: a frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia publication-title: Cereb. Cortex – volume: 101 start-page: 4637 year: 2004 end-page: 4642 ident: bib32 article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 51 start-page: 1008 year: 2002 end-page: 1011 ident: bib40 article-title: Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations publication-title: Biol. Psychiatry – volume: 84 start-page: 117 year: 2001 end-page: 122 ident: bib37 article-title: Neural network analysis of the pattern of functional connectivity between cerebral areas in schizophrenia publication-title: Biol. Cybern. – start-page: 1708 year: 2001 ident: bib39 article-title: Localization of the resting state vasomotor fluctuation with FFT publication-title: Cross Correlation, Principal Component and Independent Component Analysis of fMRI Data – reference: Liu, J., Calhoun, V.D., 2007. Parallel independent component analysis for multimodal analysis: application to fMRI and EEG DATA. – year: 2006 ident: bib58 article-title: Functional neural circuits for mental timekeeping publication-title: Hum. Brain Mapp. – volume: 116 start-page: 419 year: 2006 end-page: 429 ident: bib52 article-title: A novel method for visualizing functional connectivity using principal component analysis publication-title: Int. J. Neurosci. – volume: 46 start-page: 908 issue: 7 year: 1999 ident: 10.1016/j.neuroimage.2007.11.001_bib1 article-title: Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(99)00152-3 – year: 2006 ident: 10.1016/j.neuroimage.2007.11.001_bib58 article-title: Functional neural circuits for mental timekeeping publication-title: Hum. Brain Mapp. – ident: 10.1016/j.neuroimage.2007.11.001_bib23 doi: 10.1037/t07827-000 – volume: 360 start-page: 1001 issue: 1457 year: 2005 ident: 10.1016/j.neuroimage.2007.11.001_bib3 article-title: Investigations into resting-state connectivity using Independent Component Analysis publication-title: Philos. Trans. R. Soc. Lond., B Biol. Sci. doi: 10.1098/rstb.2005.1634 – volume: 167 start-page: 343 issue: 3 year: 1995 ident: 10.1016/j.neuroimage.2007.11.001_bib27 article-title: Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. publication-title: Br. J. Psychiatry doi: 10.1192/bjp.167.3.343 – volume: 16 start-page: 67 issue: 1 year: 1995 ident: 10.1016/j.neuroimage.2007.11.001_bib28 article-title: A preliminary study of externally and self-ordered task performance in schizophrenia publication-title: Schizophr. Res. doi: 10.1016/0920-9964(94)00061-C – volume: 98 start-page: 676 issue: 2 year: 2001 ident: 10.1016/j.neuroimage.2007.11.001_bib55 article-title: A default mode of brain function publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.98.2.676 – volume: 51 start-page: 1008 issue: 12 year: 2002 ident: 10.1016/j.neuroimage.2007.11.001_bib40 article-title: Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(02)01316-1 – ident: 10.1016/j.neuroimage.2007.11.001_bib57 – volume: 13 start-page: 43 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2007.11.001_bib13 article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1024 – volume: 10 start-page: 165 issue: 4–5 year: 1997 ident: 10.1016/j.neuroimage.2007.11.001_bib6 article-title: Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps publication-title: NMR Biomed. doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7 – start-page: 1708 year: 2001 ident: 10.1016/j.neuroimage.2007.11.001_bib39 article-title: Localization of the resting state vasomotor fluctuation with FFT – volume: 82 start-page: 51 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2007.11.001_bib17 article-title: Specific executive dysfunction in patients with first-episode medication-naive schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2005.09.020 – volume: 2 start-page: e176 issue: 6 year: 2004 ident: 10.1016/j.neuroimage.2007.11.001_bib48 article-title: Electroencephalographic brain dynamics following manually responded visual targets publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0020176 – volume: 7 start-page: 1129 issue: 6 year: 1995 ident: 10.1016/j.neuroimage.2007.11.001_bib4 article-title: An information maximisation approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – volume: 14 start-page: 91 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2007.11.001_bib30 article-title: Neuroanatomy of “hearing voices”: a frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg107 – volume: 20 start-page: 1661 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2007.11.001_bib14 article-title: Latency (in)sensitive ICA: group independent component analysis of fMRI data in the temporal frequency domain publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00411-7 – volume: 42 start-page: 171 issue: 3 year: 2000 ident: 10.1016/j.neuroimage.2007.11.001_bib41 article-title: Quantitative characterization of eye tracking dysfunction in schizophrenia publication-title: Schizophr. Res. doi: 10.1016/S0920-9964(99)00122-X – ident: 10.1016/j.neuroimage.2007.11.001_bib46 doi: 10.1109/ISBI.2007.357030 – volume: 48 start-page: 556 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2007.11.001_bib54 article-title: Neurobiology of schizophrenia publication-title: Ann. Neurol. doi: 10.1002/1531-8249(200010)48:4<556::AID-ANA2>3.0.CO;2-2 – volume: 129 start-page: 1113 issue: Pt 5 year: 2006 ident: 10.1016/j.neuroimage.2007.11.001_bib7 article-title: Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment publication-title: Brain doi: 10.1093/brain/awl051 – volume: 26 start-page: 922 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2007.11.001_bib24 article-title: Delayed hemodynamic responses in schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.03.001 – volume: 3 start-page: 89 issue: 2 year: 1995 ident: 10.1016/j.neuroimage.2007.11.001_bib26 article-title: Schizophrenia: a disconnection syndrome? publication-title: Clin. Neurosci. – volume: 101 start-page: 4637 issue: 13 year: 2004 ident: 10.1016/j.neuroimage.2007.11.001_bib32 article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0308627101 – volume: 160 start-page: 179 year: 1992 ident: 10.1016/j.neuroimage.2007.11.001_bib45 article-title: Patterns of cerebral blood flow in schizophrenia publication-title: Br. J. Psychiatry doi: 10.1192/bjp.160.2.179 – volume: 64 start-page: 35 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2007.11.001_bib21 article-title: A MRI study of fusiform gyrus in schizotypal personality disorder publication-title: Schizophr. Res. doi: 10.1016/S0920-9964(02)00529-7 – volume: 116 start-page: 419 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2007.11.001_bib52 article-title: A novel method for visualizing functional connectivity using principal component analysis publication-title: Int. J. Neurosci. doi: 10.1080/00207450500505761 – volume: 34 start-page: 537 issue: 4 year: 1995 ident: 10.1016/j.neuroimage.2007.11.001_bib5 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Res. Med. doi: 10.1002/mrm.1910340409 – volume: 128 start-page: 2597 year: 2005 ident: 10.1016/j.neuroimage.2007.11.001_bib35 article-title: Functional disconnectivity in schizophrenia associated with attentional modulation of motor function publication-title: Brain doi: 10.1093/brain/awh632 – volume: 2 start-page: 56 year: 1995 ident: 10.1016/j.neuroimage.2007.11.001_bib25 article-title: Functional and effective connectivity in neuroimaging: a synthesis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020107 – volume: 12 start-page: 426 issue: 3 year: 1998 ident: 10.1016/j.neuroimage.2007.11.001_bib33 article-title: Neurocognitive deficit in schizophrenia: a quantitative review of the evidence publication-title: Neuropsychology doi: 10.1037/0894-4105.12.3.426 – volume: 40 start-page: 877 issue: 11 year: 2005 ident: 10.1016/j.neuroimage.2007.11.001_bib36 article-title: Structure of beliefs about the helpfulness of interventions for depression and schizophrenia. Results from a national survey of the Australian public publication-title: Soc. Psychiatry Psychiatr. Epidemiol. doi: 10.1007/s00127-005-0991-x – volume: 24 start-page: 712 issue: 6 year: 2005 ident: 10.1016/j.neuroimage.2007.11.001_bib60 article-title: Study of temporal stationarity and spatial consistency of fMRI noise using independent component analysis publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2005.846852 – volume: 27 start-page: 598 issue: 7 year: 2006 ident: 10.1016/j.neuroimage.2007.11.001_bib10 article-title: A method for multi-task fMRI data fusion applied to schizophrenia publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20204 – volume: 158 start-page: 1809 issue: 11 year: 2001 ident: 10.1016/j.neuroimage.2007.11.001_bib51 article-title: Evidence for abnormal cortical functional connectivity during working memory in schizophrenia publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.158.11.1809 – volume: 44 start-page: 947 issue: 6 year: 2000 ident: 10.1016/j.neuroimage.2007.11.001_bib11 article-title: A weighted-least squares algorithm for estimation and visualization of relative latencies in event-related functional MRI publication-title: Magn. Res. Med. doi: 10.1002/1522-2594(200012)44:6<947::AID-MRM17>3.0.CO;2-5 – volume: 55 start-page: 842 issue: 8 year: 2004 ident: 10.1016/j.neuroimage.2007.11.001_bib15 article-title: Aberrant localization of synchronous hemodynamic activity in auditory cortex reliably characterizes schizophrenia publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2004.01.011 – volume: 4 start-page: 67 issue: 2 year: 1996 ident: 10.1016/j.neuroimage.2007.11.001_bib34 article-title: Functional connectivity in auditory–verbal short-term memory in Alzheimer's disease publication-title: NeuroImage doi: 10.1006/nimg.1996.0030 – volume: 17 start-page: 209 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2007.11.001_bib43 article-title: Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging publication-title: NeuroReport doi: 10.1097/01.wnr.0000198434.06518.b8 – volume: 164 start-page: 450 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2007.11.001_bib29 article-title: Aberrant ‘default mode’ functional connectivity in schizophrenia publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.164.3.450 – volume: 21 start-page: 1636 issue: 9 year: 2000 ident: 10.1016/j.neuroimage.2007.11.001_bib20 article-title: Mapping functionally related regions of brain with functional connectivity MR imaging publication-title: AJNR Am. J. Neuroradiol. – volume: 20 start-page: 305 issue: 4 year: 2002 ident: 10.1016/j.neuroimage.2007.11.001_bib18 article-title: Hierarchical clustering to measure connectivity in fMRI resting-state data publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(02)00503-9 – volume: 51 start-page: 995 issue: 12 year: 2002 ident: 10.1016/j.neuroimage.2007.11.001_bib53 article-title: Parietal dysfunction is associated with increased outcome-related decision-making in schizophrenia patients publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(01)01358-0 – volume: 158 start-page: 646 issue: 4 year: 2001 ident: 10.1016/j.neuroimage.2007.11.001_bib50 article-title: Functional magnetic resonance imaging evidence for disrupted basal ganglia function in schizophrenia publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.158.4.646 – volume: 6 start-page: 160 year: 1998 ident: 10.1016/j.neuroimage.2007.11.001_bib49 article-title: Analysis of fMRI data by blind separation into independent spatial components publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 – volume: 75 start-page: 247 issue: 2–3 year: 2005 ident: 10.1016/j.neuroimage.2007.11.001_bib8 article-title: A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2004.09.025 – volume: 14 start-page: 140 issue: 3 year: 2001 ident: 10.1016/j.neuroimage.2007.11.001_bib12 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1048 – volume: 84 start-page: 117 issue: 2 year: 2001 ident: 10.1016/j.neuroimage.2007.11.001_bib37 article-title: Neural network analysis of the pattern of functional connectivity between cerebral areas in schizophrenia publication-title: Biol. Cybern. doi: 10.1007/s004220000197 – year: 2000 ident: 10.1016/j.neuroimage.2007.11.001_bib2 – volume: 25 start-page: 102 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2007.11.001_bib56 article-title: Exploratory analysis of brain connectivity with ICA publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/MEMB.2006.1607674 – volume: 22 start-page: 165 issue: 3 year: 2004 ident: 10.1016/j.neuroimage.2007.11.001_bib61 article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20022 – volume: 30 start-page: 544 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2007.11.001_bib16 article-title: Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.08.060 – volume: 15 start-page: 870 issue: 4 year: 2002 ident: 10.1016/j.neuroimage.2007.11.001_bib31 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: NeuroImage doi: 10.1006/nimg.2001.1037 – volume: 25 start-page: 79 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2007.11.001_bib9 article-title: ‘Unmixing’ functional magnetic resonance imaging with independent component analysis publication-title: IEEE Eng. Med. Biol. doi: 10.1109/MEMB.2006.1607672 – volume: 28 start-page: 1251 year: 2007 ident: 10.1016/j.neuroimage.2007.11.001_bib42 article-title: Estimating the number of independent components for fMRI data publication-title: Hum. Brain Map. doi: 10.1002/hbm.20359 – volume: 76 start-page: 55 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2007.11.001_bib38 article-title: Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis publication-title: Schizophr. Res. doi: 10.1016/j.schres.2004.10.011 – year: 1988 ident: 10.1016/j.neuroimage.2007.11.001_bib59 – volume: 25 start-page: 193 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2007.11.001_bib22 article-title: Independent component analysis of fMRI group studies by self-organizing clustering publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.10.042 – volume: 7 start-page: 119 issue: 2 year: 1998 ident: 10.1016/j.neuroimage.2007.11.001_bib47 article-title: Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations publication-title: NeuroImage doi: 10.1006/nimg.1997.0315 – volume: 22 start-page: 1326 issue: 7 year: 2001 ident: 10.1016/j.neuroimage.2007.11.001_bib19 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data publication-title: AJNR Am. J. Neuroradiol. – volume: 161 start-page: 861 year: 1992 ident: 10.1016/j.neuroimage.2007.11.001_bib44 article-title: Syndromes of schizophrenia on factor analysis publication-title: Br. J. Psychiatry doi: 10.1192/bjp.161.6.861b |
| SSID | ssj0009148 |
| Score | 2.501192 |
| Snippet | Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1666 |
| SubjectTerms | Adult Algorithms Brain Cerebrovascular Circulation - physiology Female Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Male Middle Aged Nerve Net - physiopathology Neural networks Neural Pathways - physiopathology Normal distribution Principal Component Analysis Reproducibility of Results Schizophrenia Schizophrenia - physiopathology Standard deviation Studies |
| SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection Journals dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBYlhW0vY7_nrtv0sFeRWJYsmT6F0pJ2tC9boW9Gki3mkbqhSRj973dnyU5DVwjsNdZF5HS6O8Wfvo-Qb7Uz0gvn2EQpw0SdO2YmzrKUW6ivxsuqA49fXOazK3F-La_3yHF_FwZhlTH3h5zeZev4yTh6c7xomvEP6Ayg3EBBU8iLpiEP70P90XpE9qdn32eXG-7dVIQbcTJjaBABPQHm1dFGNjeweQOfIVJ6RoWYf1Spx13oYzDl83W7MPd_zHz-oFKdviIvY4tJp-FXvCZ7dfuGPLuIL9HfkrspDbrRFBpWioUt_B9I2wAJpw7BLy7IStBOjYguEXgNc93TZtDNXVHU9YDSx7pbSRTR6bctAjNgEF0-RPO9I1enJz-PZyxKLzCXy2LFOPeea5NrXhgtCgNbXWInY2tlCqEqW-XeqMxaaSrHjangmO18kaXeC2VEnb0noxam_EholVldKVS6El7Al1kx0V4X0uXCQTuRJkT1ri5d5CVHeYx52QPQfpebRULZTAXHFsTiJSQdLBeBm2MHm6JfzbK_ewrZsoQCsoPt0WC7FaM7Wh_2wVPGPLEskd9RZUjil5Cvw2PY4fjaxrT17XpZclTiyNP86REKnFvA-iTkQ4jFjTs0tHhwwgQnb0XpMADZxbeftM2vjmUc5hRw-k8IH-J5Zy8f_JenPpEXAZXDWSoPyWh1t64_Q-u3sl_i1v4LmrJeiA priority: 102 providerName: Elsevier – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTgJeJn4TNsAPvFrUjhPHQtM00KYJaRVCTNpb5DixKCppWVuh_ffcxU66aYD6HF-snM--c_z5-wDeNc5mXjnHx1pbrprccTt2FReywvxqfVZ34PHzSX52oT5fZpc7MOnvwhCssl8Tu4W6njv6R_6emPB0SnRnR4tfnFSj6HS1l9CwUVqhPuwoxu7BriRmrBHsfjyZfPm6oeEVKlyOy1JeCGEiticgvjoGyelPnMeB2pDYPaNYzF8S1t2C9C6u8sG6Xdjr33Y2u5G0Th_BXqw22XEIj8ew07RP4P55PE9_ClfHLEhIM6xdGeW48GuQtQEdzhzhYFxQmGCdMBFbEgYb-7pm00FCd8VI4gOzIO8uKDECqs9bwmhgI7a8Cex7BhenJ98-nfGowsBdnpkVl9J7Wdi8kMYWylic9RkVNVWjrVG6rurcW51WVWZrJ62tccftvEmF90pb1aTPYdRily-B1WlV1JpEr5RX-LJKjQtfmMzlymFlIRLQvatLFynKSSljVvZYtB_lZpBIQVPjDoZgeQmIwXIRaDq2sDH9aJb9NVRcOEvMJVvYfhhsY6kSSpAtrQ_64CnjkrEsNwGewNvhMU52OsGxbTNfL0tJohy5yP_dQqNzDY5PAi9CLG7cUWC1h5tNdPKtKB0aENH47Sft9HtHOI59qkKNE5BDPG_t5Vf__9Z9eBgQOJKL7ABGq6t18xrLvFX1Js7dP6RvWHQ priority: 102 providerName: ProQuest |
| Title | A method for functional network connectivity among spatially independent resting-state components in schizophrenia |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811907010282 https://dx.doi.org/10.1016/j.neuroimage.2007.11.001 https://www.ncbi.nlm.nih.gov/pubmed/18082428 https://www.proquest.com/docview/1506736778 https://www.proquest.com/docview/21031616 https://www.proquest.com/docview/70269599 https://pubmed.ncbi.nlm.nih.gov/PMC3164840 https://www.ncbi.nlm.nih.gov/pmc/articles/3164840 |
| UnpaywallVersion | submittedVersion |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_aWgm48P0RGMUHrunqxI4TcSrTpvKxqqqoVE6R7cSi0GbVmgqNA387z3GSbQykwqU52K-V7Zf3fq5_fj-A17mW3DCt_YEQ0md5pH050MqngcL8Kg3PKvL46Tgazdj7OZ_vAW3uwlSkfa0W_WK56heLLxW3cr3Shw1P7DBEgI-7kn3oRhzhdwe6s_Fk-Lk61eShH9NKzIMOrAYhFw17x3G6qhqRixW-qa54oa3fWcvB_CEl3YScN5mTt7fFWl58l8vllbR0cg-mzYAcG-Vbf1uqvv7xW63Hfxrxfbhbg1QydE0PYC8vHsKt0_oY_hGcD4lTniYIeYlNje4fRVI4UjnRlj6jnTAFqfSMyMZSt3EAF2TRKu-WxCqDYPL0q3tNxPLbzwpL7cBOZHOVD_gYZifHn45Gfi3e4Gtcl9IPAmOCWEZxkMiYJRKDBbdYSOVCJkxkKouMFKFSXGY6kDLDjbo2SUiNYUKyPHwCnQJ_8hmQLFRxJqxWFjMMv0yxQWzihOuIaQQk1APRrF-q68rmVmBjmTYUtq_p5cpb4U2BGx_L5vOAtpZrV91jB5ukcZG0ub2K8TbFFLSD7ZvWtkY4DrnsaH3QeGRaR5pNaitEitCWAfTgVduMMcIe_MgiP9tu0sBqeUQ0-nsPgZOb4Pp48NQ5-OV0xAgScY-Kk3zN9dsOtj759RZ04qpOee23HgTtS7LzLD__H6MXcMfReQKf8gPolOfb_CVixlL1YL__k-KnmIsedIdH048T-3z3YTTG59vj8WTaqyPJL7c5eQs |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKK1EuFZ8lpVAf4GixcZw4FqpQgVZb2l0h1Eq9BceJxaIluzS7qvbP8duYiZ1sqwLaS8_xh-KZzIzj5_cIeV0aHVthDOtJqZkoE8N0z-Qs5DnkV23jogGPD4ZJ_1x8vogv1sjv9i4MwirbmNgE6mJi8B_5W2TCkxHSnb2f_mKoGoWnq62EhvbSCsV-QzHmL3aclIsr2MLV-8efwN5vOD86PPvYZ15lgJkkVjPGubU81UnKlU6F0uDVMSbtvJRaCVnkRWK1jPI81oXhWhewozRWRaG1QmpRRjDuPbIhIqFg87fx4XD45euS9jcU7jJeHLE0DJXHEjmEWcNYOfoJccNRKSKbqBen-UuCvF0A38Zxbs6rqV5c6fH4WpI8eki2fHVLD5w7PiJrZfWY3B_48_sn5PKAOslqCrUyxZzqfkXSyqHRqUHcjXGKFrQRQqI1Yr5hrgUddZK9M4qSIpB1WXMhiiIwflIhJgQa0fo6kPApOb8Tezwj6xVM-ZzQIsrTQqLIlrACBstFL7Wpik0iDFQyYUBku9SZ8ZToqMwxzlrs249saSRU7JSwY0IYYEDCrufU0YKs0Ee11szaa68QqDPIXSv0fdf19aWRK3lW7L3bOk_mQ1SdLT-ogOx1jyG44ImRrsrJvM44ioAkYfLvFhIWV4F9ArLtfHG5HClUl7C5hUW-4aVdAyQ2v_mkGn1vCM5hTpGKXkB4588rr_LO_991j2z2zwan2enx8OQFeeDQP5yF8S5Zn13Oy5dQYs7yV_47puTbXYeOP9illnQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIpVeEN8NFOoDHK1uHCeOhRCqKKuW0ooDlfYWHCcWi5bs0uyq2r_Gr2MmTrKtCmgvPcdjKzOTmXH8PA_gdWlN7KS1fKCU4bJMLDcDm_NQ5JhfjYuLBjx-epYcnctPo3i0Ab-7uzAEq-xiYhOoi6mlf-T71AlPRdTubN-1sIgvh8P3s1-cGKTopLWj0_AuclIuL3H7Vr87PkRbvxFi-PHrhyPeMgxwm8R6zoVwTqQmSYU2qdQGPTqmhJ2XymipirxInFFRnsemsMKYAneT1ukodE4qI8sI570Dd1UUaYITqpFaNfwNpb-GF0c8DUPdoog8tqzpVTn-iRHDN1GkPqItLc1fUuPN0vcmgvPeopqZ5aWZTK6kx-EDuN_WtezAO-JD2CirR7B12p7cP4aLA-bJqhlWyYyyqf8JySqPQ2eWEDfWc1mwhgKJ1YT2xrWWbNyT9c4ZkYlgvuXNVShGkPhpRWgQHMTqqxDCJ3B-K9Z4CpsVLrkDrIjytFBEryWdxMlyOUhdqmObSIs1TBiA6lSd2bYZOnFyTLIO9fYjWxmJuDoV7pUIABhA2EvOfEOQNWR0Z82su_CKITrDrLWG7Nteti2KfLGzpvRu5zxZG5zqbPUpBbDXP8awQmdFpiqnizoTRP-RhMm_RyhUrkb7BPDM--JKHSnWlbitRSVf89J-ALU0v_6kGn9vWpvjmjKVgwBE789ra_n5_991D7YwYGSfj89OXsC2h_0IHsa7sDm_WJQvsbac56-aj5jBt9uOGn8A1COUDg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQRc-P4IFPCBq7drx44TcVohqgqpFUKsVE6R7cRiy2666maFyq9nbCdpS0FaONuTyPZk5jl-ngfwtrZaOmEtnSilqagzS_XEGsq4wfyqnawCefzoODuciY8n8mQHWH8XJpD2rZmPm8Vy3My_BW7lamn3e57YfooAH3clt2A3kwi_R7A7O_40_RpONWVKcxbEPNjEaxBK1bN3Iqcr1IicL_FLjcULff3OTg7mDynpJuS8yZy8s2lW-uKHXiyupKWD-_C5H1Bko3wfb1oztj9_q_X4TyN-APc6kEqmsekh7NTNI7h91B3DP4bzKYnK0wQhL_GpMf5RJE0klRPr6TM2ClOQoGdE1p66jQO4IPNBebclXhkEkycN95qI57efNZ7agZ3I-iof8AnMDj58eX9IO_EGanFdWsq5czzXWc4LnYtCY7CQHguZWulCqMpUmdMqNUbqynKtK9yoW1ekzDmhtKjTpzBq8JXPgVSpySvltbKEE_gwIya5ywtpM2ERkLAEVL9-pe0qm3uBjUXZU9hOy8uV98KbCjc-ns2XABssV7G6xxY2Re8iZX97FeNtiSloC9t3g22HcCJy2dJ6r_fIsos069JXiFSpLwOYwJuhGWOEP_jRTX22WZfca3lkLPt7D4WTW-D6JPAsOvjldOQIEnGPipN8zfWHDr4--fUWdOJQp7zz2wT48JFsPcsv_sfoJdyNdB5OmdyDUXu-qV8hZmzN6y5K_AI5i3Jp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+functional+network+connectivity+among+spatially+independent+resting-state+components+in+schizophrenia&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Jafri%2C+Madiha+J.&rft.au=Pearlson%2C+Godfrey+D.&rft.au=Stevens%2C+Michael&rft.au=Calhoun%2C+Vince+D.&rft.date=2008-02-15&rft.issn=1053-8119&rft.volume=39&rft.issue=4&rft.spage=1666&rft.epage=1681&rft_id=info:doi/10.1016%2Fj.neuroimage.2007.11.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2007_11_001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |