A method for functional network connectivity among spatially independent resting-state components in schizophrenia

Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 39; no. 4; pp. 1666 - 1681
Main Authors Jafri, Madiha J., Pearlson, Godfrey D., Stevens, Michael, Calhoun, Vince D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.02.2008
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2007.11.001

Cover

Abstract Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients.
AbstractList Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients.
Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in patients versus controls. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject’s ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients.
Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients.
Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure offunctional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients.
Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients.Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients.
Author Pearlson, Godfrey D.
Stevens, Michael
Calhoun, Vince D.
Jafri, Madiha J.
AuthorAffiliation 1 Olin Neuropsychiatry Research Center, Institute of Living, Hartford, Connecticut, 06106
3 The MIND Institute, Albuquerque, New Mexico 87131
2 Dept. of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06520
4 Dept. of ECE, University of New Mexico, Albuquerque, New Mexico 87131
AuthorAffiliation_xml – name: 2 Dept. of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06520
– name: 3 The MIND Institute, Albuquerque, New Mexico 87131
– name: 1 Olin Neuropsychiatry Research Center, Institute of Living, Hartford, Connecticut, 06106
– name: 4 Dept. of ECE, University of New Mexico, Albuquerque, New Mexico 87131
Author_xml – sequence: 1
  givenname: Madiha J.
  surname: Jafri
  fullname: Jafri, Madiha J.
  organization: Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
– sequence: 2
  givenname: Godfrey D.
  surname: Pearlson
  fullname: Pearlson, Godfrey D.
  organization: Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
– sequence: 3
  givenname: Michael
  surname: Stevens
  fullname: Stevens, Michael
  organization: Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
– sequence: 4
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  email: vcalhoun@unm.edu
  organization: Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18082428$$D View this record in MEDLINE/PubMed
BookMark eNqVUkuP0zAYjNAi9gF_AVlC4pZgOy_7gthd8ZJW4gJn66vzpXU3sYPtdFV-Pa5aqdAL5WJb9szomxlfZxfWWcwywmjBKGverQuLs3dmhCUWnNK2YKyglD3LrhiVdS7rll_sznWZC8bkZXYdwppSKlklXmSXTFDBKy6uMn9LRowr15HeedLPVkfjLAzEYnxy_pFoZy2my42JWwKjs0sSJogGhmFLjO1wwrTYSDyGaOwyDxEiJto4pZltDAlEgl6ZX25aebQGXmbPexgCvjrsN9mPTx-_33_JH759_np_-5DrppYx57zvuYBGcAmikkArWktZtgtsQVZtt-iaHtpysaih0xygo1Wje1myvq9aqLC8yeRed7YTbJ_SwGryKTK_VYyqXY5qrY45ql2OijGVckzc93vuNC9G7HQy4uHId2DU3y_WrNTSbVTJmkpUNAm8PQh493NO0ajRBI3DABbdHFRLeSN3fv4F5IwmTdYk4JsT4NrNPlUVFKtp05ZN24qEev3n4EfHh8aPzrR3IXjslTapsVR68mGGc6IRJwL_kerdnoqp9o1Br4I2aDV2xqc_pjpnzhH5cCKiB2ONhuERt-dJ_AZX0Au6
CitedBy_id crossref_primary_10_1371_journal_pone_0054512
crossref_primary_10_1002_hbm_24580
crossref_primary_10_1002_hbm_22162
crossref_primary_10_1002_acn3_51989
crossref_primary_10_1007_s11682_019_00255_9
crossref_primary_10_1002_hbm_22164
crossref_primary_10_1002_hbm_23256
crossref_primary_10_1016_j_media_2022_102413
crossref_primary_10_1016_j_neuroimage_2014_12_020
crossref_primary_10_1016_j_neuroimage_2009_10_080
crossref_primary_10_1111_cns_13430
crossref_primary_10_1111_cns_13433
crossref_primary_10_1016_j_neuroimage_2017_02_019
crossref_primary_10_1016_j_neuroimage_2010_05_067
crossref_primary_10_1109_ACCESS_2018_2879487
crossref_primary_10_1016_j_neuroimage_2010_05_063
crossref_primary_10_1016_j_neuroimage_2020_117349
crossref_primary_10_1002_hbm_25548
crossref_primary_10_1007_s11055_023_01545_y
crossref_primary_10_1097_WNR_0b013e32835b6edf
crossref_primary_10_3389_fnins_2017_00249
crossref_primary_10_1093_scan_nst185
crossref_primary_10_1002_hbm_23126
crossref_primary_10_1016_j_neuroimage_2011_06_037
crossref_primary_10_1002_aur_2476
crossref_primary_10_1016_j_jad_2024_03_141
crossref_primary_10_1016_j_jneumeth_2017_10_016
crossref_primary_10_1016_j_neuroimage_2009_08_036
crossref_primary_10_1109_MSP_2022_3163870
crossref_primary_10_1016_j_neulet_2013_05_029
crossref_primary_10_3389_fnins_2022_848363
crossref_primary_10_1007_s10334_010_0197_8
crossref_primary_10_1007_s12021_022_09570_x
crossref_primary_10_1016_j_neulet_2009_04_040
crossref_primary_10_1038_s41598_017_05774_3
crossref_primary_10_1016_j_neuroimage_2014_12_034
crossref_primary_10_3389_fpsyt_2017_00239
crossref_primary_10_1016_j_bbr_2020_113018
crossref_primary_10_1017_S0033291719001132
crossref_primary_10_1016_j_neucom_2017_01_106
crossref_primary_10_1002_brb3_2477
crossref_primary_10_1016_j_nicl_2025_103772
crossref_primary_10_3389_fncom_2017_00038
crossref_primary_10_1016_j_pscychresns_2017_04_003
crossref_primary_10_1016_j_neuroimage_2010_05_053
crossref_primary_10_1371_journal_pone_0190220
crossref_primary_10_3389_fnins_2022_828651
crossref_primary_10_1038_s41537_024_00456_2
crossref_primary_10_1186_s12984_025_01590_3
crossref_primary_10_1155_2012_412512
crossref_primary_10_1142_S0219635212500203
crossref_primary_10_1007_s00429_019_01850_8
crossref_primary_10_1016_j_neures_2009_01_015
crossref_primary_10_1016_j_brainres_2013_12_022
crossref_primary_10_3390_agronomy13040951
crossref_primary_10_1155_2021_6681903
crossref_primary_10_1371_journal_pone_0279260
crossref_primary_10_1016_j_neuroimage_2024_120617
crossref_primary_10_1038_s41537_017_0023_7
crossref_primary_10_1016_j_neuroimage_2022_119193
crossref_primary_10_1017_S0033291716001410
crossref_primary_10_1016_j_cortex_2018_12_019
crossref_primary_10_1089_brain_2020_0815
crossref_primary_10_1016_j_neunet_2025_107335
crossref_primary_10_1016_j_neuroimage_2024_120971
crossref_primary_10_1002_hbm_26781
crossref_primary_10_1038_s41598_017_11729_5
crossref_primary_10_1038_s41598_017_12964_6
crossref_primary_10_1016_j_neuroimage_2014_05_052
crossref_primary_10_1016_j_nicl_2024_103584
crossref_primary_10_1016_j_jad_2021_12_129
crossref_primary_10_1016_j_pnpbp_2017_04_017
crossref_primary_10_1016_j_addbeh_2017_01_021
crossref_primary_10_1152_jn_00891_2011
crossref_primary_10_1371_journal_pone_0176494
crossref_primary_10_3389_fnins_2019_00204
crossref_primary_10_1016_j_neuroimage_2015_05_018
crossref_primary_10_1016_j_neuroimage_2016_02_079
crossref_primary_10_1016_j_bbr_2024_115414
crossref_primary_10_1038_s41598_017_14248_5
crossref_primary_10_1002_hbm_25205
crossref_primary_10_1016_j_schres_2018_06_007
crossref_primary_10_1002_hbm_24591
crossref_primary_10_1016_j_nicl_2016_02_010
crossref_primary_10_1089_brain_2019_0734
crossref_primary_10_1002_hbm_26773
crossref_primary_10_1016_j_neuroimage_2015_07_071
crossref_primary_10_1111_j_1601_5215_2010_00491_x
crossref_primary_10_1016_j_jpsychires_2025_02_055
crossref_primary_10_1017_S0033291724002885
crossref_primary_10_1016_j_neuroimage_2017_10_002
crossref_primary_10_1002_nbm_2803
crossref_primary_10_1142_S1793545811500039
crossref_primary_10_1089_brain_2020_0950
crossref_primary_10_1093_schbul_sbp131
crossref_primary_10_1002_hbm_25799
crossref_primary_10_1016_j_jad_2024_11_036
crossref_primary_10_1016_j_pscychresns_2011_09_012
crossref_primary_10_1371_journal_pone_0177443
crossref_primary_10_1002_brb3_1476
crossref_primary_10_1007_s11682_017_9801_0
crossref_primary_10_1109_TBME_2020_3011363
crossref_primary_10_1111_biom_12111
crossref_primary_10_1016_j_psychres_2021_114270
crossref_primary_10_1093_cercor_bhr146
crossref_primary_10_3109_02699052_2013_823561
crossref_primary_10_1186_s12868_020_00590_4
crossref_primary_10_1016_j_jpain_2013_04_003
crossref_primary_10_1155_2016_3279050
crossref_primary_10_1007_s10334_010_0228_5
crossref_primary_10_1093_scan_nss053
crossref_primary_10_1002_hbm_22118
crossref_primary_10_1186_s10194_024_01920_1
crossref_primary_10_1038_nrneurol_2009_198
crossref_primary_10_1371_journal_pone_0073186
crossref_primary_10_1209_0295_5075_128_50005
crossref_primary_10_3389_fneur_2021_786734
crossref_primary_10_1007_s12311_020_01144_4
crossref_primary_10_1016_j_cortex_2012_09_017
crossref_primary_10_1016_j_schres_2019_07_015
crossref_primary_10_1093_cercor_bhs352
crossref_primary_10_1109_TCDS_2020_2991414
crossref_primary_10_3389_fneur_2022_896204
crossref_primary_10_1093_scan_nss048
crossref_primary_10_1007_s11682_022_00674_1
crossref_primary_10_1016_j_euroneuro_2019_06_002
crossref_primary_10_1016_j_neuroimage_2016_10_045
crossref_primary_10_4103_1673_5374_253526
crossref_primary_10_1016_j_neuroimage_2013_10_062
crossref_primary_10_1016_j_ynirp_2022_100097
crossref_primary_10_1016_j_pscychresns_2017_05_005
crossref_primary_10_1038_s41598_023_30672_2
crossref_primary_10_1093_schbul_sby045
crossref_primary_10_3390_jcm13092556
crossref_primary_10_1109_JBHI_2020_3015471
crossref_primary_10_1002_hbm_21379
crossref_primary_10_1002_hbm_22469
crossref_primary_10_1093_schbul_sbx194
crossref_primary_10_1159_000363351
crossref_primary_10_1002_hbm_25890
crossref_primary_10_1007_s11065_009_9108_z
crossref_primary_10_1016_j_neuroimage_2014_04_009
crossref_primary_10_1016_j_neuroimage_2011_04_004
crossref_primary_10_1002_hbm_21055
crossref_primary_10_1371_journal_pone_0140134
crossref_primary_10_1093_schbul_sbn133
crossref_primary_10_1016_j_ijpsycho_2024_112354
crossref_primary_10_1016_j_biopsych_2011_06_029
crossref_primary_10_1016_j_neuroimage_2019_01_080
crossref_primary_10_1016_j_brs_2011_08_006
crossref_primary_10_1073_pnas_1414293111
crossref_primary_10_1371_journal_pone_0041376
crossref_primary_10_1016_j_jneumeth_2019_108359
crossref_primary_10_1186_s13742_014_0042_5
crossref_primary_10_1093_schbul_sbz103
crossref_primary_10_1016_j_bandc_2009_02_007
crossref_primary_10_1002_hbm_23469
crossref_primary_10_1016_j_schres_2009_09_030
crossref_primary_10_1097_YCO_0b013e328337d78d
crossref_primary_10_1016_j_neuroscience_2014_12_075
crossref_primary_10_1007_s11571_013_9274_9
crossref_primary_10_1515_tnsci_2022_0356
crossref_primary_10_1016_j_neubiorev_2021_02_011
crossref_primary_10_3389_fpsyt_2017_00014
crossref_primary_10_1002_hbm_24551
crossref_primary_10_3389_fnins_2022_852822
crossref_primary_10_1002_hbm_21286
crossref_primary_10_1016_j_neuroimage_2017_01_024
crossref_primary_10_1523_JNEUROSCI_5401_11_2012
crossref_primary_10_1371_journal_pone_0024271
crossref_primary_10_1007_s11682_024_00858_x
crossref_primary_10_3390_brainsci13020274
crossref_primary_10_1038_s41598_017_11792_y
crossref_primary_10_1162_jocn_a_00269
crossref_primary_10_1080_23279095_2020_1852565
crossref_primary_10_1159_000522002
crossref_primary_10_1371_journal_pone_0064489
crossref_primary_10_1016_j_dcn_2017_06_003
crossref_primary_10_1016_j_neuroimage_2010_03_039
crossref_primary_10_1089_brain_2023_0083
crossref_primary_10_1093_cercor_bhs124
crossref_primary_10_1016_j_nicl_2020_102284
crossref_primary_10_1016_j_neuroimage_2013_08_037
crossref_primary_10_1007_s00429_017_1451_x
crossref_primary_10_1016_j_neuroimage_2013_08_038
crossref_primary_10_1007_s00406_021_01337_w
crossref_primary_10_3389_fnhum_2020_564272
crossref_primary_10_1017_S0033291708004443
crossref_primary_10_1016_j_chb_2023_108052
crossref_primary_10_1109_ACCESS_2019_2938681
crossref_primary_10_1016_j_neuroimage_2014_03_067
crossref_primary_10_1016_j_bcp_2010_12_029
crossref_primary_10_1186_s10194_022_01446_4
crossref_primary_10_1002_hbm_25949
crossref_primary_10_1016_j_neuroimage_2016_10_011
crossref_primary_10_1007_s12264_016_0090_1
crossref_primary_10_1016_j_neuroimage_2014_11_054
crossref_primary_10_1016_j_neuroimage_2021_118310
crossref_primary_10_3389_fnins_2021_729218
crossref_primary_10_1093_schbul_sby112
crossref_primary_10_1002_hbm_21469
crossref_primary_10_1002_hbm_22437
crossref_primary_10_1007_s00429_015_1010_2
crossref_primary_10_3389_fnins_2015_00203
crossref_primary_10_1212_WNL_0b013e31826d5f10
crossref_primary_10_1002_hbm_22670
crossref_primary_10_1109_TBME_2020_3022335
crossref_primary_10_1016_j_neuroimage_2014_03_058
crossref_primary_10_1371_journal_pone_0066572
crossref_primary_10_1016_j_brainres_2010_01_042
crossref_primary_10_1016_j_bpsc_2024_07_025
crossref_primary_10_2967_jnumed_119_234930
crossref_primary_10_3389_fnins_2018_00959
crossref_primary_10_3389_fnins_2018_00600
crossref_primary_10_1016_j_neuroscience_2017_08_028
crossref_primary_10_1007_s00429_017_1479_y
crossref_primary_10_1007_s10548_017_0546_2
crossref_primary_10_1017_S1355617716000060
crossref_primary_10_1177_0284185120983978
crossref_primary_10_1371_journal_pone_0120861
crossref_primary_10_1038_srep14655
crossref_primary_10_3389_fnhum_2017_00199
crossref_primary_10_1002_hbm_22663
crossref_primary_10_1007_s11571_022_09899_8
crossref_primary_10_1002_hbm_23517
crossref_primary_10_1016_j_neuroscience_2021_05_014
crossref_primary_10_1007_s11682_012_9168_1
crossref_primary_10_1186_1471_2202_10_137
crossref_primary_10_1016_j_neuroimage_2017_12_018
crossref_primary_10_1093_cercor_bhae401
crossref_primary_10_1212_WNL_0000000000003327
crossref_primary_10_2139_ssrn_4124144
crossref_primary_10_1002_hbm_21250
crossref_primary_10_1016_j_neuroimage_2023_120097
crossref_primary_10_1002_mrm_22818
crossref_primary_10_1002_hbm_22583
crossref_primary_10_1002_hbm_23430
crossref_primary_10_1007_s11596_020_2287_9
crossref_primary_10_3389_fncom_2019_00094
crossref_primary_10_1016_j_schres_2010_01_019
crossref_primary_10_1002_brb3_1333
crossref_primary_10_1109_TNSRE_2023_3320135
crossref_primary_10_1007_s12264_018_0315_6
crossref_primary_10_1016_j_ejrad_2020_109324
crossref_primary_10_1002_hbm_24519
crossref_primary_10_1109_JPROC_2018_2825200
crossref_primary_10_30773_pi_2018_11_18
crossref_primary_10_1186_s11689_018_9232_2
crossref_primary_10_1093_schbul_sbv188
crossref_primary_10_1007_s12021_018_9413_x
crossref_primary_10_1002_hbm_21249
crossref_primary_10_1007_s11682_016_9539_0
crossref_primary_10_1016_j_neuroimage_2014_10_037
crossref_primary_10_1089_brain_2014_0256
crossref_primary_10_1016_j_jad_2014_12_020
crossref_primary_10_3389_fneur_2021_645974
crossref_primary_10_1186_s10194_021_01272_0
crossref_primary_10_3758_s13415_019_00718_y
crossref_primary_10_1089_brain_2014_0260
crossref_primary_10_3390_jpm10030089
crossref_primary_10_1371_journal_pone_0139018
crossref_primary_10_1016_j_schres_2013_09_016
crossref_primary_10_1007_s11571_020_09659_6
crossref_primary_10_1016_j_jad_2022_02_050
crossref_primary_10_1148_radiol_14132388
crossref_primary_10_3389_fnins_2019_00603
crossref_primary_10_3390_brainsci12091219
crossref_primary_10_1016_j_neulet_2011_12_036
crossref_primary_10_1093_braincomms_fcad129
crossref_primary_10_1016_j_nicl_2024_103729
crossref_primary_10_1186_s10194_016_0693_y
crossref_primary_10_3389_fncom_2019_00075
crossref_primary_10_1016_j_cortex_2017_08_014
crossref_primary_10_1007_s00415_022_10983_6
crossref_primary_10_3389_fnagi_2020_00199
crossref_primary_10_3389_fnagi_2015_00237
crossref_primary_10_1016_j_pnpbp_2020_110194
crossref_primary_10_1016_j_brainresbull_2021_04_025
crossref_primary_10_1038_s41537_025_00593_2
crossref_primary_10_3389_fnsys_2017_00007
crossref_primary_10_1111_srt_13626
crossref_primary_10_1016_j_jad_2017_11_044
crossref_primary_10_3390_s24030814
crossref_primary_10_1155_2014_864979
crossref_primary_10_1177_02698811241257877
crossref_primary_10_3389_fnsys_2020_00049
crossref_primary_10_1002_oby_22731
crossref_primary_10_1016_j_nicl_2015_04_014
crossref_primary_10_1186_s11689_018_9254_9
crossref_primary_10_1016_j_neuroimage_2014_04_062
crossref_primary_10_1002_hbm_21303
crossref_primary_10_1016_j_biopsych_2012_12_025
crossref_primary_10_1186_s12888_022_04509_7
crossref_primary_10_1007_s00702_022_02477_6
crossref_primary_10_1016_j_schres_2020_01_001
crossref_primary_10_1007_s00429_018_1786_y
crossref_primary_10_1016_j_biopsych_2011_10_035
crossref_primary_10_1016_j_neuroscience_2021_11_018
crossref_primary_10_1044_2019_PERS_SIG6_2019_0001
crossref_primary_10_1016_j_bspc_2024_107073
crossref_primary_10_1007_s12021_022_09617_z
crossref_primary_10_1016_j_biopsych_2018_07_020
crossref_primary_10_1016_j_drugalcdep_2017_05_045
crossref_primary_10_1016_j_pnpbp_2009_07_032
crossref_primary_10_1002_brb3_2832
crossref_primary_10_1016_j_cortex_2016_11_017
crossref_primary_10_1016_j_neuroimage_2010_05_010
crossref_primary_10_1016_j_nicl_2016_06_012
crossref_primary_10_17116_jnevro2023123051165
crossref_primary_10_1038_s41380_024_02669_4
crossref_primary_10_1109_ACCESS_2024_3445580
crossref_primary_10_1016_j_bandc_2017_08_005
crossref_primary_10_1016_j_compbiomed_2021_105190
crossref_primary_10_1093_schbul_sbu080
crossref_primary_10_1002_hbm_24801
crossref_primary_10_1111_epi_13342
crossref_primary_10_1089_brain_2016_0429
crossref_primary_10_1371_journal_pone_0099166
crossref_primary_10_3389_fpsyt_2019_00966
crossref_primary_10_1186_1471_2202_11_145
crossref_primary_10_1016_j_neuroimage_2010_05_047
crossref_primary_10_1017_S0033291718000028
crossref_primary_10_1007_s00234_015_1561_1
crossref_primary_10_1002_nau_22767
crossref_primary_10_1002_hbm_23507
crossref_primary_10_1089_brain_2018_0608
crossref_primary_10_3389_fnins_2021_565029
crossref_primary_10_3233_JAD_210541
crossref_primary_10_1016_j_pscychresns_2015_03_001
crossref_primary_10_1016_j_neuroimage_2009_11_072
crossref_primary_10_1038_s41380_022_01569_9
crossref_primary_10_1007_s00415_009_5187_2
crossref_primary_10_1089_brain_2016_0419
crossref_primary_10_1016_j_neuroimage_2011_07_049
crossref_primary_10_1016_j_schres_2012_06_023
crossref_primary_10_1016_j_neuroimage_2018_01_045
crossref_primary_10_1002_jnr_24915
crossref_primary_10_1007_s41237_019_00086_4
crossref_primary_10_1212_WNL_0000000000001442
crossref_primary_10_1093_cercor_bhab237
crossref_primary_10_1007_s11682_017_9718_7
crossref_primary_10_1038_srep21001
crossref_primary_10_1016_j_bbr_2024_114893
crossref_primary_10_1007_s00429_012_0382_9
crossref_primary_10_30773_pi_2022_0091
crossref_primary_10_1155_2022_3941049
crossref_primary_10_1038_s42003_021_02592_2
crossref_primary_10_52294_001c_129695
crossref_primary_10_1016_j_schres_2011_12_003
crossref_primary_10_1016_j_bbr_2019_112381
crossref_primary_10_1007_s10517_017_3837_4
crossref_primary_10_1016_j_neuroimage_2011_10_010
crossref_primary_10_1007_s11682_015_9484_3
crossref_primary_10_1016_j_jneumeth_2020_109039
crossref_primary_10_1212_WNL_0000000000209606
crossref_primary_10_1371_journal_pone_0083516
crossref_primary_10_1097_WCO_0b013e328306f2c5
crossref_primary_10_1016_j_neuroimage_2011_11_059
crossref_primary_10_1016_j_neuroimage_2020_116802
crossref_primary_10_1016_j_psychres_2019_112713
crossref_primary_10_3389_fnins_2023_1249008
crossref_primary_10_1002_hbm_22839
crossref_primary_10_1016_j_neuroimage_2012_05_078
crossref_primary_10_1016_j_nicl_2023_103400
crossref_primary_10_1093_schbul_sbt180
crossref_primary_10_1177_03331024241313377
crossref_primary_10_1007_s11682_016_9597_3
crossref_primary_10_1159_000507630
crossref_primary_10_1016_j_nicl_2015_03_017
crossref_primary_10_1002_jmri_25322
crossref_primary_10_1192_bjp_2019_255
crossref_primary_10_1002_jmri_27740
crossref_primary_10_1038_tp_2016_149
crossref_primary_10_1002_hbm_26075
crossref_primary_10_1093_cercor_bhw233
crossref_primary_10_1162_netn_a_00155
crossref_primary_10_1016_j_mri_2008_05_008
crossref_primary_10_1192_bjo_2023_636
crossref_primary_10_1093_schbul_sbt077
crossref_primary_10_1016_j_nicl_2022_103230
crossref_primary_10_3389_fneur_2023_1157931
crossref_primary_10_1016_j_brainres_2023_148634
crossref_primary_10_1371_journal_pone_0049847
crossref_primary_10_1111_pcn_13162
crossref_primary_10_1371_journal_pone_0289735
crossref_primary_10_1038_s44220_023_00115_y
crossref_primary_10_1371_journal_pone_0096834
crossref_primary_10_1371_journal_pone_0267608
crossref_primary_10_1002_hbm_20888
crossref_primary_10_1016_j_clinph_2017_06_246
crossref_primary_10_1371_journal_pone_0024642
crossref_primary_10_1016_j_neuroimage_2016_04_006
crossref_primary_10_3389_fnhum_2014_00897
crossref_primary_10_1093_cercor_bhw027
crossref_primary_10_1093_cercor_bhac190
crossref_primary_10_1007_s10072_011_0636_y
crossref_primary_10_1109_RBME_2012_2211076
crossref_primary_10_1371_journal_pone_0107829
crossref_primary_10_3389_fnins_2022_889105
crossref_primary_10_1016_j_apnu_2014_09_009
crossref_primary_10_1016_j_ynirp_2021_100064
crossref_primary_10_1002_hbm_20673
crossref_primary_10_1016_j_cortex_2014_01_017
crossref_primary_10_1017_S0033291713002596
crossref_primary_10_1093_scan_nsy059
crossref_primary_10_1186_s13244_021_00993_9
crossref_primary_10_1016_j_jad_2013_01_051
crossref_primary_10_1016_j_cortex_2011_02_011
crossref_primary_10_1371_journal_pone_0163980
crossref_primary_10_1162_imag_a_00187
crossref_primary_10_1002_hbm_20678
crossref_primary_10_1186_1471_2202_11_54
crossref_primary_10_1109_TBME_2011_2167149
crossref_primary_10_1016_j_nicl_2015_11_011
crossref_primary_10_17116_jnevro202012009180
crossref_primary_10_1007_s10072_023_07255_0
crossref_primary_10_1016_j_eswa_2024_125922
crossref_primary_10_1016_j_neuroimage_2014_09_055
crossref_primary_10_1016_j_neuroimage_2016_11_012
crossref_primary_10_12688_f1000research_16405_2
crossref_primary_10_1002_hbm_21517
crossref_primary_10_1002_hbm_22849
crossref_primary_10_1016_j_nicl_2023_103434
crossref_primary_10_1111_j_1460_9568_2012_08035_x
crossref_primary_10_1002_hbm_24905
crossref_primary_10_1371_journal_pone_0228334
crossref_primary_10_3174_ajnr_A2330
crossref_primary_10_1002_hbm_20668
crossref_primary_10_1002_hbm_21514
crossref_primary_10_1016_j_nicl_2015_11_015
crossref_primary_10_1002_hbm_25199
crossref_primary_10_1007_s11055_017_0520_1
crossref_primary_10_24835_1607_0763_1374
crossref_primary_10_1007_s11682_021_00554_0
crossref_primary_10_1016_j_nicl_2014_08_027
crossref_primary_10_3389_fnins_2016_00466
crossref_primary_10_1016_j_nicl_2014_08_022
crossref_primary_10_1093_schbul_sbaa021
crossref_primary_10_1111_ejn_14227
crossref_primary_10_1016_j_jneumeth_2024_110109
crossref_primary_10_3371_CSRP_4_4_3
crossref_primary_10_22172_cogbio_2017_29_2_001
crossref_primary_10_3389_fnins_2018_00413
crossref_primary_10_1016_j_nicl_2017_06_023
crossref_primary_10_1093_schbul_sbu116
crossref_primary_10_3389_fnins_2023_1252732
crossref_primary_10_1016_j_schres_2010_11_009
crossref_primary_10_17816_rmmar623485
crossref_primary_10_1016_j_neuroimage_2021_118473
crossref_primary_10_1007_s10072_022_06275_6
crossref_primary_10_1177_2164956120906092
crossref_primary_10_1155_2015_343720
crossref_primary_10_1016_j_bandl_2022_105202
crossref_primary_10_1371_journal_pone_0244756
crossref_primary_10_1016_j_neuron_2014_10_015
crossref_primary_10_1109_TMI_2013_2272976
crossref_primary_10_1109_JBHI_2022_3212479
crossref_primary_10_1093_scan_nsw085
crossref_primary_10_1007_s11571_010_9126_9
crossref_primary_10_1371_journal_pone_0014801
crossref_primary_10_1016_j_neuroimage_2012_11_008
crossref_primary_10_1016_j_neuroimage_2016_04_051
crossref_primary_10_1016_j_pscychresns_2024_111802
crossref_primary_10_1089_brain_2018_0579
crossref_primary_10_1162_netn_a_00196
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_3389_fnins_2022_972730
crossref_primary_10_1007_s00415_019_09639_9
crossref_primary_10_1093_schbul_sbt037
crossref_primary_10_1002_nau_22458
crossref_primary_10_1016_j_neuropsychologia_2009_09_020
crossref_primary_10_1002_mds_26320
crossref_primary_10_1016_j_jneumeth_2015_03_019
crossref_primary_10_1093_texcom_tgad018
crossref_primary_10_1186_1475_925X_11_50
crossref_primary_10_3174_ajnr_A3608
crossref_primary_10_1016_j_brainres_2014_03_024
crossref_primary_10_1111_pcn_12495
crossref_primary_10_1523_JNEUROSCI_2987_11_2011
crossref_primary_10_1152_jn_00675_2015
crossref_primary_10_3389_fnins_2016_00440
crossref_primary_10_1016_j_jneumeth_2024_110207
crossref_primary_10_1093_scan_nsaa114
crossref_primary_10_1016_j_jpsychires_2020_10_047
crossref_primary_10_1016_j_neuroimage_2011_08_105
crossref_primary_10_1016_j_nicl_2013_07_004
crossref_primary_10_1016_j_neuropsychologia_2023_108708
crossref_primary_10_1371_journal_pone_0063727
crossref_primary_10_1002_hbm_20993
crossref_primary_10_1016_j_jns_2015_04_054
crossref_primary_10_1371_journal_pcbi_1010634
crossref_primary_10_1002_hbm_20876
crossref_primary_10_1093_cercor_bhad131
crossref_primary_10_3389_fphy_2021_822915
crossref_primary_10_1038_s41537_023_00375_8
crossref_primary_10_1155_2020_6872508
crossref_primary_10_1016_j_neuroimage_2011_10_002
crossref_primary_10_1016_j_neuroimage_2020_117190
crossref_primary_10_1371_journal_pone_0051975
crossref_primary_10_1007_s00429_016_1247_4
crossref_primary_10_1371_journal_pone_0028196
crossref_primary_10_3389_fnhum_2023_1100431
crossref_primary_10_1016_j_brainres_2014_09_066
crossref_primary_10_1016_j_neuroimage_2022_119737
crossref_primary_10_3389_fpsyt_2016_00029
crossref_primary_10_1088_1741_2552_ab7ad3
crossref_primary_10_1016_j_mri_2010_10_008
crossref_primary_10_1016_j_pscychresns_2023_111766
crossref_primary_10_1016_j_jneumeth_2023_110049
crossref_primary_10_1002_hbm_22929
crossref_primary_10_1371_journal_pone_0096850
crossref_primary_10_3233_BPL_200115
crossref_primary_10_1016_j_schres_2010_11_013
crossref_primary_10_1097_GME_0000000000002321
crossref_primary_10_1016_j_jad_2015_10_042
crossref_primary_10_1016_j_neuri_2022_100091
crossref_primary_10_1016_j_schres_2016_12_008
crossref_primary_10_1016_j_biopsycho_2018_03_005
crossref_primary_10_1088_2057_1976_ab0390
crossref_primary_10_1016_j_clinph_2013_01_005
crossref_primary_10_1016_j_neuroimage_2010_03_062
crossref_primary_10_1016_j_jneumeth_2019_108451
crossref_primary_10_1002_hbm_20813
crossref_primary_10_1093_schbul_sbq074
crossref_primary_10_1016_j_neuroimage_2015_07_002
crossref_primary_10_3389_fnhum_2020_00031
crossref_primary_10_1177_0269881117705071
crossref_primary_10_1016_j_jneumeth_2018_02_013
crossref_primary_10_1088_1741_2552_ad27ee
crossref_primary_10_1093_schbul_sbae142
crossref_primary_10_1097_PRS_0000000000011689
crossref_primary_10_1371_journal_pone_0071009
crossref_primary_10_3389_fnins_2020_00032
crossref_primary_10_1089_brain_2017_0538
crossref_primary_10_1016_j_schres_2024_06_044
crossref_primary_10_1155_2010_868976
crossref_primary_10_1002_hbm_25020
crossref_primary_10_3389_fnhum_2014_00104
crossref_primary_10_1016_j_biopsych_2015_08_029
crossref_primary_10_1093_cercor_bht366
crossref_primary_10_1007_s12671_020_01502_7
crossref_primary_10_1016_j_sleep_2018_05_040
crossref_primary_10_1109_ACCESS_2024_3393968
crossref_primary_10_1002_hbm_23081
crossref_primary_10_1016_j_nicl_2020_102534
crossref_primary_10_1109_MSP_2012_2233865
crossref_primary_10_1016_j_pscychresns_2022_111444
crossref_primary_10_1089_brain_2015_0411
crossref_primary_10_1002_hbm_20807
crossref_primary_10_1089_brain_2020_0779
crossref_primary_10_1016_j_jneumeth_2008_04_012
crossref_primary_10_1016_j_pscychresns_2012_01_002
crossref_primary_10_2215_CJN_00420117
crossref_primary_10_1016_j_neuroimage_2018_10_004
crossref_primary_10_1089_brain_2013_0190
crossref_primary_10_3389_fnhum_2015_00467
crossref_primary_10_3389_fphys_2018_00475
crossref_primary_10_1016_j_biopsych_2010_11_009
crossref_primary_10_1007_s11682_019_00236_y
crossref_primary_10_1016_j_tics_2012_03_008
crossref_primary_10_1016_j_bionps_2020_100022
crossref_primary_10_1111_acps_12141
crossref_primary_10_1017_S0033291714000579
crossref_primary_10_1016_j_neuroimage_2009_09_004
crossref_primary_10_1007_s11357_023_00805_6
crossref_primary_10_1016_j_neurobiolaging_2013_03_004
crossref_primary_10_1259_bjr_20210826
crossref_primary_10_1016_j_pscychresns_2024_111910
crossref_primary_10_1371_journal_pone_0091075
crossref_primary_10_1016_j_nicl_2014_07_003
crossref_primary_10_1002_brb3_876
crossref_primary_10_3389_fnins_2022_957620
crossref_primary_10_1016_j_biopsych_2013_04_024
crossref_primary_10_3389_fnins_2019_00055
crossref_primary_10_1080_21681163_2023_2227736
crossref_primary_10_1007_s00429_010_0276_7
crossref_primary_10_3389_fnagi_2022_964349
crossref_primary_10_18632_aging_102204
crossref_primary_10_1002_ima_22348
crossref_primary_10_1016_j_schres_2019_05_007
crossref_primary_10_3390_bs10110175
crossref_primary_10_3390_app11083636
crossref_primary_10_3389_fneur_2023_1288801
crossref_primary_10_1007_s11682_015_9489_y
crossref_primary_10_1098_rstb_2013_0521
crossref_primary_10_1016_j_jneumeth_2022_109478
crossref_primary_10_1089_brain_2020_0794
crossref_primary_10_1089_brain_2023_0040
crossref_primary_10_1016_j_neuroimage_2017_04_014
crossref_primary_10_1016_j_clinph_2014_10_004
crossref_primary_10_3389_fnins_2017_00075
crossref_primary_10_1016_j_neuroimage_2011_05_090
crossref_primary_10_1016_j_neuroimage_2018_06_024
crossref_primary_10_1089_brain_2011_0029
crossref_primary_10_1371_journal_pone_0293053
crossref_primary_10_1007_s10548_018_0678_z
crossref_primary_10_1016_j_neuroimage_2011_02_063
crossref_primary_10_1002_hbm_26200
crossref_primary_10_1038_nrn_2016_113
crossref_primary_10_1146_annurev_clinpsy_032511_143049
crossref_primary_10_1212_WNL_0000000000007577
crossref_primary_10_1016_j_neuropsychologia_2016_11_003
crossref_primary_10_1093_cercor_bhad067
crossref_primary_10_1016_j_neuroimage_2013_12_063
crossref_primary_10_1007_s00429_024_02867_4
crossref_primary_10_1016_j_expneurol_2012_06_014
crossref_primary_10_1016_j_schres_2010_07_020
crossref_primary_10_1038_s41398_023_02344_2
crossref_primary_10_1016_j_schres_2015_07_025
crossref_primary_10_3389_fnhum_2018_00515
crossref_primary_10_3389_fnins_2015_00095
crossref_primary_10_3389_fnins_2018_00015
crossref_primary_10_1111_jon_12909
crossref_primary_10_1016_j_neubiorev_2013_10_004
crossref_primary_10_1016_j_neuroimage_2011_02_056
crossref_primary_10_1016_j_neuroimage_2012_06_078
crossref_primary_10_1089_brain_2020_0748
crossref_primary_10_1109_JSTSP_2016_2594945
crossref_primary_10_1109_TBME_2024_3423703
crossref_primary_10_3389_fneur_2019_00033
crossref_primary_10_1016_j_jneumeth_2010_07_028
crossref_primary_10_1111_bdi_13261
crossref_primary_10_1001_jamaoto_2023_0824
crossref_primary_10_1002_hbm_22198
crossref_primary_10_1007_s00702_014_1237_8
crossref_primary_10_1162_imag_a_00339
crossref_primary_10_1089_brain_2021_0079
crossref_primary_10_1016_j_jneumeth_2019_03_015
crossref_primary_10_2139_ssrn_4107158
crossref_primary_10_1016_j_jneumeth_2019_03_011
crossref_primary_10_1111_j_1530_0277_2009_01112_x
crossref_primary_10_1016_j_neuroimage_2014_07_045
crossref_primary_10_1016_j_neuroimage_2018_06_081
crossref_primary_10_1258_ar_2011_110262
crossref_primary_10_1016_j_neuroimage_2012_05_048
crossref_primary_10_1002_ima_20276
crossref_primary_10_1016_j_nicl_2018_04_026
crossref_primary_10_1371_journal_pone_0076604
crossref_primary_10_3389_fnins_2021_746264
crossref_primary_10_1038_jcbfm_2013_238
crossref_primary_10_1016_j_dcn_2016_06_002
crossref_primary_10_1016_j_jtcms_2015_10_001
crossref_primary_10_1016_j_neuron_2012_06_002
crossref_primary_10_1016_j_pscychresns_2017_03_012
crossref_primary_10_1038_s41598_023_49415_4
crossref_primary_10_1016_j_neurobiolaging_2020_04_021
crossref_primary_10_3233_RNN_150497
crossref_primary_10_1002_hbm_25013
crossref_primary_10_1371_journal_pone_0145668
crossref_primary_10_1111_ejn_16266
crossref_primary_10_1186_s11689_016_9135_z
crossref_primary_10_1016_j_neuroscience_2024_05_021
crossref_primary_10_3389_fpsyt_2024_1423008
crossref_primary_10_1016_j_neuroimage_2013_05_019
crossref_primary_10_1002_art_42691
crossref_primary_10_3389_fnhum_2022_928315
crossref_primary_10_1007_s00422_009_0350_5
crossref_primary_10_1016_j_expneurol_2009_01_025
crossref_primary_10_1016_j_neuroimage_2016_01_005
crossref_primary_10_1155_2021_8876873
crossref_primary_10_1371_journal_pone_0071061
crossref_primary_10_1016_j_neuroimage_2022_119451
crossref_primary_10_1016_j_nicl_2020_102319
crossref_primary_10_1038_s41598_017_06866_w
crossref_primary_10_1002_hbm_25125
crossref_primary_10_1007_s10517_018_4161_3
crossref_primary_10_1089_brain_2011_0060
crossref_primary_10_1097_MD_0000000000008897
crossref_primary_10_1016_j_brainresbull_2024_111098
crossref_primary_10_1093_scan_nsu160
crossref_primary_10_1002_hbm_26454
crossref_primary_10_1016_j_ynirp_2024_100197
crossref_primary_10_1109_TMI_2011_2166083
crossref_primary_10_1016_j_neuroimage_2011_03_051
crossref_primary_10_1017_S0033291712001638
crossref_primary_10_1016_j_neuroimage_2022_119459
crossref_primary_10_1002_jmri_21621
crossref_primary_10_1016_j_bcp_2013_06_011
crossref_primary_10_1155_2018_7058953
crossref_primary_10_1002_hbm_20901
crossref_primary_10_1523_JNEUROSCI_3296_15_2016
crossref_primary_10_1016_j_bpsc_2017_07_003
crossref_primary_10_1016_j_spl_2008_11_007
crossref_primary_10_1093_schbul_sbac174
crossref_primary_10_1007_s00406_016_0721_6
crossref_primary_10_1007_s00234_021_02713_y
crossref_primary_10_1155_2012_608501
crossref_primary_10_1016_j_neuroimage_2013_05_009
crossref_primary_10_1016_j_biopsych_2012_01_025
crossref_primary_10_1016_j_nic_2017_06_012
crossref_primary_10_1038_s41598_017_02127_y
Cites_doi 10.1016/S0006-3223(99)00152-3
10.1037/t07827-000
10.1098/rstb.2005.1634
10.1192/bjp.167.3.343
10.1016/0920-9964(94)00061-C
10.1073/pnas.98.2.676
10.1016/S0006-3223(02)01316-1
10.1002/hbm.1024
10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7
10.1016/j.schres.2005.09.020
10.1371/journal.pbio.0020176
10.1162/neco.1995.7.6.1129
10.1093/cercor/bhg107
10.1016/S1053-8119(03)00411-7
10.1016/S0920-9964(99)00122-X
10.1109/ISBI.2007.357030
10.1002/1531-8249(200010)48:4<556::AID-ANA2>3.0.CO;2-2
10.1093/brain/awl051
10.1016/j.neuroimage.2005.03.001
10.1073/pnas.0308627101
10.1192/bjp.160.2.179
10.1016/S0920-9964(02)00529-7
10.1080/00207450500505761
10.1002/mrm.1910340409
10.1093/brain/awh632
10.1002/hbm.460020107
10.1037/0894-4105.12.3.426
10.1007/s00127-005-0991-x
10.1109/TMI.2005.846852
10.1002/hbm.20204
10.1176/appi.ajp.158.11.1809
10.1002/1522-2594(200012)44:6<947::AID-MRM17>3.0.CO;2-5
10.1016/j.biopsych.2004.01.011
10.1006/nimg.1996.0030
10.1097/01.wnr.0000198434.06518.b8
10.1176/appi.ajp.164.3.450
10.1016/S0730-725X(02)00503-9
10.1016/S0006-3223(01)01358-0
10.1176/appi.ajp.158.4.646
10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
10.1016/j.schres.2004.09.025
10.1002/hbm.1048
10.1007/s004220000197
10.1109/MEMB.2006.1607674
10.1002/hbm.20022
10.1016/j.neuroimage.2005.08.060
10.1006/nimg.2001.1037
10.1109/MEMB.2006.1607672
10.1002/hbm.20359
10.1016/j.schres.2004.10.011
10.1016/j.neuroimage.2004.10.042
10.1006/nimg.1997.0315
10.1192/bjp.161.6.861b
ContentType Journal Article
Copyright 2007 Elsevier Inc.
Copyright Elsevier Limited Feb 15, 2008
2007 Elsevier Inc. All rights reserved. 2007
Copyright_xml – notice: 2007 Elsevier Inc.
– notice: Copyright Elsevier Limited Feb 15, 2008
– notice: 2007 Elsevier Inc. All rights reserved. 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7QO
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.neuroimage.2007.11.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE
ProQuest One Psychology
MEDLINE - Academic

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1681
ExternalDocumentID oai:pubmedcentral.nih.gov:3164840
PMC3164840
3244572261
18082428
10_1016_j_neuroimage_2007_11_001
S1053811907010282
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: 5 R01 MH 52886
– fundername: NIBIB NIH HHS
  grantid: R01 EB005846
– fundername: NIBIB NIH HHS
  grantid: 1 R01 EB 005846
– fundername: NIMH NIH HHS
  grantid: 2 R01 MH 43775
– fundername: NIBIB NIH HHS
  grantid: R01 EB020407
– fundername: NIMH NIH HHS
  grantid: R01 MH052886
– fundername: NIBIB NIH HHS
  grantid: R01 EB006841
– fundername: NIMH NIH HHS
  grantid: R01 MH043775
– fundername: NIBIB NIH HHS
  grantid: 1 R01 EB 000840
– fundername: NIBIB NIH HHS
  grantid: R01 EB000840
– fundername: National Institute of Mental Health : NIMH
  grantid: R01 MH043775-13 || MH
– fundername: National Institute of Mental Health : NIMH
  grantid: R01 MH043775-11 || MH
– fundername: National Institute of Mental Health : NIMH
  grantid: R01 MH052886-04A1 || MH
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB005846-03 || EB
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB000840-02 || EB
– fundername: National Institute of Mental Health : NIMH
  grantid: R01 MH052886-05 || MH
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB000840-06 || EB
– fundername: National Institute of Mental Health : NIMH
  grantid: R01 MH052886-07 || MH
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB005846-04 || EB
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB000840-03 || EB
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
AAYXX
CITATION
PUEGO
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7QO
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c659t-22ff28a6829a849a04059937be7a947dbd6fa73bb5adc2aad046cf931ff47a4e3
IEDL.DBID UNPAY
ISSN 1053-8119
1095-9572
IngestDate Sun Oct 26 04:15:41 EDT 2025
Tue Sep 30 16:57:28 EDT 2025
Sun Sep 28 11:38:44 EDT 2025
Mon Oct 06 18:04:26 EDT 2025
Tue Oct 07 06:20:21 EDT 2025
Mon Jul 21 05:44:54 EDT 2025
Wed Oct 01 02:57:42 EDT 2025
Thu Apr 24 23:16:11 EDT 2025
Fri Feb 23 02:30:10 EST 2024
Tue Oct 14 19:31:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c659t-22ff28a6829a849a04059937be7a947dbd6fa73bb5adc2aad046cf931ff47a4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3164840
PMID 18082428
PQID 1506736778
PQPubID 2031077
PageCount 16
ParticipantIDs unpaywall_primary_10_1016_j_neuroimage_2007_11_001
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3164840
proquest_miscellaneous_70269599
proquest_miscellaneous_21031616
proquest_journals_1506736778
pubmed_primary_18082428
crossref_citationtrail_10_1016_j_neuroimage_2007_11_001
crossref_primary_10_1016_j_neuroimage_2007_11_001
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2007_11_001
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2007_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-15
PublicationDateYYYYMMDD 2008-02-15
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2008
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Mikula, Niebur (bib52) 2006; 116
Calhoun, Adali, Pearlson, Pekar (bib12) 2001; 14
Biswal, Van Kylen, Hyde (bib6) 1997; 10
Calhoun, Adali, Kraut, Pearlson (bib11) 2000; 44
Li, Adali, Calhoun (bib42) 2007; 28
Rajapakse, Tan, Zheng, Mukhopadhyay, Yang (bib56) 2006; 25
Jorm, Mackinnon, Christensen, Griffiths (bib36) 2005; 40
Andreasen, Nopoulos, O'Leary, Miller, Wassink, Flaum (bib1) 1999; 46
Cordes, Haughton, Carew, Arfanakis, Maravilla (bib18) 2002; 20
Josin, Liddle (bib37) 2001; 84
Dickey, McCarley, Voglmaier, Niznikiewicz, Seidman, Frumin, Toner, Demeo, Shenton (bib21) 2003; 64
Liddle (bib44) 1992; 161
Biswal, Yetkin, Haughton, Hyde (bib5) 1995; 34
Calhoun, Adali, Pearlson, Pekar (bib13) 2001; 13
Calhoun, Adali (bib9) 2006; 25
McKeown, Makeig, Brown, Jung, Kindermann, Bell, Sejnowski (bib49) 1998; 6
Ganzevles, Haenen (bib28) 1995; 16
Calhoun, Adali, Pekar, Pearlson (bib14) 2003; 20
Menon, Anagnoson, Glover, Pfefferbaum (bib50) 2001; 158
Friston (bib25) 1995; 2
First M.B., Spitzer R.L., Gibbon M., Williams J.B.W., 1995. Structured Clinical interview for DSM-IV axis I disorders—patient edition (SCID-I/P, Version 2.0). New York: Biometrics Research Department, New York State Psychiatric Institute.
Genovese, Lazar, Nichols (bib31) 2002; 15
Stevens, Kiehl, Pearlson, Calhoun (bib58) 2006
Lawrie, Buechel, Whalley, Frith, Friston, Johnstone (bib40) 2002; 51
Kivinienri, Kantola, Biswal, Jauhiainen, Hyvarinen, Tervonen (bib39) 2001
Spitzer R.L., Williams J.B., Gibbon M. 1996. Structured Clinical interview for DSM-IV: Non-patient edition (SCID-NP). New York: Biometrics Research Department, New York State Psychiatric Institute.
APA (bib2) 2000
Herbster, Nichols, Wiseman, Mintun, DeKosky, Becker (bib34) 1996; 4
Bokde, Lopez-Bayo, Meindl, Pechler, Born, Faltraco, Teipel, Moller, Hampel (bib7) 2006; 129
Gaser, Nenadic, Volz, Buchel, Sauer (bib30) 2004; 14
Liddle, Friston, Frith, Hirsch, Jones, Frackowiak (bib45) 1992; 160
Chan, Chen, Law (bib17) 2006; 82
Calhoun, Kiehl, Liddle, Pearlson (bib15) 2004; 55
Lowe, Mock, Sorenson (bib47) 1998; 7
Van de Ven, Formisano, Prvulovic, Roeder, Linden (bib61) 2004; 22
Boksman, Theberge, Williamson, Drost, Malla, Densmore, Takhar, Pavlosky, Menon, Neufeld (bib8) 2005; 75
Liu, J., Calhoun, V.D., 2007. Parallel independent component analysis for multimodal analysis: application to fMRI and EEG DATA.
Honey, Pomarol-Clotet, Corlett, Honey, McKenna, Bullmore (bib35) 2005; 128
Cordes, Haughton, Arfanakis, Carew, Turski, Moritz, Quigley, Meyerand (bib19) 2001; 22
Pearlson (bib54) 2000; 48
Meyer-Lindenberg, Poline, Kohn, Holt, Egan, Weinberger, Berman (bib51) 2001; 158
Calhoun, Pearlson, Kiehl (bib16) 2006; 30
Makeig, Delorme, Westerfield, Jung, Townsend, Courchesne, Sejnowski (bib48) 2004; 2
Calhoun, Adali, Kiehl, Astur, Pekar, Pearlson (bib10) 2006; 27
Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (bib55) 2001; 98
Garrity, Pearlson, McKiernan, Lloyd, Kiehl, Calhoun (bib29) 2007; 164
Heinrichs, Zakzanis (bib33) 1998; 12
Paulus, Hozack, Zauscher, Frank, Brown, McDowell, Braff (bib53) 2002; 51
Talairach, Tournoux (bib59) 1988
Cordes, Haughton, Arfanakis, Wendt, Turski, Moritz, Quigley, Meyerand (bib20) 2000; 21
Liang, Zhou, Jiang, Liu, Tian, Liu, Hao (bib43) 2006; 17
Levy, Lajonchere, Dorogusker, Min, Lee, Tartaglini, Lieberman, Mendell (bib41) 2000; 42
Bell, Sejnowski (bib4) 1995; 7
Kim, Zemon, Saperstein, Butler, Javitt (bib38) 2005; 76
Beckmann, De Luca, Devlin, Smith (bib3) 2005; 360
Greicius, Srivastava, Reiss, Menon (bib32) 2004; 101
Friston, Frith (bib26) 1995; 3
Esposito, Scarabino, Hyvarinen, Himberg, Formisano, Comani, Tedeschi, Goebel, Seifritz, Di (bib22) 2005; 25
Ford, Johnson, Whitfield, Faustman, Mathalon (bib24) 2005; 26
Frith, Friston, Herold, Silbersweig, Fletcher, Cahill, Dolan, Frackowiak, Liddle (bib27) 1995; 167
Turner, Twieg (bib60) 2005; 24
Turner (10.1016/j.neuroimage.2007.11.001_bib60) 2005; 24
Genovese (10.1016/j.neuroimage.2007.11.001_bib31) 2002; 15
Makeig (10.1016/j.neuroimage.2007.11.001_bib48) 2004; 2
Beckmann (10.1016/j.neuroimage.2007.11.001_bib3) 2005; 360
Li (10.1016/j.neuroimage.2007.11.001_bib42) 2007; 28
Calhoun (10.1016/j.neuroimage.2007.11.001_bib11) 2000; 44
Dickey (10.1016/j.neuroimage.2007.11.001_bib21) 2003; 64
Van de Ven (10.1016/j.neuroimage.2007.11.001_bib61) 2004; 22
Chan (10.1016/j.neuroimage.2007.11.001_bib17) 2006; 82
Lawrie (10.1016/j.neuroimage.2007.11.001_bib40) 2002; 51
Liddle (10.1016/j.neuroimage.2007.11.001_bib45) 1992; 160
Friston (10.1016/j.neuroimage.2007.11.001_bib25) 1995; 2
10.1016/j.neuroimage.2007.11.001_bib46
Frith (10.1016/j.neuroimage.2007.11.001_bib27) 1995; 167
Calhoun (10.1016/j.neuroimage.2007.11.001_bib10) 2006; 27
Liddle (10.1016/j.neuroimage.2007.11.001_bib44) 1992; 161
APA (10.1016/j.neuroimage.2007.11.001_bib2) 2000
Herbster (10.1016/j.neuroimage.2007.11.001_bib34) 1996; 4
Paulus (10.1016/j.neuroimage.2007.11.001_bib53) 2002; 51
Kim (10.1016/j.neuroimage.2007.11.001_bib38) 2005; 76
Menon (10.1016/j.neuroimage.2007.11.001_bib50) 2001; 158
Boksman (10.1016/j.neuroimage.2007.11.001_bib8) 2005; 75
Rajapakse (10.1016/j.neuroimage.2007.11.001_bib56) 2006; 25
Josin (10.1016/j.neuroimage.2007.11.001_bib37) 2001; 84
Garrity (10.1016/j.neuroimage.2007.11.001_bib29) 2007; 164
Andreasen (10.1016/j.neuroimage.2007.11.001_bib1) 1999; 46
Ford (10.1016/j.neuroimage.2007.11.001_bib24) 2005; 26
Liang (10.1016/j.neuroimage.2007.11.001_bib43) 2006; 17
Calhoun (10.1016/j.neuroimage.2007.11.001_bib9) 2006; 25
Raichle (10.1016/j.neuroimage.2007.11.001_bib55) 2001; 98
Biswal (10.1016/j.neuroimage.2007.11.001_bib6) 1997; 10
McKeown (10.1016/j.neuroimage.2007.11.001_bib49) 1998; 6
Biswal (10.1016/j.neuroimage.2007.11.001_bib5) 1995; 34
Heinrichs (10.1016/j.neuroimage.2007.11.001_bib33) 1998; 12
Mikula (10.1016/j.neuroimage.2007.11.001_bib52) 2006; 116
Cordes (10.1016/j.neuroimage.2007.11.001_bib20) 2000; 21
Greicius (10.1016/j.neuroimage.2007.11.001_bib32) 2004; 101
Honey (10.1016/j.neuroimage.2007.11.001_bib35) 2005; 128
Esposito (10.1016/j.neuroimage.2007.11.001_bib22) 2005; 25
Lowe (10.1016/j.neuroimage.2007.11.001_bib47) 1998; 7
Ganzevles (10.1016/j.neuroimage.2007.11.001_bib28) 1995; 16
Calhoun (10.1016/j.neuroimage.2007.11.001_bib16) 2006; 30
Calhoun (10.1016/j.neuroimage.2007.11.001_bib15) 2004; 55
Cordes (10.1016/j.neuroimage.2007.11.001_bib19) 2001; 22
Gaser (10.1016/j.neuroimage.2007.11.001_bib30) 2004; 14
Bell (10.1016/j.neuroimage.2007.11.001_bib4) 1995; 7
Calhoun (10.1016/j.neuroimage.2007.11.001_bib13) 2001; 13
10.1016/j.neuroimage.2007.11.001_bib23
Calhoun (10.1016/j.neuroimage.2007.11.001_bib12) 2001; 14
Friston (10.1016/j.neuroimage.2007.11.001_bib26) 1995; 3
Jorm (10.1016/j.neuroimage.2007.11.001_bib36) 2005; 40
Pearlson (10.1016/j.neuroimage.2007.11.001_bib54) 2000; 48
Bokde (10.1016/j.neuroimage.2007.11.001_bib7) 2006; 129
Meyer-Lindenberg (10.1016/j.neuroimage.2007.11.001_bib51) 2001; 158
Kivinienri (10.1016/j.neuroimage.2007.11.001_bib39) 2001
Stevens (10.1016/j.neuroimage.2007.11.001_bib58) 2006
10.1016/j.neuroimage.2007.11.001_bib57
Calhoun (10.1016/j.neuroimage.2007.11.001_bib14) 2003; 20
Cordes (10.1016/j.neuroimage.2007.11.001_bib18) 2002; 20
Talairach (10.1016/j.neuroimage.2007.11.001_bib59) 1988
Levy (10.1016/j.neuroimage.2007.11.001_bib41) 2000; 42
References_xml – volume: 27
  start-page: 598
  year: 2006
  end-page: 610
  ident: bib10
  article-title: A method for multi-task fMRI data fusion applied to schizophrenia
  publication-title: Hum. Brain Mapp.
– volume: 76
  start-page: 55
  year: 2005
  end-page: 65
  ident: bib38
  article-title: Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis
  publication-title: Schizophr. Res.
– volume: 158
  start-page: 646
  year: 2001
  end-page: 649
  ident: bib50
  article-title: Functional magnetic resonance imaging evidence for disrupted basal ganglia function in schizophrenia
  publication-title: Am. J. Psychiatry
– reference: Spitzer R.L., Williams J.B., Gibbon M. 1996. Structured Clinical interview for DSM-IV: Non-patient edition (SCID-NP). New York: Biometrics Research Department, New York State Psychiatric Institute.
– volume: 7
  start-page: 119
  year: 1998
  end-page: 132
  ident: bib47
  article-title: Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations
  publication-title: NeuroImage
– volume: 20
  start-page: 305
  year: 2002
  end-page: 317
  ident: bib18
  article-title: Hierarchical clustering to measure connectivity in fMRI resting-state data
  publication-title: Magn. Reson. Imaging
– volume: 160
  start-page: 179
  year: 1992
  end-page: 186
  ident: bib45
  article-title: Patterns of cerebral blood flow in schizophrenia
  publication-title: Br. J. Psychiatry
– volume: 17
  start-page: 209
  year: 2006
  end-page: 213
  ident: bib43
  article-title: Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging
  publication-title: NeuroReport
– volume: 48
  start-page: 556
  year: 2000
  end-page: 566
  ident: bib54
  article-title: Neurobiology of schizophrenia
  publication-title: Ann. Neurol.
– volume: 10
  start-page: 165
  year: 1997
  end-page: 170
  ident: bib6
  article-title: Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps
  publication-title: NMR Biomed.
– volume: 12
  start-page: 426
  year: 1998
  end-page: 445
  ident: bib33
  article-title: Neurocognitive deficit in schizophrenia: a quantitative review of the evidence
  publication-title: Neuropsychology
– volume: 55
  start-page: 842
  year: 2004
  end-page: 849
  ident: bib15
  article-title: Aberrant localization of synchronous hemodynamic activity in auditory cortex reliably characterizes schizophrenia
  publication-title: Biol. Psychiatry
– volume: 21
  start-page: 1636
  year: 2000
  end-page: 1644
  ident: bib20
  article-title: Mapping functionally related regions of brain with functional connectivity MR imaging
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 167
  start-page: 343
  year: 1995
  end-page: 349
  ident: bib27
  article-title: Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task.
  publication-title: Br. J. Psychiatry
– volume: 3
  start-page: 89
  year: 1995
  end-page: 97
  ident: bib26
  article-title: Schizophrenia: a disconnection syndrome?
  publication-title: Clin. Neurosci.
– volume: 16
  start-page: 67
  year: 1995
  end-page: 71
  ident: bib28
  article-title: A preliminary study of externally and self-ordered task performance in schizophrenia
  publication-title: Schizophr. Res.
– year: 2000
  ident: bib2
  article-title: Diagnostic and Statistical Manual of Mental Disorders: American Psychiatry Publishing Inc.
– volume: 44
  start-page: 947
  year: 2000
  end-page: 954
  ident: bib11
  article-title: A weighted-least squares algorithm for estimation and visualization of relative latencies in event-related functional MRI
  publication-title: Magn. Res. Med.
– year: 1988
  ident: bib59
  article-title: A Co-Planar Sterotaxic Atlas of a Human Brain
– volume: 25
  start-page: 102
  year: 2006
  end-page: 111
  ident: bib56
  article-title: Exploratory analysis of brain connectivity with ICA
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 30
  start-page: 544
  year: 2006
  end-page: 553
  ident: bib16
  article-title: Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data
  publication-title: NeuroImage
– volume: 82
  start-page: 51
  year: 2006
  end-page: 64
  ident: bib17
  article-title: Specific executive dysfunction in patients with first-episode medication-naive schizophrenia
  publication-title: Schizophr. Res.
– volume: 42
  start-page: 171
  year: 2000
  end-page: 185
  ident: bib41
  article-title: Quantitative characterization of eye tracking dysfunction in schizophrenia
  publication-title: Schizophr. Res.
– volume: 161
  start-page: 861
  year: 1992
  ident: bib44
  article-title: Syndromes of schizophrenia on factor analysis
  publication-title: Br. J. Psychiatry
– volume: 24
  start-page: 712
  year: 2005
  end-page: 718
  ident: bib60
  article-title: Study of temporal stationarity and spatial consistency of fMRI noise using independent component analysis
  publication-title: IEEE Trans. Med. Imag.
– volume: 64
  start-page: 35
  year: 2003
  end-page: 39
  ident: bib21
  article-title: A MRI study of fusiform gyrus in schizotypal personality disorder
  publication-title: Schizophr. Res.
– volume: 28
  start-page: 1251
  year: 2007
  end-page: 1266
  ident: bib42
  article-title: Estimating the number of independent components for fMRI data
  publication-title: Hum. Brain Map.
– volume: 158
  start-page: 1809
  year: 2001
  end-page: 1817
  ident: bib51
  article-title: Evidence for abnormal cortical functional connectivity during working memory in schizophrenia
  publication-title: Am. J. Psychiatry
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bib3
  article-title: Investigations into resting-state connectivity using Independent Component Analysis
  publication-title: Philos. Trans. R. Soc. Lond., B Biol. Sci.
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib5
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Res. Med.
– volume: 128
  start-page: 2597
  year: 2005
  end-page: 2611
  ident: bib35
  article-title: Functional disconnectivity in schizophrenia associated with attentional modulation of motor function
  publication-title: Brain
– volume: 22
  start-page: 1326
  year: 2001
  end-page: 1333
  ident: bib19
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 20
  start-page: 1661
  year: 2003
  end-page: 1669
  ident: bib14
  article-title: Latency (in)sensitive ICA: group independent component analysis of fMRI data in the temporal frequency domain
  publication-title: NeuroImage
– volume: 129
  start-page: 1113
  year: 2006
  end-page: 1124
  ident: bib7
  article-title: Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment
  publication-title: Brain
– volume: 40
  start-page: 877
  year: 2005
  end-page: 883
  ident: bib36
  article-title: Structure of beliefs about the helpfulness of interventions for depression and schizophrenia. Results from a national survey of the Australian public
  publication-title: Soc. Psychiatry Psychiatr. Epidemiol.
– reference: First M.B., Spitzer R.L., Gibbon M., Williams J.B.W., 1995. Structured Clinical interview for DSM-IV axis I disorders—patient edition (SCID-I/P, Version 2.0). New York: Biometrics Research Department, New York State Psychiatric Institute.
– volume: 51
  start-page: 995
  year: 2002
  end-page: 1004
  ident: bib53
  article-title: Parietal dysfunction is associated with increased outcome-related decision-making in schizophrenia patients
  publication-title: Biol. Psychiatry
– volume: 4
  start-page: 67
  year: 1996
  end-page: 77
  ident: bib34
  article-title: Functional connectivity in auditory–verbal short-term memory in Alzheimer's disease
  publication-title: NeuroImage
– volume: 25
  start-page: 79
  year: 2006
  end-page: 90
  ident: bib9
  article-title: ‘Unmixing’ functional magnetic resonance imaging with independent component analysis
  publication-title: IEEE Eng. Med. Biol.
– volume: 25
  start-page: 193
  year: 2005
  end-page: 205
  ident: bib22
  article-title: Independent component analysis of fMRI group studies by self-organizing clustering
  publication-title: NeuroImage
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  ident: bib55
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 75
  start-page: 247
  year: 2005
  end-page: 263
  ident: bib8
  article-title: A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia
  publication-title: Schizophr. Res.
– volume: 14
  start-page: 140
  year: 2001
  end-page: 151
  ident: bib12
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
– volume: 2
  start-page: 56
  year: 1995
  end-page: 78
  ident: bib25
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Hum. Brain Mapp.
– volume: 164
  start-page: 450
  year: 2007
  end-page: 457
  ident: bib29
  article-title: Aberrant ‘default mode’ functional connectivity in schizophrenia
  publication-title: Am. J. Psychiatry
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: bib4
  article-title: An information maximisation approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
– volume: 15
  start-page: 870
  year: 2002
  end-page: 878
  ident: bib31
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: NeuroImage
– volume: 26
  start-page: 922
  year: 2005
  end-page: 931
  ident: bib24
  article-title: Delayed hemodynamic responses in schizophrenia
  publication-title: NeuroImage
– volume: 2
  start-page: e176
  year: 2004
  ident: bib48
  article-title: Electroencephalographic brain dynamics following manually responded visual targets
  publication-title: PLoS Biol.
– volume: 46
  start-page: 908
  year: 1999
  end-page: 920
  ident: bib1
  article-title: Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms
  publication-title: Biol. Psychiatry
– volume: 6
  start-page: 160
  year: 1998
  end-page: 188
  ident: bib49
  article-title: Analysis of fMRI data by blind separation into independent spatial components
  publication-title: Hum. Brain Mapp.
– volume: 22
  start-page: 165
  year: 2004
  end-page: 178
  ident: bib61
  article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest
  publication-title: Hum. Brain Mapp.
– volume: 13
  start-page: 43
  year: 2001
  end-page: 53
  ident: bib13
  article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms
  publication-title: Hum. Brain Mapp.
– volume: 14
  start-page: 91
  year: 2004
  end-page: 96
  ident: bib30
  article-title: Neuroanatomy of “hearing voices”: a frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia
  publication-title: Cereb. Cortex
– volume: 101
  start-page: 4637
  year: 2004
  end-page: 4642
  ident: bib32
  article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 51
  start-page: 1008
  year: 2002
  end-page: 1011
  ident: bib40
  article-title: Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations
  publication-title: Biol. Psychiatry
– volume: 84
  start-page: 117
  year: 2001
  end-page: 122
  ident: bib37
  article-title: Neural network analysis of the pattern of functional connectivity between cerebral areas in schizophrenia
  publication-title: Biol. Cybern.
– start-page: 1708
  year: 2001
  ident: bib39
  article-title: Localization of the resting state vasomotor fluctuation with FFT
  publication-title: Cross Correlation, Principal Component and Independent Component Analysis of fMRI Data
– reference: Liu, J., Calhoun, V.D., 2007. Parallel independent component analysis for multimodal analysis: application to fMRI and EEG DATA.
– year: 2006
  ident: bib58
  article-title: Functional neural circuits for mental timekeeping
  publication-title: Hum. Brain Mapp.
– volume: 116
  start-page: 419
  year: 2006
  end-page: 429
  ident: bib52
  article-title: A novel method for visualizing functional connectivity using principal component analysis
  publication-title: Int. J. Neurosci.
– volume: 46
  start-page: 908
  issue: 7
  year: 1999
  ident: 10.1016/j.neuroimage.2007.11.001_bib1
  article-title: Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(99)00152-3
– year: 2006
  ident: 10.1016/j.neuroimage.2007.11.001_bib58
  article-title: Functional neural circuits for mental timekeeping
  publication-title: Hum. Brain Mapp.
– ident: 10.1016/j.neuroimage.2007.11.001_bib23
  doi: 10.1037/t07827-000
– volume: 360
  start-page: 1001
  issue: 1457
  year: 2005
  ident: 10.1016/j.neuroimage.2007.11.001_bib3
  article-title: Investigations into resting-state connectivity using Independent Component Analysis
  publication-title: Philos. Trans. R. Soc. Lond., B Biol. Sci.
  doi: 10.1098/rstb.2005.1634
– volume: 167
  start-page: 343
  issue: 3
  year: 1995
  ident: 10.1016/j.neuroimage.2007.11.001_bib27
  article-title: Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task.
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.167.3.343
– volume: 16
  start-page: 67
  issue: 1
  year: 1995
  ident: 10.1016/j.neuroimage.2007.11.001_bib28
  article-title: A preliminary study of externally and self-ordered task performance in schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/0920-9964(94)00061-C
– volume: 98
  start-page: 676
  issue: 2
  year: 2001
  ident: 10.1016/j.neuroimage.2007.11.001_bib55
  article-title: A default mode of brain function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.98.2.676
– volume: 51
  start-page: 1008
  issue: 12
  year: 2002
  ident: 10.1016/j.neuroimage.2007.11.001_bib40
  article-title: Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(02)01316-1
– ident: 10.1016/j.neuroimage.2007.11.001_bib57
– volume: 13
  start-page: 43
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2007.11.001_bib13
  article-title: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1024
– volume: 10
  start-page: 165
  issue: 4–5
  year: 1997
  ident: 10.1016/j.neuroimage.2007.11.001_bib6
  article-title: Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps
  publication-title: NMR Biomed.
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7
– start-page: 1708
  year: 2001
  ident: 10.1016/j.neuroimage.2007.11.001_bib39
  article-title: Localization of the resting state vasomotor fluctuation with FFT
– volume: 82
  start-page: 51
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2007.11.001_bib17
  article-title: Specific executive dysfunction in patients with first-episode medication-naive schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2005.09.020
– volume: 2
  start-page: e176
  issue: 6
  year: 2004
  ident: 10.1016/j.neuroimage.2007.11.001_bib48
  article-title: Electroencephalographic brain dynamics following manually responded visual targets
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0020176
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  ident: 10.1016/j.neuroimage.2007.11.001_bib4
  article-title: An information maximisation approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– volume: 14
  start-page: 91
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2007.11.001_bib30
  article-title: Neuroanatomy of “hearing voices”: a frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhg107
– volume: 20
  start-page: 1661
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2007.11.001_bib14
  article-title: Latency (in)sensitive ICA: group independent component analysis of fMRI data in the temporal frequency domain
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00411-7
– volume: 42
  start-page: 171
  issue: 3
  year: 2000
  ident: 10.1016/j.neuroimage.2007.11.001_bib41
  article-title: Quantitative characterization of eye tracking dysfunction in schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/S0920-9964(99)00122-X
– ident: 10.1016/j.neuroimage.2007.11.001_bib46
  doi: 10.1109/ISBI.2007.357030
– volume: 48
  start-page: 556
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2007.11.001_bib54
  article-title: Neurobiology of schizophrenia
  publication-title: Ann. Neurol.
  doi: 10.1002/1531-8249(200010)48:4<556::AID-ANA2>3.0.CO;2-2
– volume: 129
  start-page: 1113
  issue: Pt 5
  year: 2006
  ident: 10.1016/j.neuroimage.2007.11.001_bib7
  article-title: Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment
  publication-title: Brain
  doi: 10.1093/brain/awl051
– volume: 26
  start-page: 922
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2007.11.001_bib24
  article-title: Delayed hemodynamic responses in schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.03.001
– volume: 3
  start-page: 89
  issue: 2
  year: 1995
  ident: 10.1016/j.neuroimage.2007.11.001_bib26
  article-title: Schizophrenia: a disconnection syndrome?
  publication-title: Clin. Neurosci.
– volume: 101
  start-page: 4637
  issue: 13
  year: 2004
  ident: 10.1016/j.neuroimage.2007.11.001_bib32
  article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0308627101
– volume: 160
  start-page: 179
  year: 1992
  ident: 10.1016/j.neuroimage.2007.11.001_bib45
  article-title: Patterns of cerebral blood flow in schizophrenia
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.160.2.179
– volume: 64
  start-page: 35
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2007.11.001_bib21
  article-title: A MRI study of fusiform gyrus in schizotypal personality disorder
  publication-title: Schizophr. Res.
  doi: 10.1016/S0920-9964(02)00529-7
– volume: 116
  start-page: 419
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2007.11.001_bib52
  article-title: A novel method for visualizing functional connectivity using principal component analysis
  publication-title: Int. J. Neurosci.
  doi: 10.1080/00207450500505761
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  ident: 10.1016/j.neuroimage.2007.11.001_bib5
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Res. Med.
  doi: 10.1002/mrm.1910340409
– volume: 128
  start-page: 2597
  year: 2005
  ident: 10.1016/j.neuroimage.2007.11.001_bib35
  article-title: Functional disconnectivity in schizophrenia associated with attentional modulation of motor function
  publication-title: Brain
  doi: 10.1093/brain/awh632
– volume: 2
  start-page: 56
  year: 1995
  ident: 10.1016/j.neuroimage.2007.11.001_bib25
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020107
– volume: 12
  start-page: 426
  issue: 3
  year: 1998
  ident: 10.1016/j.neuroimage.2007.11.001_bib33
  article-title: Neurocognitive deficit in schizophrenia: a quantitative review of the evidence
  publication-title: Neuropsychology
  doi: 10.1037/0894-4105.12.3.426
– volume: 40
  start-page: 877
  issue: 11
  year: 2005
  ident: 10.1016/j.neuroimage.2007.11.001_bib36
  article-title: Structure of beliefs about the helpfulness of interventions for depression and schizophrenia. Results from a national survey of the Australian public
  publication-title: Soc. Psychiatry Psychiatr. Epidemiol.
  doi: 10.1007/s00127-005-0991-x
– volume: 24
  start-page: 712
  issue: 6
  year: 2005
  ident: 10.1016/j.neuroimage.2007.11.001_bib60
  article-title: Study of temporal stationarity and spatial consistency of fMRI noise using independent component analysis
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2005.846852
– volume: 27
  start-page: 598
  issue: 7
  year: 2006
  ident: 10.1016/j.neuroimage.2007.11.001_bib10
  article-title: A method for multi-task fMRI data fusion applied to schizophrenia
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20204
– volume: 158
  start-page: 1809
  issue: 11
  year: 2001
  ident: 10.1016/j.neuroimage.2007.11.001_bib51
  article-title: Evidence for abnormal cortical functional connectivity during working memory in schizophrenia
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.158.11.1809
– volume: 44
  start-page: 947
  issue: 6
  year: 2000
  ident: 10.1016/j.neuroimage.2007.11.001_bib11
  article-title: A weighted-least squares algorithm for estimation and visualization of relative latencies in event-related functional MRI
  publication-title: Magn. Res. Med.
  doi: 10.1002/1522-2594(200012)44:6<947::AID-MRM17>3.0.CO;2-5
– volume: 55
  start-page: 842
  issue: 8
  year: 2004
  ident: 10.1016/j.neuroimage.2007.11.001_bib15
  article-title: Aberrant localization of synchronous hemodynamic activity in auditory cortex reliably characterizes schizophrenia
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2004.01.011
– volume: 4
  start-page: 67
  issue: 2
  year: 1996
  ident: 10.1016/j.neuroimage.2007.11.001_bib34
  article-title: Functional connectivity in auditory–verbal short-term memory in Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1006/nimg.1996.0030
– volume: 17
  start-page: 209
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2007.11.001_bib43
  article-title: Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging
  publication-title: NeuroReport
  doi: 10.1097/01.wnr.0000198434.06518.b8
– volume: 164
  start-page: 450
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2007.11.001_bib29
  article-title: Aberrant ‘default mode’ functional connectivity in schizophrenia
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.164.3.450
– volume: 21
  start-page: 1636
  issue: 9
  year: 2000
  ident: 10.1016/j.neuroimage.2007.11.001_bib20
  article-title: Mapping functionally related regions of brain with functional connectivity MR imaging
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 20
  start-page: 305
  issue: 4
  year: 2002
  ident: 10.1016/j.neuroimage.2007.11.001_bib18
  article-title: Hierarchical clustering to measure connectivity in fMRI resting-state data
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(02)00503-9
– volume: 51
  start-page: 995
  issue: 12
  year: 2002
  ident: 10.1016/j.neuroimage.2007.11.001_bib53
  article-title: Parietal dysfunction is associated with increased outcome-related decision-making in schizophrenia patients
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(01)01358-0
– volume: 158
  start-page: 646
  issue: 4
  year: 2001
  ident: 10.1016/j.neuroimage.2007.11.001_bib50
  article-title: Functional magnetic resonance imaging evidence for disrupted basal ganglia function in schizophrenia
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.158.4.646
– volume: 6
  start-page: 160
  year: 1998
  ident: 10.1016/j.neuroimage.2007.11.001_bib49
  article-title: Analysis of fMRI data by blind separation into independent spatial components
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
– volume: 75
  start-page: 247
  issue: 2–3
  year: 2005
  ident: 10.1016/j.neuroimage.2007.11.001_bib8
  article-title: A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2004.09.025
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  ident: 10.1016/j.neuroimage.2007.11.001_bib12
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1048
– volume: 84
  start-page: 117
  issue: 2
  year: 2001
  ident: 10.1016/j.neuroimage.2007.11.001_bib37
  article-title: Neural network analysis of the pattern of functional connectivity between cerebral areas in schizophrenia
  publication-title: Biol. Cybern.
  doi: 10.1007/s004220000197
– year: 2000
  ident: 10.1016/j.neuroimage.2007.11.001_bib2
– volume: 25
  start-page: 102
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2007.11.001_bib56
  article-title: Exploratory analysis of brain connectivity with ICA
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/MEMB.2006.1607674
– volume: 22
  start-page: 165
  issue: 3
  year: 2004
  ident: 10.1016/j.neuroimage.2007.11.001_bib61
  article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20022
– volume: 30
  start-page: 544
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2007.11.001_bib16
  article-title: Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.08.060
– volume: 15
  start-page: 870
  issue: 4
  year: 2002
  ident: 10.1016/j.neuroimage.2007.11.001_bib31
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.1037
– volume: 25
  start-page: 79
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2007.11.001_bib9
  article-title: ‘Unmixing’ functional magnetic resonance imaging with independent component analysis
  publication-title: IEEE Eng. Med. Biol.
  doi: 10.1109/MEMB.2006.1607672
– volume: 28
  start-page: 1251
  year: 2007
  ident: 10.1016/j.neuroimage.2007.11.001_bib42
  article-title: Estimating the number of independent components for fMRI data
  publication-title: Hum. Brain Map.
  doi: 10.1002/hbm.20359
– volume: 76
  start-page: 55
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2007.11.001_bib38
  article-title: Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2004.10.011
– year: 1988
  ident: 10.1016/j.neuroimage.2007.11.001_bib59
– volume: 25
  start-page: 193
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2007.11.001_bib22
  article-title: Independent component analysis of fMRI group studies by self-organizing clustering
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.10.042
– volume: 7
  start-page: 119
  issue: 2
  year: 1998
  ident: 10.1016/j.neuroimage.2007.11.001_bib47
  article-title: Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0315
– volume: 22
  start-page: 1326
  issue: 7
  year: 2001
  ident: 10.1016/j.neuroimage.2007.11.001_bib19
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 161
  start-page: 861
  year: 1992
  ident: 10.1016/j.neuroimage.2007.11.001_bib44
  article-title: Syndromes of schizophrenia on factor analysis
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.161.6.861b
SSID ssj0009148
Score 2.501192
Snippet Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1666
SubjectTerms Adult
Algorithms
Brain
Cerebrovascular Circulation - physiology
Female
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Middle Aged
Nerve Net - physiopathology
Neural networks
Neural Pathways - physiopathology
Normal distribution
Principal Component Analysis
Reproducibility of Results
Schizophrenia
Schizophrenia - physiopathology
Standard deviation
Studies
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection Journals
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBYlhW0vY7_nrtv0sFeRWJYsmT6F0pJ2tC9boW9Gki3mkbqhSRj973dnyU5DVwjsNdZF5HS6O8Wfvo-Qb7Uz0gvn2EQpw0SdO2YmzrKUW6ivxsuqA49fXOazK3F-La_3yHF_FwZhlTH3h5zeZev4yTh6c7xomvEP6Ayg3EBBU8iLpiEP70P90XpE9qdn32eXG-7dVIQbcTJjaBABPQHm1dFGNjeweQOfIVJ6RoWYf1Spx13oYzDl83W7MPd_zHz-oFKdviIvY4tJp-FXvCZ7dfuGPLuIL9HfkrspDbrRFBpWioUt_B9I2wAJpw7BLy7IStBOjYguEXgNc93TZtDNXVHU9YDSx7pbSRTR6bctAjNgEF0-RPO9I1enJz-PZyxKLzCXy2LFOPeea5NrXhgtCgNbXWInY2tlCqEqW-XeqMxaaSrHjangmO18kaXeC2VEnb0noxam_EholVldKVS6El7Al1kx0V4X0uXCQTuRJkT1ri5d5CVHeYx52QPQfpebRULZTAXHFsTiJSQdLBeBm2MHm6JfzbK_ewrZsoQCsoPt0WC7FaM7Wh_2wVPGPLEskd9RZUjil5Cvw2PY4fjaxrT17XpZclTiyNP86REKnFvA-iTkQ4jFjTs0tHhwwgQnb0XpMADZxbeftM2vjmUc5hRw-k8IH-J5Zy8f_JenPpEXAZXDWSoPyWh1t64_Q-u3sl_i1v4LmrJeiA
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTgJeJn4TNsAPvFrUjhPHQtM00KYJaRVCTNpb5DixKCppWVuh_ffcxU66aYD6HF-snM--c_z5-wDeNc5mXjnHx1pbrprccTt2FReywvxqfVZ34PHzSX52oT5fZpc7MOnvwhCssl8Tu4W6njv6R_6emPB0SnRnR4tfnFSj6HS1l9CwUVqhPuwoxu7BriRmrBHsfjyZfPm6oeEVKlyOy1JeCGEiticgvjoGyelPnMeB2pDYPaNYzF8S1t2C9C6u8sG6Xdjr33Y2u5G0Th_BXqw22XEIj8ew07RP4P55PE9_ClfHLEhIM6xdGeW48GuQtQEdzhzhYFxQmGCdMBFbEgYb-7pm00FCd8VI4gOzIO8uKDECqs9bwmhgI7a8Cex7BhenJ98-nfGowsBdnpkVl9J7Wdi8kMYWylic9RkVNVWjrVG6rurcW51WVWZrJ62tccftvEmF90pb1aTPYdRily-B1WlV1JpEr5RX-LJKjQtfmMzlymFlIRLQvatLFynKSSljVvZYtB_lZpBIQVPjDoZgeQmIwXIRaDq2sDH9aJb9NVRcOEvMJVvYfhhsY6kSSpAtrQ_64CnjkrEsNwGewNvhMU52OsGxbTNfL0tJohy5yP_dQqNzDY5PAi9CLG7cUWC1h5tNdPKtKB0aENH47Sft9HtHOI59qkKNE5BDPG_t5Vf__9Z9eBgQOJKL7ABGq6t18xrLvFX1Js7dP6RvWHQ
  priority: 102
  providerName: ProQuest
Title A method for functional network connectivity among spatially independent resting-state components in schizophrenia
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811907010282
https://dx.doi.org/10.1016/j.neuroimage.2007.11.001
https://www.ncbi.nlm.nih.gov/pubmed/18082428
https://www.proquest.com/docview/1506736778
https://www.proquest.com/docview/21031616
https://www.proquest.com/docview/70269599
https://pubmed.ncbi.nlm.nih.gov/PMC3164840
https://www.ncbi.nlm.nih.gov/pmc/articles/3164840
UnpaywallVersion submittedVersion
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_aWgm48P0RGMUHrunqxI4TcSrTpvKxqqqoVE6R7cSi0GbVmgqNA387z3GSbQykwqU52K-V7Zf3fq5_fj-A17mW3DCt_YEQ0md5pH050MqngcL8Kg3PKvL46Tgazdj7OZ_vAW3uwlSkfa0W_WK56heLLxW3cr3Shw1P7DBEgI-7kn3oRhzhdwe6s_Fk-Lk61eShH9NKzIMOrAYhFw17x3G6qhqRixW-qa54oa3fWcvB_CEl3YScN5mTt7fFWl58l8vllbR0cg-mzYAcG-Vbf1uqvv7xW63Hfxrxfbhbg1QydE0PYC8vHsKt0_oY_hGcD4lTniYIeYlNje4fRVI4UjnRlj6jnTAFqfSMyMZSt3EAF2TRKu-WxCqDYPL0q3tNxPLbzwpL7cBOZHOVD_gYZifHn45Gfi3e4Gtcl9IPAmOCWEZxkMiYJRKDBbdYSOVCJkxkKouMFKFSXGY6kDLDjbo2SUiNYUKyPHwCnQJ_8hmQLFRxJqxWFjMMv0yxQWzihOuIaQQk1APRrF-q68rmVmBjmTYUtq_p5cpb4U2BGx_L5vOAtpZrV91jB5ukcZG0ub2K8TbFFLSD7ZvWtkY4DrnsaH3QeGRaR5pNaitEitCWAfTgVduMMcIe_MgiP9tu0sBqeUQ0-nsPgZOb4Pp48NQ5-OV0xAgScY-Kk3zN9dsOtj759RZ04qpOee23HgTtS7LzLD__H6MXcMfReQKf8gPolOfb_CVixlL1YL__k-KnmIsedIdH048T-3z3YTTG59vj8WTaqyPJL7c5eQs
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKK1EuFZ8lpVAf4GixcZw4FqpQgVZb2l0h1Eq9BceJxaIluzS7qvbP8duYiZ1sqwLaS8_xh-KZzIzj5_cIeV0aHVthDOtJqZkoE8N0z-Qs5DnkV23jogGPD4ZJ_1x8vogv1sjv9i4MwirbmNgE6mJi8B_5W2TCkxHSnb2f_mKoGoWnq62EhvbSCsV-QzHmL3aclIsr2MLV-8efwN5vOD86PPvYZ15lgJkkVjPGubU81UnKlU6F0uDVMSbtvJRaCVnkRWK1jPI81oXhWhewozRWRaG1QmpRRjDuPbIhIqFg87fx4XD45euS9jcU7jJeHLE0DJXHEjmEWcNYOfoJccNRKSKbqBen-UuCvF0A38Zxbs6rqV5c6fH4WpI8eki2fHVLD5w7PiJrZfWY3B_48_sn5PKAOslqCrUyxZzqfkXSyqHRqUHcjXGKFrQRQqI1Yr5hrgUddZK9M4qSIpB1WXMhiiIwflIhJgQa0fo6kPApOb8Tezwj6xVM-ZzQIsrTQqLIlrACBstFL7Wpik0iDFQyYUBku9SZ8ZToqMwxzlrs249saSRU7JSwY0IYYEDCrufU0YKs0Ee11szaa68QqDPIXSv0fdf19aWRK3lW7L3bOk_mQ1SdLT-ogOx1jyG44ImRrsrJvM44ioAkYfLvFhIWV4F9ArLtfHG5HClUl7C5hUW-4aVdAyQ2v_mkGn1vCM5hTpGKXkB4588rr_LO_991j2z2zwan2enx8OQFeeDQP5yF8S5Zn13Oy5dQYs7yV_47puTbXYeOP9illnQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIpVeEN8NFOoDHK1uHCeOhRCqKKuW0ooDlfYWHCcWi5bs0uyq2r_Gr2MmTrKtCmgvPcdjKzOTmXH8PA_gdWlN7KS1fKCU4bJMLDcDm_NQ5JhfjYuLBjx-epYcnctPo3i0Ab-7uzAEq-xiYhOoi6mlf-T71AlPRdTubN-1sIgvh8P3s1-cGKTopLWj0_AuclIuL3H7Vr87PkRbvxFi-PHrhyPeMgxwm8R6zoVwTqQmSYU2qdQGPTqmhJ2XymipirxInFFRnsemsMKYAneT1ukodE4qI8sI570Dd1UUaYITqpFaNfwNpb-GF0c8DUPdoog8tqzpVTn-iRHDN1GkPqItLc1fUuPN0vcmgvPeopqZ5aWZTK6kx-EDuN_WtezAO-JD2CirR7B12p7cP4aLA-bJqhlWyYyyqf8JySqPQ2eWEDfWc1mwhgKJ1YT2xrWWbNyT9c4ZkYlgvuXNVShGkPhpRWgQHMTqqxDCJ3B-K9Z4CpsVLrkDrIjytFBEryWdxMlyOUhdqmObSIs1TBiA6lSd2bYZOnFyTLIO9fYjWxmJuDoV7pUIABhA2EvOfEOQNWR0Z82su_CKITrDrLWG7Nteti2KfLGzpvRu5zxZG5zqbPUpBbDXP8awQmdFpiqnizoTRP-RhMm_RyhUrkb7BPDM--JKHSnWlbitRSVf89J-ALU0v_6kGn9vWpvjmjKVgwBE789ra_n5_991D7YwYGSfj89OXsC2h_0IHsa7sDm_WJQvsbac56-aj5jBt9uOGn8A1COUDg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQRc-P4IFPCBq7drx44TcVohqgqpFUKsVE6R7cRiy2666maFyq9nbCdpS0FaONuTyPZk5jl-ngfwtrZaOmEtnSilqagzS_XEGsq4wfyqnawCefzoODuciY8n8mQHWH8XJpD2rZmPm8Vy3My_BW7lamn3e57YfooAH3clt2A3kwi_R7A7O_40_RpONWVKcxbEPNjEaxBK1bN3Iqcr1IicL_FLjcULff3OTg7mDynpJuS8yZy8s2lW-uKHXiyupKWD-_C5H1Bko3wfb1oztj9_q_X4TyN-APc6kEqmsekh7NTNI7h91B3DP4bzKYnK0wQhL_GpMf5RJE0klRPr6TM2ClOQoGdE1p66jQO4IPNBebclXhkEkycN95qI57efNZ7agZ3I-iof8AnMDj58eX9IO_EGanFdWsq5czzXWc4LnYtCY7CQHguZWulCqMpUmdMqNUbqynKtK9yoW1ekzDmhtKjTpzBq8JXPgVSpySvltbKEE_gwIya5ywtpM2ERkLAEVL9-pe0qm3uBjUXZU9hOy8uV98KbCjc-ns2XABssV7G6xxY2Re8iZX97FeNtiSloC9t3g22HcCJy2dJ6r_fIsos069JXiFSpLwOYwJuhGWOEP_jRTX22WZfca3lkLPt7D4WTW-D6JPAsOvjldOQIEnGPipN8zfWHDr4--fUWdOJQp7zz2wT48JFsPcsv_sfoJdyNdB5OmdyDUXu-qV8hZmzN6y5K_AI5i3Jp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+functional+network+connectivity+among+spatially+independent+resting-state+components+in+schizophrenia&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Jafri%2C+Madiha+J.&rft.au=Pearlson%2C+Godfrey+D.&rft.au=Stevens%2C+Michael&rft.au=Calhoun%2C+Vince+D.&rft.date=2008-02-15&rft.issn=1053-8119&rft.volume=39&rft.issue=4&rft.spage=1666&rft.epage=1681&rft_id=info:doi/10.1016%2Fj.neuroimage.2007.11.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2007_11_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon