Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification
Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study, we investigated two multivariate-based classification techniques, Random Forests (RF) and k-nearest neighbor (k-nn), for improved automated detection of AF from the ECG. We have compiled a new databa...
Saved in:
Published in | Journal of electrocardiology Vol. 49; no. 6; pp. 871 - 876 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2016
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0022-0736 1532-8430 |
DOI | 10.1016/j.jelectrocard.2016.07.033 |
Cover
Abstract | Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study, we investigated two multivariate-based classification techniques, Random Forests (RF) and k-nearest neighbor (k-nn), for improved automated detection of AF from the ECG. We have compiled a new database from ECG data taken from existing sources. R-R intervals were then analyzed using four previously described R-R irregularity measurements: (1) the coefficient of sample entropy (CoSEn), (2) the coefficient of variance (CV), (3) root mean square of the successive differences (RMSSD), and (4) median absolute deviation (MAD). Using outputs from all four R-R irregularity measurements, RF and k-nn models were trained. RF classification improved AF detection over CoSEn with overall specificity of 80.1% vs. 98.3% and positive predictive value of 51.8% vs. 92.1% with a reduction in sensitivity, 97.6% vs. 92.8%. k-nn also improved specificity and PPV over CoSEn; however, the sensitivity of this approach was considerably reduced (68.0%). |
---|---|
AbstractList | Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study, we investigated two multivariate-based classification techniques, Random Forests (RF) and k-nearest neighbor (k-nn), for improved automated detection of AF from the ECG. We have compiled a new database from ECG data taken from existing sources. R-R intervals were then analyzed using four previously described R-R irregularity measurements: (1) the coefficient of sample entropy (CoSEn), (2) the coefficient of variance (CV), (3) root mean square of the successive differences (RMSSD), and (4) median absolute deviation (MAD). Using outputs from all four R-R irregularity measurements, RF and k-nn models were trained. RF classification improved AF detection over CoSEn with overall specificity of 80.1% vs. 98.3% and positive predictive value of 51.8% vs. 92.1% with a reduction in sensitivity, 97.6% vs. 92.8%. k-nn also improved specificity and PPV over CoSEn; however, the sensitivity of this approach was considerably reduced (68.0%). Abstract Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study we investigated two multivariate based classification techniques, Random Forests ( RF ) and k-nearest neighbor ( k − nn ), for improved automated detection of AF from the ECG. We have compiled a new database from ECG data taken from existing sources. R-R intervals were then analyzed using four previously described R-R irregularity measurements: (1) The coefficient of sample entropy ( CoSEn ) (2) The coefficient of variance ( CV ) (3) Root mean square of the successive differences ( RMSSD ) and (4) median absolute deviation ( MAD ). Using outputs from all four R-R irregularity measurements RF and k − nn models were trained. RF classification improved AF detection over CoSEn with overall specificity of 80.1% vs. 98.3% and positive predictive value of 51.8% vs. 92.1% with a reduction in sensitivity, 97.6% vs. 92.8%. k − nn also improved specificity and PPV over CoSEn however the sensitivity of this approach was considerably reduced (68.0%). |
Author | Moran, Kieran Finlay, Dewar D. Guldenring, Daniel Bond, Raymond R. Kennedy, Alan McLaughlin, James |
Author_xml | – sequence: 1 givenname: Alan surname: Kennedy fullname: Kennedy, Alan email: kennedy-a23@email.ulster.ac.uk organization: Nanotechnology and Integrated BioEngineering Centre, University of Ulster, Northern Ireland, UK – sequence: 2 givenname: Dewar D. surname: Finlay fullname: Finlay, Dewar D. organization: Nanotechnology and Integrated BioEngineering Centre, University of Ulster, Northern Ireland, UK – sequence: 3 givenname: Daniel surname: Guldenring fullname: Guldenring, Daniel organization: Nanotechnology and Integrated BioEngineering Centre, University of Ulster, Northern Ireland, UK – sequence: 4 givenname: Raymond R. surname: Bond fullname: Bond, Raymond R. organization: Computer Science Research Institute, University of Ulster, Northern Ireland, UK – sequence: 5 givenname: Kieran surname: Moran fullname: Moran, Kieran organization: Dublin City University, Ireland – sequence: 6 givenname: James surname: McLaughlin fullname: McLaughlin, James organization: Nanotechnology and Integrated BioEngineering Centre, University of Ulster, Northern Ireland, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27717571$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt2L1DAUxYOsuLOr_4IUffGlNR9t0vogrusnLAirgm8hTW4lNU3XJB3Y_950Zl1kQJinwOWcHzfn3DN04mcPCD0juCKY8JdjNYIDncKsVTAVzbMKiwoz9gBtSMNo2dYMn6ANxpSWWDB-is5iHDHGHRX0ETqlQhDRCLJB5mJJ86QSmMJAylA7-2IeCpWCVa4YbB-sc2o3XqL1P4vr8rqwPkHYKhcL5U0xLS7ZrcqGBGWvYmZpp2K0g9U752P0cMhieHL3nqPvH95_u_xUXn35-Pny4qrUvGlTSRVWjAvTilYMDdS9qmvgXcNqrY0ipumBDkR3qh048Ba3WAy06Uyngek-__kcvdhzb8L8e4GY5GSjhry_h3mJkrSsYbwjHc3S5wfScV6Cz9tJmsFdx0W9Ap_eqZZ-AiNvgp1UuJV_88uCV3uBDnOMAYZ7CcFyLUuO8t-y5FqWxELmsrL5zYFZ27QLLAVl3XGId3sE5Fi3FoKM2oLXYGzIDmlmexzm9QFGO-tze-4X3EK8j4bISCWWX9fDWu-KcIYJIT8y4O3_Acdu8QcJlOaC |
CitedBy_id | crossref_primary_10_3390_s20030765 crossref_primary_10_1109_TBME_2020_3004310 crossref_primary_10_21923_jesd_512030 crossref_primary_10_1016_j_ssci_2019_05_013 crossref_primary_10_1016_j_eswa_2020_114452 crossref_primary_10_1097_ALN_0000000000004389 crossref_primary_10_1016_j_jbi_2021_103819 crossref_primary_10_1016_j_jelectrocard_2017_10_014 crossref_primary_10_1109_JBHI_2020_2980454 crossref_primary_10_1093_ehjdh_ztab108 crossref_primary_10_3390_info11090436 crossref_primary_10_1038_s41598_020_59821_7 crossref_primary_10_1109_JBHI_2021_3067931 crossref_primary_10_1016_j_bspc_2023_105750 crossref_primary_10_1109_ACCESS_2019_2939822 crossref_primary_10_1016_j_bspc_2023_104615 crossref_primary_10_1016_j_cvdhj_2021_05_004 crossref_primary_10_1109_JBHI_2022_3191682 crossref_primary_10_1109_JBHI_2020_2995139 crossref_primary_10_1186_s13634_019_0613_9 crossref_primary_10_3390_s21155222 crossref_primary_10_1016_j_ins_2018_07_063 crossref_primary_10_3389_fphys_2021_683025 crossref_primary_10_3389_fphys_2021_637680 crossref_primary_10_1016_j_bea_2023_100089 crossref_primary_10_1016_j_compbiomed_2019_103378 crossref_primary_10_1016_j_bspc_2024_107480 crossref_primary_10_3390_app13053036 crossref_primary_10_1515_bmt_2022_0430 crossref_primary_10_1016_j_bspc_2022_104531 crossref_primary_10_1038_s41598_021_97308_1 crossref_primary_10_3390_jcm8111840 crossref_primary_10_1016_j_bspc_2020_102194 crossref_primary_10_3390_s21165302 crossref_primary_10_3390_s23073700 crossref_primary_10_1016_j_jelectrocard_2022_07_069 crossref_primary_10_3390_bioengineering11090903 crossref_primary_10_2139_ssrn_4098697 crossref_primary_10_1587_transinf_2017EDP7285 crossref_primary_10_1371_journal_pone_0271596 crossref_primary_10_1134_S1054661823030483 crossref_primary_10_1016_j_compbiomed_2021_104404 crossref_primary_10_3390_electronics7090199 crossref_primary_10_3389_fphys_2024_1429161 crossref_primary_10_1142_S0219519421400133 crossref_primary_10_1038_s41598_024_72382_3 crossref_primary_10_3390_ijerph17093093 crossref_primary_10_1016_j_bspc_2021_102818 crossref_primary_10_1016_j_compbiomed_2022_105270 crossref_primary_10_1155_2021_6627939 |
Cites_doi | 10.1056/NEJMoa1313600 10.1016/j.compbiomed.2015.01.019 10.1161/01.CIR.101.23.e215 10.1160/TH14-03-0231 10.1016/j.jelectrocard.2014.12.005 10.1161/CIRCULATIONAHA.113.005119 10.1186/1475-925X-13-18 10.1056/NEJMoa1105575 10.1007/BF02345439 10.1016/j.jelectrocard.2009.06.006 10.4997/JRCPE.2012.S02. 10.1109/TBME.2012.2208112 10.1088/0967-3334/36/9/1873 10.1016/j.jesp.2013.03.013 10.1109/TBME.2010.2096506 10.1109/TBME.2015.2450212 10.1016/j.amjmed.2013.10.003 10.1007/s10439-009-9740-z 10.1007/s11517-014-1234-y 10.1152/ajpheart.00561.2010 10.1016/j.medengphy.2012.02.002 |
ContentType | Journal Article |
Copyright | 2016 Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Science Ltd. Nov/Dec 2016 |
Copyright_xml | – notice: 2016 – notice: Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Science Ltd. Nov/Dec 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1016/j.jelectrocard.2016.07.033 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1532-8430 |
EndPage | 876 |
ExternalDocumentID | 27717571 10_1016_j_jelectrocard_2016_07_033 S002207361630111X 1_s2_0_S002207361630111X |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 7X7 88E 88I 8AF 8AO 8FI 8FJ 8P~ 8R4 8R5 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFRF ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACDOS ACGFO ACGFS ACGOD ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 D-I DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ HCIFZ HEB HMCUK HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B M1P M29 M2P M2Q M41 MJL MO0 N9A O-L O9- OAUVE OA~ OL0 OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO Q2X Q38 R2- ROL RPZ RWL S0X SAE SDF SDG SEL SES SEW SPCBC SSH SSZ T5K TAE UKHRP UNMZH WH7 WUQ X7M Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c658t-2a0a367d8787f5e4ba44e69534ccda1d5be2f1c9a8f6e680807f259d9ce3cb843 |
IEDL.DBID | AIKHN |
ISSN | 0022-0736 |
IngestDate | Thu Sep 04 21:56:21 EDT 2025 Mon Jul 14 07:03:29 EDT 2025 Wed Feb 19 02:43:11 EST 2025 Thu Apr 24 23:06:28 EDT 2025 Tue Jul 01 03:19:02 EDT 2025 Fri Feb 23 02:29:02 EST 2024 Tue Feb 25 20:08:12 EST 2025 Tue Aug 26 19:46:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Atrial fibrillation Algorithms R-R intervals Atrial Fibrillation |
Language | English |
License | Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c658t-2a0a367d8787f5e4ba44e69534ccda1d5be2f1c9a8f6e680807f259d9ce3cb843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27717571 |
PQID | 2080996744 |
PQPubID | 6950 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1835369192 proquest_journals_2080996744 pubmed_primary_27717571 crossref_primary_10_1016_j_jelectrocard_2016_07_033 crossref_citationtrail_10_1016_j_jelectrocard_2016_07_033 elsevier_sciencedirect_doi_10_1016_j_jelectrocard_2016_07_033 elsevier_clinicalkeyesjournals_1_s2_0_S002207361630111X elsevier_clinicalkey_doi_10_1016_j_jelectrocard_2016_07_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of electrocardiology |
PublicationTitleAlternate | J Electrocardiol |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
References | Macfarlane (bb0115) 2011; 33 Petrenas, Marozas, Jaruševicius, Sörnmo (bb0120) 2015; 48 Harris, Edwards, Mant (bb0020) 2012; 42 Lowres, Neubeck, Salkeld, Krass, McLachlan, Redfern (bb0030) 2014; 111 Langley, Dewhurst, Di Marco, Adams, Dewhurst, Mwita (bb0105) 2012; 34 Babaeizadeh, Gregg, Helfenbein, Lindauer, Zhou (bb0040) 2009; 42 Petrenas, Marozas, Sörnmo (bb0055) 2015; 65 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (bb0045) 2000; 101 Barrett, Komatireddy, Haaser, Topol, Sheard, Encinas (bb0025) 2014; 127 Llamedo, Martinez (bb0050) 2014 Kennedy, Finlay, Guldenring, Bond, McLaughlin (bb0125) 2016; 63 Dash, Chon, Lu, Raeder (bb0065) 2009; 37 Huang, Ye, Chen, Li, He, Tu (bb0100) 2011; 58 Zhou, Ding, Ung, Pickwell-MacPherson, Zhang (bb0090) 2014; 13 Carrara, Carozzi, Moss, de Pasquale, Cerutti, Ferrario (bb0075) 2015; 36 Petrėnas, Sörnmo, Lukoševičius, Marozas (bb0110) 2015; 53 Chugh, Havmoeller, Narayanan, Singh, Rienstra, Benjamin (bb0005) 2014; 129 Linker (bb0085) 2016 Lee, Reyes, McManus, Mathias, Chon (bb0095) 2013; 60 Maddox, Hoskins, Lloyd, Mengistu, Rangaraju, Henriquez (bb0035) 2016; 47 Lake, Moorman (bb0070) 2011; 300 Healey, Connolly, Gold, Israel, Van Gelder, Capucci (bb0010) 2012; 366 Leys, Ley, Klein, Bernard, Licata (bb0080) 2013; 49 Sanna, Diener, Passman, Di Lazzaro, Bernstein, Morillo (bb0015) 2014; 370 Tateno, Glass (bb0060) 2001; 39 Lowres (10.1016/j.jelectrocard.2016.07.033_bb0030) 2014; 111 Petrėnas (10.1016/j.jelectrocard.2016.07.033_bb0110) 2015; 53 Maddox (10.1016/j.jelectrocard.2016.07.033_bb0035) 2016; 47 Lee (10.1016/j.jelectrocard.2016.07.033_bb0095) 2013; 60 Langley (10.1016/j.jelectrocard.2016.07.033_bb0105) 2012; 34 Lake (10.1016/j.jelectrocard.2016.07.033_bb0070) 2011; 300 Kennedy (10.1016/j.jelectrocard.2016.07.033_bb0125) 2016; 63 Sanna (10.1016/j.jelectrocard.2016.07.033_bb0015) 2014; 370 Babaeizadeh (10.1016/j.jelectrocard.2016.07.033_bb0040) 2009; 42 Harris (10.1016/j.jelectrocard.2016.07.033_bb0020) 2012; 42 Goldberger (10.1016/j.jelectrocard.2016.07.033_bb0045) 2000; 101 Macfarlane (10.1016/j.jelectrocard.2016.07.033_bb0115) 2011; 33 Huang (10.1016/j.jelectrocard.2016.07.033_bb0100) 2011; 58 Barrett (10.1016/j.jelectrocard.2016.07.033_bb0025) 2014; 127 Llamedo (10.1016/j.jelectrocard.2016.07.033_bb0050) 2014 Healey (10.1016/j.jelectrocard.2016.07.033_bb0010) 2012; 366 Tateno (10.1016/j.jelectrocard.2016.07.033_bb0060) 2001; 39 Petrenas (10.1016/j.jelectrocard.2016.07.033_bb0120) 2015; 48 Petrenas (10.1016/j.jelectrocard.2016.07.033_bb0055) 2015; 65 Leys (10.1016/j.jelectrocard.2016.07.033_bb0080) 2013; 49 Chugh (10.1016/j.jelectrocard.2016.07.033_bb0005) 2014; 129 Dash (10.1016/j.jelectrocard.2016.07.033_bb0065) 2009; 37 Linker (10.1016/j.jelectrocard.2016.07.033_bb0085) 2016 Carrara (10.1016/j.jelectrocard.2016.07.033_bb0075) 2015; 36 Zhou (10.1016/j.jelectrocard.2016.07.033_bb0090) 2014; 13 |
References_xml | – volume: 36 start-page: 1873 year: 2015 ident: bb0075 article-title: Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy publication-title: Physiol Meas – volume: 101 start-page: 215 year: 2000 end-page: 220 ident: bb0045 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 39 start-page: 664 year: 2001 end-page: 671 ident: bb0060 article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and $Δ$RR intervals publication-title: Med Biol Eng Comput – volume: 37 start-page: 1701 year: 2009 end-page: 1709 ident: bb0065 article-title: Automatic real time detection of atrial fibrillation publication-title: Ann Biomed Eng – volume: 47 start-page: A206 year: 2016 ident: bb0035 article-title: High false positive rates of atrial fibrillation detection among stroke patients who receive Medtronic implantable loop recorders publication-title: Stroke – volume: 111 start-page: 1167 year: 2014 end-page: 1176 ident: bb0030 article-title: Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. The SEARCH-AF study publication-title: Thromb Haemost – volume: 63 start-page: 243 year: 2016 end-page: 249 ident: bb0125 article-title: Detecting the elusive P-wave: a new ECG lead to improve the recording of atrial activity publication-title: IEEE Trans Biomed Eng – volume: 42 start-page: 522 year: 2009 end-page: 526 ident: bb0040 article-title: Improvements in atrial fibrillation detection for real-time monitoring publication-title: J Electrocardiol – volume: 58 start-page: 1113 year: 2011 end-page: 1119 ident: bb0100 article-title: A novel method for detection of the transition between atrial fibrillation and sinus rhythm publication-title: IEEE Trans Biomed Eng – volume: 13 start-page: 18 year: 2014 ident: bb0090 article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy publication-title: Biomed Eng Online – volume: 370 start-page: 2478 year: 2014 end-page: 2486 ident: bb0015 article-title: Cryptogenic stroke and underlying atrial fibrillation publication-title: N Engl J Med – volume: 127 start-page: e11 year: 2014 end-page: e17 ident: bb0025 article-title: Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring publication-title: Am J Med – volume: 53 start-page: 287 year: 2015 end-page: 297 ident: bb0110 article-title: Detection of occult paroxysmal atrial fibrillation publication-title: Med Biol Eng Comput – volume: 300 start-page: H319 year: 2011 end-page: H325 ident: bb0070 article-title: Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices publication-title: Am J Physiol Circ Physiol – start-page: 1 year: 2016 end-page: 8 ident: bb0085 article-title: Accurate, automated detection of atrial fibrillation in ambulatory recordings publication-title: Cardiovasc Eng Technol – volume: 48 start-page: 157 year: 2015 end-page: 163 ident: bb0120 article-title: A modified Lewis ECG lead system for ambulatory monitoring of atrial arrhythmias publication-title: J Electrocardiol – volume: 42 start-page: 5 year: 2012 end-page: 22 ident: bb0020 article-title: How can we best detect atrial fibrillation? publication-title: J R Coll Physicians Edinb – volume: 129 start-page: 837 year: 2014 end-page: 847 ident: bb0005 article-title: Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study publication-title: Circulation – volume: 33 start-page: 1792 year: 2011 ident: bb0115 article-title: Comprehensive electrocardiology publication-title: Media – start-page: 357 year: 2014 end-page: 360 ident: bb0050 article-title: QRS detectors performance comparison in public databases publication-title: Computing in cardiology conference (CinC), 2014 – volume: 49 start-page: 764 year: 2013 end-page: 766 ident: bb0080 article-title: Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median publication-title: J Exp Soc Psychol – volume: 60 start-page: 203 year: 2013 end-page: 206 ident: bb0095 article-title: Atrial fibrillation detection using an iphone 4S publication-title: IEEE Trans Biomed Eng – volume: 65 start-page: 184 year: 2015 end-page: 191 ident: bb0055 article-title: Low-complexity detection of atrial fibrillation in continuous long-term monitoring publication-title: Comput Biol Med – volume: 366 start-page: 120 year: 2012 end-page: 129 ident: bb0010 article-title: Subclinical atrial fibrillation and the risk of stroke publication-title: N Engl J Med – volume: 34 start-page: 1441 year: 2012 end-page: 1447 ident: bb0105 article-title: Accuracy of algorithms for detection of atrial fibrillation from short duration beat interval recordings publication-title: Med Eng Phys – volume: 370 start-page: 2478 issue: 26 year: 2014 ident: 10.1016/j.jelectrocard.2016.07.033_bb0015 article-title: Cryptogenic stroke and underlying atrial fibrillation publication-title: N Engl J Med doi: 10.1056/NEJMoa1313600 – volume: 65 start-page: 184 year: 2015 ident: 10.1016/j.jelectrocard.2016.07.033_bb0055 article-title: Low-complexity detection of atrial fibrillation in continuous long-term monitoring publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.01.019 – volume: 101 start-page: 215 year: 2000 ident: 10.1016/j.jelectrocard.2016.07.033_bb0045 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 111 start-page: 1167 issue: 6 year: 2014 ident: 10.1016/j.jelectrocard.2016.07.033_bb0030 article-title: Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. The SEARCH-AF study publication-title: Thromb Haemost doi: 10.1160/TH14-03-0231 – volume: 48 start-page: 157 issue: 2 year: 2015 ident: 10.1016/j.jelectrocard.2016.07.033_bb0120 article-title: A modified Lewis ECG lead system for ambulatory monitoring of atrial arrhythmias publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2014.12.005 – volume: 129 start-page: 837 issue: 8 year: 2014 ident: 10.1016/j.jelectrocard.2016.07.033_bb0005 article-title: Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.005119 – volume: 13 start-page: 18 issue: 1 year: 2014 ident: 10.1016/j.jelectrocard.2016.07.033_bb0090 article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy publication-title: Biomed Eng Online doi: 10.1186/1475-925X-13-18 – volume: 366 start-page: 120 issue: 2 year: 2012 ident: 10.1016/j.jelectrocard.2016.07.033_bb0010 article-title: Subclinical atrial fibrillation and the risk of stroke publication-title: N Engl J Med doi: 10.1056/NEJMoa1105575 – start-page: 1 year: 2016 ident: 10.1016/j.jelectrocard.2016.07.033_bb0085 article-title: Accurate, automated detection of atrial fibrillation in ambulatory recordings publication-title: Cardiovasc Eng Technol – volume: 39 start-page: 664 issue: 6 year: 2001 ident: 10.1016/j.jelectrocard.2016.07.033_bb0060 article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and $Δ$RR intervals publication-title: Med Biol Eng Comput doi: 10.1007/BF02345439 – volume: 33 start-page: 1792 issue: 2 year: 2011 ident: 10.1016/j.jelectrocard.2016.07.033_bb0115 article-title: Comprehensive electrocardiology publication-title: Media – volume: 42 start-page: 522 issue: 6 year: 2009 ident: 10.1016/j.jelectrocard.2016.07.033_bb0040 article-title: Improvements in atrial fibrillation detection for real-time monitoring publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2009.06.006 – volume: 42 start-page: 5 issue: Suppl. 1 year: 2012 ident: 10.1016/j.jelectrocard.2016.07.033_bb0020 article-title: How can we best detect atrial fibrillation? publication-title: J R Coll Physicians Edinb doi: 10.4997/JRCPE.2012.S02. – volume: 60 start-page: 203 issue: 1 year: 2013 ident: 10.1016/j.jelectrocard.2016.07.033_bb0095 article-title: Atrial fibrillation detection using an iphone 4S publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2208112 – volume: 36 start-page: 1873 issue: 9 year: 2015 ident: 10.1016/j.jelectrocard.2016.07.033_bb0075 article-title: Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy publication-title: Physiol Meas doi: 10.1088/0967-3334/36/9/1873 – volume: 47 start-page: A206 issue: Suppl. 1 year: 2016 ident: 10.1016/j.jelectrocard.2016.07.033_bb0035 article-title: High false positive rates of atrial fibrillation detection among stroke patients who receive Medtronic implantable loop recorders publication-title: Stroke – volume: 49 start-page: 764 issue: 4 year: 2013 ident: 10.1016/j.jelectrocard.2016.07.033_bb0080 article-title: Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median publication-title: J Exp Soc Psychol doi: 10.1016/j.jesp.2013.03.013 – volume: 58 start-page: 1113 issue: 4 year: 2011 ident: 10.1016/j.jelectrocard.2016.07.033_bb0100 article-title: A novel method for detection of the transition between atrial fibrillation and sinus rhythm publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2096506 – volume: 63 start-page: 243 issue: 2 year: 2016 ident: 10.1016/j.jelectrocard.2016.07.033_bb0125 article-title: Detecting the elusive P-wave: a new ECG lead to improve the recording of atrial activity publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2450212 – volume: 127 start-page: e11 issue: 1 year: 2014 ident: 10.1016/j.jelectrocard.2016.07.033_bb0025 article-title: Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring publication-title: Am J Med doi: 10.1016/j.amjmed.2013.10.003 – start-page: 357 year: 2014 ident: 10.1016/j.jelectrocard.2016.07.033_bb0050 article-title: QRS detectors performance comparison in public databases – volume: 37 start-page: 1701 issue: 9 year: 2009 ident: 10.1016/j.jelectrocard.2016.07.033_bb0065 article-title: Automatic real time detection of atrial fibrillation publication-title: Ann Biomed Eng doi: 10.1007/s10439-009-9740-z – volume: 53 start-page: 287 issue: 4 year: 2015 ident: 10.1016/j.jelectrocard.2016.07.033_bb0110 article-title: Detection of occult paroxysmal atrial fibrillation publication-title: Med Biol Eng Comput doi: 10.1007/s11517-014-1234-y – volume: 300 start-page: H319 issue: 1 year: 2011 ident: 10.1016/j.jelectrocard.2016.07.033_bb0070 article-title: Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices publication-title: Am J Physiol Circ Physiol doi: 10.1152/ajpheart.00561.2010 – volume: 34 start-page: 1441 issue: 10 year: 2012 ident: 10.1016/j.jelectrocard.2016.07.033_bb0105 article-title: Accuracy of algorithms for detection of atrial fibrillation from short duration beat interval recordings publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2012.02.002 |
SSID | ssj0009272 |
Score | 2.3625474 |
Snippet | Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study, we investigated two multivariate-based classification... Abstract Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study we investigated two multivariate based... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 871 |
SubjectTerms | Adolescent Adult Aged Aged, 80 and over Algorithms Atrial fibrillation Atrial Fibrillation - diagnosis Automation Cardiac arrhythmia Cardiovascular Diagnosis, Computer-Assisted - methods Electrocardiography Electrocardiography - methods Female Heart Rate Determination - methods Humans Male Medical screening Middle Aged Multivariate analysis Pattern Recognition, Automated - methods R-R intervals Reproducibility of Results Sensitivity and Specificity Young Adult |
Title | Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S002207361630111X https://www.clinicalkey.es/playcontent/1-s2.0-S002207361630111X https://dx.doi.org/10.1016/j.jelectrocard.2016.07.033 https://www.ncbi.nlm.nih.gov/pubmed/27717571 https://www.proquest.com/docview/2080996744 https://www.proquest.com/docview/1835369192 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_aK4gv4ndXa4nga-zlYzcXxIejWE6lfSgW7i1k8yFXyl7x9nz0b3eym10VLRz4uLvMJkxmJr-Q38wAvFHaY2xknCKWDlTGYKm1IVDLhS-tLqWUKd_5_KJaXMlPy3K5B6dDLkyiVebY38f0LlrnNydZmye3q1XK8eUcDbRCRJEapi_34YALXZUTOJh__Ly4-FV7l6uxaHgSGGqPdjSv69xuxuGCJKZXX8tTiLv2qbtwaLcfnT2EBxlIknk_10ewF5rHcO88X5U_AT_ftmuEo8ETH9qOcNWQdSS269NBYqL63_REOJLI71_JJb0kq44CiSZJbONJxzb8jqdp_A1N-50nLqHtRC_qJJ_C1dmHL6cLmlsqUIdQo6XcTq2olJ-hn8YyyNpKGSpdCumct8yXdeCROW1nsQqpK8dURTwgee2CcPVMimcwadZNOAQSU-U_xiwiGjxju1JbVmnPahujnIUqFqAHBRqX642nthc3ZiCWXZvflW-S8s1UGVR-AWKUve2rbuwk9W5YJzPklWIkNLg57CSt_iUdNtmpN4aZDTdT85fhFfB-lPzDdnce-WgwKjMOxlH36D9KygJej5_R99OFjm3CeosTQvgsKo0gvYDnvTGO6uIKD-qlYi_-c3Iv4X566tMvj2DSftuGV4jD2voY9t_-YMfZ234Cy1A1Tg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXxJtAASNxNV0_Eq-FOFQV1QLdHqpW2pvl-FFtVWUrNsuR3844cQIIKq3ENc4k1nhm_Fn-ZgbgndIeYyPjFLF0oDIGS60NgVoufGl1KaVM-c7zk2p2Lr8sysUOHA65MIlWmWN_H9O7aJ2f7Gdt7l8vlynHl3M00AoRRWqYvrgFt2UpVCqg__7HL56H5mosGZ5eHyqPdiSvy9xsxuFyJJ5XX8lTiJt2qZtQaLcbHT2A-xlGkoN-pg9hJzSP4M48X5Q_Bn-waVcIRoMnPrQd3aohq0hs16WDxET0v-ppcCRR3y_IKT0ly44AiQZJbONJxzX8jmdp_AxNu50nLmHtRC7qJJ_A-dGns8MZzQ0VqEOg0VJuJ1ZUyk_RS2MZZG2lDJUuhXTOW-bLOvDInLbTWIXUk2OiIh6PvHZBuHoqxVPYbVZNeA4kprp_jFnEM3jCdqW2rNKe1TZGOQ1VLEAPCjQuVxtPTS-uzEAruzS_K98k5ZuJMqj8AsQoe93X3NhK6sOwTmbIKsU4aHBr2Epa_Us6rLNLrw0za24m5i-zK-DjKPmH5W79573BqMz4M466R-9RUhbwdhxGz0_XObYJqw1OCMGzqDRC9AKe9cY4qosrPKaXir34z8m9gbuzs_mxOf588vUl3EsjfSLmHuy23zbhFSKytn7dedxPc3U2GA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+of+atrial+fibrillation+using+R-R+intervals+and+multivariate-based+classification&rft.jtitle=Journal+of+electrocardiology&rft.au=Kennedy%2C+Alan&rft.au=Finlay%2C+Dewar+D.&rft.au=Guldenring%2C+Daniel&rft.au=Bond%2C+Raymond+R.&rft.date=2016-11-01&rft.pub=Elsevier+Inc&rft.issn=0022-0736&rft.volume=49&rft.issue=6&rft.spage=871&rft.epage=876&rft_id=info:doi/10.1016%2Fj.jelectrocard.2016.07.033&rft.externalDocID=S002207361630111X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0736&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0736&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0736&client=summon |