Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification

Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study, we investigated two multivariate-based classification techniques, Random Forests (RF) and k-nearest neighbor (k-nn), for improved automated detection of AF from the ECG. We have compiled a new databa...

Full description

Saved in:
Bibliographic Details
Published inJournal of electrocardiology Vol. 49; no. 6; pp. 871 - 876
Main Authors Kennedy, Alan, Finlay, Dewar D., Guldenring, Daniel, Bond, Raymond R., Moran, Kieran, McLaughlin, James
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2016
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0022-0736
1532-8430
DOI10.1016/j.jelectrocard.2016.07.033

Cover

Abstract Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study, we investigated two multivariate-based classification techniques, Random Forests (RF) and k-nearest neighbor (k-nn), for improved automated detection of AF from the ECG. We have compiled a new database from ECG data taken from existing sources. R-R intervals were then analyzed using four previously described R-R irregularity measurements: (1) the coefficient of sample entropy (CoSEn), (2) the coefficient of variance (CV), (3) root mean square of the successive differences (RMSSD), and (4) median absolute deviation (MAD). Using outputs from all four R-R irregularity measurements, RF and k-nn models were trained. RF classification improved AF detection over CoSEn with overall specificity of 80.1% vs. 98.3% and positive predictive value of 51.8% vs. 92.1% with a reduction in sensitivity, 97.6% vs. 92.8%. k-nn also improved specificity and PPV over CoSEn; however, the sensitivity of this approach was considerably reduced (68.0%).
AbstractList Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study, we investigated two multivariate-based classification techniques, Random Forests (RF) and k-nearest neighbor (k-nn), for improved automated detection of AF from the ECG. We have compiled a new database from ECG data taken from existing sources. R-R intervals were then analyzed using four previously described R-R irregularity measurements: (1) the coefficient of sample entropy (CoSEn), (2) the coefficient of variance (CV), (3) root mean square of the successive differences (RMSSD), and (4) median absolute deviation (MAD). Using outputs from all four R-R irregularity measurements, RF and k-nn models were trained. RF classification improved AF detection over CoSEn with overall specificity of 80.1% vs. 98.3% and positive predictive value of 51.8% vs. 92.1% with a reduction in sensitivity, 97.6% vs. 92.8%. k-nn also improved specificity and PPV over CoSEn; however, the sensitivity of this approach was considerably reduced (68.0%).
Abstract Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study we investigated two multivariate based classification techniques, Random Forests ( RF ) and k-nearest neighbor ( k − nn ), for improved automated detection of AF from the ECG. We have compiled a new database from ECG data taken from existing sources. R-R intervals were then analyzed using four previously described R-R irregularity measurements: (1) The coefficient of sample entropy ( CoSEn ) (2) The coefficient of variance ( CV ) (3) Root mean square of the successive differences ( RMSSD ) and (4) median absolute deviation ( MAD ). Using outputs from all four R-R irregularity measurements RF and k − nn models were trained. RF classification improved AF detection over CoSEn with overall specificity of 80.1% vs. 98.3% and positive predictive value of 51.8% vs. 92.1% with a reduction in sensitivity, 97.6% vs. 92.8%. k − nn also improved specificity and PPV over CoSEn however the sensitivity of this approach was considerably reduced (68.0%).
Author Moran, Kieran
Finlay, Dewar D.
Guldenring, Daniel
Bond, Raymond R.
Kennedy, Alan
McLaughlin, James
Author_xml – sequence: 1
  givenname: Alan
  surname: Kennedy
  fullname: Kennedy, Alan
  email: kennedy-a23@email.ulster.ac.uk
  organization: Nanotechnology and Integrated BioEngineering Centre, University of Ulster, Northern Ireland, UK
– sequence: 2
  givenname: Dewar D.
  surname: Finlay
  fullname: Finlay, Dewar D.
  organization: Nanotechnology and Integrated BioEngineering Centre, University of Ulster, Northern Ireland, UK
– sequence: 3
  givenname: Daniel
  surname: Guldenring
  fullname: Guldenring, Daniel
  organization: Nanotechnology and Integrated BioEngineering Centre, University of Ulster, Northern Ireland, UK
– sequence: 4
  givenname: Raymond R.
  surname: Bond
  fullname: Bond, Raymond R.
  organization: Computer Science Research Institute, University of Ulster, Northern Ireland, UK
– sequence: 5
  givenname: Kieran
  surname: Moran
  fullname: Moran, Kieran
  organization: Dublin City University, Ireland
– sequence: 6
  givenname: James
  surname: McLaughlin
  fullname: McLaughlin, James
  organization: Nanotechnology and Integrated BioEngineering Centre, University of Ulster, Northern Ireland, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27717571$$D View this record in MEDLINE/PubMed
BookMark eNqNkt2L1DAUxYOsuLOr_4IUffGlNR9t0vogrusnLAirgm8hTW4lNU3XJB3Y_950Zl1kQJinwOWcHzfn3DN04mcPCD0juCKY8JdjNYIDncKsVTAVzbMKiwoz9gBtSMNo2dYMn6ANxpSWWDB-is5iHDHGHRX0ETqlQhDRCLJB5mJJ86QSmMJAylA7-2IeCpWCVa4YbB-sc2o3XqL1P4vr8rqwPkHYKhcL5U0xLS7ZrcqGBGWvYmZpp2K0g9U752P0cMhieHL3nqPvH95_u_xUXn35-Pny4qrUvGlTSRVWjAvTilYMDdS9qmvgXcNqrY0ipumBDkR3qh048Ba3WAy06Uyngek-__kcvdhzb8L8e4GY5GSjhry_h3mJkrSsYbwjHc3S5wfScV6Cz9tJmsFdx0W9Ap_eqZZ-AiNvgp1UuJV_88uCV3uBDnOMAYZ7CcFyLUuO8t-y5FqWxELmsrL5zYFZ27QLLAVl3XGId3sE5Fi3FoKM2oLXYGzIDmlmexzm9QFGO-tze-4X3EK8j4bISCWWX9fDWu-KcIYJIT8y4O3_Acdu8QcJlOaC
CitedBy_id crossref_primary_10_3390_s20030765
crossref_primary_10_1109_TBME_2020_3004310
crossref_primary_10_21923_jesd_512030
crossref_primary_10_1016_j_ssci_2019_05_013
crossref_primary_10_1016_j_eswa_2020_114452
crossref_primary_10_1097_ALN_0000000000004389
crossref_primary_10_1016_j_jbi_2021_103819
crossref_primary_10_1016_j_jelectrocard_2017_10_014
crossref_primary_10_1109_JBHI_2020_2980454
crossref_primary_10_1093_ehjdh_ztab108
crossref_primary_10_3390_info11090436
crossref_primary_10_1038_s41598_020_59821_7
crossref_primary_10_1109_JBHI_2021_3067931
crossref_primary_10_1016_j_bspc_2023_105750
crossref_primary_10_1109_ACCESS_2019_2939822
crossref_primary_10_1016_j_bspc_2023_104615
crossref_primary_10_1016_j_cvdhj_2021_05_004
crossref_primary_10_1109_JBHI_2022_3191682
crossref_primary_10_1109_JBHI_2020_2995139
crossref_primary_10_1186_s13634_019_0613_9
crossref_primary_10_3390_s21155222
crossref_primary_10_1016_j_ins_2018_07_063
crossref_primary_10_3389_fphys_2021_683025
crossref_primary_10_3389_fphys_2021_637680
crossref_primary_10_1016_j_bea_2023_100089
crossref_primary_10_1016_j_compbiomed_2019_103378
crossref_primary_10_1016_j_bspc_2024_107480
crossref_primary_10_3390_app13053036
crossref_primary_10_1515_bmt_2022_0430
crossref_primary_10_1016_j_bspc_2022_104531
crossref_primary_10_1038_s41598_021_97308_1
crossref_primary_10_3390_jcm8111840
crossref_primary_10_1016_j_bspc_2020_102194
crossref_primary_10_3390_s21165302
crossref_primary_10_3390_s23073700
crossref_primary_10_1016_j_jelectrocard_2022_07_069
crossref_primary_10_3390_bioengineering11090903
crossref_primary_10_2139_ssrn_4098697
crossref_primary_10_1587_transinf_2017EDP7285
crossref_primary_10_1371_journal_pone_0271596
crossref_primary_10_1134_S1054661823030483
crossref_primary_10_1016_j_compbiomed_2021_104404
crossref_primary_10_3390_electronics7090199
crossref_primary_10_3389_fphys_2024_1429161
crossref_primary_10_1142_S0219519421400133
crossref_primary_10_1038_s41598_024_72382_3
crossref_primary_10_3390_ijerph17093093
crossref_primary_10_1016_j_bspc_2021_102818
crossref_primary_10_1016_j_compbiomed_2022_105270
crossref_primary_10_1155_2021_6627939
Cites_doi 10.1056/NEJMoa1313600
10.1016/j.compbiomed.2015.01.019
10.1161/01.CIR.101.23.e215
10.1160/TH14-03-0231
10.1016/j.jelectrocard.2014.12.005
10.1161/CIRCULATIONAHA.113.005119
10.1186/1475-925X-13-18
10.1056/NEJMoa1105575
10.1007/BF02345439
10.1016/j.jelectrocard.2009.06.006
10.4997/JRCPE.2012.S02.
10.1109/TBME.2012.2208112
10.1088/0967-3334/36/9/1873
10.1016/j.jesp.2013.03.013
10.1109/TBME.2010.2096506
10.1109/TBME.2015.2450212
10.1016/j.amjmed.2013.10.003
10.1007/s10439-009-9740-z
10.1007/s11517-014-1234-y
10.1152/ajpheart.00561.2010
10.1016/j.medengphy.2012.02.002
ContentType Journal Article
Copyright 2016
Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Science Ltd. Nov/Dec 2016
Copyright_xml – notice: 2016
– notice: Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Nov/Dec 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1016/j.jelectrocard.2016.07.033
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-8430
EndPage 876
ExternalDocumentID 27717571
10_1016_j_jelectrocard_2016_07_033
S002207361630111X
1_s2_0_S002207361630111X
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
7X7
88E
88I
8AF
8AO
8FI
8FJ
8P~
8R4
8R5
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFRF
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACDOS
ACGFO
ACGFS
ACGOD
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
D-I
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
HCIFZ
HEB
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M1P
M29
M2P
M2Q
M41
MJL
MO0
N9A
O-L
O9-
OAUVE
OA~
OL0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
Q38
R2-
ROL
RPZ
RWL
S0X
SAE
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TAE
UKHRP
UNMZH
WH7
WUQ
X7M
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c658t-2a0a367d8787f5e4ba44e69534ccda1d5be2f1c9a8f6e680807f259d9ce3cb843
IEDL.DBID AIKHN
ISSN 0022-0736
IngestDate Thu Sep 04 21:56:21 EDT 2025
Mon Jul 14 07:03:29 EDT 2025
Wed Feb 19 02:43:11 EST 2025
Thu Apr 24 23:06:28 EDT 2025
Tue Jul 01 03:19:02 EDT 2025
Fri Feb 23 02:29:02 EST 2024
Tue Feb 25 20:08:12 EST 2025
Tue Aug 26 19:46:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Atrial fibrillation
Algorithms
R-R intervals
Atrial Fibrillation
Language English
License Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c658t-2a0a367d8787f5e4ba44e69534ccda1d5be2f1c9a8f6e680807f259d9ce3cb843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27717571
PQID 2080996744
PQPubID 6950
PageCount 6
ParticipantIDs proquest_miscellaneous_1835369192
proquest_journals_2080996744
pubmed_primary_27717571
crossref_primary_10_1016_j_jelectrocard_2016_07_033
crossref_citationtrail_10_1016_j_jelectrocard_2016_07_033
elsevier_sciencedirect_doi_10_1016_j_jelectrocard_2016_07_033
elsevier_clinicalkeyesjournals_1_s2_0_S002207361630111X
elsevier_clinicalkey_doi_10_1016_j_jelectrocard_2016_07_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of electrocardiology
PublicationTitleAlternate J Electrocardiol
PublicationYear 2016
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Macfarlane (bb0115) 2011; 33
Petrenas, Marozas, Jaruševicius, Sörnmo (bb0120) 2015; 48
Harris, Edwards, Mant (bb0020) 2012; 42
Lowres, Neubeck, Salkeld, Krass, McLachlan, Redfern (bb0030) 2014; 111
Langley, Dewhurst, Di Marco, Adams, Dewhurst, Mwita (bb0105) 2012; 34
Babaeizadeh, Gregg, Helfenbein, Lindauer, Zhou (bb0040) 2009; 42
Petrenas, Marozas, Sörnmo (bb0055) 2015; 65
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (bb0045) 2000; 101
Barrett, Komatireddy, Haaser, Topol, Sheard, Encinas (bb0025) 2014; 127
Llamedo, Martinez (bb0050) 2014
Kennedy, Finlay, Guldenring, Bond, McLaughlin (bb0125) 2016; 63
Dash, Chon, Lu, Raeder (bb0065) 2009; 37
Huang, Ye, Chen, Li, He, Tu (bb0100) 2011; 58
Zhou, Ding, Ung, Pickwell-MacPherson, Zhang (bb0090) 2014; 13
Carrara, Carozzi, Moss, de Pasquale, Cerutti, Ferrario (bb0075) 2015; 36
Petrėnas, Sörnmo, Lukoševičius, Marozas (bb0110) 2015; 53
Chugh, Havmoeller, Narayanan, Singh, Rienstra, Benjamin (bb0005) 2014; 129
Linker (bb0085) 2016
Lee, Reyes, McManus, Mathias, Chon (bb0095) 2013; 60
Maddox, Hoskins, Lloyd, Mengistu, Rangaraju, Henriquez (bb0035) 2016; 47
Lake, Moorman (bb0070) 2011; 300
Healey, Connolly, Gold, Israel, Van Gelder, Capucci (bb0010) 2012; 366
Leys, Ley, Klein, Bernard, Licata (bb0080) 2013; 49
Sanna, Diener, Passman, Di Lazzaro, Bernstein, Morillo (bb0015) 2014; 370
Tateno, Glass (bb0060) 2001; 39
Lowres (10.1016/j.jelectrocard.2016.07.033_bb0030) 2014; 111
Petrėnas (10.1016/j.jelectrocard.2016.07.033_bb0110) 2015; 53
Maddox (10.1016/j.jelectrocard.2016.07.033_bb0035) 2016; 47
Lee (10.1016/j.jelectrocard.2016.07.033_bb0095) 2013; 60
Langley (10.1016/j.jelectrocard.2016.07.033_bb0105) 2012; 34
Lake (10.1016/j.jelectrocard.2016.07.033_bb0070) 2011; 300
Kennedy (10.1016/j.jelectrocard.2016.07.033_bb0125) 2016; 63
Sanna (10.1016/j.jelectrocard.2016.07.033_bb0015) 2014; 370
Babaeizadeh (10.1016/j.jelectrocard.2016.07.033_bb0040) 2009; 42
Harris (10.1016/j.jelectrocard.2016.07.033_bb0020) 2012; 42
Goldberger (10.1016/j.jelectrocard.2016.07.033_bb0045) 2000; 101
Macfarlane (10.1016/j.jelectrocard.2016.07.033_bb0115) 2011; 33
Huang (10.1016/j.jelectrocard.2016.07.033_bb0100) 2011; 58
Barrett (10.1016/j.jelectrocard.2016.07.033_bb0025) 2014; 127
Llamedo (10.1016/j.jelectrocard.2016.07.033_bb0050) 2014
Healey (10.1016/j.jelectrocard.2016.07.033_bb0010) 2012; 366
Tateno (10.1016/j.jelectrocard.2016.07.033_bb0060) 2001; 39
Petrenas (10.1016/j.jelectrocard.2016.07.033_bb0120) 2015; 48
Petrenas (10.1016/j.jelectrocard.2016.07.033_bb0055) 2015; 65
Leys (10.1016/j.jelectrocard.2016.07.033_bb0080) 2013; 49
Chugh (10.1016/j.jelectrocard.2016.07.033_bb0005) 2014; 129
Dash (10.1016/j.jelectrocard.2016.07.033_bb0065) 2009; 37
Linker (10.1016/j.jelectrocard.2016.07.033_bb0085) 2016
Carrara (10.1016/j.jelectrocard.2016.07.033_bb0075) 2015; 36
Zhou (10.1016/j.jelectrocard.2016.07.033_bb0090) 2014; 13
References_xml – volume: 36
  start-page: 1873
  year: 2015
  ident: bb0075
  article-title: Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy
  publication-title: Physiol Meas
– volume: 101
  start-page: 215
  year: 2000
  end-page: 220
  ident: bb0045
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 39
  start-page: 664
  year: 2001
  end-page: 671
  ident: bb0060
  article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and $Δ$RR intervals
  publication-title: Med Biol Eng Comput
– volume: 37
  start-page: 1701
  year: 2009
  end-page: 1709
  ident: bb0065
  article-title: Automatic real time detection of atrial fibrillation
  publication-title: Ann Biomed Eng
– volume: 47
  start-page: A206
  year: 2016
  ident: bb0035
  article-title: High false positive rates of atrial fibrillation detection among stroke patients who receive Medtronic implantable loop recorders
  publication-title: Stroke
– volume: 111
  start-page: 1167
  year: 2014
  end-page: 1176
  ident: bb0030
  article-title: Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. The SEARCH-AF study
  publication-title: Thromb Haemost
– volume: 63
  start-page: 243
  year: 2016
  end-page: 249
  ident: bb0125
  article-title: Detecting the elusive P-wave: a new ECG lead to improve the recording of atrial activity
  publication-title: IEEE Trans Biomed Eng
– volume: 42
  start-page: 522
  year: 2009
  end-page: 526
  ident: bb0040
  article-title: Improvements in atrial fibrillation detection for real-time monitoring
  publication-title: J Electrocardiol
– volume: 58
  start-page: 1113
  year: 2011
  end-page: 1119
  ident: bb0100
  article-title: A novel method for detection of the transition between atrial fibrillation and sinus rhythm
  publication-title: IEEE Trans Biomed Eng
– volume: 13
  start-page: 18
  year: 2014
  ident: bb0090
  article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy
  publication-title: Biomed Eng Online
– volume: 370
  start-page: 2478
  year: 2014
  end-page: 2486
  ident: bb0015
  article-title: Cryptogenic stroke and underlying atrial fibrillation
  publication-title: N Engl J Med
– volume: 127
  start-page: e11
  year: 2014
  end-page: e17
  ident: bb0025
  article-title: Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring
  publication-title: Am J Med
– volume: 53
  start-page: 287
  year: 2015
  end-page: 297
  ident: bb0110
  article-title: Detection of occult paroxysmal atrial fibrillation
  publication-title: Med Biol Eng Comput
– volume: 300
  start-page: H319
  year: 2011
  end-page: H325
  ident: bb0070
  article-title: Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices
  publication-title: Am J Physiol Circ Physiol
– start-page: 1
  year: 2016
  end-page: 8
  ident: bb0085
  article-title: Accurate, automated detection of atrial fibrillation in ambulatory recordings
  publication-title: Cardiovasc Eng Technol
– volume: 48
  start-page: 157
  year: 2015
  end-page: 163
  ident: bb0120
  article-title: A modified Lewis ECG lead system for ambulatory monitoring of atrial arrhythmias
  publication-title: J Electrocardiol
– volume: 42
  start-page: 5
  year: 2012
  end-page: 22
  ident: bb0020
  article-title: How can we best detect atrial fibrillation?
  publication-title: J R Coll Physicians Edinb
– volume: 129
  start-page: 837
  year: 2014
  end-page: 847
  ident: bb0005
  article-title: Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study
  publication-title: Circulation
– volume: 33
  start-page: 1792
  year: 2011
  ident: bb0115
  article-title: Comprehensive electrocardiology
  publication-title: Media
– start-page: 357
  year: 2014
  end-page: 360
  ident: bb0050
  article-title: QRS detectors performance comparison in public databases
  publication-title: Computing in cardiology conference (CinC), 2014
– volume: 49
  start-page: 764
  year: 2013
  end-page: 766
  ident: bb0080
  article-title: Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median
  publication-title: J Exp Soc Psychol
– volume: 60
  start-page: 203
  year: 2013
  end-page: 206
  ident: bb0095
  article-title: Atrial fibrillation detection using an iphone 4S
  publication-title: IEEE Trans Biomed Eng
– volume: 65
  start-page: 184
  year: 2015
  end-page: 191
  ident: bb0055
  article-title: Low-complexity detection of atrial fibrillation in continuous long-term monitoring
  publication-title: Comput Biol Med
– volume: 366
  start-page: 120
  year: 2012
  end-page: 129
  ident: bb0010
  article-title: Subclinical atrial fibrillation and the risk of stroke
  publication-title: N Engl J Med
– volume: 34
  start-page: 1441
  year: 2012
  end-page: 1447
  ident: bb0105
  article-title: Accuracy of algorithms for detection of atrial fibrillation from short duration beat interval recordings
  publication-title: Med Eng Phys
– volume: 370
  start-page: 2478
  issue: 26
  year: 2014
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0015
  article-title: Cryptogenic stroke and underlying atrial fibrillation
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1313600
– volume: 65
  start-page: 184
  year: 2015
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0055
  article-title: Low-complexity detection of atrial fibrillation in continuous long-term monitoring
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.01.019
– volume: 101
  start-page: 215
  year: 2000
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0045
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 111
  start-page: 1167
  issue: 6
  year: 2014
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0030
  article-title: Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. The SEARCH-AF study
  publication-title: Thromb Haemost
  doi: 10.1160/TH14-03-0231
– volume: 48
  start-page: 157
  issue: 2
  year: 2015
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0120
  article-title: A modified Lewis ECG lead system for ambulatory monitoring of atrial arrhythmias
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2014.12.005
– volume: 129
  start-page: 837
  issue: 8
  year: 2014
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0005
  article-title: Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.005119
– volume: 13
  start-page: 18
  issue: 1
  year: 2014
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0090
  article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-13-18
– volume: 366
  start-page: 120
  issue: 2
  year: 2012
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0010
  article-title: Subclinical atrial fibrillation and the risk of stroke
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1105575
– start-page: 1
  year: 2016
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0085
  article-title: Accurate, automated detection of atrial fibrillation in ambulatory recordings
  publication-title: Cardiovasc Eng Technol
– volume: 39
  start-page: 664
  issue: 6
  year: 2001
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0060
  article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and $Δ$RR intervals
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02345439
– volume: 33
  start-page: 1792
  issue: 2
  year: 2011
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0115
  article-title: Comprehensive electrocardiology
  publication-title: Media
– volume: 42
  start-page: 522
  issue: 6
  year: 2009
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0040
  article-title: Improvements in atrial fibrillation detection for real-time monitoring
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2009.06.006
– volume: 42
  start-page: 5
  issue: Suppl. 1
  year: 2012
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0020
  article-title: How can we best detect atrial fibrillation?
  publication-title: J R Coll Physicians Edinb
  doi: 10.4997/JRCPE.2012.S02.
– volume: 60
  start-page: 203
  issue: 1
  year: 2013
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0095
  article-title: Atrial fibrillation detection using an iphone 4S
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2208112
– volume: 36
  start-page: 1873
  issue: 9
  year: 2015
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0075
  article-title: Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/36/9/1873
– volume: 47
  start-page: A206
  issue: Suppl. 1
  year: 2016
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0035
  article-title: High false positive rates of atrial fibrillation detection among stroke patients who receive Medtronic implantable loop recorders
  publication-title: Stroke
– volume: 49
  start-page: 764
  issue: 4
  year: 2013
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0080
  article-title: Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median
  publication-title: J Exp Soc Psychol
  doi: 10.1016/j.jesp.2013.03.013
– volume: 58
  start-page: 1113
  issue: 4
  year: 2011
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0100
  article-title: A novel method for detection of the transition between atrial fibrillation and sinus rhythm
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2096506
– volume: 63
  start-page: 243
  issue: 2
  year: 2016
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0125
  article-title: Detecting the elusive P-wave: a new ECG lead to improve the recording of atrial activity
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2450212
– volume: 127
  start-page: e11
  issue: 1
  year: 2014
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0025
  article-title: Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring
  publication-title: Am J Med
  doi: 10.1016/j.amjmed.2013.10.003
– start-page: 357
  year: 2014
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0050
  article-title: QRS detectors performance comparison in public databases
– volume: 37
  start-page: 1701
  issue: 9
  year: 2009
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0065
  article-title: Automatic real time detection of atrial fibrillation
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9740-z
– volume: 53
  start-page: 287
  issue: 4
  year: 2015
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0110
  article-title: Detection of occult paroxysmal atrial fibrillation
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-014-1234-y
– volume: 300
  start-page: H319
  issue: 1
  year: 2011
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0070
  article-title: Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices
  publication-title: Am J Physiol Circ Physiol
  doi: 10.1152/ajpheart.00561.2010
– volume: 34
  start-page: 1441
  issue: 10
  year: 2012
  ident: 10.1016/j.jelectrocard.2016.07.033_bb0105
  article-title: Accuracy of algorithms for detection of atrial fibrillation from short duration beat interval recordings
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2012.02.002
SSID ssj0009272
Score 2.3625474
Snippet Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study, we investigated two multivariate-based classification...
Abstract Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study we investigated two multivariate based...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 871
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Atrial fibrillation
Atrial Fibrillation - diagnosis
Automation
Cardiac arrhythmia
Cardiovascular
Diagnosis, Computer-Assisted - methods
Electrocardiography
Electrocardiography - methods
Female
Heart Rate Determination - methods
Humans
Male
Medical screening
Middle Aged
Multivariate analysis
Pattern Recognition, Automated - methods
R-R intervals
Reproducibility of Results
Sensitivity and Specificity
Young Adult
Title Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification
URI https://www.clinicalkey.com/#!/content/1-s2.0-S002207361630111X
https://www.clinicalkey.es/playcontent/1-s2.0-S002207361630111X
https://dx.doi.org/10.1016/j.jelectrocard.2016.07.033
https://www.ncbi.nlm.nih.gov/pubmed/27717571
https://www.proquest.com/docview/2080996744
https://www.proquest.com/docview/1835369192
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_aK4gv4ndXa4nga-zlYzcXxIejWE6lfSgW7i1k8yFXyl7x9nz0b3eym10VLRz4uLvMJkxmJr-Q38wAvFHaY2xknCKWDlTGYKm1IVDLhS-tLqWUKd_5_KJaXMlPy3K5B6dDLkyiVebY38f0LlrnNydZmye3q1XK8eUcDbRCRJEapi_34YALXZUTOJh__Ly4-FV7l6uxaHgSGGqPdjSv69xuxuGCJKZXX8tTiLv2qbtwaLcfnT2EBxlIknk_10ewF5rHcO88X5U_AT_ftmuEo8ETH9qOcNWQdSS269NBYqL63_REOJLI71_JJb0kq44CiSZJbONJxzb8jqdp_A1N-50nLqHtRC_qJJ_C1dmHL6cLmlsqUIdQo6XcTq2olJ-hn8YyyNpKGSpdCumct8yXdeCROW1nsQqpK8dURTwgee2CcPVMimcwadZNOAQSU-U_xiwiGjxju1JbVmnPahujnIUqFqAHBRqX642nthc3ZiCWXZvflW-S8s1UGVR-AWKUve2rbuwk9W5YJzPklWIkNLg57CSt_iUdNtmpN4aZDTdT85fhFfB-lPzDdnce-WgwKjMOxlH36D9KygJej5_R99OFjm3CeosTQvgsKo0gvYDnvTGO6uIKD-qlYi_-c3Iv4X566tMvj2DSftuGV4jD2voY9t_-YMfZ234Cy1A1Tg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXxJtAASNxNV0_Eq-FOFQV1QLdHqpW2pvl-FFtVWUrNsuR3844cQIIKq3ENc4k1nhm_Fn-ZgbgndIeYyPjFLF0oDIGS60NgVoufGl1KaVM-c7zk2p2Lr8sysUOHA65MIlWmWN_H9O7aJ2f7Gdt7l8vlynHl3M00AoRRWqYvrgFt2UpVCqg__7HL56H5mosGZ5eHyqPdiSvy9xsxuFyJJ5XX8lTiJt2qZtQaLcbHT2A-xlGkoN-pg9hJzSP4M48X5Q_Bn-waVcIRoMnPrQd3aohq0hs16WDxET0v-ppcCRR3y_IKT0ly44AiQZJbONJxzX8jmdp_AxNu50nLmHtRC7qJJ_A-dGns8MZzQ0VqEOg0VJuJ1ZUyk_RS2MZZG2lDJUuhXTOW-bLOvDInLbTWIXUk2OiIh6PvHZBuHoqxVPYbVZNeA4kprp_jFnEM3jCdqW2rNKe1TZGOQ1VLEAPCjQuVxtPTS-uzEAruzS_K98k5ZuJMqj8AsQoe93X3NhK6sOwTmbIKsU4aHBr2Epa_Us6rLNLrw0za24m5i-zK-DjKPmH5W79573BqMz4M466R-9RUhbwdhxGz0_XObYJqw1OCMGzqDRC9AKe9cY4qosrPKaXir34z8m9gbuzs_mxOf588vUl3EsjfSLmHuy23zbhFSKytn7dedxPc3U2GA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+of+atrial+fibrillation+using+R-R+intervals+and+multivariate-based+classification&rft.jtitle=Journal+of+electrocardiology&rft.au=Kennedy%2C+Alan&rft.au=Finlay%2C+Dewar+D.&rft.au=Guldenring%2C+Daniel&rft.au=Bond%2C+Raymond+R.&rft.date=2016-11-01&rft.pub=Elsevier+Inc&rft.issn=0022-0736&rft.volume=49&rft.issue=6&rft.spage=871&rft.epage=876&rft_id=info:doi/10.1016%2Fj.jelectrocard.2016.07.033&rft.externalDocID=S002207361630111X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0736&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0736&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0736&client=summon