A novel method for blood vessel detection from retinal images

Background The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. Methods In this paper, we present a novel method to segment retin...

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering online Vol. 9; no. 1; p. 14
Main Authors Xu, Lili, Luo, Shuqian
Format Journal Article
LanguageEnglish
Published London BioMed Central 28.02.2010
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1475-925X
1475-925X
DOI10.1186/1475-925X-9-14

Cover

Abstract Background The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. Methods In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. Results The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. Conclusions In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention.
AbstractList The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention.
Background The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. Methods In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. Results The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. Conclusions In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention.
Background: The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. Methods: In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. Results: The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. Conclusions: In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention.
Abstract Background The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. Methods In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. Results The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. Conclusions In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention.
The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention.
Doc number: 14 Abstract Background: The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. Methods: In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. Results: The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. Conclusions: In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention.
The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value.BACKGROUNDThe morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value.In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network.METHODSIn this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network.The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%.RESULTSThe proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%.In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention.CONCLUSIONSIn this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention.
Audience Academic
Author Luo, Shuqian
Xu, Lili
AuthorAffiliation 1 School of Biomedical Engineering, Capital Medical University, Beijing, China
AuthorAffiliation_xml – name: 1 School of Biomedical Engineering, Capital Medical University, Beijing, China
Author_xml – sequence: 1
  givenname: Lili
  surname: Xu
  fullname: Xu, Lili
  organization: School of Biomedical Engineering, Capital Medical University
– sequence: 2
  givenname: Shuqian
  surname: Luo
  fullname: Luo, Shuqian
  email: shuqian_luo@yahoo.com.cn
  organization: School of Biomedical Engineering, Capital Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20187975$$D View this record in MEDLINE/PubMed
BookMark eNp9kslv1DAUxiNURBe4ckSROACHTL0kXg4gjSqWkSohsUi9WR4vqUdJPNjJ0P73OMx0mJSCcsjT8-_7bH3vnWZHne9Mlj2HYAYhI-ewpFXBUXVV8AKWj7KTfePooD7OTmNcAYAAIPxJdowAZJTT6iR7O887vzFN3pr-2uvc-pAvG5-qjYkx9bXpjeqd73IbfJsH07tONrlrZW3i0-yxlU00z3b_s-z7h_ffLj4Vl58_Li7ml4UiFe0LQhi0kBO61BRrwBTAXGllOVcI6yXilknMJTRaWkgwUkwarMqSASsNxByfZYutr_ZyJdYh3R5uhZdO_G74UAsZeqcaI6jiiEtqASSqZAiySivCjVJMy_GK5HW-9Rq6tbz9KZtmbwiBGEMVY24i5XYjeKqT4t1WsR6WrdHKdH2QzeQZ05POXYvabwRimDHOksGrnUHwPwYTe9G6qEzTyM74IQqKMYWYgPGq1_8lYQk5JpCSEX15D135IaTZjBQAFaQI8j9ULVM4rrM-vVCNpmKOEESIETpSsweo9GnTOpU2zrrUnwjeTASJ6c1NX8shRrH4-mXKvjiMb5_b3RImoNwCKvgYg7FCuV6OO5de4Zq_xnJ1N5bZPdm_5rgX7CYfE9jVJhwk9rDiFxONChI
CitedBy_id crossref_primary_10_1016_j_artmed_2018_10_009
crossref_primary_10_4103_ijnpnd_ijnpnd_76_23
crossref_primary_10_1049_iet_ipr_2017_1266
crossref_primary_10_1109_TBME_2016_2535311
crossref_primary_10_2174_1574362414666191018104225
crossref_primary_10_1007_s10044_018_0754_8
crossref_primary_10_1007_s11042_020_08958_8
crossref_primary_10_1155_2013_408120
crossref_primary_10_1007_s11042_019_08111_0
crossref_primary_10_1088_1757_899X_557_1_012009
crossref_primary_10_1007_s11760_025_03917_y
crossref_primary_10_1016_j_bspc_2015_09_011
crossref_primary_10_1007_s11128_016_1292_1
crossref_primary_10_1155_2015_895267
crossref_primary_10_4018_IJHISI_2020040105
crossref_primary_10_1007_s42452_020_03221_z
crossref_primary_10_1109_ACCESS_2019_2935912
crossref_primary_10_1111_opo_12068
crossref_primary_10_1016_j_cmpb_2012_03_009
crossref_primary_10_1007_s00530_017_0580_7
crossref_primary_10_3390_sym12071067
crossref_primary_10_1016_j_cviu_2016_12_005
crossref_primary_10_1109_TCBB_2019_2917188
crossref_primary_10_1002_jemt_23172
crossref_primary_10_1002_jemt_23094
crossref_primary_10_1016_j_procs_2016_03_009
crossref_primary_10_1587_transinf_E94_D_1519
crossref_primary_10_1007_s11042_024_20171_5
crossref_primary_10_1117_1_JMI_4_1_014503
crossref_primary_10_1109_ACCESS_2020_3007656
crossref_primary_10_3390_s19030695
crossref_primary_10_3934_mbe_2020175
crossref_primary_10_4018_JITR_2018100108
crossref_primary_10_1007_s10851_016_0640_1
crossref_primary_10_1016_j_compmedimag_2018_04_005
crossref_primary_10_1371_journal_pone_0158996
crossref_primary_10_1016_j_cmpb_2017_08_023
crossref_primary_10_1007_s00138_018_0924_0
crossref_primary_10_1049_iet_ipr_2017_1071
crossref_primary_10_1097_HJH_0b013e328341c6b4
crossref_primary_10_1155_2017_4897258
crossref_primary_10_1016_j_bbe_2017_04_001
crossref_primary_10_1007_s12046_015_0411_5
crossref_primary_10_32604_cmc_2021_012907
crossref_primary_10_1016_j_compmedimag_2016_06_001
crossref_primary_10_1186_2047_2501_2_2
crossref_primary_10_1007_s40010_017_0465_3
crossref_primary_10_1109_JBHI_2014_2302749
crossref_primary_10_1007_s11042_022_13388_9
crossref_primary_10_1016_j_knosys_2019_04_025
ContentType Journal Article
Copyright Xu and Luo; licensee BioMed Central Ltd. 2010
COPYRIGHT 2010 BioMed Central Ltd.
2010 Xu and Luo; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2010 Xu and Luo; licensee BioMed Central Ltd. 2010 Xu and Luo; licensee BioMed Central Ltd.
Copyright_xml – notice: Xu and Luo; licensee BioMed Central Ltd. 2010
– notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: 2010 Xu and Luo; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2010 Xu and Luo; licensee BioMed Central Ltd. 2010 Xu and Luo; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1475-925X-9-14
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological science database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Engineering Research Database

MEDLINE


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
EndPage 14
ExternalDocumentID oai_doaj_org_article_7c929a7f016c482185dc69ecc8da9a1e
10.1186/1475-925x-9-14
PMC2838898
3021674221
A221228679
20187975
10_1186_1475_925X_9_14
Genre Evaluation Studies
Journal Article
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c657t-6681f1967bd73d08c039cdcf99c23db29f8a39a1edaf1632c8ae3c4480fae1393
IEDL.DBID M48
ISSN 1475-925X
IngestDate Fri Oct 03 12:42:21 EDT 2025
Sun Oct 26 03:55:39 EDT 2025
Tue Sep 30 16:59:31 EDT 2025
Fri Sep 05 10:23:24 EDT 2025
Mon Oct 06 18:01:43 EDT 2025
Mon Oct 06 18:35:01 EDT 2025
Mon Oct 20 22:17:59 EDT 2025
Mon Oct 20 16:15:18 EDT 2025
Thu Oct 16 15:14:16 EDT 2025
Mon Jul 21 05:59:10 EDT 2025
Wed Oct 01 00:48:10 EDT 2025
Thu Apr 24 23:06:00 EDT 2025
Sat Sep 06 07:30:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Retinal Image
Residual Fragment
Support Vector Machine
Optic Disk
Vessel Segmentation
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c657t-6681f1967bd73d08c039cdcf99c23db29f8a39a1edaf1632c8ae3c4480fae1393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1475-925X-9-14
PMID 20187975
PQID 1400517219
PQPubID 42562
ParticipantIDs doaj_primary_oai_doaj_org_article_7c929a7f016c482185dc69ecc8da9a1e
unpaywall_primary_10_1186_1475_925x_9_14
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2838898
proquest_miscellaneous_733713604
proquest_miscellaneous_1419361764
proquest_journals_1400517219
gale_infotracmisc_A221228679
gale_infotracacademiconefile_A221228679
gale_incontextgauss_ISR_A221228679
pubmed_primary_20187975
crossref_citationtrail_10_1186_1475_925X_9_14
crossref_primary_10_1186_1475_925X_9_14
springer_journals_10_1186_1475_925X_9_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-28
PublicationDateYYYYMMDD 2010-02-28
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-28
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2010
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 16967805 - IEEE Trans Med Imaging. 2006 Sep;25(9):1200-13
16967806 - IEEE Trans Med Imaging. 2006 Sep;25(9):1214-22
16697363 - Comput Biol Med. 2007 Feb;37(2):262-7
17919766 - Comput Methods Programs Biomed. 2007 Nov;88(2):131-43
17948726 - IEEE Trans Med Imaging. 2007 Oct;26(10):1357-65
17204445 - Med Image Anal. 2007 Feb;11(1):47-61
16631349 - Comput Med Imaging Graph. 2006 Apr;30(3):139-45
References_xml – reference: 16967806 - IEEE Trans Med Imaging. 2006 Sep;25(9):1214-22
– reference: 17919766 - Comput Methods Programs Biomed. 2007 Nov;88(2):131-43
– reference: 17204445 - Med Image Anal. 2007 Feb;11(1):47-61
– reference: 17948726 - IEEE Trans Med Imaging. 2007 Oct;26(10):1357-65
– reference: 16697363 - Comput Biol Med. 2007 Feb;37(2):262-7
– reference: 16631349 - Comput Med Imaging Graph. 2006 Apr;30(3):139-45
– reference: 16967805 - IEEE Trans Med Imaging. 2006 Sep;25(9):1200-13
SSID ssj0020069
Score 2.2855363
Snippet Background The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and...
The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus...
Background The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and...
Doc number: 14 Abstract Background: The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like...
Background: The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and...
Abstract Background The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biotechnology
Blood
Blood vessels
Classification
Diagnosis
Engineering
Grain size
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Methods
Morphology
Neural networks
Noise
Pattern Recognition, Automated - methods
Physiological aspects
Reproducibility of Results
Retinal diseases
Retinal Vessels - anatomy & histology
Retinoscopy - methods
Sensitivity and Specificity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHoA9IFhegQUZhMReok1iJ7YPHApitSAtB2Cl3izHD1gppCvaLvDvmXHcqAFVXLhV8bS1ZyYzn5PxN4S8sMqYtmaA3BSvcl6WTW4g0-c8KO9KKUve4nPIsw_N6Tl_P6_nW62-sCZsoAceFHcsLCRwIwJAE8slJKTa2UbBH0tnlCk9Rt9Cqs1mKm21kIA3nisSda6qep7oGkvZHI_XcpWXfJKOImv_37F5Kzn9WTg5vj3dJzfW_aX59cN03VaCOrlNbiVkSWfDiu6Qa74_IPtbfIMH5PpZepN-l7ya0X5x5Ts6tJCmgF1pLGKnV8gm3lHnV7FKq6d4AoXiYUf8-YtvEICW98j5ydvPb07z1Eoht00tVnnTyDLAzSZaJ5grpC2Yss4GpWzFXFupIA1DdToTAKFVVhrPLGzdimA8gER2n-z1i94_JNQFrwJTPBgreeC2BcMYVhTeF44FxTKSbzSqbeIZx3YXnY77DdlotIBGC2gFnzPycpS_HBg2dkq-RgONUsiMHS-Av-jkL_pf_pKR52hejdwXPRbXfDHr5VK_-_RRzyrI4xUyEMKcklBYwNytSWcVQANIlzWRPJxIws1pp8MbL9IpOCxhJZEZDXJFRp6Nw_hNLHjr_WKNMoCsAV02sGq6Q0YwJkrWFCDyYPDLUTUV9lpUos6ImHjsRHfTkf7ia2QXB7wppZIZOdr49tbMd9jlaPT9nSb8GUUf_Q8TPiY3hxoOJBY4JHur72v_BKDhqn0ao8BvjbRb1w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbKVgJ6QFBegYIMQqIXq0mch32o0Ba1KkhdoUKlvVmOH6VSSJbuboF_z0w2CRvQcoviSeTMw_4cj78h5I2RWhcpB-Qmk5glUZQxDTM9S7x0NhIiSgr8D3k2yU4vko_TdLpFJt1ZGEyr7MbEZqC2tcF_5AewEEA6KQiwd7PvDKtG4e5qV0JDt6UV7GFDMXaLbMfIjDUi20fHk0_n_RIMiXlb6sZIZPDSPGUyTqdMsigZTE0Ng_-_4_TaRPV3EmW_k7pD7iyrmf71Q5fl2mR1cp_ca1EmHa_c4gHZctUu2VnjHtwlt8_aXfWH5HBMq_rGlXRVTpoCjqVNQju9QWbxklq3aDK2KoqnUSgefMTXX32DwWj-iFycHH95f8rasgrMZGm-YFkmIg-Blxc25zYUJuTSWOOlNDG3RSy90FzqyFntAa3FRmjHDSzjQq8dAEb-mIyqunJPCbXeSc9l4rURiU9MEWVG8zB0LrTcSx4Q1mlUmZZzHEtflKpZe4hMoQUUWkBJuA7I215-tmLb2Ch5hAbqpZAlu7lRX1-qNuhUbgD86dwDrDWJADCTWpNJcFphNX5gQF6jeRXyYFSYaHOpl_O5-vD5XI1jcKAY2QihT62Qr6HvRrfnFkADSJ01kNwbSEKgmmFz50WqHSjm6o9bB-RV34xPYvJb5eolygDKBqSZwVfTDTI553nEsxBEnqz8sldNjHUXZZ4GJB947EB3w5bq6mvDNA7YUwgpArLf-fZazzfYZb_3_Y0m_NmIPvu_Pp6Tu6tMDaQP2COjxfXSvQAAuChetlH9G-MRVyc
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQkYAeEJRXoCCDkOglIo4TPw4cloqqIJUDUGlvluNHqRSyVXe3hX_PTJKNEqqVuEXxJLI9M5nP8fgbQt46bW1VckBuusjTgjGRWoj0aRF18EwpVlT4H_Lkqzg-Lb7My3mfIItnYcb790yJ96yQZarzcp7qFOtV34YAJdpNWXE4LKyQbrcnZLz5zCTgtLz8N7--o_Dzb2rksD-6S-6umwv759rW9SgEHT0g93vsSGedsh-SW6HZI7sjRsE9cuek3yt_RD7MaLO4CjXtikRTQKe0TVOnV8gXXlMfVm0eVkPxjAnF44z4-vNf8IlZPianR59-HB6nfbGE1IlSrlIhFIvgTrLykvtMuYxr513U2uXcV7mOynJtWfA2AgbLnbKBO1icZdEGgIH8CdlpFk14RqiPQUeui2idKmLhKiac5VkWQuZ51Dwh6WZGjeuZxLGgRW3aFYUSBjVgUANGw3VC3g3yFx2HxlbJj6igQQq5r9sbYBKmdyUjHUA6KyOAVVcogCild0KDKSpvcYAJeYPqNchu0WD6zJldL5fm8_dvZpZDpM6RYxD61AvFBfTd2f40AswAEmJNJPcnkuB-btq8sSLTu_8SRtJyn0E0SMjroRmfxJS2JizWKAPYGfCjgFHTLTKSc8m4yEDkaWeXw9TkWE1RyzIhcmKxk7mbtjTnP1v-cECUSmmVkIONbY96vkUvB4Ptb1Xh71b0-f-_9QW51-ViIEHAPtlZXa7DS4B4q-pV699_ASD2R9U
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQT0wKO8AgUFhEQv3iZx4tgHDguiKkitELDSwiVy_CgVIbvaRynw55lJsiEpWokLt9X688oee8ZfNjOfCXmmpVJ5woC5yTiicRhyquCkp7GT1oRChHGO_0Men_Cjcfx2kky2yOd1LUxddI7jo_aPIB-tZSOG3ZL0oq54wBsV7PxgZlwdAAQ_COM0oTJKJlRSvON6myfA0wdke3zybvSpKjdqAI2KY7fTRdWpd0pVYv5_h-zOmXU5n7J9qbpDrq7KmfrxXRVF59w6vEF-rWdcp6t8Ha6W-VD_vCQG-X9McpNcb-iuP6r35y2yZctdstMRQdwlV46b1_u3yYuRX07PbeHX91r7QKj9KrPeP0eJ88I3dlmljpU-lsX4WIGJP3_2DaLi4g4ZH77--OqINvc7UM2TdEk5F6GDCJDmJmUmEDpgUhvtpNQRM3kknVBMqtAa5YA2RlooyzQ8TwZOWWCu7C4ZlNPS3ie-cVY6JmOntIhdrPOQa8WCwNrAMCeZR-h6PTPdiJ_jHRxFVj0ECZ6hhTK0UCbhs0eet_hZLfuxEfkSt0eLQrnu6ovp_DRrvD9LNbBQlTrg1zoWwKoSo7kE7xFG4QQ98hQ3V4aCHCVm_Jyq1WKRvfnwPhtFQC4ilEWEMTUgN4Wxa9UUUIAFUMOrh9zrISFi6H7zeg9nTcRawEwquTY4wDzypG3GnpiFV9rpCjFA94Hycpi1vwGTMpaGjAcAuVd7RWuaCC-AlGnikbTnLz3b9VvKsy-V5DmQYCGk8Mj-2rM6I9-wLvut521cwosK-uDfoQ_JtTp9BDUN9shgOV_ZR8BKl_njJrz8BqyCiNQ
  priority: 102
  providerName: Unpaywall
Title A novel method for blood vessel detection from retinal images
URI https://link.springer.com/article/10.1186/1475-925X-9-14
https://www.ncbi.nlm.nih.gov/pubmed/20187975
https://www.proquest.com/docview/1400517219
https://www.proquest.com/docview/1419361764
https://www.proquest.com/docview/733713604
https://pubmed.ncbi.nlm.nih.gov/PMC2838898
https://biomedical-engineering-online.biomedcentral.com/counter/pdf/10.1186/1475-925X-9-14
https://doaj.org/article/7c929a7f016c482185dc69ecc8da9a1e
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO - Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ADMLS
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RPM
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M48
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: AAJSJ
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: C6C
  dateStart: 20020112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgk4A9IBhfgVEFhMReAkmc-ONhQl21MpBaTYNK5clyHHtMCunox9j-e-7SNDSMSrxUbX2JbN9d7uf4_DtC3hipdZZSQG4yiYMkiligIdIHiZM2j4SIkgzfQw6G7HiUfB6n4z_5T_UEzv65tMN6UqNp8e7q5_UHcPiDyuEFex8lPA1knI4DGWBN622IUhLLOAySZkcBV86yJm28eU0rKFXc_Tef0Gsh6u_0yWYPdYfcXZQX-vqXLoq1MNV_QO7X-NLvLg3iIblly12ys8Y6uEvuDOr99EfkoOuXk0tb-MtC0j4gWL9KZfcvkVO88HM7r3K1Sh_Pofh45BFvf_4DHkOzx2TUP_raOw7qggqBYSmfB4yJyIHL8SznNA-FCak0uXFSmpjmWSyd0FTqyObaAU6LjdCWGljAhU5bgIr0CdkqJ6V9RvzcWemoTJw2InGJySJmNA1Da8OcOkk9EqxmVJmabRyLXhSqWnUIplADCjWgJHz3yNtG_mLJs7FR8hAV1EghP3b1x2R6pmp3U9wA7NPcAaA1iQAYk-aGSTBXkWscoEdeo3oVMmCUmGJzphezmfr05VR1Y4jmMfIQQp9qITeBvhtdn1iAGUDSrJbkXksSXNS0m1dWpFYWDiOp-NEgYnjkVdOMV2LaW2knC5QBfA0Yk8Go_Q0ynFIeURaCyNOlXTZTE2PFRclTj_CWxbbmrt1Snn-vOMYBdQohhUf2V7a91vMNetlvbH-jCq8q0ef_f9cX5N4yXwNJBPbI1ny6sC8BBs6zDrnNxxw-Rf9jh2wfHg1PTuFXj_U61YuVTuX_0DIannS__QY4el1J
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VIlF6QFA2Q4EBgejFIvZ4mTlUKCxVQ5seoJVym45nKZWCHZqkpX-K38h73hqDwq23KH62xm-bbzxvvkfIay2UymIGyE1EoR8FQeIrmOn9yAlrAs6DKMPvkMODZPco-jKKRyvkd3MWBssqm5xYJmpTaPxG_g4WAkgnBQH2fvLTx65RuLvatNCo3GLPXl7Akm26PfgE9n0ThjufDz_u-nVXAV8ncTrzk4QHDvwuzUzKTI_rHhPaaCeEDpnJQuG4YkIF1igHYCXUXFmmYRXTc8oCXmLw3BvkZsQgl0D8pKOrBR7S_tbEkAFPYMhp7IswHvnCD6LOxFf2B_h3FliYBv8u0Wz3adfJ2jyfqMsLNR4vTIU7d8mdGsPSfuV098iKzTfI-gKz4Qa5Naz37O-T7T7Ni3M7plWzagoomZbl8vQcecvH1NhZWQ-WUzzrQvFYJT7-9AekuukDcnQt6n1IVvMit48JNc4Kx0TklOaRi3QWJFqB2q3tGeYE84jfaFTqmtEcG2uMZbmy4YlEC0i0gBTw2yNvW_lJxeWxVPIDGqiVQg7u8o_i7ETWIS1TDdBSpQ5As444QKXY6ERASHCj8AU98grNK5FlI8cynhM1n07l4NtX2Q8BMYTIdQhjqoVcAWPXqj4VARpAYq6O5GZHEtKA7l5uvEjWaWgqr4LGIy_by3gnltbltpijDGB4wLEJvDVdIpMylgYs6YHIo8ovW9WE2NVRpLFH0o7HdnTXvZKffi95zAHZci64R7Ya314Y-RK7bLW-v9SEv0rRJ__Xxwuytns43Jf7g4O9p-R2VROCRAWbZHV2NrfPAGrOsudlfFNyfN0J5Q9fso4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemIQ32gGB8BQYYhMReoiWx49gSPJRCtQGbEDCpb5bjjzGppNXaDvjvuUvSqGGqxFtVXyLbd_b9HN_9jpBXVhlT5gyQm-JZzNNUxAY8fcyD8i6VMuUlfoc8ORVHZ_zjOB9vkTerXJg62n11JdnkNCBLU7U4nLnQLHEpDlNe5LHK8nGsYqxifYODZ8P6BUMx7I5bSMLb0jRef6bnhmq2_ut78ppT-jdgsrs13SU3l9XM_PllJpM1xzS6Q263iJIOGhO4S7Z8tUd213gG98jOSXuDfo-8HdBqeuUntCkdTQGz0jp4nV4hi_iEOr-oo7MqipknFJMc8fUXP2Hjmd8nZ6MP34dHcVtCIbYiLxaxEDINsMiK0hXMJdImTFlng1I2Y67MVJCGKZN6ZwIgs8xK45mFI1sSjAdwyB6Q7Wpa-UeEuuBVYIoHYyUP3JapsIYlifeJY0GxiMSrGdW25RfHMhcTXZ8zpNCoAY0a0Ap-R-R1Jz9rmDU2Sr5DBXVSyIhd_zG9PNftAtOFBaBnigAQ1nIJwCV3VigwUOkMDjAiL1G9GjkvKgyqOTfL-Vwff_uqBxn47wyZB6FPrVCYQt-taXMUYAaQJqsnud-ThEVp-80rK9LtpjCHkdSMaOAjIvKia8YnMdCt8tMlygCiBlQpYNR0g0zBWJEykYDIw8Yuu6nJsMaiKvKIFD2L7c1dv6W6-FGzigPOlFLJiBysbHut5xv0ctDZ_kYV_q5FH___W5-TnS_vR_rz8emnJ-RWE6yBDAL7ZHtxufRPAQMuymf1Uv8LZ2hTCw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQT0wKO8AgUFhEQv3iZx4tgHDguiKkitELDSwiVy_CgVIbvaRynw55lJsiEpWokLt9X688oee8ZfNjOfCXmmpVJ5woC5yTiicRhyquCkp7GT1oRChHGO_0Men_Cjcfx2kky2yOd1LUxddI7jo_aPIB-tZSOG3ZL0oq54wBsV7PxgZlwdAAQ_COM0oTJKJlRSvON6myfA0wdke3zybvSpKjdqAI2KY7fTRdWpd0pVYv5_h-zOmXU5n7J9qbpDrq7KmfrxXRVF59w6vEF-rWdcp6t8Ha6W-VD_vCQG-X9McpNcb-iuP6r35y2yZctdstMRQdwlV46b1_u3yYuRX07PbeHX91r7QKj9KrPeP0eJ88I3dlmljpU-lsX4WIGJP3_2DaLi4g4ZH77--OqINvc7UM2TdEk5F6GDCJDmJmUmEDpgUhvtpNQRM3kknVBMqtAa5YA2RlooyzQ8TwZOWWCu7C4ZlNPS3ie-cVY6JmOntIhdrPOQa8WCwNrAMCeZR-h6PTPdiJ_jHRxFVj0ECZ6hhTK0UCbhs0eet_hZLfuxEfkSt0eLQrnu6ovp_DRrvD9LNbBQlTrg1zoWwKoSo7kE7xFG4QQ98hQ3V4aCHCVm_Jyq1WKRvfnwPhtFQC4ilEWEMTUgN4Wxa9UUUIAFUMOrh9zrISFi6H7zeg9nTcRawEwquTY4wDzypG3GnpiFV9rpCjFA94Hycpi1vwGTMpaGjAcAuVd7RWuaCC-AlGnikbTnLz3b9VvKsy-V5DmQYCGk8Mj-2rM6I9-wLvut521cwosK-uDfoQ_JtTp9BDUN9shgOV_ZR8BKl_njJrz8BqyCiNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+blood+vessel+detection+from+retinal+images&rft.jtitle=Biomedical+engineering+online&rft.au=Xu%2C+Lili&rft.au=Luo%2C+Shuqian&rft.date=2010-02-28&rft.pub=BioMed+Central&rft.eissn=1475-925X&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1186%2F1475-925X-9-14&rft.externalDocID=10_1186_1475_925X_9_14
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon