A novel method for blood vessel detection from retinal images
Background The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. Methods In this paper, we present a novel method to segment retin...
Saved in:
| Published in | Biomedical engineering online Vol. 9; no. 1; p. 14 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
28.02.2010
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1475-925X 1475-925X |
| DOI | 10.1186/1475-925X-9-14 |
Cover
| Abstract | Background
The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value.
Methods
In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network.
Results
The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%.
Conclusions
In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention. |
|---|---|
| AbstractList | The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention. Background The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. Methods In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. Results The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. Conclusions In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention. Background: The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. Methods: In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. Results: The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. Conclusions: In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention. Abstract Background The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. Methods In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. Results The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. Conclusions In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention. The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention. Doc number: 14 Abstract Background: The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value. Methods: In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network. Results: The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%. Conclusions: In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention. The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value.BACKGROUNDThe morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus the accurate segmentation of blood vessel is of diagnostic value.In this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network.METHODSIn this paper, we present a novel method to segment retinal blood vessels to overcome the variations in contrast of large and thin vessels. This method uses adaptive local thresholding to produce a binary image then extract large connected components as large vessels. The residual fragments in the binary image including some thin vessel segments (or pixels), are classified by Support Vector Machine (SVM). The tracking growth is applied to the thin vessel segments to form the whole vascular network.The proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%.RESULTSThe proposed algorithm is tested on DRIVE database, and the average sensitivity is over 77% while the average accuracy reaches 93.2%.In this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention.CONCLUSIONSIn this paper, we distinguish large vessels by adaptive local thresholding for their good contrast. Then identify some thin vessel segments with bad contrast by SVM, which can be lengthened by tracking. This proposed method can avoid heavy computation and manual intervention. |
| Audience | Academic |
| Author | Luo, Shuqian Xu, Lili |
| AuthorAffiliation | 1 School of Biomedical Engineering, Capital Medical University, Beijing, China |
| AuthorAffiliation_xml | – name: 1 School of Biomedical Engineering, Capital Medical University, Beijing, China |
| Author_xml | – sequence: 1 givenname: Lili surname: Xu fullname: Xu, Lili organization: School of Biomedical Engineering, Capital Medical University – sequence: 2 givenname: Shuqian surname: Luo fullname: Luo, Shuqian email: shuqian_luo@yahoo.com.cn organization: School of Biomedical Engineering, Capital Medical University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20187975$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kslv1DAUxiNURBe4ckSROACHTL0kXg4gjSqWkSohsUi9WR4vqUdJPNjJ0P73OMx0mJSCcsjT8-_7bH3vnWZHne9Mlj2HYAYhI-ewpFXBUXVV8AKWj7KTfePooD7OTmNcAYAAIPxJdowAZJTT6iR7O887vzFN3pr-2uvc-pAvG5-qjYkx9bXpjeqd73IbfJsH07tONrlrZW3i0-yxlU00z3b_s-z7h_ffLj4Vl58_Li7ml4UiFe0LQhi0kBO61BRrwBTAXGllOVcI6yXilknMJTRaWkgwUkwarMqSASsNxByfZYutr_ZyJdYh3R5uhZdO_G74UAsZeqcaI6jiiEtqASSqZAiySivCjVJMy_GK5HW-9Rq6tbz9KZtmbwiBGEMVY24i5XYjeKqT4t1WsR6WrdHKdH2QzeQZ05POXYvabwRimDHOksGrnUHwPwYTe9G6qEzTyM74IQqKMYWYgPGq1_8lYQk5JpCSEX15D135IaTZjBQAFaQI8j9ULVM4rrM-vVCNpmKOEESIETpSsweo9GnTOpU2zrrUnwjeTASJ6c1NX8shRrH4-mXKvjiMb5_b3RImoNwCKvgYg7FCuV6OO5de4Zq_xnJ1N5bZPdm_5rgX7CYfE9jVJhwk9rDiFxONChI |
| CitedBy_id | crossref_primary_10_1016_j_artmed_2018_10_009 crossref_primary_10_4103_ijnpnd_ijnpnd_76_23 crossref_primary_10_1049_iet_ipr_2017_1266 crossref_primary_10_1109_TBME_2016_2535311 crossref_primary_10_2174_1574362414666191018104225 crossref_primary_10_1007_s10044_018_0754_8 crossref_primary_10_1007_s11042_020_08958_8 crossref_primary_10_1155_2013_408120 crossref_primary_10_1007_s11042_019_08111_0 crossref_primary_10_1088_1757_899X_557_1_012009 crossref_primary_10_1007_s11760_025_03917_y crossref_primary_10_1016_j_bspc_2015_09_011 crossref_primary_10_1007_s11128_016_1292_1 crossref_primary_10_1155_2015_895267 crossref_primary_10_4018_IJHISI_2020040105 crossref_primary_10_1007_s42452_020_03221_z crossref_primary_10_1109_ACCESS_2019_2935912 crossref_primary_10_1111_opo_12068 crossref_primary_10_1016_j_cmpb_2012_03_009 crossref_primary_10_1007_s00530_017_0580_7 crossref_primary_10_3390_sym12071067 crossref_primary_10_1016_j_cviu_2016_12_005 crossref_primary_10_1109_TCBB_2019_2917188 crossref_primary_10_1002_jemt_23172 crossref_primary_10_1002_jemt_23094 crossref_primary_10_1016_j_procs_2016_03_009 crossref_primary_10_1587_transinf_E94_D_1519 crossref_primary_10_1007_s11042_024_20171_5 crossref_primary_10_1117_1_JMI_4_1_014503 crossref_primary_10_1109_ACCESS_2020_3007656 crossref_primary_10_3390_s19030695 crossref_primary_10_3934_mbe_2020175 crossref_primary_10_4018_JITR_2018100108 crossref_primary_10_1007_s10851_016_0640_1 crossref_primary_10_1016_j_compmedimag_2018_04_005 crossref_primary_10_1371_journal_pone_0158996 crossref_primary_10_1016_j_cmpb_2017_08_023 crossref_primary_10_1007_s00138_018_0924_0 crossref_primary_10_1049_iet_ipr_2017_1071 crossref_primary_10_1097_HJH_0b013e328341c6b4 crossref_primary_10_1155_2017_4897258 crossref_primary_10_1016_j_bbe_2017_04_001 crossref_primary_10_1007_s12046_015_0411_5 crossref_primary_10_32604_cmc_2021_012907 crossref_primary_10_1016_j_compmedimag_2016_06_001 crossref_primary_10_1186_2047_2501_2_2 crossref_primary_10_1007_s40010_017_0465_3 crossref_primary_10_1109_JBHI_2014_2302749 crossref_primary_10_1007_s11042_022_13388_9 crossref_primary_10_1016_j_knosys_2019_04_025 |
| ContentType | Journal Article |
| Copyright | Xu and Luo; licensee BioMed Central Ltd. 2010 COPYRIGHT 2010 BioMed Central Ltd. 2010 Xu and Luo; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2010 Xu and Luo; licensee BioMed Central Ltd. 2010 Xu and Luo; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Xu and Luo; licensee BioMed Central Ltd. 2010 – notice: COPYRIGHT 2010 BioMed Central Ltd. – notice: 2010 Xu and Luo; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2010 Xu and Luo; licensee BioMed Central Ltd. 2010 Xu and Luo; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1475-925X-9-14 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (ProQuest) Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological science database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1475-925X |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_7c929a7f016c482185dc69ecc8da9a1e 10.1186/1475-925x-9-14 PMC2838898 3021674221 A221228679 20187975 10_1186_1475_925X_9_14 |
| Genre | Evaluation Studies Journal Article |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5GY 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FRP FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE I-F IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 L6V LK8 M1P M48 M7P M7S MK~ ML~ M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO RBZ RIG RNS ROL RPM RSV SEG SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c657t-6681f1967bd73d08c039cdcf99c23db29f8a39a1edaf1632c8ae3c4480fae1393 |
| IEDL.DBID | M48 |
| ISSN | 1475-925X |
| IngestDate | Fri Oct 03 12:42:21 EDT 2025 Sun Oct 26 03:55:39 EDT 2025 Tue Sep 30 16:59:31 EDT 2025 Fri Sep 05 10:23:24 EDT 2025 Mon Oct 06 18:01:43 EDT 2025 Mon Oct 06 18:35:01 EDT 2025 Mon Oct 20 22:17:59 EDT 2025 Mon Oct 20 16:15:18 EDT 2025 Thu Oct 16 15:14:16 EDT 2025 Mon Jul 21 05:59:10 EDT 2025 Wed Oct 01 00:48:10 EDT 2025 Thu Apr 24 23:06:00 EDT 2025 Sat Sep 06 07:30:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Retinal Image Residual Fragment Support Vector Machine Optic Disk Vessel Segmentation |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c657t-6681f1967bd73d08c039cdcf99c23db29f8a39a1edaf1632c8ae3c4480fae1393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-1 ObjectType-Feature-3 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1475-925X-9-14 |
| PMID | 20187975 |
| PQID | 1400517219 |
| PQPubID | 42562 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7c929a7f016c482185dc69ecc8da9a1e unpaywall_primary_10_1186_1475_925x_9_14 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2838898 proquest_miscellaneous_733713604 proquest_miscellaneous_1419361764 proquest_journals_1400517219 gale_infotracmisc_A221228679 gale_infotracacademiconefile_A221228679 gale_incontextgauss_ISR_A221228679 pubmed_primary_20187975 crossref_citationtrail_10_1186_1475_925X_9_14 crossref_primary_10_1186_1475_925X_9_14 springer_journals_10_1186_1475_925X_9_14 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-02-28 |
| PublicationDateYYYYMMDD | 2010-02-28 |
| PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Biomedical engineering online |
| PublicationTitleAbbrev | BioMed Eng OnLine |
| PublicationTitleAlternate | Biomed Eng Online |
| PublicationYear | 2010 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | 16967805 - IEEE Trans Med Imaging. 2006 Sep;25(9):1200-13 16967806 - IEEE Trans Med Imaging. 2006 Sep;25(9):1214-22 16697363 - Comput Biol Med. 2007 Feb;37(2):262-7 17919766 - Comput Methods Programs Biomed. 2007 Nov;88(2):131-43 17948726 - IEEE Trans Med Imaging. 2007 Oct;26(10):1357-65 17204445 - Med Image Anal. 2007 Feb;11(1):47-61 16631349 - Comput Med Imaging Graph. 2006 Apr;30(3):139-45 |
| References_xml | – reference: 16967806 - IEEE Trans Med Imaging. 2006 Sep;25(9):1214-22 – reference: 17919766 - Comput Methods Programs Biomed. 2007 Nov;88(2):131-43 – reference: 17204445 - Med Image Anal. 2007 Feb;11(1):47-61 – reference: 17948726 - IEEE Trans Med Imaging. 2007 Oct;26(10):1357-65 – reference: 16697363 - Comput Biol Med. 2007 Feb;37(2):262-7 – reference: 16631349 - Comput Med Imaging Graph. 2006 Apr;30(3):139-45 – reference: 16967805 - IEEE Trans Med Imaging. 2006 Sep;25(9):1200-13 |
| SSID | ssj0020069 |
| Score | 2.2855363 |
| Snippet | Background
The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and... The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and glaucoma. Thus... Background The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and... Doc number: 14 Abstract Background: The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like... Background: The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension and... Abstract Background The morphological changes of the retinal blood vessels in retinal images are important indicators for diseases like diabetes, hypertension... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 14 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Biotechnology Blood Blood vessels Classification Diagnosis Engineering Grain size Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Methods Morphology Neural networks Noise Pattern Recognition, Automated - methods Physiological aspects Reproducibility of Results Retinal diseases Retinal Vessels - anatomy & histology Retinoscopy - methods Sensitivity and Specificity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHoA9IFhegQUZhMReok1iJ7YPHApitSAtB2Cl3izHD1gppCvaLvDvmXHcqAFVXLhV8bS1ZyYzn5PxN4S8sMqYtmaA3BSvcl6WTW4g0-c8KO9KKUve4nPIsw_N6Tl_P6_nW62-sCZsoAceFHcsLCRwIwJAE8slJKTa2UbBH0tnlCk9Rt9Cqs1mKm21kIA3nisSda6qep7oGkvZHI_XcpWXfJKOImv_37F5Kzn9WTg5vj3dJzfW_aX59cN03VaCOrlNbiVkSWfDiu6Qa74_IPtbfIMH5PpZepN-l7ya0X5x5Ts6tJCmgF1pLGKnV8gm3lHnV7FKq6d4AoXiYUf8-YtvEICW98j5ydvPb07z1Eoht00tVnnTyDLAzSZaJ5grpC2Yss4GpWzFXFupIA1DdToTAKFVVhrPLGzdimA8gER2n-z1i94_JNQFrwJTPBgreeC2BcMYVhTeF44FxTKSbzSqbeIZx3YXnY77DdlotIBGC2gFnzPycpS_HBg2dkq-RgONUsiMHS-Av-jkL_pf_pKR52hejdwXPRbXfDHr5VK_-_RRzyrI4xUyEMKcklBYwNytSWcVQANIlzWRPJxIws1pp8MbL9IpOCxhJZEZDXJFRp6Nw_hNLHjr_WKNMoCsAV02sGq6Q0YwJkrWFCDyYPDLUTUV9lpUos6ImHjsRHfTkf7ia2QXB7wppZIZOdr49tbMd9jlaPT9nSb8GUUf_Q8TPiY3hxoOJBY4JHur72v_BKDhqn0ao8BvjbRb1w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbKVgJ6QFBegYIMQqIXq0mch32o0Ba1KkhdoUKlvVmOH6VSSJbuboF_z0w2CRvQcoviSeTMw_4cj78h5I2RWhcpB-Qmk5glUZQxDTM9S7x0NhIiSgr8D3k2yU4vko_TdLpFJt1ZGEyr7MbEZqC2tcF_5AewEEA6KQiwd7PvDKtG4e5qV0JDt6UV7GFDMXaLbMfIjDUi20fHk0_n_RIMiXlb6sZIZPDSPGUyTqdMsigZTE0Ng_-_4_TaRPV3EmW_k7pD7iyrmf71Q5fl2mR1cp_ca1EmHa_c4gHZctUu2VnjHtwlt8_aXfWH5HBMq_rGlXRVTpoCjqVNQju9QWbxklq3aDK2KoqnUSgefMTXX32DwWj-iFycHH95f8rasgrMZGm-YFkmIg-Blxc25zYUJuTSWOOlNDG3RSy90FzqyFntAa3FRmjHDSzjQq8dAEb-mIyqunJPCbXeSc9l4rURiU9MEWVG8zB0LrTcSx4Q1mlUmZZzHEtflKpZe4hMoQUUWkBJuA7I215-tmLb2Ch5hAbqpZAlu7lRX1-qNuhUbgD86dwDrDWJADCTWpNJcFphNX5gQF6jeRXyYFSYaHOpl_O5-vD5XI1jcKAY2QihT62Qr6HvRrfnFkADSJ01kNwbSEKgmmFz50WqHSjm6o9bB-RV34xPYvJb5eolygDKBqSZwVfTDTI553nEsxBEnqz8sldNjHUXZZ4GJB947EB3w5bq6mvDNA7YUwgpArLf-fZazzfYZb_3_Y0m_NmIPvu_Pp6Tu6tMDaQP2COjxfXSvQAAuChetlH9G-MRVyc priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQkYAeEJRXoCCDkOglIo4TPw4cloqqIJUDUGlvluNHqRSyVXe3hX_PTJKNEqqVuEXxJLI9M5nP8fgbQt46bW1VckBuusjTgjGRWoj0aRF18EwpVlT4H_Lkqzg-Lb7My3mfIItnYcb790yJ96yQZarzcp7qFOtV34YAJdpNWXE4LKyQbrcnZLz5zCTgtLz8N7--o_Dzb2rksD-6S-6umwv759rW9SgEHT0g93vsSGedsh-SW6HZI7sjRsE9cuek3yt_RD7MaLO4CjXtikRTQKe0TVOnV8gXXlMfVm0eVkPxjAnF44z4-vNf8IlZPianR59-HB6nfbGE1IlSrlIhFIvgTrLykvtMuYxr513U2uXcV7mOynJtWfA2AgbLnbKBO1icZdEGgIH8CdlpFk14RqiPQUeui2idKmLhKiac5VkWQuZ51Dwh6WZGjeuZxLGgRW3aFYUSBjVgUANGw3VC3g3yFx2HxlbJj6igQQq5r9sbYBKmdyUjHUA6KyOAVVcogCild0KDKSpvcYAJeYPqNchu0WD6zJldL5fm8_dvZpZDpM6RYxD61AvFBfTd2f40AswAEmJNJPcnkuB-btq8sSLTu_8SRtJyn0E0SMjroRmfxJS2JizWKAPYGfCjgFHTLTKSc8m4yEDkaWeXw9TkWE1RyzIhcmKxk7mbtjTnP1v-cECUSmmVkIONbY96vkUvB4Ptb1Xh71b0-f-_9QW51-ViIEHAPtlZXa7DS4B4q-pV699_ASD2R9U priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQT0wKO8AgUFhEQv3iZx4tgHDguiKkitELDSwiVy_CgVIbvaRynw55lJsiEpWokLt9X688oee8ZfNjOfCXmmpVJ5woC5yTiicRhyquCkp7GT1oRChHGO_0Men_Cjcfx2kky2yOd1LUxddI7jo_aPIB-tZSOG3ZL0oq54wBsV7PxgZlwdAAQ_COM0oTJKJlRSvON6myfA0wdke3zybvSpKjdqAI2KY7fTRdWpd0pVYv5_h-zOmXU5n7J9qbpDrq7KmfrxXRVF59w6vEF-rWdcp6t8Ha6W-VD_vCQG-X9McpNcb-iuP6r35y2yZctdstMRQdwlV46b1_u3yYuRX07PbeHX91r7QKj9KrPeP0eJ88I3dlmljpU-lsX4WIGJP3_2DaLi4g4ZH77--OqINvc7UM2TdEk5F6GDCJDmJmUmEDpgUhvtpNQRM3kknVBMqtAa5YA2RlooyzQ8TwZOWWCu7C4ZlNPS3ie-cVY6JmOntIhdrPOQa8WCwNrAMCeZR-h6PTPdiJ_jHRxFVj0ECZ6hhTK0UCbhs0eet_hZLfuxEfkSt0eLQrnu6ovp_DRrvD9LNbBQlTrg1zoWwKoSo7kE7xFG4QQ98hQ3V4aCHCVm_Jyq1WKRvfnwPhtFQC4ilEWEMTUgN4Wxa9UUUIAFUMOrh9zrISFi6H7zeg9nTcRawEwquTY4wDzypG3GnpiFV9rpCjFA94Hycpi1vwGTMpaGjAcAuVd7RWuaCC-AlGnikbTnLz3b9VvKsy-V5DmQYCGk8Mj-2rM6I9-wLvut521cwosK-uDfoQ_JtTp9BDUN9shgOV_ZR8BKl_njJrz8BqyCiNQ priority: 102 providerName: Unpaywall |
| Title | A novel method for blood vessel detection from retinal images |
| URI | https://link.springer.com/article/10.1186/1475-925X-9-14 https://www.ncbi.nlm.nih.gov/pubmed/20187975 https://www.proquest.com/docview/1400517219 https://www.proquest.com/docview/1419361764 https://www.proquest.com/docview/733713604 https://pubmed.ncbi.nlm.nih.gov/PMC2838898 https://biomedical-engineering-online.biomedcentral.com/counter/pdf/10.1186/1475-925X-9-14 https://doaj.org/article/7c929a7f016c482185dc69ecc8da9a1e |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: RBZ dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: KQ8 dateStart: 20020101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: KQ8 dateStart: 20020501 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: DOA dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO - Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: ABDBF dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: ADMLS dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: DIK dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: M~E dateStart: 20020101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: RPM dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1475-925X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: M48 dateStart: 20020501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: AAJSJ dateStart: 20021201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: C6C dateStart: 20020112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgk4A9IBhfgVEFhMReAkmc-ONhQl21MpBaTYNK5clyHHtMCunox9j-e-7SNDSMSrxUbX2JbN9d7uf4_DtC3hipdZZSQG4yiYMkiligIdIHiZM2j4SIkgzfQw6G7HiUfB6n4z_5T_UEzv65tMN6UqNp8e7q5_UHcPiDyuEFex8lPA1knI4DGWBN622IUhLLOAySZkcBV86yJm28eU0rKFXc_Tef0Gsh6u_0yWYPdYfcXZQX-vqXLoq1MNV_QO7X-NLvLg3iIblly12ys8Y6uEvuDOr99EfkoOuXk0tb-MtC0j4gWL9KZfcvkVO88HM7r3K1Sh_Pofh45BFvf_4DHkOzx2TUP_raOw7qggqBYSmfB4yJyIHL8SznNA-FCak0uXFSmpjmWSyd0FTqyObaAU6LjdCWGljAhU5bgIr0CdkqJ6V9RvzcWemoTJw2InGJySJmNA1Da8OcOkk9EqxmVJmabRyLXhSqWnUIplADCjWgJHz3yNtG_mLJs7FR8hAV1EghP3b1x2R6pmp3U9wA7NPcAaA1iQAYk-aGSTBXkWscoEdeo3oVMmCUmGJzphezmfr05VR1Y4jmMfIQQp9qITeBvhtdn1iAGUDSrJbkXksSXNS0m1dWpFYWDiOp-NEgYnjkVdOMV2LaW2knC5QBfA0Yk8Go_Q0ynFIeURaCyNOlXTZTE2PFRclTj_CWxbbmrt1Snn-vOMYBdQohhUf2V7a91vMNetlvbH-jCq8q0ef_f9cX5N4yXwNJBPbI1ny6sC8BBs6zDrnNxxw-Rf9jh2wfHg1PTuFXj_U61YuVTuX_0DIannS__QY4el1J |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VIlF6QFA2Q4EBgejFIvZ4mTlUKCxVQ5seoJVym45nKZWCHZqkpX-K38h73hqDwq23KH62xm-bbzxvvkfIay2UymIGyE1EoR8FQeIrmOn9yAlrAs6DKMPvkMODZPco-jKKRyvkd3MWBssqm5xYJmpTaPxG_g4WAkgnBQH2fvLTx65RuLvatNCo3GLPXl7Akm26PfgE9n0ThjufDz_u-nVXAV8ncTrzk4QHDvwuzUzKTI_rHhPaaCeEDpnJQuG4YkIF1igHYCXUXFmmYRXTc8oCXmLw3BvkZsQgl0D8pKOrBR7S_tbEkAFPYMhp7IswHvnCD6LOxFf2B_h3FliYBv8u0Wz3adfJ2jyfqMsLNR4vTIU7d8mdGsPSfuV098iKzTfI-gKz4Qa5Naz37O-T7T7Ni3M7plWzagoomZbl8vQcecvH1NhZWQ-WUzzrQvFYJT7-9AekuukDcnQt6n1IVvMit48JNc4Kx0TklOaRi3QWJFqB2q3tGeYE84jfaFTqmtEcG2uMZbmy4YlEC0i0gBTw2yNvW_lJxeWxVPIDGqiVQg7u8o_i7ETWIS1TDdBSpQ5As444QKXY6ERASHCj8AU98grNK5FlI8cynhM1n07l4NtX2Q8BMYTIdQhjqoVcAWPXqj4VARpAYq6O5GZHEtKA7l5uvEjWaWgqr4LGIy_by3gnltbltpijDGB4wLEJvDVdIpMylgYs6YHIo8ovW9WE2NVRpLFH0o7HdnTXvZKffi95zAHZci64R7Ya314Y-RK7bLW-v9SEv0rRJ__Xxwuytns43Jf7g4O9p-R2VROCRAWbZHV2NrfPAGrOsudlfFNyfN0J5Q9fso4g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemIQ32gGB8BQYYhMReoiWx49gSPJRCtQGbEDCpb5bjjzGppNXaDvjvuUvSqGGqxFtVXyLbd_b9HN_9jpBXVhlT5gyQm-JZzNNUxAY8fcyD8i6VMuUlfoc8ORVHZ_zjOB9vkTerXJg62n11JdnkNCBLU7U4nLnQLHEpDlNe5LHK8nGsYqxifYODZ8P6BUMx7I5bSMLb0jRef6bnhmq2_ut78ppT-jdgsrs13SU3l9XM_PllJpM1xzS6Q263iJIOGhO4S7Z8tUd213gG98jOSXuDfo-8HdBqeuUntCkdTQGz0jp4nV4hi_iEOr-oo7MqipknFJMc8fUXP2Hjmd8nZ6MP34dHcVtCIbYiLxaxEDINsMiK0hXMJdImTFlng1I2Y67MVJCGKZN6ZwIgs8xK45mFI1sSjAdwyB6Q7Wpa-UeEuuBVYIoHYyUP3JapsIYlifeJY0GxiMSrGdW25RfHMhcTXZ8zpNCoAY0a0Ap-R-R1Jz9rmDU2Sr5DBXVSyIhd_zG9PNftAtOFBaBnigAQ1nIJwCV3VigwUOkMDjAiL1G9GjkvKgyqOTfL-Vwff_uqBxn47wyZB6FPrVCYQt-taXMUYAaQJqsnud-ThEVp-80rK9LtpjCHkdSMaOAjIvKia8YnMdCt8tMlygCiBlQpYNR0g0zBWJEykYDIw8Yuu6nJsMaiKvKIFD2L7c1dv6W6-FGzigPOlFLJiBysbHut5xv0ctDZ_kYV_q5FH___W5-TnS_vR_rz8emnJ-RWE6yBDAL7ZHtxufRPAQMuymf1Uv8LZ2hTCw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQT0wKO8AgUFhEQv3iZx4tgHDguiKkitELDSwiVy_CgVIbvaRynw55lJsiEpWokLt9X688oee8ZfNjOfCXmmpVJ5woC5yTiicRhyquCkp7GT1oRChHGO_0Men_Cjcfx2kky2yOd1LUxddI7jo_aPIB-tZSOG3ZL0oq54wBsV7PxgZlwdAAQ_COM0oTJKJlRSvON6myfA0wdke3zybvSpKjdqAI2KY7fTRdWpd0pVYv5_h-zOmXU5n7J9qbpDrq7KmfrxXRVF59w6vEF-rWdcp6t8Ha6W-VD_vCQG-X9McpNcb-iuP6r35y2yZctdstMRQdwlV46b1_u3yYuRX07PbeHX91r7QKj9KrPeP0eJ88I3dlmljpU-lsX4WIGJP3_2DaLi4g4ZH77--OqINvc7UM2TdEk5F6GDCJDmJmUmEDpgUhvtpNQRM3kknVBMqtAa5YA2RlooyzQ8TwZOWWCu7C4ZlNPS3ie-cVY6JmOntIhdrPOQa8WCwNrAMCeZR-h6PTPdiJ_jHRxFVj0ECZ6hhTK0UCbhs0eet_hZLfuxEfkSt0eLQrnu6ovp_DRrvD9LNbBQlTrg1zoWwKoSo7kE7xFG4QQ98hQ3V4aCHCVm_Jyq1WKRvfnwPhtFQC4ilEWEMTUgN4Wxa9UUUIAFUMOrh9zrISFi6H7zeg9nTcRawEwquTY4wDzypG3GnpiFV9rpCjFA94Hycpi1vwGTMpaGjAcAuVd7RWuaCC-AlGnikbTnLz3b9VvKsy-V5DmQYCGk8Mj-2rM6I9-wLvut521cwosK-uDfoQ_JtTp9BDUN9shgOV_ZR8BKl_njJrz8BqyCiNQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+blood+vessel+detection+from+retinal+images&rft.jtitle=Biomedical+engineering+online&rft.au=Xu%2C+Lili&rft.au=Luo%2C+Shuqian&rft.date=2010-02-28&rft.pub=BioMed+Central&rft.eissn=1475-925X&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1186%2F1475-925X-9-14&rft.externalDocID=10_1186_1475_925X_9_14 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon |