Quasiballistic transport for discrete one-dimensional quasiperiodic Schrödinger operators

For discrete one-dimensional quasiperiodic Schrödinger operators with frequencies satisfying \beta(\alpha)>\bigl(\frac{3}{\delta}\bigr)\min_{\sigma}\gamma , we obtain (up to logarithmic scaling) the power-law lower bound M_{p}(T_{k})\gtrsim T_{k}^{(1-\delta)p} on a subsequence T_{k}\rightarrow\in...

Full description

Saved in:
Bibliographic Details
Published inJournal of spectral theory
Main Author Haeming, Lian
Format Journal Article
LanguageEnglish
Published 29.08.2025
Online AccessGet full text
ISSN1664-039X
1664-0403
1664-0403
DOI10.4171/jst/566

Cover

Abstract For discrete one-dimensional quasiperiodic Schrödinger operators with frequencies satisfying \beta(\alpha)>\bigl(\frac{3}{\delta}\bigr)\min_{\sigma}\gamma , we obtain (up to logarithmic scaling) the power-law lower bound M_{p}(T_{k})\gtrsim T_{k}^{(1-\delta)p} on a subsequence T_{k}\rightarrow\infty , where \gamma is the associated Lyapunov exponent and \sigma is the spectrum. We achieve this by obtaining a quantitative ballistic lower bound for the Abel-averaged entries of the time evolution operator associated with general periodic Schrödinger operators in terms of the bandwidths. A similar result which assumes \beta(\alpha)>\bigl(\frac{C}{\delta}\bigr)\min_{\sigma}\gamma , was obtained earlier by Jitomirskaya and Zhang, for an implicit constant C<\infty .
AbstractList For discrete one-dimensional quasiperiodic Schrödinger operators with frequencies satisfying \beta(\alpha)>\bigl(\frac{3}{\delta}\bigr)\min_{\sigma}\gamma , we obtain (up to logarithmic scaling) the power-law lower bound M_{p}(T_{k})\gtrsim T_{k}^{(1-\delta)p} on a subsequence T_{k}\rightarrow\infty , where \gamma is the associated Lyapunov exponent and \sigma is the spectrum. We achieve this by obtaining a quantitative ballistic lower bound for the Abel-averaged entries of the time evolution operator associated with general periodic Schrödinger operators in terms of the bandwidths. A similar result which assumes \beta(\alpha)>\bigl(\frac{C}{\delta}\bigr)\min_{\sigma}\gamma , was obtained earlier by Jitomirskaya and Zhang, for an implicit constant C<\infty .
Author Haeming, Lian
Author_xml – sequence: 1
  givenname: Lian
  surname: Haeming
  fullname: Haeming, Lian
BookMark eNp1kM9KAzEQxoNUsNbiK-xNL2szTTZpj1L8BwURexAvyySbaMo2WZMt0hfzBXwxU6pHTzN88_tmmO-UDHzwhpBzoFccJEzWqZ9UQhyRIQjBS8opG_z1bP5yQsYprSmlWZF5NiSvT1tMTmHbutQ7XfQRfepC7AsbYtG4pKPpTZGvlI3bGJ9c8NgWH3tXZ6ILTTY96_f4_dU4_2ZiEbKMfYjpjBxbbJMZ_9YRWd3erBb35fLx7mFxvSy1qETJgMkZk6pCEKgsWolGMaOAcqTaVjPQczujnKmp5JUFnEqYV1ZROgUNlrMRuTys3foOd5_5k7qLboNxVwOt96nUOZU6p5LRiwOqY0gpGvsv-QOmSGdb
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.4171/jst/566
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1664-0403
ExternalDocumentID 10.4171/jst/566
10_4171_jst_566
GroupedDBID AAFWJ
AAYXX
AENEX
AFPKN
AKZPS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
AUREJ
CITATION
FEDTE
GROUPED_DOAJ
H13
HVGLF
IAO
IGS
ITC
J9A
OK1
REW
ADTOC
UNPAY
VH7
ID FETCH-LOGICAL-c656-3137837b5a16abfaf7aeb3eb104a0cf581c9f8043b2745f1a27195fb0021c1f43
IEDL.DBID UNPAY
ISSN 1664-039X
1664-0403
IngestDate Mon Sep 15 10:13:28 EDT 2025
Wed Oct 01 05:24:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c656-3137837b5a16abfaf7aeb3eb104a0cf581c9f8043b2745f1a27195fb0021c1f43
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.4171/jst/566
ParticipantIDs unpaywall_primary_10_4171_jst_566
crossref_primary_10_4171_jst_566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-29
PublicationDateYYYYMMDD 2025-08-29
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-29
  day: 29
PublicationDecade 2020
PublicationTitle Journal of spectral theory
PublicationYear 2025
SSID ssj0001667403
Score 2.312419
Snippet For discrete one-dimensional quasiperiodic Schrödinger operators with frequencies satisfying \beta(\alpha)>\bigl(\frac{3}{\delta}\bigr)\min_{\sigma}\gamma , we...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title Quasiballistic transport for discrete one-dimensional quasiperiodic Schrödinger operators
URI https://doi.org/10.4171/jst/566
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-0403
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001667403
  issn: 1664-039X
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bSsNAEB1q--CT9YoVrSv4mjab7ObyWMRSBItiC9WXsNlkES3pLUH0w_wBf8zZJK1VUHxLYAeG2c3MOdmdswDnQlqYAiNhuLHLDab7ckJG8ZUzx4qViIs7I6_7Tm_IrkZ8VIHTZS_M2v49oy5tPy3SNiKODag5egepCrVh_6Zzr2mU4zDDtP3R6pmZdtEWu275rd5sZslUvL6I8XitiHTrXyICxdmR51aWhi359kOZ8Q__tmGrBJCkU8z4DlTiZBfqJZgk5ae62IOH20zgckcncilmki5VzAnCVKKbceeIl8kkiY1IK_wX6hxkpq20-vEkQqM7-Tj_eI_yX39kMo3zPfnFPgy6l4OLnlFepGBIhGuYZm0XeWjIBXVEqIRyBVJoTNImE6ZU3KPSV57J7BApKldUWC71ucrrv6SK2QdQTdCdQyAM7WzbjJBXOQjluFC-FSoEUdLzcLJVA8gy2sG0kMsIkGboUAUYqgBD1YCz1Sz8NuboH2OOoZrOs_gEMUEaNnMu3SxXxycs1rqN
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qe_BkfWLFxwpe02aT3TyORSxFsCi2UL2EzSaLaElqmyD6w_wD_jFnk7RWQfGWwA4MM5uZbzI73wKcCWlhCIyE4cYuN5ieywkZxVfOHCtWIi7vjLwaOP0RuxzzcQ1OFrMwK_17Rl3aeZxnHUQca9BwdAepDo3R4Lp7p8sox2GGafvj5TMz7XIsdlXyW75Zz5OpeH0Rk8lKEuk1v0gEyrMjT-08C9vy7Qcz4x_6bcJGBSBJt_T4FtTiZBuaFZgk1ac634H7m1zgdkclCipmki1YzAnCVKKHcWeIl0maxEakGf5Ldg7yrKU0-3EaodCtfJh9vEfFrz-STuOiJz_fhWHvYnjeN6qLFAyJcA3DrO1iHRpyQR0RKqFcgSU0BmmTCVMq7lHpK89kdoglKldUWC71uSryv6SK2XtQT1CdfSAM5WzbjLCuchDKcaF8K1QIoqTnobNVC8jC2sG0pMsIsMzQpgrQVAGaqgWnSy_8tubgH2sOoZ7N8vgIMUEWHlf74hPTCLmY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasiballistic+transport+for+discrete+one-dimensional+quasiperiodic+Schr%C3%B6dinger+operators&rft.jtitle=Journal+of+spectral+theory&rft.au=Haeming%2C+Lian&rft.date=2025-08-29&rft.issn=1664-039X&rft.eissn=1664-0403&rft_id=info:doi/10.4171%2Fjst%2F566&rft.externalDBID=n%2Fa&rft.externalDocID=10_4171_jst_566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-039X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-039X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-039X&client=summon