Deep learning massively accelerates super-resolution localization microscopy
Accelerating PALM/STORM microscopy with deep learning allows super-resolution imaging of >1,000 cells in a few hours. The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with...
        Saved in:
      
    
          | Published in | Nature biotechnology Vol. 36; no. 5; pp. 460 - 468 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Nature Publishing Group US
    
        01.06.2018
     Nature Publishing Group  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1087-0156 1546-1696 1546-1696  | 
| DOI | 10.1038/nbt.4106 | 
Cover
| Abstract | Accelerating PALM/STORM microscopy with deep learning allows super-resolution imaging of >1,000 cells in a few hours.
The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging. | 
    
|---|---|
| AbstractList | The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging. The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging. The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of [greater than] 1,000 fields of view containing [greater than] 1,000 cells in [similar]3 h, yielding an image spanning spatial scales from [similar]20 nm to [similar]2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging. Accelerating PALM/STORM microscopy with deep learning allows super-resolution imaging of >1,000 cells in a few hours. The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.  | 
    
| Audience | Academic | 
    
| Author | Zimmer, Christophe Ouyang, Wei Lelek, Mickaël Hao, Xian Aristov, Andrey  | 
    
| Author_xml | – sequence: 1 givenname: Wei surname: Ouyang fullname: Ouyang, Wei organization: Institut Pasteur, Unité Imagerie et Modélisation, UMR 3691, CNRS, C3BI, USR 3756, IP CNRS – sequence: 2 givenname: Andrey surname: Aristov fullname: Aristov, Andrey organization: Institut Pasteur, Unité Imagerie et Modélisation, UMR 3691, CNRS, C3BI, USR 3756, IP CNRS – sequence: 3 givenname: Mickaël surname: Lelek fullname: Lelek, Mickaël organization: Institut Pasteur, Unité Imagerie et Modélisation, UMR 3691, CNRS, C3BI, USR 3756, IP CNRS – sequence: 4 givenname: Xian surname: Hao fullname: Hao, Xian organization: Institut Pasteur, Unité Imagerie et Modélisation, UMR 3691, CNRS, C3BI, USR 3756, IP CNRS – sequence: 5 givenname: Christophe surname: Zimmer fullname: Zimmer, Christophe email: czimmer@pasteur.fr organization: Institut Pasteur, Unité Imagerie et Modélisation, UMR 3691, CNRS, C3BI, USR 3756, IP CNRS  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29658943$$D View this record in MEDLINE/PubMed https://pasteur.hal.science/pasteur-02074397$$DView record in HAL  | 
    
| BookMark | eNqN0l1r2zAUBmAzOtaPDfYLRmA3LcyZZMmyfRm6jxYCha3sVhzLx6mKInmS3C379VOabFm6MoYvbJnnHNB7znF2YJ3FLHtJyZQSVr-1bZxySsST7IiWXORUNOIgfZO6ygktxWF2HMItIURwIZ5lh0Ujyrrh7Cibv0McJgbBW20XkyWEoO_QrCagFBr0EDFMwjigzz0GZ8aonZ0Yp8DoH3B_WGrlXVBuWD3PnvZgAr7Yvk-y6w_vr88v8vnVx8vz2TxXoixjjiUH5MgZMFUS7LAR0KmuLQXWjBeqUqhaxjpVdUCVaKDlyFraqKbvaVOzk-xs03a0A6y-gTFy8HoJfiUpketAZApErgNJNt_YG9gpB1pezOZygBBx9JIUpOKsqe5o8qcbP3j3dcQQ5VKHlIQBi24MsiBFWRNSC57o6wf01o3eposnVdYFp4yRnVqAQalt76IHtW4qZyWrBBOkqpKaPqLS02GKNw271-n_XsHZXkEyEb_HBYwhyMvPn_7fXn3Zt2_-sO0YtMW0EjboxU0Mm5I9_mqbwdgusfud8K8F2-W53pHgsf_XqKYPqNLxfsVSFto8VrC9V0g97QL9bgB_2Z-4afs8 | 
    
| CitedBy_id | crossref_primary_10_1016_j_ceb_2024_102378 crossref_primary_10_1038_s41377_021_00484_y crossref_primary_10_1364_OE_510683 crossref_primary_10_1016_j_acags_2024_100202 crossref_primary_10_1038_s42003_021_02086_1 crossref_primary_10_1038_s41592_020_0853_5 crossref_primary_10_1126_sciadv_adj3656 crossref_primary_10_1038_s44303_024_00054_y crossref_primary_10_1109_TUFFC_2022_3222534 crossref_primary_10_1088_2515_7647_ac3838 crossref_primary_10_1038_s41467_022_32626_0 crossref_primary_10_1364_PRJ_415960 crossref_primary_10_1007_s13762_022_04526_9 crossref_primary_10_12677_mos_2024_134375 crossref_primary_10_1039_D1LC01043C crossref_primary_10_1109_TUFFC_2024_3388102 crossref_primary_10_35713_aic_v1_i3_45 crossref_primary_10_1109_ACCESS_2024_3421349 crossref_primary_10_1111_cmi_13349 crossref_primary_10_1038_s41592_023_02057_w crossref_primary_10_1109_TCBB_2020_2991173 crossref_primary_10_1242_jcs_240713 crossref_primary_10_1042_BST20180391 crossref_primary_10_1021_acsnano_4c15364 crossref_primary_10_1038_s41592_018_0211_z crossref_primary_10_1002_jbio_201960147 crossref_primary_10_1021_acsnano_9b05891 crossref_primary_10_1364_OPTICA_448287 crossref_primary_10_1016_j_neucom_2021_04_050 crossref_primary_10_1364_BOE_476737 crossref_primary_10_1111_jmi_13083 crossref_primary_10_1021_acsphotonics_1c00915 crossref_primary_10_1117_1_JBO_28_3_036501 crossref_primary_10_3389_fbioe_2021_647874 crossref_primary_10_1242_jcs_261545 crossref_primary_10_1364_OE_453695 crossref_primary_10_1038_s41592_022_01589_x crossref_primary_10_1364_BOE_505217 crossref_primary_10_3390_ijms23136896 crossref_primary_10_1038_s41467_024_49125_z crossref_primary_10_1021_acs_analchem_3c05857 crossref_primary_10_1039_D4CS01193G crossref_primary_10_1364_PRJ_469231 crossref_primary_10_52601_bpr_2021_210019 crossref_primary_10_1038_s41587_023_01702_1 crossref_primary_10_1364_BOE_427989 crossref_primary_10_1038_s41592_021_01155_x crossref_primary_10_1089_ars_2019_7754 crossref_primary_10_1021_acsphotonics_3c01253 crossref_primary_10_1038_s43586_021_00038_x crossref_primary_10_1016_j_micinf_2019_06_014 crossref_primary_10_1016_j_optcom_2023_130024 crossref_primary_10_1038_s41467_023_43440_7 crossref_primary_10_1021_acs_accounts_0c00621 crossref_primary_10_1016_j_stemcr_2019_02_004 crossref_primary_10_1063_5_0090582 crossref_primary_10_1016_j_compstruct_2023_117131 crossref_primary_10_1063_5_0034891 crossref_primary_10_1109_MSP_2021_3119273 crossref_primary_10_1021_acs_nanolett_3c04870 crossref_primary_10_1364_OL_537713 crossref_primary_10_3788_LOP232549 crossref_primary_10_1109_JPHOT_2024_3476514 crossref_primary_10_1021_cbmi_3c00060 crossref_primary_10_1038_s41377_022_00768_x crossref_primary_10_1038_s41377_019_0129_y crossref_primary_10_1038_s42256_021_00379_y crossref_primary_10_1364_OE_531588 crossref_primary_10_3390_mi12121558 crossref_primary_10_1016_j_bspc_2023_105668 crossref_primary_10_1038_s41556_018_0251_8 crossref_primary_10_1109_TUFFC_2023_3304527 crossref_primary_10_1021_acs_analchem_1c04330 crossref_primary_10_1093_bioinformatics_btz728 crossref_primary_10_1038_s41377_019_0192_4 crossref_primary_10_1146_annurev_biophys_111622_091212 crossref_primary_10_7554_eLife_69380 crossref_primary_10_1021_acs_analchem_4c07047 crossref_primary_10_52601_bpr_2023_230014 crossref_primary_10_1371_journal_pone_0235111 crossref_primary_10_1038_s41592_024_02520_2 crossref_primary_10_1109_ACCESS_2020_3040319 crossref_primary_10_1038_s41377_022_00820_w crossref_primary_10_1038_s41586_020_2973_6 crossref_primary_10_1088_1361_6463_ab6b95 crossref_primary_10_1038_s41377_023_01230_2 crossref_primary_10_1038_s41467_024_48575_9 crossref_primary_10_1038_s41592_019_0458_z crossref_primary_10_1038_s41580_024_00702_6 crossref_primary_10_1364_AO_476488 crossref_primary_10_1038_s41467_022_34197_6 crossref_primary_10_1002_lpor_202401715 crossref_primary_10_1038_s41592_021_01275_4 crossref_primary_10_1016_j_cbpa_2021_04_001 crossref_primary_10_1021_jacs_0c08178 crossref_primary_10_1364_OE_390856 crossref_primary_10_3389_fbinf_2021_752788 crossref_primary_10_1016_j_nantod_2022_101665 crossref_primary_10_1016_j_tplants_2018_07_007 crossref_primary_10_1371_journal_pcbi_1009155 crossref_primary_10_1016_j_bpr_2023_100123 crossref_primary_10_1186_s12859_023_05320_1 crossref_primary_10_1364_OE_467574 crossref_primary_10_1364_PRJ_410556 crossref_primary_10_1088_1361_6560_acf98f crossref_primary_10_1021_acs_nanolett_9b00590 crossref_primary_10_3390_photonics9040261 crossref_primary_10_1016_j_bspc_2020_101846 crossref_primary_10_1515_nanoph_2023_0936 crossref_primary_10_1021_acs_analchem_0c04671 crossref_primary_10_1002_cyto_a_23973 crossref_primary_10_1109_TMI_2020_2986781 crossref_primary_10_3788_LOP241455 crossref_primary_10_1038_s41596_021_00611_4 crossref_primary_10_1155_2021_6663977 crossref_primary_10_1038_s41592_023_01931_x crossref_primary_10_1091_mbc_E22_06_0200 crossref_primary_10_1039_D2LC00813K crossref_primary_10_7498_aps_71_20220954 crossref_primary_10_1038_s41435_019_0068_x crossref_primary_10_1364_OE_27_013581 crossref_primary_10_1155_2021_6493130 crossref_primary_10_1364_OE_390878 crossref_primary_10_1038_s41566_020_00716_4 crossref_primary_10_7554_eLife_60404 crossref_primary_10_1038_s41592_018_0028_9 crossref_primary_10_1038_s41598_019_40554_1 crossref_primary_10_1111_tra_12957 crossref_primary_10_1364_OE_403316 crossref_primary_10_1515_nanoph_2022_0197 crossref_primary_10_1364_OE_423892 crossref_primary_10_1364_OE_402109 crossref_primary_10_1007_s12551_021_00864_z crossref_primary_10_1021_acs_chemrev_2c00627 crossref_primary_10_1016_j_cis_2023_102880 crossref_primary_10_1364_OE_487286 crossref_primary_10_1103_PhysRevLett_127_253602 crossref_primary_10_3389_fgene_2022_913372 crossref_primary_10_1002_mp_15350 crossref_primary_10_1038_s41598_020_68564_4 crossref_primary_10_1109_JPHOT_2019_2961137 crossref_primary_10_1002_adma_202109171 crossref_primary_10_1364_BOE_393081 crossref_primary_10_1093_bioinformatics_btac688 crossref_primary_10_1016_j_displa_2025_102968 crossref_primary_10_1016_j_molcel_2021_12_022 crossref_primary_10_1039_D3NR04294D crossref_primary_10_1016_j_bios_2025_117374 crossref_primary_10_1038_s41598_022_12571_0 crossref_primary_10_1242_jcs_254292 crossref_primary_10_1364_BOE_444488 crossref_primary_10_1364_BOE_10_001044 crossref_primary_10_1364_OE_27_016871 crossref_primary_10_1039_D2CS00562J crossref_primary_10_1088_2515_7647_abf02c crossref_primary_10_1093_bioinformatics_btaa154 crossref_primary_10_1091_mbc_E22_02_0039 crossref_primary_10_1109_TCI_2021_3093788 crossref_primary_10_3390_photonics11020101 crossref_primary_10_1038_s41592_023_02138_w crossref_primary_10_1093_cercor_bhaa237 crossref_primary_10_3390_s23187691 crossref_primary_10_1364_AO_404151 crossref_primary_10_1007_s12021_022_09594_3 crossref_primary_10_1038_s41592_019_0622_5 crossref_primary_10_1016_j_cobme_2019_09_009 crossref_primary_10_1186_s43074_022_00077_x crossref_primary_10_1002_cjoc_202200764 crossref_primary_10_1016_j_isci_2023_108145 crossref_primary_10_1016_j_optlastec_2023_109781 crossref_primary_10_1038_s41592_023_01966_0 crossref_primary_10_1002_advs_202202089 crossref_primary_10_1038_s41587_022_01651_1 crossref_primary_10_1038_s42256_024_00883_x crossref_primary_10_1063_5_0069349 crossref_primary_10_1021_acs_analchem_3c00274 crossref_primary_10_1007_s00500_021_06707_z crossref_primary_10_1016_j_colcom_2022_100595 crossref_primary_10_1002_cyto_a_23777 crossref_primary_10_1038_s41598_021_85905_z crossref_primary_10_1364_OE_402317 crossref_primary_10_1016_j_isci_2021_102134 crossref_primary_10_1038_s41592_021_01080_z crossref_primary_10_1016_j_mehy_2020_110017 crossref_primary_10_1515_nanoph_2020_0291 crossref_primary_10_1016_j_bpj_2024_09_001 crossref_primary_10_1016_j_tcb_2022_06_011 crossref_primary_10_1038_s41377_021_00594_7 crossref_primary_10_1038_s41467_024_55262_2 crossref_primary_10_1016_j_cels_2021_05_003 crossref_primary_10_1016_j_tibs_2021_05_010 crossref_primary_10_1038_s41467_022_29236_1 crossref_primary_10_1038_s41592_018_0216_7 crossref_primary_10_3390_s24196248 crossref_primary_10_3762_bjnano_12_66 crossref_primary_10_1016_j_crmeth_2023_100500 crossref_primary_10_1038_s41598_024_68918_2 crossref_primary_10_1063_5_0003322 crossref_primary_10_1107_S2052252523010114 crossref_primary_10_1155_2024_6465280 crossref_primary_10_1002_smtd_202301243 crossref_primary_10_3390_photonics6020066 crossref_primary_10_1038_s41583_022_00647_9 crossref_primary_10_1016_j_rio_2020_100019 crossref_primary_10_1063_5_0082799 crossref_primary_10_1186_s40708_022_00158_4 crossref_primary_10_3389_fphar_2019_01303 crossref_primary_10_3788_LOP230749 crossref_primary_10_1364_OE_26_030762 crossref_primary_10_1016_j_bpr_2023_100133 crossref_primary_10_1021_acsnano_4c18035 crossref_primary_10_1002_smll_202205030 crossref_primary_10_1016_j_semcancer_2023_06_003 crossref_primary_10_1088_1674_1056_ac4e0c crossref_primary_10_1016_j_optlaseng_2023_107840 crossref_primary_10_1042_BST20200746 crossref_primary_10_1017_S1431927622000782 crossref_primary_10_1039_D3LC00935A crossref_primary_10_3788_CJL240817 crossref_primary_10_1038_s41592_021_01236_x crossref_primary_10_1111_jmi_12772 crossref_primary_10_1088_1742_6596_2822_1_012047 crossref_primary_10_1021_acsnano_4c01534 crossref_primary_10_1002_smtd_202401757 crossref_primary_10_1039_D1CB00024A crossref_primary_10_3389_fcell_2019_00279 crossref_primary_10_1117_1_JBO_29_6_066501 crossref_primary_10_1038_s41467_020_20268_z crossref_primary_10_1002_advs_202300947 crossref_primary_10_3389_fchem_2022_864701 crossref_primary_10_1002_smtd_202400672 crossref_primary_10_1186_s43593_022_00038_8 crossref_primary_10_1093_gigascience_giab032 crossref_primary_10_1016_j_softx_2023_101462 crossref_primary_10_1155_2022_7999312 crossref_primary_10_1016_j_csbj_2020_08_003 crossref_primary_10_1109_TMI_2020_3006445 crossref_primary_10_1364_BOE_391806 crossref_primary_10_1038_s41467_019_13447_0 crossref_primary_10_1002_smtd_202401654 crossref_primary_10_1038_s41467_025_55952_5 crossref_primary_10_34133_icomputing_0082 crossref_primary_10_1088_1361_6560_ab5bb4 crossref_primary_10_1021_acs_accounts_0c00057 crossref_primary_10_1109_JSTQE_2021_3060762 crossref_primary_10_1073_pnas_1912707116 crossref_primary_10_7554_eLife_90029 crossref_primary_10_1093_bioinformatics_btad494 crossref_primary_10_1364_AO_503034 crossref_primary_10_1002_lpor_202401473 crossref_primary_10_1016_j_biocel_2021_105931 crossref_primary_10_2196_28114 crossref_primary_10_1371_journal_pcbi_1011407 crossref_primary_10_3390_app14041662 crossref_primary_10_1021_acs_analchem_1c04947 crossref_primary_10_1016_j_csbj_2022_04_003 crossref_primary_10_1364_OE_490037 crossref_primary_10_1142_S1793545824300064 crossref_primary_10_1016_j_crmeth_2023_100557 crossref_primary_10_1063_5_0065634 crossref_primary_10_1016_j_mri_2020_01_005 crossref_primary_10_1088_1674_1056_ac1b93 crossref_primary_10_1364_OE_26_033166 crossref_primary_10_1038_s42003_019_0491_6 crossref_primary_10_1364_OE_439976 crossref_primary_10_1088_2515_7647_ab9eac crossref_primary_10_3389_fnins_2020_578409 crossref_primary_10_1109_MPUL_2018_2857226 crossref_primary_10_1109_TII_2019_2913853 crossref_primary_10_1088_1478_3975_ab7731 crossref_primary_10_3390_s23052469 crossref_primary_10_1002_cyto_a_23701 crossref_primary_10_1007_s00418_022_02147_4 crossref_primary_10_1038_s41592_021_01225_0 crossref_primary_10_1038_s42003_023_04857_4 crossref_primary_10_1038_s41598_022_20378_2 crossref_primary_10_1016_j_talanta_2020_121401 crossref_primary_10_1038_s42003_022_03634_z crossref_primary_10_1016_j_cmpb_2023_107991 crossref_primary_10_1515_nanoph_2021_0108 crossref_primary_10_1016_j_cbpa_2021_05_010 crossref_primary_10_3389_fcell_2022_901038 crossref_primary_10_1016_j_tcb_2022_11_011 crossref_primary_10_1039_D1LC00475A crossref_primary_10_1042_EBC20180044 crossref_primary_10_1049_ote2_12113 crossref_primary_10_1364_OE_27_021029 crossref_primary_10_1088_1361_6560_abeb31 crossref_primary_10_1186_s43074_024_00155_2 crossref_primary_10_1016_j_pt_2019_05_004 crossref_primary_10_1364_OE_450429 crossref_primary_10_1364_BOE_410617 crossref_primary_10_1142_S1793545822300166 crossref_primary_10_1038_s41592_019_0627_0 crossref_primary_10_1021_acs_analchem_1c00547 crossref_primary_10_1073_pnas_2304866121 crossref_primary_10_1364_PRJ_416551 crossref_primary_10_1021_acs_jpcc_4c07269 crossref_primary_10_1016_j_slasd_2025_100209 crossref_primary_10_1016_j_optcom_2023_129634 crossref_primary_10_1364_BOE_386361 crossref_primary_10_1364_OE_438444 crossref_primary_10_1111_jmi_13349 crossref_primary_10_1242_dev_188474 crossref_primary_10_1038_s41592_019_0364_4 crossref_primary_10_3390_genes16030330 crossref_primary_10_1364_OE_392358 crossref_primary_10_1016_j_cclet_2024_110677 crossref_primary_10_1038_s42256_023_00704_7 crossref_primary_10_1364_OE_402808 crossref_primary_10_1109_TPAMI_2021_3076873 crossref_primary_10_1088_2040_8986_ac8108 crossref_primary_10_3788_AI_2024_20004 crossref_primary_10_1364_OL_400244 crossref_primary_10_1016_j_jmb_2021_167176 crossref_primary_10_1364_OE_485664 crossref_primary_10_1364_OE_409679 crossref_primary_10_1038_s41598_020_74500_3 crossref_primary_10_1038_s41598_019_50232_x crossref_primary_10_1038_s41467_020_19673_1 crossref_primary_10_1016_j_neunet_2022_04_011 crossref_primary_10_3390_s24113560 crossref_primary_10_1063_1_5125252 crossref_primary_10_1364_AO_542567 crossref_primary_10_3389_fnins_2021_630250 crossref_primary_10_1063_5_0133027 crossref_primary_10_1080_17460441_2019_1559147 crossref_primary_10_1109_TUFFC_2023_3276634 crossref_primary_10_1111_jmi_13362 crossref_primary_10_1002_lsm_23414 crossref_primary_10_1364_OE_26_030162 crossref_primary_10_1109_TMI_2021_3058373 crossref_primary_10_1088_1674_1056_ac306b crossref_primary_10_12688_f1000research_50798_1 crossref_primary_10_1364_OE_463996 crossref_primary_10_3390_app11093796 crossref_primary_10_1111_jmi_13135 crossref_primary_10_1142_S1793545824500251 crossref_primary_10_1038_s42254_021_00382_7 crossref_primary_10_1364_OE_27_006147 crossref_primary_10_1016_j_optlaseng_2022_107066 crossref_primary_10_1002_aisy_202000152 crossref_primary_10_1016_j_ultras_2024_107410 crossref_primary_10_1038_s41586_020_2048_8 crossref_primary_10_1364_OE_401925 crossref_primary_10_1038_s41598_022_06065_2 crossref_primary_10_1103_PhysRevLett_124_113202 crossref_primary_10_1364_OE_441892 crossref_primary_10_1021_acs_analchem_9b02702 crossref_primary_10_1088_1361_6463_abff7b crossref_primary_10_1364_OE_27_006158 crossref_primary_10_1021_acsphotonics_0c01786 crossref_primary_10_1021_acscentsci_1c00483 crossref_primary_10_1038_s41467_023_38452_2 crossref_primary_10_1364_BOE_484540 crossref_primary_10_1364_PRJ_396122 crossref_primary_10_1002_adts_202100369 crossref_primary_10_7554_eLife_90029_3 crossref_primary_10_1021_acs_chemrev_3c00070 crossref_primary_10_3390_photonics11060528 crossref_primary_10_15252_embr_201948559 crossref_primary_10_1002_lpor_202200029 crossref_primary_10_1117_1_JNP_14_016009 crossref_primary_10_1088_1361_6560_acf3cb crossref_primary_10_3390_f14061249 crossref_primary_10_1016_j_rinp_2023_107318 crossref_primary_10_1364_OE_390121 crossref_primary_10_1038_s41467_024_46989_z crossref_primary_10_1038_s41598_020_75814_y crossref_primary_10_1038_s41377_019_0223_1 crossref_primary_10_1038_s41578_020_0180_6 crossref_primary_10_1016_j_cbpa_2019_05_012 crossref_primary_10_1016_j_addr_2023_115138 crossref_primary_10_1021_acsnano_9b05289 crossref_primary_10_3788_LOP232016 crossref_primary_10_1007_s12551_020_00773_7 crossref_primary_10_1016_j_csbj_2021_04_019 crossref_primary_10_1021_acsphotonics_4c00745 crossref_primary_10_1038_s41587_023_01987_2 crossref_primary_10_1002_jim4_17 crossref_primary_10_1016_j_compbiomed_2021_104523 crossref_primary_10_1523_ENEURO_0425_18_2019 crossref_primary_10_1364_OL_387486 crossref_primary_10_1111_jmi_13218 crossref_primary_10_1038_s41598_021_88875_4 crossref_primary_10_1093_lifemeta_loae014 crossref_primary_10_1016_j_neunet_2023_11_039 crossref_primary_10_1109_JPROC_2019_2949575 crossref_primary_10_1021_acsphotonics_0c01774 crossref_primary_10_1038_s41467_022_35349_4 crossref_primary_10_1364_OE_482062  | 
    
| Cites_doi | 10.1038/nmeth.4605 10.1038/nmeth.4486 10.1016/j.neunet.2014.09.003 10.1091/mbc.e16-06-0421 10.1038/sj.cdd.4402055 10.1038/nature08869 10.1038/nmeth.1202 10.1073/pnas.1004037107 10.1073/pnas.0508047103 10.1038/nmeth.1605 10.1038/nprot.2011.336 10.1093/bioinformatics/btp184 10.1038/nature14539 10.1242/jcs.098822 10.1126/science.1153529 10.1016/0309-1651(77)90038-8 10.1038/nmeth.1812 10.1109/83.506761 10.1109/TCI.2016.2644865 10.1038/nprot.2017.024 10.1021/nl203560r 10.1126/science.1260088 10.1126/science.1146598 10.1038/nmeth.3219 10.1126/science.1127647 10.1093/bioinformatics/btu202 10.1038/nmeth.1978 10.1016/S0960-9822(95)00180-1 10.1126/science.1127344 10.1073/pnas.1013267109 10.1038/nmeth.2488 10.1109/ICDAR.2003.1227801 10.1038/nmeth929 10.1038/nmeth.2835 10.1038/nmeth.1233 10.1038/s41598-017-15433-2 10.1109/MSP.2008.930649 10.1038/nature16496 10.1038/nmeth.3442 10.1038/nmeth.3400 10.1038/nmeth0510-339 10.1038/nmeth.4261 10.1038/nmeth.3797 10.1038/nmeth.2843 10.1364/BOE.2.001377 10.1126/science.1240672 10.1016/j.cels.2016.01.009 10.1074/jbc.M704522200 10.1073/pnas.1117430109 10.1186/s13059-017-1199-x 10.1016/j.coisb.2017.07.011 10.1006/jcph.1995.1039 10.1007/978-3-319-24574-4_28 10.1002/0471142727.mb1420s92 10.1109/IWAENC.2016.7602891 10.1109/CVPR.2017.632 10.1109/ICCV.2017.304  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Nature America, Inc. 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group May 2018 Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: Springer Nature America, Inc. 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group May 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM N95 IOV ISR 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U RC3 7X8 1XC VOOES ADTOC UNPAY  | 
    
| DOI | 10.1038/nbt.4106 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale Business: Insights Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection Proquest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Proquest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering Agriculture Biology  | 
    
| EISSN | 1546-1696 | 
    
| EndPage | 468 | 
    
| ExternalDocumentID | oai:HAL:pasteur-02074397v1 A537636077 29658943 10_1038_nbt_4106  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 3V. 4.4 4R4 53G 5BI 5M7 5RE 5S5 70F 7X7 88A 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAEEF AAHBH AAIKC AAMNW AARCD AAYOK AAYZH AAZLF ABAWZ ABDBF ABDPE ABEFU ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BKOMP BPHCQ BVXVI C0K CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FA8 FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LGEZI LK8 LOTEE M0L M1P M2O M2P M7P M7S ML0 MVM N95 NADUK NEJ NNMJJ NXXTH O9- ODYON P2P PKN PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RVV RXW SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XI7 XOL Y6R YZZ ZGI ZHY ZXP ~KM AAYXX ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM ACMFV AGSTI 7QO 7QP 7QR 7T7 7TK 7TM 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 1XC VOOES ADTOC ESTFP UNPAY  | 
    
| ID | FETCH-LOGICAL-c655t-e54ae4e43a3c50ede96adcdb56e8342c7cecb33dc7da1c69ab4e3b19c9ff1983 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1087-0156 1546-1696  | 
    
| IngestDate | Sun Oct 26 02:49:48 EDT 2025 Tue Oct 14 20:15:37 EDT 2025 Thu Oct 02 16:24:53 EDT 2025 Tue Oct 07 05:37:02 EDT 2025 Mon Oct 20 22:17:07 EDT 2025 Mon Oct 20 15:59:23 EDT 2025 Thu Oct 16 14:07:17 EDT 2025 Thu Oct 16 15:13:25 EDT 2025 Fri Jun 27 03:14:02 EDT 2025 Mon Jul 21 05:57:28 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Wed Oct 01 04:49:22 EDT 2025 Fri Feb 21 02:39:40 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c655t-e54ae4e43a3c50ede96adcdb56e8342c7cecb33dc7da1c69ab4e3b19c9ff1983 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-0291-926X 0000-0001-9910-1589 0000-0002-5675-7729 0000-0003-4881-3847  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pasteur.hal.science/pasteur-02074397 | 
    
| PMID | 29658943 | 
    
| PQID | 2058241330 | 
    
| PQPubID | 47191 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | unpaywall_primary_10_1038_nbt_4106 hal_primary_oai_HAL_pasteur_02074397v1 proquest_miscellaneous_2025800864 proquest_journals_2058241330 gale_infotracmisc_A537636077 gale_infotracacademiconefile_A537636077 gale_incontextgauss_ISR_A537636077 gale_incontextgauss_IOV_A537636077 gale_businessinsightsgauss_A537636077 pubmed_primary_29658943 crossref_primary_10_1038_nbt_4106 crossref_citationtrail_10_1038_nbt_4106 springer_journals_10_1038_nbt_4106  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-06-01 | 
    
| PublicationDateYYYYMMDD | 2018-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: United States  | 
    
| PublicationSubtitle | The Science and Business of Biotechnology | 
    
| PublicationTitle | Nature biotechnology | 
    
| PublicationTitleAbbrev | Nat Biotechnol | 
    
| PublicationTitleAlternate | Nat Biotechnol | 
    
| PublicationYear | 2018 | 
    
| Publisher | Nature Publishing Group US Nature Publishing Group  | 
    
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group  | 
    
| References | Jungmann (CR47) 2014; 11 Culley (CR26) 2018; 15 Henriques (CR59) 2010; 7 Goodfellow (CR22) 2014; 27 Beghin (CR40) 2017; 14 Cox (CR13) 2012; 9 Huang (CR6) 2013; 10 Arnal, Wade (CR29) 1995; 5 Ram, Ward, Ober (CR14) 2006; 103 Rust, Bates, Zhuang (CR2) 2006; 3 Lelek (CR60) 2012; 109 Ouyang, Zimmer (CR41) 2017; 4 Ciresan, Giusti, Gambardella, Schmidhuber (CR23) 2013; 2013 Neumann (CR39) 2010; 464 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR27) 2014; 15 Ovesný, Křížek, Borkovec, Svindrych, Hagen (CR62) 2014; 30 LeCun, Bengio, Hinton (CR15) 2015; 521 Simard, Steinkraus, Platt (CR56) 2003; 1 Wu (CR30) 2007; 282 Stelzer (CR8) 2015; 12 Zhao, Gallo, Frosio, Kautz (CR25) 2017; 3 Deschout (CR4) 2014; 11 Reddy, Chatterji (CR55) 1996; 5 Bellot (CR36) 2007; 14 Sergé, Bertaux, Rigneault, Marguet (CR64) 2008; 5 Wang, Bovik (CR24) 2009; 26 Jones, Shim, He, Zhuang (CR5) 2011; 8 Arbona, Herbert, Fabre, Zimmer (CR28) 2017; 18 Boettiger (CR37) 2016; 529 Zhang, Nishimura, Kanchanawong (CR38) 2017; 28 Rampasek, Goldenberg (CR54) 2016; 2 Carlton (CR7) 2010; 107 Sage (CR19) 2015; 12 de Boer, Hoogenboom, Giepmans (CR44) 2015; 12 Schmidhuber (CR18) 2015; 61 Chen, Tillberg, Boyden (CR42) 2015; 347 CR16 Legant (CR3) 2016; 13 Löschberger (CR33) 2012; 125 Chang (CR43) 2017; 14 van de Linde (CR58) 2011; 6 Shroff, Galbraith, Galbraith, Betzig (CR48) 2008; 5 CR53 CR52 Preibisch, Saalfeld, Tomancak (CR63) 2009; 25 Plimpton (CR57) 1995; 117 CR50 Maas, Hannun, Ng (CR51) 2013; 30 Burnette, Sengupta, Dai, Lippincott-Schwartz, Kachar (CR10) 2011; 108 Kendall, Gal (CR49) 2017; 30 Hinton, Salakhutdinov (CR17) 2006; 313 Bates, Huang, Dempsey, Zhuang (CR46) 2007; 317 Huang, Wang, Bates, Zhuang (CR45) 2008; 319 De Brabander, De May, Joniau, Geuens (CR31) 1977; 1 Szymborska (CR34) 2013; 341 Zhu, Zhang, Elnatan, Huang (CR12) 2012; 9 Edelstein, Amodaj, Hoover, Vale, Stuurman (CR61) 2010; 92 Schnitzbauer, Strauss, Schlichthaerle, Schueder, Jungmann (CR32) 2017; 12 Simonson, Rothenberg, Selvin (CR11) 2011; 11 CR21 CR20 Sellés (CR35) 2017; 7 Betzig (CR1) 2006; 313 Huang, Schwartz, Byars, Lidke (CR9) 2011; 2 M Bates (BFnbt4106_CR46) 2007; 317 BFnbt4106_CR16 D Sage (BFnbt4106_CR19) 2015; 12 S Plimpton (BFnbt4106_CR57) 1995; 117 E Betzig (BFnbt4106_CR1) 2006; 313 P de Boer (BFnbt4106_CR44) 2015; 12 WR Legant (BFnbt4106_CR3) 2016; 13 S Preibisch (BFnbt4106_CR63) 2009; 25 J-B Chang (BFnbt4106_CR43) 2017; 14 Y LeCun (BFnbt4106_CR15) 2015; 521 J Schmidhuber (BFnbt4106_CR18) 2015; 61 S van de Linde (BFnbt4106_CR58) 2011; 6 BFnbt4106_CR53 H Shroff (BFnbt4106_CR48) 2008; 5 BFnbt4106_CR52 DC Ciresan (BFnbt4106_CR23) 2013; 2013 GE Hinton (BFnbt4106_CR17) 2006; 313 A Sergé (BFnbt4106_CR64) 2008; 5 A Kendall (BFnbt4106_CR49) 2017; 30 BFnbt4106_CR50 S Culley (BFnbt4106_CR26) 2018; 15 S Ram (BFnbt4106_CR14) 2006; 103 F Chen (BFnbt4106_CR42) 2015; 347 G Bellot (BFnbt4106_CR36) 2007; 14 B Neumann (BFnbt4106_CR39) 2010; 464 BS Reddy (BFnbt4106_CR55) 1996; 5 Z Zhang (BFnbt4106_CR38) 2017; 28 J-M Arbona (BFnbt4106_CR28) 2017; 18 N Srivastava (BFnbt4106_CR27) 2014; 15 A Edelstein (BFnbt4106_CR61) 2010; 92 L Rampasek (BFnbt4106_CR54) 2016; 2 PD Simonson (BFnbt4106_CR11) 2011; 11 BFnbt4106_CR20 J Schnitzbauer (BFnbt4106_CR32) 2017; 12 I Goodfellow (BFnbt4106_CR22) 2014; 27 PM Carlton (BFnbt4106_CR7) 2010; 107 BFnbt4106_CR21 W Ouyang (BFnbt4106_CR41) 2017; 4 EHK Stelzer (BFnbt4106_CR8) 2015; 12 DT Burnette (BFnbt4106_CR10) 2011; 108 SA Jones (BFnbt4106_CR5) 2011; 8 AL Maas (BFnbt4106_CR51) 2013; 30 M Lelek (BFnbt4106_CR60) 2012; 109 R Jungmann (BFnbt4106_CR47) 2014; 11 A Löschberger (BFnbt4106_CR33) 2012; 125 S Cox (BFnbt4106_CR13) 2012; 9 H Zhao (BFnbt4106_CR25) 2017; 3 ZWZ Wang (BFnbt4106_CR24) 2009; 26 PY Simard (BFnbt4106_CR56) 2003; 1 I Arnal (BFnbt4106_CR29) 1995; 5 S Wu (BFnbt4106_CR30) 2007; 282 A Beghin (BFnbt4106_CR40) 2017; 14 MJ Rust (BFnbt4106_CR2) 2006; 3 B Huang (BFnbt4106_CR45) 2008; 319 H Deschout (BFnbt4106_CR4) 2014; 11 A Szymborska (BFnbt4106_CR34) 2013; 341 J Sellés (BFnbt4106_CR35) 2017; 7 AN Boettiger (BFnbt4106_CR37) 2016; 529 F Huang (BFnbt4106_CR9) 2011; 2 R Henriques (BFnbt4106_CR59) 2010; 7 M Ovesný (BFnbt4106_CR62) 2014; 30 F Huang (BFnbt4106_CR6) 2013; 10 M De Brabander (BFnbt4106_CR31) 1977; 1 L Zhu (BFnbt4106_CR12) 2012; 9  | 
    
| References_xml | – volume: 15 start-page: 263 year: 2018 end-page: 266 ident: CR26 article-title: Quantitative mapping and minimization of super-resolution optical imaging artifacts publication-title: Nat. Methods doi: 10.1038/nmeth.4605 – volume: 14 start-page: 1184 year: 2017 end-page: 1190 ident: CR40 article-title: Localization-based super-resolution imaging meets high-content screening publication-title: Nat. Methods doi: 10.1038/nmeth.4486 – ident: CR16 – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: CR18 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 28 start-page: 333 year: 2017 end-page: 345 ident: CR38 article-title: Extracting microtubule networks from superresolution single-molecule localization microscopy data publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e16-06-0421 – volume: 14 start-page: 785 year: 2007 end-page: 794 ident: CR36 article-title: TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4402055 – volume: 464 start-page: 721 year: 2010 end-page: 727 ident: CR39 article-title: Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes publication-title: Nature doi: 10.1038/nature08869 – volume: 5 start-page: 417 year: 2008 end-page: 423 ident: CR48 article-title: Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics publication-title: Nat. Methods doi: 10.1038/nmeth.1202 – volume: 2013 start-page: 8150 year: 2013 ident: CR23 article-title: Mitosis detection in breast cancer histology images with deep neural networks publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 107 start-page: 16016 year: 2010 end-page: 16022 ident: CR7 article-title: Fast live simultaneous multiwavelength four-dimensional optical microscopy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1004037107 – volume: 103 start-page: 4457 year: 2006 end-page: 4462 ident: CR14 article-title: Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0508047103 – volume: 30 start-page: 5580 year: 2017 end-page: 5590 ident: CR49 article-title: What uncertainties do we need in Bayesian deep learning for computer vision? publication-title: Adv. Neural Inf. Process. Syst. – ident: CR21 – volume: 92 start-page: 14.20.1 year: 2010 end-page: 14.20.17 ident: CR61 article-title: Computer control of microscopes using μmanager publication-title: Curr. Protoc. Mol. Biol. – volume: 8 start-page: 499 year: 2011 end-page: 505 ident: CR5 article-title: Fast, three-dimensional super-resolution imaging of live cells publication-title: Nat. Methods doi: 10.1038/nmeth.1605 – volume: 6 start-page: 991 year: 2011 end-page: 1009 ident: CR58 article-title: Direct stochastic optical reconstruction microscopy with standard fluorescent probes publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.336 – volume: 25 start-page: 1463 year: 2009 end-page: 1465 ident: CR63 article-title: Globally optimal stitching of tiled 3D microscopic image acquisitions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp184 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR15 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 125 start-page: 570 year: 2012 end-page: 575 ident: CR33 article-title: Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution publication-title: J. Cell Sci. doi: 10.1242/jcs.098822 – volume: 319 start-page: 810 year: 2008 end-page: 813 ident: CR45 article-title: Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy publication-title: Science doi: 10.1126/science.1153529 – volume: 1 start-page: 177 year: 1977 end-page: 183 ident: CR31 article-title: Ultrastructural immunocytochemical distribution of tubulin in cultured cells treated with microtubule inhibitors publication-title: Cell Biol. Int. Rep. doi: 10.1016/0309-1651(77)90038-8 – volume: 9 start-page: 195 year: 2012 end-page: 200 ident: CR13 article-title: Bayesian localization microscopy reveals nanoscale podosome dynamics publication-title: Nat. Methods doi: 10.1038/nmeth.1812 – ident: CR50 – volume: 5 start-page: 1266 year: 1996 end-page: 1271 ident: CR55 article-title: An FFT-based technique for translation, rotation, and scale-invariant image registration publication-title: IEEE Trans. Image Process. doi: 10.1109/83.506761 – volume: 3 start-page: 47 year: 2017 end-page: 57 ident: CR25 article-title: Loss functions for image restoration with neural networks publication-title: IEEE Trans. Comput. IMAGING doi: 10.1109/TCI.2016.2644865 – volume: 12 start-page: 1198 year: 2017 end-page: 1228 ident: CR32 article-title: Super-resolution microscopy with DNA-PAINT publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.024 – volume: 11 start-page: 5090 year: 2011 end-page: 5096 ident: CR11 article-title: Single-molecule-based super-resolution images in the presence of multiple fluorophores publication-title: Nano Lett. doi: 10.1021/nl203560r – volume: 347 start-page: 543 year: 2015 end-page: 548 ident: CR42 article-title: Optical imaging. Expansion microscopy publication-title: Science doi: 10.1126/science.1260088 – volume: 317 start-page: 1749 year: 2007 end-page: 1753 ident: CR46 article-title: Multicolor super-resolution imaging with photo-switchable fluorescent probes publication-title: Science doi: 10.1126/science.1146598 – volume: 12 start-page: 23 year: 2015 end-page: 26 ident: CR8 article-title: Light-sheet fluorescence microscopy for quantitative biology publication-title: Nat. Methods doi: 10.1038/nmeth.3219 – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: CR17 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 30 start-page: 2389 year: 2014 end-page: 2390 ident: CR62 article-title: ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu202 – volume: 9 start-page: 721 year: 2012 end-page: 723 ident: CR12 article-title: Faster STORM using compressed sensing publication-title: Nat. Methods doi: 10.1038/nmeth.1978 – volume: 5 start-page: 900 year: 1995 end-page: 908 ident: CR29 article-title: How does taxol stabilize microtubules? publication-title: Curr. Biol. doi: 10.1016/S0960-9822(95)00180-1 – volume: 313 start-page: 1642 year: 2006 end-page: 1645 ident: CR1 article-title: Imaging intracellular fluorescent proteins at nanometer resolution publication-title: Science doi: 10.1126/science.1127344 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR27 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 109 start-page: 8564 year: 2012 end-page: 8569 ident: CR60 article-title: Superresolution imaging of HIV in infected cells with FlAsH-PALM publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1013267109 – volume: 10 start-page: 653 year: 2013 end-page: 658 ident: CR6 article-title: Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms publication-title: Nat. Methods doi: 10.1038/nmeth.2488 – volume: 1 start-page: 958 year: 2003 end-page: 963 ident: CR56 article-title: Best practices for convolutional neural networks applied to visual document analysis publication-title: Seventh Int. Conf. Doc. Anal. Recognition, 2003. Proceedings doi: 10.1109/ICDAR.2003.1227801 – volume: 3 start-page: 793 year: 2006 end-page: 796 ident: CR2 article-title: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) publication-title: Nat. Methods doi: 10.1038/nmeth929 – volume: 11 start-page: 313 year: 2014 end-page: 318 ident: CR47 article-title: Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT publication-title: Nat. Methods doi: 10.1038/nmeth.2835 – ident: CR53 – volume: 5 start-page: 687 year: 2008 end-page: 694 ident: CR64 article-title: Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes publication-title: Nat. Methods doi: 10.1038/nmeth.1233 – volume: 7 start-page: 14732 year: 2017 ident: CR35 article-title: Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy publication-title: Sci. Rep. doi: 10.1038/s41598-017-15433-2 – volume: 26 start-page: 98 year: 2009 end-page: 117 ident: CR24 article-title: Mean squared error: love it or leave it? A new look at Signal Fidelity Measures publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.930649 – volume: 529 start-page: 418 year: 2016 end-page: 422 ident: CR37 article-title: Super-resolution imaging reveals distinct chromatin folding for different epigenetic states publication-title: Nature doi: 10.1038/nature16496 – volume: 30 start-page: 3 year: 2013 ident: CR51 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc. 30th Int. Conf. Mach. Learn. – volume: 12 start-page: 717 year: 2015 end-page: 724 ident: CR19 article-title: Quantitative evaluation of software packages for single-molecule localization microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.3442 – volume: 12 start-page: 503 year: 2015 end-page: 513 ident: CR44 article-title: Correlated light and electron microscopy: ultrastructure lights up! publication-title: Nat. Methods doi: 10.1038/nmeth.3400 – volume: 7 start-page: 339 year: 2010 end-page: 340 ident: CR59 article-title: QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ publication-title: Nat. Methods doi: 10.1038/nmeth0510-339 – volume: 14 start-page: 593 year: 2017 end-page: 599 ident: CR43 article-title: Iterative expansion microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4261 – volume: 27 start-page: 2672 year: 2014 end-page: 2680 ident: CR22 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – volume: 13 start-page: 359 year: 2016 end-page: 365 ident: CR3 article-title: High-density three-dimensional localization microscopy across large volumes publication-title: Nat. Methods doi: 10.1038/nmeth.3797 – volume: 11 start-page: 253 year: 2014 end-page: 266 ident: CR4 article-title: Precisely and accurately localizing single emitters in fluorescence microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.2843 – volume: 2 start-page: 1377 year: 2011 end-page: 1393 ident: CR9 article-title: Simultaneous multiple-emitter fitting for single molecule super-resolution imaging publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.001377 – volume: 341 start-page: 655 year: 2013 end-page: 658 ident: CR34 article-title: Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging publication-title: Science doi: 10.1126/science.1240672 – ident: CR52 – volume: 2 start-page: 12 year: 2016 end-page: 14 ident: CR54 article-title: TensorFlow: biology's gateway to deep learning? publication-title: Cell Syst. doi: 10.1016/j.cels.2016.01.009 – volume: 282 start-page: 34801 year: 2007 end-page: 34808 ident: CR30 article-title: Microtubule motors regulate ISOC activation necessary to increase endothelial cell permeability publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704522200 – volume: 108 start-page: 21081 year: 2011 end-page: 21086 ident: CR10 article-title: Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1117430109 – volume: 18 start-page: 81 year: 2017 ident: CR28 article-title: Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations publication-title: Genome Biol. doi: 10.1186/s13059-017-1199-x – volume: 4 start-page: 105 year: 2017 end-page: 113 ident: CR41 article-title: The imaging tsunami: computational opportunities and challenges publication-title: Curr. Opin. Syst. Biol. doi: 10.1016/j.coisb.2017.07.011 – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: CR57 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – ident: CR20 – volume: 464 start-page: 721 year: 2010 ident: BFnbt4106_CR39 publication-title: Nature doi: 10.1038/nature08869 – ident: BFnbt4106_CR21 doi: 10.1007/978-3-319-24574-4_28 – volume: 12 start-page: 503 year: 2015 ident: BFnbt4106_CR44 publication-title: Nat. Methods doi: 10.1038/nmeth.3400 – volume: 15 start-page: 1929 year: 2014 ident: BFnbt4106_CR27 publication-title: J. Mach. Learn. Res. – volume: 2 start-page: 1377 year: 2011 ident: BFnbt4106_CR9 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.001377 – volume: 3 start-page: 47 year: 2017 ident: BFnbt4106_CR25 publication-title: IEEE Trans. Comput. IMAGING doi: 10.1109/TCI.2016.2644865 – volume: 8 start-page: 499 year: 2011 ident: BFnbt4106_CR5 publication-title: Nat. Methods doi: 10.1038/nmeth.1605 – volume: 5 start-page: 1266 year: 1996 ident: BFnbt4106_CR55 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.506761 – volume: 109 start-page: 8564 year: 2012 ident: BFnbt4106_CR60 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1013267109 – ident: BFnbt4106_CR53 – volume: 18 start-page: 81 year: 2017 ident: BFnbt4106_CR28 publication-title: Genome Biol. doi: 10.1186/s13059-017-1199-x – volume: 2013 start-page: 8150 year: 2013 ident: BFnbt4106_CR23 publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 30 start-page: 3 year: 2013 ident: BFnbt4106_CR51 publication-title: Proc. 30th Int. Conf. Mach. Learn. – volume: 27 start-page: 2672 year: 2014 ident: BFnbt4106_CR22 publication-title: Adv. Neural Inf. Process. Syst. – volume: 2 start-page: 12 year: 2016 ident: BFnbt4106_CR54 publication-title: Cell Syst. doi: 10.1016/j.cels.2016.01.009 – volume: 9 start-page: 195 year: 2012 ident: BFnbt4106_CR13 publication-title: Nat. Methods doi: 10.1038/nmeth.1812 – volume: 12 start-page: 23 year: 2015 ident: BFnbt4106_CR8 publication-title: Nat. Methods doi: 10.1038/nmeth.3219 – volume: 11 start-page: 5090 year: 2011 ident: BFnbt4106_CR11 publication-title: Nano Lett. doi: 10.1021/nl203560r – volume: 12 start-page: 1198 year: 2017 ident: BFnbt4106_CR32 publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.024 – volume: 92 start-page: 14.20.1 year: 2010 ident: BFnbt4106_CR61 publication-title: Curr. Protoc. Mol. Biol. doi: 10.1002/0471142727.mb1420s92 – volume: 529 start-page: 418 year: 2016 ident: BFnbt4106_CR37 publication-title: Nature doi: 10.1038/nature16496 – volume: 347 start-page: 543 year: 2015 ident: BFnbt4106_CR42 publication-title: Science doi: 10.1126/science.1260088 – volume: 313 start-page: 504 year: 2006 ident: BFnbt4106_CR17 publication-title: Science doi: 10.1126/science.1127647 – volume: 1 start-page: 958 year: 2003 ident: BFnbt4106_CR56 publication-title: Seventh Int. Conf. Doc. Anal. Recognition, 2003. Proceedings doi: 10.1109/ICDAR.2003.1227801 – ident: BFnbt4106_CR50 doi: 10.1109/IWAENC.2016.7602891 – volume: 13 start-page: 359 year: 2016 ident: BFnbt4106_CR3 publication-title: Nat. Methods doi: 10.1038/nmeth.3797 – volume: 4 start-page: 105 year: 2017 ident: BFnbt4106_CR41 publication-title: Curr. Opin. Syst. Biol. doi: 10.1016/j.coisb.2017.07.011 – volume: 30 start-page: 2389 year: 2014 ident: BFnbt4106_CR62 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu202 – volume: 14 start-page: 785 year: 2007 ident: BFnbt4106_CR36 publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4402055 – volume: 3 start-page: 793 year: 2006 ident: BFnbt4106_CR2 publication-title: Nat. Methods doi: 10.1038/nmeth929 – volume: 1 start-page: 177 year: 1977 ident: BFnbt4106_CR31 publication-title: Cell Biol. Int. Rep. doi: 10.1016/0309-1651(77)90038-8 – volume: 341 start-page: 655 year: 2013 ident: BFnbt4106_CR34 publication-title: Science doi: 10.1126/science.1240672 – ident: BFnbt4106_CR16 – volume: 5 start-page: 900 year: 1995 ident: BFnbt4106_CR29 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(95)00180-1 – volume: 30 start-page: 5580 year: 2017 ident: BFnbt4106_CR49 publication-title: Adv. Neural Inf. Process. Syst. – volume: 5 start-page: 687 year: 2008 ident: BFnbt4106_CR64 publication-title: Nat. Methods doi: 10.1038/nmeth.1233 – volume: 317 start-page: 1749 year: 2007 ident: BFnbt4106_CR46 publication-title: Science doi: 10.1126/science.1146598 – volume: 11 start-page: 253 year: 2014 ident: BFnbt4106_CR4 publication-title: Nat. Methods doi: 10.1038/nmeth.2843 – volume: 25 start-page: 1463 year: 2009 ident: BFnbt4106_CR63 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp184 – volume: 319 start-page: 810 year: 2008 ident: BFnbt4106_CR45 publication-title: Science doi: 10.1126/science.1153529 – volume: 15 start-page: 263 year: 2018 ident: BFnbt4106_CR26 publication-title: Nat. Methods doi: 10.1038/nmeth.4605 – volume: 6 start-page: 991 year: 2011 ident: BFnbt4106_CR58 publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.336 – volume: 10 start-page: 653 year: 2013 ident: BFnbt4106_CR6 publication-title: Nat. Methods doi: 10.1038/nmeth.2488 – volume: 9 start-page: 721 year: 2012 ident: BFnbt4106_CR12 publication-title: Nat. Methods doi: 10.1038/nmeth.1978 – volume: 282 start-page: 34801 year: 2007 ident: BFnbt4106_CR30 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704522200 – volume: 11 start-page: 313 year: 2014 ident: BFnbt4106_CR47 publication-title: Nat. Methods doi: 10.1038/nmeth.2835 – volume: 108 start-page: 21081 year: 2011 ident: BFnbt4106_CR10 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1117430109 – volume: 12 start-page: 717 year: 2015 ident: BFnbt4106_CR19 publication-title: Nat. Methods doi: 10.1038/nmeth.3442 – volume: 117 start-page: 1 year: 1995 ident: BFnbt4106_CR57 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 26 start-page: 98 year: 2009 ident: BFnbt4106_CR24 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.930649 – volume: 28 start-page: 333 year: 2017 ident: BFnbt4106_CR38 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e16-06-0421 – volume: 125 start-page: 570 year: 2012 ident: BFnbt4106_CR33 publication-title: J. Cell Sci. doi: 10.1242/jcs.098822 – volume: 313 start-page: 1642 year: 2006 ident: BFnbt4106_CR1 publication-title: Science doi: 10.1126/science.1127344 – volume: 14 start-page: 593 year: 2017 ident: BFnbt4106_CR43 publication-title: Nat. Methods doi: 10.1038/nmeth.4261 – volume: 103 start-page: 4457 year: 2006 ident: BFnbt4106_CR14 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0508047103 – volume: 5 start-page: 417 year: 2008 ident: BFnbt4106_CR48 publication-title: Nat. Methods doi: 10.1038/nmeth.1202 – volume: 7 start-page: 14732 year: 2017 ident: BFnbt4106_CR35 publication-title: Sci. Rep. doi: 10.1038/s41598-017-15433-2 – volume: 521 start-page: 436 year: 2015 ident: BFnbt4106_CR15 publication-title: Nature doi: 10.1038/nature14539 – volume: 14 start-page: 1184 year: 2017 ident: BFnbt4106_CR40 publication-title: Nat. Methods doi: 10.1038/nmeth.4486 – volume: 61 start-page: 85 year: 2015 ident: BFnbt4106_CR18 publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 107 start-page: 16016 year: 2010 ident: BFnbt4106_CR7 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1004037107 – volume: 7 start-page: 339 year: 2010 ident: BFnbt4106_CR59 publication-title: Nat. Methods doi: 10.1038/nmeth0510-339 – ident: BFnbt4106_CR20 doi: 10.1109/CVPR.2017.632 – ident: BFnbt4106_CR52 doi: 10.1109/ICCV.2017.304  | 
    
| SSID | ssj0006466 | 
    
| Score | 2.6888614 | 
    
| Snippet | Accelerating PALM/STORM microscopy with deep learning allows super-resolution imaging of >1,000 cells in a few hours.
The speed of super-resolution microscopy... The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many...  | 
    
| SourceID | unpaywall hal proquest gale pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 460 | 
    
| SubjectTerms | 13 14 14/1 14/34 14/63 631/114/1305 631/114/1564 631/1647/245/2225 631/1647/328 631/1647/328/2238 Agriculture Algorithms Artificial neural networks Bioinformatics Biomedical Engineering/Biotechnology Biomedicine Biotechnology Computer applications Computer simulation Deep Learning Frames Image acquisition Image quality Image reconstruction Image resolution Irradiation Life Sciences Localization Methods Microscopy Microscopy - methods Microscopy - statistics & numerical data Microscopy, Fluorescence Microscopy, Fluorescence - methods Microscopy, Fluorescence - statistics & numerical data Microtubules Mitochondria Molecular chains Nanotechnology Nanotechnology - methods Nanotechnology - statistics & numerical data Neural networks Neural Networks (Computer) Nuclear pores Palm Radiation Santé publique et épidémiologie Spatial discrimination Spatial resolution  | 
    
| SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61qXj0gCC8AgWZCujJYHvXjz0gFKBVQG1ApUW9WevdTTmkjoljUP49M_baTVRAXHzxJ9u7Ozs745n5BuB5hL4_KsTMjY3MXB7I2BVCBq6RQus48wMTUzXy0TganfJPZ-HZBozbWhhKq2x1Yq2o9UzRP3J00sOEYkDMe1v8cKlrFEVX2xYa0rZW0G9qirFN2AqIGasHW-_2x1-OO90cNdFL30so4TKMWjpalrzOs8Ur7lPno5UDyqrpze-UJXnVBF0Jn27DjSov5PKXnE5XTqiD23DLmpbOsJGFO7Bh8j5ca5pNLvuwvUI92IfrRzaofhcOPxhTOLZ9xLlzgeY0qsDp0sHh4qFEXBKlU1aFmbvom1tRdepD0BZxOheU1kcFLst7cHKwf_J-5NomC66KwnDhmpBLww1nkqnQM9qISGqlszAyCeOBipVRGWNaxVr6KhIy44ZlvlBiMvFFwu5DL5_l5iE4HJ1FYXyNPlfApZ5INKcE14mMPMMDTw5gr53YVFkCcuqDMU3rQDhLUlyClJZgAM86ZNGQbvwB84LWJrW9OvFS0t-M8lxWZZkOiaWGRV4cD2C3xhHXRU7JNA3g4-dv_wH6erwG2rOgyQy_W0lbwICjJw6tNeTOGhJ3rFq7_RLlqRsZEXyPhodpIXFfV_MUDXjyEuOfPj6nFbnUqpYyvdwIOE3dbXoFpcvlZlYRJggT8lb5AB40otq9LiC6H8EZjrmV3cuHX53l3U6q_7oUj_79mY_hJlqZSZNftwO9xbwyT9CSW2RP7fb8Dae4RxQ priority: 102 providerName: ProQuest  | 
    
| Title | Deep learning massively accelerates super-resolution localization microscopy | 
    
| URI | https://link.springer.com/article/10.1038/nbt.4106 https://www.ncbi.nlm.nih.gov/pubmed/29658943 https://www.proquest.com/docview/2058241330 https://www.proquest.com/docview/2025800864 https://pasteur.hal.science/pasteur-02074397  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 36 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1546-1696 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006466 issn: 1546-1696 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1546-1696 dateEnd: 20181231 omitProxy: true ssIdentifier: ssj0006466 issn: 1546-1696 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1546-1696 dateEnd: 20181231 omitProxy: true ssIdentifier: ssj0006466 issn: 1546-1696 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1546-1696 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0006466 issn: 1546-1696 databaseCode: 8FG dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB5tW_HYA4_yKixVWAF7ISWJHSc-FthS0Las9oHKKXIcd1eim1ZNAyq_nnHjhJYFqZcckk9JnBnbn-OZbwBeMlz744AY24ESsU09EdicC89WgidJELueCnQ28mDI-uf088gf7cCbMhdmJrBx-bxziczTzAHlORuZjabPQQ0azEfmXYfG-fC4-62IodcRlKtirUgKmO0yzkqtWRK-TeNFh7q6rNHa7GPG4NqlDoG8zi_X9kZ34VaezsTyp5hM1qaf3l0YVC--ijr53skXcUf--kvTcduW3YM7hoda3cJx7sOOSptwo6hMuWzC7ppOYRNuDswO_AM4-qDUzDK1Ji6sK-TeOF5OlpaQEmcwLTyRWVk-U3MbF_LGr63VjGkyPq0rHQOos2GWD-Gsd3j2vm-bigy2ZL6_sJVPhaKKEkGk76hEcSYSmcQ-UyGhngykkjEhiQwS4UrGRUwViV0u-Xjs8pA8gno6TdUTsCiuLLlyE1ygeVQkY4Hci9MkFMxR1HNECw5KQ0XSqJXrohmTaLVrTsIITRppk7bgRYWcFQod_8C80raOTGFPPGT610d2IfIsi7pa0oYwJwhasL_CaWGMVEfeFIBPX75uATo92QAdGNB4iu8thcl2wNZrwa0N5N4GEru33Lj8Gj2maplWA-93jyLjOVHpOT9cvE_pwpEZh7LIc_xQ75wSBz9TdVk_QsfWpWqaa4znh3ppS1vwuHD96nGe1gbilGCby77w5-bXv_J-1Uv-a4qn24CewW0kpmERkrcH9cU8V8-R_C3iNtSCUYDHsPexDY13h8Pjk7YZB34DAUBb0g | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENb0MVB6YCBQCBQwHUpPLrYlvw4dJtB2EpoEpg1MbxpZUsohdUwc08mP47-xG8tuMgWGSy--eEe2pNU-tLvfEvImAN8fBGJih1okNvNEaMex8GwtYqXCxPV0iNXIvX7Q_so-nfvnK-RXVQuDaZWVTJwLajWWeEcOTrofYQyIOu-zHzZ2jcLoatVCQ5jWCupgDjFmCjtO9OwKXLj8oHMI-73recdHg49t23QZsGXg-1Nb-0xophkVVPqOVjoOhJIq8QMdUebJUGqZUKpkqIQrg1gkTNPEjWU8HILHTmHYVbLOKIvB91v_cNT_clqrgqAMlrpOhPmdflCh39LoXZpM95mLjZYW9KHRCqvfMSnzpsW7EK3dJBtFmonZlRiNFhTi8QNy31iyVqtkvYdkRacNcqfsbTlrkM0FpMMGudszMfxHpHuodWaZbhUX1iVY7yBxRzMLVhd0IEJX5FZeZHpiT3R1Mqy5zjU1o9YlZhFiPc3sMRncxmpvkbV0nOqnxGLgm8baVeDieUyooQDrLWYqEoGjmeeIJtmrFpZLg3eObTdGfB53pxGHLeC4BU3yuqbMSoyPP9Ds4t5w0xoUHjlenuQXoshz3kJQHBo4YdgkO3M6hNZIMXenJOh8_vYfRGenS0R7hmg4hv-WwtRLwOwRsmuJcnuJEgSEXHr9FvipnhniibdbXZ4JECPFhIO_gE5p-NOFcSqW40aS5fz63MEy1a_xE5idl-pxgTSeH6FzzJrkScmq9ec8RBeKGYU5V7x7PfjNVd6pufqvW_Hs37_5imy0B70u73b6J8_JPTBwozK1b5usTSeFfgFG5DR5aY6qRfgtC4ff4COGdg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IQZ7QFAYFAaEibGnbEnsfD0gVFGqlnUDsYH6Zjm2Ox66NDQNU_80_jvuEidrNUC87CUv-cmJfef78J3vCHkdgO8PAjGxQy0Sm3kitONYeLYWsVJh4no6xNvIxydB_yv7OPJHa-RXfRcG0yprmVgKajWVeEYOTrofYQyIOodjkxbxudt7l_2wsYMURlrrdhoVixzpxSW4b_nbQRdoved5vQ9n7_u26TBgy8D357b2mdBMMyqo9B2tdBwIJVXiBzqizJOh1DKhVMlQCVcGsUiYpokby3g8Bm-dwrDr5FZIaYzZhOGo8fVA0ZdhUteJMLPTD-q6tzQ6TJP5AXOxxdKSJjT6YP07pmNet3WX4rRb5E6RZmJxKSaTJVXYu0_uGRvW6lRM94Cs6bRFblddLRctsrVU47BFNo9N9P4hGXa1zizTp-LcugC7HWTtZGEJKUH7YdGK3MqLTM_sma73hFVqW3Nb1LrA_EG8SbN4RM5uYq23yUY6TfUTYjHwSmPtKnDuPCbUWIDdFjMVicDRzHNEm-zXC8ulqXSODTcmvIy404gDCTiSoE1eNcisqu7xB8we0oabpqDwyPHYJD8XRZ7zDpbDoYEThm2yW-KwqEaK7FkBBp--_Qfo9MsKaN-AxlP4bynMTQmYPRbrWkHurCBBNMiV12-An5qZYSXxfmfIMwECpJhx8BTQHQ1_ujBOzXLcyLCcX-04WKbmNX4C8_JSPS0Q4_kRusWsTR5XrNp8zsO6QjGjMOead68Gv77Kuw1X_5UUT__9my_JJogEPhycHD0jd8Gyjaqcvh2yMZ8V-jlYj_PkRblPLcJvWC78BjnIhBA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5tnWDsgR9lQGGgMAF7ISWJHSd-rICpoHUg2KbxFDmOu0l0adU0oPLXc9c4oWUg9SUPyackzp3tz_HddwAvBK79cUBM3cio1OWBilwpVeAaJbMsSv3ARJSNPDgW_VP-8Tw834DXdS7MRGHjymn3EpmnnQPqcy4yG6LP0SZsiRCZdwu2To8_975VMfQUQbko1oqkQLi-kKLWmmXxmzyddblPZY2WZh87Bm9eUgjkdX65tDe6A9tlPlHzn2o0Wpp-Du_AoHnxRdTJ9245S7v611-ajuu27C7ctjzU6VWOcw82TN6GG1VlynkbdpZ0Cttwc2B34O_D0TtjJo6tNXHhXCH3xvFyNHeU1jiDkfBE4RTlxExdXMhbv3YWM6bN-HSuKAaQsmHmu3By-P7kbd-1FRlcLcJw5pqQK8MNZ4rp0DOZkUJlOktDYWLGAx1po1PGMh1lytdCqpQblvpSy-HQlzF7AK18nJtH4HBcWUrjZ7hAC7jKhgq5l-RZrIRneOCpDhzUhkq0VSunohmjZLFrzuIETZqQSTvwvEFOKoWOf2Bekq0TW9gTDwX9-iguVFkUSY8kbZjwoqgD-wscCWPkFHlTAT58OlsD9PXLCujAgoZjfG-tbLYDtp4Et1aQeytI7N565fIr9JimZaQG3u8dJdZzktpzfvh4n9qFEzsOFUnghTHtnDIPP1NzmR5BsXW5GZeECcKYlra8Aw8r128eF5A2kOQM21z3hT83v_6V95te8l9TPF4H9ARuITGNq5C8PWjNpqV5iuRvlj6zff43AWJYaw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+massively+accelerates+super-resolution+localization+microscopy&rft.jtitle=Nature+biotechnology&rft.au=Ouyang%2C+Wei&rft.au=Aristov%2C+Andrey&rft.au=Lelek%2C+Micka%C3%ABl&rft.au=Hao%2C+Xian&rft.date=2018-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1087-0156&rft.volume=36&rft.issue=5&rft.spage=460&rft_id=info:doi/10.1038%2Fnbt.4106&rft.externalDocID=A537636077 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |