Deep learning massively accelerates super-resolution localization microscopy

Accelerating PALM/STORM microscopy with deep learning allows super-resolution imaging of >1,000 cells in a few hours. The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with...

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 36; no. 5; pp. 460 - 468
Main Authors Ouyang, Wei, Aristov, Andrey, Lelek, Mickaël, Hao, Xian, Zimmer, Christophe
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.06.2018
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1087-0156
1546-1696
1546-1696
DOI10.1038/nbt.4106

Cover

Abstract Accelerating PALM/STORM microscopy with deep learning allows super-resolution imaging of >1,000 cells in a few hours. The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.
AbstractList The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.
The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.
The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of [greater than] 1,000 fields of view containing [greater than] 1,000 cells in [similar]3 h, yielding an image spanning spatial scales from [similar]20 nm to [similar]2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.
Accelerating PALM/STORM microscopy with deep learning allows super-resolution imaging of >1,000 cells in a few hours. The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.
Audience Academic
Author Zimmer, Christophe
Ouyang, Wei
Lelek, Mickaël
Hao, Xian
Aristov, Andrey
Author_xml – sequence: 1
  givenname: Wei
  surname: Ouyang
  fullname: Ouyang, Wei
  organization: Institut Pasteur, Unité Imagerie et Modélisation, UMR 3691, CNRS, C3BI, USR 3756, IP CNRS
– sequence: 2
  givenname: Andrey
  surname: Aristov
  fullname: Aristov, Andrey
  organization: Institut Pasteur, Unité Imagerie et Modélisation, UMR 3691, CNRS, C3BI, USR 3756, IP CNRS
– sequence: 3
  givenname: Mickaël
  surname: Lelek
  fullname: Lelek, Mickaël
  organization: Institut Pasteur, Unité Imagerie et Modélisation, UMR 3691, CNRS, C3BI, USR 3756, IP CNRS
– sequence: 4
  givenname: Xian
  surname: Hao
  fullname: Hao, Xian
  organization: Institut Pasteur, Unité Imagerie et Modélisation, UMR 3691, CNRS, C3BI, USR 3756, IP CNRS
– sequence: 5
  givenname: Christophe
  surname: Zimmer
  fullname: Zimmer, Christophe
  email: czimmer@pasteur.fr
  organization: Institut Pasteur, Unité Imagerie et Modélisation, UMR 3691, CNRS, C3BI, USR 3756, IP CNRS
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29658943$$D View this record in MEDLINE/PubMed
https://pasteur.hal.science/pasteur-02074397$$DView record in HAL
BookMark eNqN0l1r2zAUBmAzOtaPDfYLRmA3LcyZZMmyfRm6jxYCha3sVhzLx6mKInmS3C379VOabFm6MoYvbJnnHNB7znF2YJ3FLHtJyZQSVr-1bZxySsST7IiWXORUNOIgfZO6ygktxWF2HMItIURwIZ5lh0Ujyrrh7Cibv0McJgbBW20XkyWEoO_QrCagFBr0EDFMwjigzz0GZ8aonZ0Yp8DoH3B_WGrlXVBuWD3PnvZgAr7Yvk-y6w_vr88v8vnVx8vz2TxXoixjjiUH5MgZMFUS7LAR0KmuLQXWjBeqUqhaxjpVdUCVaKDlyFraqKbvaVOzk-xs03a0A6y-gTFy8HoJfiUpketAZApErgNJNt_YG9gpB1pezOZygBBx9JIUpOKsqe5o8qcbP3j3dcQQ5VKHlIQBi24MsiBFWRNSC57o6wf01o3eposnVdYFp4yRnVqAQalt76IHtW4qZyWrBBOkqpKaPqLS02GKNw271-n_XsHZXkEyEb_HBYwhyMvPn_7fXn3Zt2_-sO0YtMW0EjboxU0Mm5I9_mqbwdgusfud8K8F2-W53pHgsf_XqKYPqNLxfsVSFto8VrC9V0g97QL9bgB_2Z-4afs8
CitedBy_id crossref_primary_10_1016_j_ceb_2024_102378
crossref_primary_10_1038_s41377_021_00484_y
crossref_primary_10_1364_OE_510683
crossref_primary_10_1016_j_acags_2024_100202
crossref_primary_10_1038_s42003_021_02086_1
crossref_primary_10_1038_s41592_020_0853_5
crossref_primary_10_1126_sciadv_adj3656
crossref_primary_10_1038_s44303_024_00054_y
crossref_primary_10_1109_TUFFC_2022_3222534
crossref_primary_10_1088_2515_7647_ac3838
crossref_primary_10_1038_s41467_022_32626_0
crossref_primary_10_1364_PRJ_415960
crossref_primary_10_1007_s13762_022_04526_9
crossref_primary_10_12677_mos_2024_134375
crossref_primary_10_1039_D1LC01043C
crossref_primary_10_1109_TUFFC_2024_3388102
crossref_primary_10_35713_aic_v1_i3_45
crossref_primary_10_1109_ACCESS_2024_3421349
crossref_primary_10_1111_cmi_13349
crossref_primary_10_1038_s41592_023_02057_w
crossref_primary_10_1109_TCBB_2020_2991173
crossref_primary_10_1242_jcs_240713
crossref_primary_10_1042_BST20180391
crossref_primary_10_1021_acsnano_4c15364
crossref_primary_10_1038_s41592_018_0211_z
crossref_primary_10_1002_jbio_201960147
crossref_primary_10_1021_acsnano_9b05891
crossref_primary_10_1364_OPTICA_448287
crossref_primary_10_1016_j_neucom_2021_04_050
crossref_primary_10_1364_BOE_476737
crossref_primary_10_1111_jmi_13083
crossref_primary_10_1021_acsphotonics_1c00915
crossref_primary_10_1117_1_JBO_28_3_036501
crossref_primary_10_3389_fbioe_2021_647874
crossref_primary_10_1242_jcs_261545
crossref_primary_10_1364_OE_453695
crossref_primary_10_1038_s41592_022_01589_x
crossref_primary_10_1364_BOE_505217
crossref_primary_10_3390_ijms23136896
crossref_primary_10_1038_s41467_024_49125_z
crossref_primary_10_1021_acs_analchem_3c05857
crossref_primary_10_1039_D4CS01193G
crossref_primary_10_1364_PRJ_469231
crossref_primary_10_52601_bpr_2021_210019
crossref_primary_10_1038_s41587_023_01702_1
crossref_primary_10_1364_BOE_427989
crossref_primary_10_1038_s41592_021_01155_x
crossref_primary_10_1089_ars_2019_7754
crossref_primary_10_1021_acsphotonics_3c01253
crossref_primary_10_1038_s43586_021_00038_x
crossref_primary_10_1016_j_micinf_2019_06_014
crossref_primary_10_1016_j_optcom_2023_130024
crossref_primary_10_1038_s41467_023_43440_7
crossref_primary_10_1021_acs_accounts_0c00621
crossref_primary_10_1016_j_stemcr_2019_02_004
crossref_primary_10_1063_5_0090582
crossref_primary_10_1016_j_compstruct_2023_117131
crossref_primary_10_1063_5_0034891
crossref_primary_10_1109_MSP_2021_3119273
crossref_primary_10_1021_acs_nanolett_3c04870
crossref_primary_10_1364_OL_537713
crossref_primary_10_3788_LOP232549
crossref_primary_10_1109_JPHOT_2024_3476514
crossref_primary_10_1021_cbmi_3c00060
crossref_primary_10_1038_s41377_022_00768_x
crossref_primary_10_1038_s41377_019_0129_y
crossref_primary_10_1038_s42256_021_00379_y
crossref_primary_10_1364_OE_531588
crossref_primary_10_3390_mi12121558
crossref_primary_10_1016_j_bspc_2023_105668
crossref_primary_10_1038_s41556_018_0251_8
crossref_primary_10_1109_TUFFC_2023_3304527
crossref_primary_10_1021_acs_analchem_1c04330
crossref_primary_10_1093_bioinformatics_btz728
crossref_primary_10_1038_s41377_019_0192_4
crossref_primary_10_1146_annurev_biophys_111622_091212
crossref_primary_10_7554_eLife_69380
crossref_primary_10_1021_acs_analchem_4c07047
crossref_primary_10_52601_bpr_2023_230014
crossref_primary_10_1371_journal_pone_0235111
crossref_primary_10_1038_s41592_024_02520_2
crossref_primary_10_1109_ACCESS_2020_3040319
crossref_primary_10_1038_s41377_022_00820_w
crossref_primary_10_1038_s41586_020_2973_6
crossref_primary_10_1088_1361_6463_ab6b95
crossref_primary_10_1038_s41377_023_01230_2
crossref_primary_10_1038_s41467_024_48575_9
crossref_primary_10_1038_s41592_019_0458_z
crossref_primary_10_1038_s41580_024_00702_6
crossref_primary_10_1364_AO_476488
crossref_primary_10_1038_s41467_022_34197_6
crossref_primary_10_1002_lpor_202401715
crossref_primary_10_1038_s41592_021_01275_4
crossref_primary_10_1016_j_cbpa_2021_04_001
crossref_primary_10_1021_jacs_0c08178
crossref_primary_10_1364_OE_390856
crossref_primary_10_3389_fbinf_2021_752788
crossref_primary_10_1016_j_nantod_2022_101665
crossref_primary_10_1016_j_tplants_2018_07_007
crossref_primary_10_1371_journal_pcbi_1009155
crossref_primary_10_1016_j_bpr_2023_100123
crossref_primary_10_1186_s12859_023_05320_1
crossref_primary_10_1364_OE_467574
crossref_primary_10_1364_PRJ_410556
crossref_primary_10_1088_1361_6560_acf98f
crossref_primary_10_1021_acs_nanolett_9b00590
crossref_primary_10_3390_photonics9040261
crossref_primary_10_1016_j_bspc_2020_101846
crossref_primary_10_1515_nanoph_2023_0936
crossref_primary_10_1021_acs_analchem_0c04671
crossref_primary_10_1002_cyto_a_23973
crossref_primary_10_1109_TMI_2020_2986781
crossref_primary_10_3788_LOP241455
crossref_primary_10_1038_s41596_021_00611_4
crossref_primary_10_1155_2021_6663977
crossref_primary_10_1038_s41592_023_01931_x
crossref_primary_10_1091_mbc_E22_06_0200
crossref_primary_10_1039_D2LC00813K
crossref_primary_10_7498_aps_71_20220954
crossref_primary_10_1038_s41435_019_0068_x
crossref_primary_10_1364_OE_27_013581
crossref_primary_10_1155_2021_6493130
crossref_primary_10_1364_OE_390878
crossref_primary_10_1038_s41566_020_00716_4
crossref_primary_10_7554_eLife_60404
crossref_primary_10_1038_s41592_018_0028_9
crossref_primary_10_1038_s41598_019_40554_1
crossref_primary_10_1111_tra_12957
crossref_primary_10_1364_OE_403316
crossref_primary_10_1515_nanoph_2022_0197
crossref_primary_10_1364_OE_423892
crossref_primary_10_1364_OE_402109
crossref_primary_10_1007_s12551_021_00864_z
crossref_primary_10_1021_acs_chemrev_2c00627
crossref_primary_10_1016_j_cis_2023_102880
crossref_primary_10_1364_OE_487286
crossref_primary_10_1103_PhysRevLett_127_253602
crossref_primary_10_3389_fgene_2022_913372
crossref_primary_10_1002_mp_15350
crossref_primary_10_1038_s41598_020_68564_4
crossref_primary_10_1109_JPHOT_2019_2961137
crossref_primary_10_1002_adma_202109171
crossref_primary_10_1364_BOE_393081
crossref_primary_10_1093_bioinformatics_btac688
crossref_primary_10_1016_j_displa_2025_102968
crossref_primary_10_1016_j_molcel_2021_12_022
crossref_primary_10_1039_D3NR04294D
crossref_primary_10_1016_j_bios_2025_117374
crossref_primary_10_1038_s41598_022_12571_0
crossref_primary_10_1242_jcs_254292
crossref_primary_10_1364_BOE_444488
crossref_primary_10_1364_BOE_10_001044
crossref_primary_10_1364_OE_27_016871
crossref_primary_10_1039_D2CS00562J
crossref_primary_10_1088_2515_7647_abf02c
crossref_primary_10_1093_bioinformatics_btaa154
crossref_primary_10_1091_mbc_E22_02_0039
crossref_primary_10_1109_TCI_2021_3093788
crossref_primary_10_3390_photonics11020101
crossref_primary_10_1038_s41592_023_02138_w
crossref_primary_10_1093_cercor_bhaa237
crossref_primary_10_3390_s23187691
crossref_primary_10_1364_AO_404151
crossref_primary_10_1007_s12021_022_09594_3
crossref_primary_10_1038_s41592_019_0622_5
crossref_primary_10_1016_j_cobme_2019_09_009
crossref_primary_10_1186_s43074_022_00077_x
crossref_primary_10_1002_cjoc_202200764
crossref_primary_10_1016_j_isci_2023_108145
crossref_primary_10_1016_j_optlastec_2023_109781
crossref_primary_10_1038_s41592_023_01966_0
crossref_primary_10_1002_advs_202202089
crossref_primary_10_1038_s41587_022_01651_1
crossref_primary_10_1038_s42256_024_00883_x
crossref_primary_10_1063_5_0069349
crossref_primary_10_1021_acs_analchem_3c00274
crossref_primary_10_1007_s00500_021_06707_z
crossref_primary_10_1016_j_colcom_2022_100595
crossref_primary_10_1002_cyto_a_23777
crossref_primary_10_1038_s41598_021_85905_z
crossref_primary_10_1364_OE_402317
crossref_primary_10_1016_j_isci_2021_102134
crossref_primary_10_1038_s41592_021_01080_z
crossref_primary_10_1016_j_mehy_2020_110017
crossref_primary_10_1515_nanoph_2020_0291
crossref_primary_10_1016_j_bpj_2024_09_001
crossref_primary_10_1016_j_tcb_2022_06_011
crossref_primary_10_1038_s41377_021_00594_7
crossref_primary_10_1038_s41467_024_55262_2
crossref_primary_10_1016_j_cels_2021_05_003
crossref_primary_10_1016_j_tibs_2021_05_010
crossref_primary_10_1038_s41467_022_29236_1
crossref_primary_10_1038_s41592_018_0216_7
crossref_primary_10_3390_s24196248
crossref_primary_10_3762_bjnano_12_66
crossref_primary_10_1016_j_crmeth_2023_100500
crossref_primary_10_1038_s41598_024_68918_2
crossref_primary_10_1063_5_0003322
crossref_primary_10_1107_S2052252523010114
crossref_primary_10_1155_2024_6465280
crossref_primary_10_1002_smtd_202301243
crossref_primary_10_3390_photonics6020066
crossref_primary_10_1038_s41583_022_00647_9
crossref_primary_10_1016_j_rio_2020_100019
crossref_primary_10_1063_5_0082799
crossref_primary_10_1186_s40708_022_00158_4
crossref_primary_10_3389_fphar_2019_01303
crossref_primary_10_3788_LOP230749
crossref_primary_10_1364_OE_26_030762
crossref_primary_10_1016_j_bpr_2023_100133
crossref_primary_10_1021_acsnano_4c18035
crossref_primary_10_1002_smll_202205030
crossref_primary_10_1016_j_semcancer_2023_06_003
crossref_primary_10_1088_1674_1056_ac4e0c
crossref_primary_10_1016_j_optlaseng_2023_107840
crossref_primary_10_1042_BST20200746
crossref_primary_10_1017_S1431927622000782
crossref_primary_10_1039_D3LC00935A
crossref_primary_10_3788_CJL240817
crossref_primary_10_1038_s41592_021_01236_x
crossref_primary_10_1111_jmi_12772
crossref_primary_10_1088_1742_6596_2822_1_012047
crossref_primary_10_1021_acsnano_4c01534
crossref_primary_10_1002_smtd_202401757
crossref_primary_10_1039_D1CB00024A
crossref_primary_10_3389_fcell_2019_00279
crossref_primary_10_1117_1_JBO_29_6_066501
crossref_primary_10_1038_s41467_020_20268_z
crossref_primary_10_1002_advs_202300947
crossref_primary_10_3389_fchem_2022_864701
crossref_primary_10_1002_smtd_202400672
crossref_primary_10_1186_s43593_022_00038_8
crossref_primary_10_1093_gigascience_giab032
crossref_primary_10_1016_j_softx_2023_101462
crossref_primary_10_1155_2022_7999312
crossref_primary_10_1016_j_csbj_2020_08_003
crossref_primary_10_1109_TMI_2020_3006445
crossref_primary_10_1364_BOE_391806
crossref_primary_10_1038_s41467_019_13447_0
crossref_primary_10_1002_smtd_202401654
crossref_primary_10_1038_s41467_025_55952_5
crossref_primary_10_34133_icomputing_0082
crossref_primary_10_1088_1361_6560_ab5bb4
crossref_primary_10_1021_acs_accounts_0c00057
crossref_primary_10_1109_JSTQE_2021_3060762
crossref_primary_10_1073_pnas_1912707116
crossref_primary_10_7554_eLife_90029
crossref_primary_10_1093_bioinformatics_btad494
crossref_primary_10_1364_AO_503034
crossref_primary_10_1002_lpor_202401473
crossref_primary_10_1016_j_biocel_2021_105931
crossref_primary_10_2196_28114
crossref_primary_10_1371_journal_pcbi_1011407
crossref_primary_10_3390_app14041662
crossref_primary_10_1021_acs_analchem_1c04947
crossref_primary_10_1016_j_csbj_2022_04_003
crossref_primary_10_1364_OE_490037
crossref_primary_10_1142_S1793545824300064
crossref_primary_10_1016_j_crmeth_2023_100557
crossref_primary_10_1063_5_0065634
crossref_primary_10_1016_j_mri_2020_01_005
crossref_primary_10_1088_1674_1056_ac1b93
crossref_primary_10_1364_OE_26_033166
crossref_primary_10_1038_s42003_019_0491_6
crossref_primary_10_1364_OE_439976
crossref_primary_10_1088_2515_7647_ab9eac
crossref_primary_10_3389_fnins_2020_578409
crossref_primary_10_1109_MPUL_2018_2857226
crossref_primary_10_1109_TII_2019_2913853
crossref_primary_10_1088_1478_3975_ab7731
crossref_primary_10_3390_s23052469
crossref_primary_10_1002_cyto_a_23701
crossref_primary_10_1007_s00418_022_02147_4
crossref_primary_10_1038_s41592_021_01225_0
crossref_primary_10_1038_s42003_023_04857_4
crossref_primary_10_1038_s41598_022_20378_2
crossref_primary_10_1016_j_talanta_2020_121401
crossref_primary_10_1038_s42003_022_03634_z
crossref_primary_10_1016_j_cmpb_2023_107991
crossref_primary_10_1515_nanoph_2021_0108
crossref_primary_10_1016_j_cbpa_2021_05_010
crossref_primary_10_3389_fcell_2022_901038
crossref_primary_10_1016_j_tcb_2022_11_011
crossref_primary_10_1039_D1LC00475A
crossref_primary_10_1042_EBC20180044
crossref_primary_10_1049_ote2_12113
crossref_primary_10_1364_OE_27_021029
crossref_primary_10_1088_1361_6560_abeb31
crossref_primary_10_1186_s43074_024_00155_2
crossref_primary_10_1016_j_pt_2019_05_004
crossref_primary_10_1364_OE_450429
crossref_primary_10_1364_BOE_410617
crossref_primary_10_1142_S1793545822300166
crossref_primary_10_1038_s41592_019_0627_0
crossref_primary_10_1021_acs_analchem_1c00547
crossref_primary_10_1073_pnas_2304866121
crossref_primary_10_1364_PRJ_416551
crossref_primary_10_1021_acs_jpcc_4c07269
crossref_primary_10_1016_j_slasd_2025_100209
crossref_primary_10_1016_j_optcom_2023_129634
crossref_primary_10_1364_BOE_386361
crossref_primary_10_1364_OE_438444
crossref_primary_10_1111_jmi_13349
crossref_primary_10_1242_dev_188474
crossref_primary_10_1038_s41592_019_0364_4
crossref_primary_10_3390_genes16030330
crossref_primary_10_1364_OE_392358
crossref_primary_10_1016_j_cclet_2024_110677
crossref_primary_10_1038_s42256_023_00704_7
crossref_primary_10_1364_OE_402808
crossref_primary_10_1109_TPAMI_2021_3076873
crossref_primary_10_1088_2040_8986_ac8108
crossref_primary_10_3788_AI_2024_20004
crossref_primary_10_1364_OL_400244
crossref_primary_10_1016_j_jmb_2021_167176
crossref_primary_10_1364_OE_485664
crossref_primary_10_1364_OE_409679
crossref_primary_10_1038_s41598_020_74500_3
crossref_primary_10_1038_s41598_019_50232_x
crossref_primary_10_1038_s41467_020_19673_1
crossref_primary_10_1016_j_neunet_2022_04_011
crossref_primary_10_3390_s24113560
crossref_primary_10_1063_1_5125252
crossref_primary_10_1364_AO_542567
crossref_primary_10_3389_fnins_2021_630250
crossref_primary_10_1063_5_0133027
crossref_primary_10_1080_17460441_2019_1559147
crossref_primary_10_1109_TUFFC_2023_3276634
crossref_primary_10_1111_jmi_13362
crossref_primary_10_1002_lsm_23414
crossref_primary_10_1364_OE_26_030162
crossref_primary_10_1109_TMI_2021_3058373
crossref_primary_10_1088_1674_1056_ac306b
crossref_primary_10_12688_f1000research_50798_1
crossref_primary_10_1364_OE_463996
crossref_primary_10_3390_app11093796
crossref_primary_10_1111_jmi_13135
crossref_primary_10_1142_S1793545824500251
crossref_primary_10_1038_s42254_021_00382_7
crossref_primary_10_1364_OE_27_006147
crossref_primary_10_1016_j_optlaseng_2022_107066
crossref_primary_10_1002_aisy_202000152
crossref_primary_10_1016_j_ultras_2024_107410
crossref_primary_10_1038_s41586_020_2048_8
crossref_primary_10_1364_OE_401925
crossref_primary_10_1038_s41598_022_06065_2
crossref_primary_10_1103_PhysRevLett_124_113202
crossref_primary_10_1364_OE_441892
crossref_primary_10_1021_acs_analchem_9b02702
crossref_primary_10_1088_1361_6463_abff7b
crossref_primary_10_1364_OE_27_006158
crossref_primary_10_1021_acsphotonics_0c01786
crossref_primary_10_1021_acscentsci_1c00483
crossref_primary_10_1038_s41467_023_38452_2
crossref_primary_10_1364_BOE_484540
crossref_primary_10_1364_PRJ_396122
crossref_primary_10_1002_adts_202100369
crossref_primary_10_7554_eLife_90029_3
crossref_primary_10_1021_acs_chemrev_3c00070
crossref_primary_10_3390_photonics11060528
crossref_primary_10_15252_embr_201948559
crossref_primary_10_1002_lpor_202200029
crossref_primary_10_1117_1_JNP_14_016009
crossref_primary_10_1088_1361_6560_acf3cb
crossref_primary_10_3390_f14061249
crossref_primary_10_1016_j_rinp_2023_107318
crossref_primary_10_1364_OE_390121
crossref_primary_10_1038_s41467_024_46989_z
crossref_primary_10_1038_s41598_020_75814_y
crossref_primary_10_1038_s41377_019_0223_1
crossref_primary_10_1038_s41578_020_0180_6
crossref_primary_10_1016_j_cbpa_2019_05_012
crossref_primary_10_1016_j_addr_2023_115138
crossref_primary_10_1021_acsnano_9b05289
crossref_primary_10_3788_LOP232016
crossref_primary_10_1007_s12551_020_00773_7
crossref_primary_10_1016_j_csbj_2021_04_019
crossref_primary_10_1021_acsphotonics_4c00745
crossref_primary_10_1038_s41587_023_01987_2
crossref_primary_10_1002_jim4_17
crossref_primary_10_1016_j_compbiomed_2021_104523
crossref_primary_10_1523_ENEURO_0425_18_2019
crossref_primary_10_1364_OL_387486
crossref_primary_10_1111_jmi_13218
crossref_primary_10_1038_s41598_021_88875_4
crossref_primary_10_1093_lifemeta_loae014
crossref_primary_10_1016_j_neunet_2023_11_039
crossref_primary_10_1109_JPROC_2019_2949575
crossref_primary_10_1021_acsphotonics_0c01774
crossref_primary_10_1038_s41467_022_35349_4
crossref_primary_10_1364_OE_482062
Cites_doi 10.1038/nmeth.4605
10.1038/nmeth.4486
10.1016/j.neunet.2014.09.003
10.1091/mbc.e16-06-0421
10.1038/sj.cdd.4402055
10.1038/nature08869
10.1038/nmeth.1202
10.1073/pnas.1004037107
10.1073/pnas.0508047103
10.1038/nmeth.1605
10.1038/nprot.2011.336
10.1093/bioinformatics/btp184
10.1038/nature14539
10.1242/jcs.098822
10.1126/science.1153529
10.1016/0309-1651(77)90038-8
10.1038/nmeth.1812
10.1109/83.506761
10.1109/TCI.2016.2644865
10.1038/nprot.2017.024
10.1021/nl203560r
10.1126/science.1260088
10.1126/science.1146598
10.1038/nmeth.3219
10.1126/science.1127647
10.1093/bioinformatics/btu202
10.1038/nmeth.1978
10.1016/S0960-9822(95)00180-1
10.1126/science.1127344
10.1073/pnas.1013267109
10.1038/nmeth.2488
10.1109/ICDAR.2003.1227801
10.1038/nmeth929
10.1038/nmeth.2835
10.1038/nmeth.1233
10.1038/s41598-017-15433-2
10.1109/MSP.2008.930649
10.1038/nature16496
10.1038/nmeth.3442
10.1038/nmeth.3400
10.1038/nmeth0510-339
10.1038/nmeth.4261
10.1038/nmeth.3797
10.1038/nmeth.2843
10.1364/BOE.2.001377
10.1126/science.1240672
10.1016/j.cels.2016.01.009
10.1074/jbc.M704522200
10.1073/pnas.1117430109
10.1186/s13059-017-1199-x
10.1016/j.coisb.2017.07.011
10.1006/jcph.1995.1039
10.1007/978-3-319-24574-4_28
10.1002/0471142727.mb1420s92
10.1109/IWAENC.2016.7602891
10.1109/CVPR.2017.632
10.1109/ICCV.2017.304
ContentType Journal Article
Copyright Springer Nature America, Inc. 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group May 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Nature America, Inc. 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group May 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
N95
IOV
ISR
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
RC3
7X8
1XC
VOOES
ADTOC
UNPAY
DOI 10.1038/nbt.4106
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale Business: Insights
Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Proquest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Research Library Prep

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 468
ExternalDocumentID oai:HAL:pasteur-02074397v1
A537636077
29658943
10_1038_nbt_4106
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
3V.
4.4
4R4
53G
5BI
5M7
5RE
5S5
70F
7X7
88A
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAEEF
AAHBH
AAIKC
AAMNW
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NNMJJ
NXXTH
O9-
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XI7
XOL
Y6R
YZZ
ZGI
ZHY
ZXP
~KM
AAYXX
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
ACMFV
AGSTI
7QO
7QP
7QR
7T7
7TK
7TM
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
ADTOC
ESTFP
UNPAY
ID FETCH-LOGICAL-c655t-e54ae4e43a3c50ede96adcdb56e8342c7cecb33dc7da1c69ab4e3b19c9ff1983
IEDL.DBID UNPAY
ISSN 1087-0156
1546-1696
IngestDate Sun Oct 26 02:49:48 EDT 2025
Tue Oct 14 20:15:37 EDT 2025
Thu Oct 02 16:24:53 EDT 2025
Tue Oct 07 05:37:02 EDT 2025
Mon Oct 20 22:17:07 EDT 2025
Mon Oct 20 15:59:23 EDT 2025
Thu Oct 16 14:07:17 EDT 2025
Thu Oct 16 15:13:25 EDT 2025
Fri Jun 27 03:14:02 EDT 2025
Mon Jul 21 05:57:28 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Wed Oct 01 04:49:22 EDT 2025
Fri Feb 21 02:39:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c655t-e54ae4e43a3c50ede96adcdb56e8342c7cecb33dc7da1c69ab4e3b19c9ff1983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0291-926X
0000-0001-9910-1589
0000-0002-5675-7729
0000-0003-4881-3847
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pasteur.hal.science/pasteur-02074397
PMID 29658943
PQID 2058241330
PQPubID 47191
PageCount 9
ParticipantIDs unpaywall_primary_10_1038_nbt_4106
hal_primary_oai_HAL_pasteur_02074397v1
proquest_miscellaneous_2025800864
proquest_journals_2058241330
gale_infotracmisc_A537636077
gale_infotracacademiconefile_A537636077
gale_incontextgauss_ISR_A537636077
gale_incontextgauss_IOV_A537636077
gale_businessinsightsgauss_A537636077
pubmed_primary_29658943
crossref_primary_10_1038_nbt_4106
crossref_citationtrail_10_1038_nbt_4106
springer_journals_10_1038_nbt_4106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2018
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Jungmann (CR47) 2014; 11
Culley (CR26) 2018; 15
Henriques (CR59) 2010; 7
Goodfellow (CR22) 2014; 27
Beghin (CR40) 2017; 14
Cox (CR13) 2012; 9
Huang (CR6) 2013; 10
Arnal, Wade (CR29) 1995; 5
Ram, Ward, Ober (CR14) 2006; 103
Rust, Bates, Zhuang (CR2) 2006; 3
Lelek (CR60) 2012; 109
Ouyang, Zimmer (CR41) 2017; 4
Ciresan, Giusti, Gambardella, Schmidhuber (CR23) 2013; 2013
Neumann (CR39) 2010; 464
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR27) 2014; 15
Ovesný, Křížek, Borkovec, Svindrych, Hagen (CR62) 2014; 30
LeCun, Bengio, Hinton (CR15) 2015; 521
Simard, Steinkraus, Platt (CR56) 2003; 1
Wu (CR30) 2007; 282
Stelzer (CR8) 2015; 12
Zhao, Gallo, Frosio, Kautz (CR25) 2017; 3
Deschout (CR4) 2014; 11
Reddy, Chatterji (CR55) 1996; 5
Bellot (CR36) 2007; 14
Sergé, Bertaux, Rigneault, Marguet (CR64) 2008; 5
Wang, Bovik (CR24) 2009; 26
Jones, Shim, He, Zhuang (CR5) 2011; 8
Arbona, Herbert, Fabre, Zimmer (CR28) 2017; 18
Boettiger (CR37) 2016; 529
Zhang, Nishimura, Kanchanawong (CR38) 2017; 28
Rampasek, Goldenberg (CR54) 2016; 2
Carlton (CR7) 2010; 107
Sage (CR19) 2015; 12
de Boer, Hoogenboom, Giepmans (CR44) 2015; 12
Schmidhuber (CR18) 2015; 61
Chen, Tillberg, Boyden (CR42) 2015; 347
CR16
Legant (CR3) 2016; 13
Löschberger (CR33) 2012; 125
Chang (CR43) 2017; 14
van de Linde (CR58) 2011; 6
Shroff, Galbraith, Galbraith, Betzig (CR48) 2008; 5
CR53
CR52
Preibisch, Saalfeld, Tomancak (CR63) 2009; 25
Plimpton (CR57) 1995; 117
CR50
Maas, Hannun, Ng (CR51) 2013; 30
Burnette, Sengupta, Dai, Lippincott-Schwartz, Kachar (CR10) 2011; 108
Kendall, Gal (CR49) 2017; 30
Hinton, Salakhutdinov (CR17) 2006; 313
Bates, Huang, Dempsey, Zhuang (CR46) 2007; 317
Huang, Wang, Bates, Zhuang (CR45) 2008; 319
De Brabander, De May, Joniau, Geuens (CR31) 1977; 1
Szymborska (CR34) 2013; 341
Zhu, Zhang, Elnatan, Huang (CR12) 2012; 9
Edelstein, Amodaj, Hoover, Vale, Stuurman (CR61) 2010; 92
Schnitzbauer, Strauss, Schlichthaerle, Schueder, Jungmann (CR32) 2017; 12
Simonson, Rothenberg, Selvin (CR11) 2011; 11
CR21
CR20
Sellés (CR35) 2017; 7
Betzig (CR1) 2006; 313
Huang, Schwartz, Byars, Lidke (CR9) 2011; 2
M Bates (BFnbt4106_CR46) 2007; 317
BFnbt4106_CR16
D Sage (BFnbt4106_CR19) 2015; 12
S Plimpton (BFnbt4106_CR57) 1995; 117
E Betzig (BFnbt4106_CR1) 2006; 313
P de Boer (BFnbt4106_CR44) 2015; 12
WR Legant (BFnbt4106_CR3) 2016; 13
S Preibisch (BFnbt4106_CR63) 2009; 25
J-B Chang (BFnbt4106_CR43) 2017; 14
Y LeCun (BFnbt4106_CR15) 2015; 521
J Schmidhuber (BFnbt4106_CR18) 2015; 61
S van de Linde (BFnbt4106_CR58) 2011; 6
BFnbt4106_CR53
H Shroff (BFnbt4106_CR48) 2008; 5
BFnbt4106_CR52
DC Ciresan (BFnbt4106_CR23) 2013; 2013
GE Hinton (BFnbt4106_CR17) 2006; 313
A Sergé (BFnbt4106_CR64) 2008; 5
A Kendall (BFnbt4106_CR49) 2017; 30
BFnbt4106_CR50
S Culley (BFnbt4106_CR26) 2018; 15
S Ram (BFnbt4106_CR14) 2006; 103
F Chen (BFnbt4106_CR42) 2015; 347
G Bellot (BFnbt4106_CR36) 2007; 14
B Neumann (BFnbt4106_CR39) 2010; 464
BS Reddy (BFnbt4106_CR55) 1996; 5
Z Zhang (BFnbt4106_CR38) 2017; 28
J-M Arbona (BFnbt4106_CR28) 2017; 18
N Srivastava (BFnbt4106_CR27) 2014; 15
A Edelstein (BFnbt4106_CR61) 2010; 92
L Rampasek (BFnbt4106_CR54) 2016; 2
PD Simonson (BFnbt4106_CR11) 2011; 11
BFnbt4106_CR20
J Schnitzbauer (BFnbt4106_CR32) 2017; 12
I Goodfellow (BFnbt4106_CR22) 2014; 27
PM Carlton (BFnbt4106_CR7) 2010; 107
BFnbt4106_CR21
W Ouyang (BFnbt4106_CR41) 2017; 4
EHK Stelzer (BFnbt4106_CR8) 2015; 12
DT Burnette (BFnbt4106_CR10) 2011; 108
SA Jones (BFnbt4106_CR5) 2011; 8
AL Maas (BFnbt4106_CR51) 2013; 30
M Lelek (BFnbt4106_CR60) 2012; 109
R Jungmann (BFnbt4106_CR47) 2014; 11
A Löschberger (BFnbt4106_CR33) 2012; 125
S Cox (BFnbt4106_CR13) 2012; 9
H Zhao (BFnbt4106_CR25) 2017; 3
ZWZ Wang (BFnbt4106_CR24) 2009; 26
PY Simard (BFnbt4106_CR56) 2003; 1
I Arnal (BFnbt4106_CR29) 1995; 5
S Wu (BFnbt4106_CR30) 2007; 282
A Beghin (BFnbt4106_CR40) 2017; 14
MJ Rust (BFnbt4106_CR2) 2006; 3
B Huang (BFnbt4106_CR45) 2008; 319
H Deschout (BFnbt4106_CR4) 2014; 11
A Szymborska (BFnbt4106_CR34) 2013; 341
J Sellés (BFnbt4106_CR35) 2017; 7
AN Boettiger (BFnbt4106_CR37) 2016; 529
F Huang (BFnbt4106_CR9) 2011; 2
R Henriques (BFnbt4106_CR59) 2010; 7
M Ovesný (BFnbt4106_CR62) 2014; 30
F Huang (BFnbt4106_CR6) 2013; 10
M De Brabander (BFnbt4106_CR31) 1977; 1
L Zhu (BFnbt4106_CR12) 2012; 9
References_xml – volume: 15
  start-page: 263
  year: 2018
  end-page: 266
  ident: CR26
  article-title: Quantitative mapping and minimization of super-resolution optical imaging artifacts
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4605
– volume: 14
  start-page: 1184
  year: 2017
  end-page: 1190
  ident: CR40
  article-title: Localization-based super-resolution imaging meets high-content screening
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4486
– ident: CR16
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: CR18
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 28
  start-page: 333
  year: 2017
  end-page: 345
  ident: CR38
  article-title: Extracting microtubule networks from superresolution single-molecule localization microscopy data
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e16-06-0421
– volume: 14
  start-page: 785
  year: 2007
  end-page: 794
  ident: CR36
  article-title: TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4402055
– volume: 464
  start-page: 721
  year: 2010
  end-page: 727
  ident: CR39
  article-title: Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes
  publication-title: Nature
  doi: 10.1038/nature08869
– volume: 5
  start-page: 417
  year: 2008
  end-page: 423
  ident: CR48
  article-title: Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1202
– volume: 2013
  start-page: 8150
  year: 2013
  ident: CR23
  article-title: Mitosis detection in breast cancer histology images with deep neural networks
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 107
  start-page: 16016
  year: 2010
  end-page: 16022
  ident: CR7
  article-title: Fast live simultaneous multiwavelength four-dimensional optical microscopy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1004037107
– volume: 103
  start-page: 4457
  year: 2006
  end-page: 4462
  ident: CR14
  article-title: Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0508047103
– volume: 30
  start-page: 5580
  year: 2017
  end-page: 5590
  ident: CR49
  article-title: What uncertainties do we need in Bayesian deep learning for computer vision?
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: CR21
– volume: 92
  start-page: 14.20.1
  year: 2010
  end-page: 14.20.17
  ident: CR61
  article-title: Computer control of microscopes using μmanager
  publication-title: Curr. Protoc. Mol. Biol.
– volume: 8
  start-page: 499
  year: 2011
  end-page: 505
  ident: CR5
  article-title: Fast, three-dimensional super-resolution imaging of live cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1605
– volume: 6
  start-page: 991
  year: 2011
  end-page: 1009
  ident: CR58
  article-title: Direct stochastic optical reconstruction microscopy with standard fluorescent probes
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.336
– volume: 25
  start-page: 1463
  year: 2009
  end-page: 1465
  ident: CR63
  article-title: Globally optimal stitching of tiled 3D microscopic image acquisitions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp184
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR15
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 125
  start-page: 570
  year: 2012
  end-page: 575
  ident: CR33
  article-title: Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.098822
– volume: 319
  start-page: 810
  year: 2008
  end-page: 813
  ident: CR45
  article-title: Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy
  publication-title: Science
  doi: 10.1126/science.1153529
– volume: 1
  start-page: 177
  year: 1977
  end-page: 183
  ident: CR31
  article-title: Ultrastructural immunocytochemical distribution of tubulin in cultured cells treated with microtubule inhibitors
  publication-title: Cell Biol. Int. Rep.
  doi: 10.1016/0309-1651(77)90038-8
– volume: 9
  start-page: 195
  year: 2012
  end-page: 200
  ident: CR13
  article-title: Bayesian localization microscopy reveals nanoscale podosome dynamics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1812
– ident: CR50
– volume: 5
  start-page: 1266
  year: 1996
  end-page: 1271
  ident: CR55
  article-title: An FFT-based technique for translation, rotation, and scale-invariant image registration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.506761
– volume: 3
  start-page: 47
  year: 2017
  end-page: 57
  ident: CR25
  article-title: Loss functions for image restoration with neural networks
  publication-title: IEEE Trans. Comput. IMAGING
  doi: 10.1109/TCI.2016.2644865
– volume: 12
  start-page: 1198
  year: 2017
  end-page: 1228
  ident: CR32
  article-title: Super-resolution microscopy with DNA-PAINT
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2017.024
– volume: 11
  start-page: 5090
  year: 2011
  end-page: 5096
  ident: CR11
  article-title: Single-molecule-based super-resolution images in the presence of multiple fluorophores
  publication-title: Nano Lett.
  doi: 10.1021/nl203560r
– volume: 347
  start-page: 543
  year: 2015
  end-page: 548
  ident: CR42
  article-title: Optical imaging. Expansion microscopy
  publication-title: Science
  doi: 10.1126/science.1260088
– volume: 317
  start-page: 1749
  year: 2007
  end-page: 1753
  ident: CR46
  article-title: Multicolor super-resolution imaging with photo-switchable fluorescent probes
  publication-title: Science
  doi: 10.1126/science.1146598
– volume: 12
  start-page: 23
  year: 2015
  end-page: 26
  ident: CR8
  article-title: Light-sheet fluorescence microscopy for quantitative biology
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3219
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: CR17
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 30
  start-page: 2389
  year: 2014
  end-page: 2390
  ident: CR62
  article-title: ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu202
– volume: 9
  start-page: 721
  year: 2012
  end-page: 723
  ident: CR12
  article-title: Faster STORM using compressed sensing
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1978
– volume: 5
  start-page: 900
  year: 1995
  end-page: 908
  ident: CR29
  article-title: How does taxol stabilize microtubules?
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(95)00180-1
– volume: 313
  start-page: 1642
  year: 2006
  end-page: 1645
  ident: CR1
  article-title: Imaging intracellular fluorescent proteins at nanometer resolution
  publication-title: Science
  doi: 10.1126/science.1127344
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR27
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 109
  start-page: 8564
  year: 2012
  end-page: 8569
  ident: CR60
  article-title: Superresolution imaging of HIV in infected cells with FlAsH-PALM
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1013267109
– volume: 10
  start-page: 653
  year: 2013
  end-page: 658
  ident: CR6
  article-title: Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2488
– volume: 1
  start-page: 958
  year: 2003
  end-page: 963
  ident: CR56
  article-title: Best practices for convolutional neural networks applied to visual document analysis
  publication-title: Seventh Int. Conf. Doc. Anal. Recognition, 2003. Proceedings
  doi: 10.1109/ICDAR.2003.1227801
– volume: 3
  start-page: 793
  year: 2006
  end-page: 796
  ident: CR2
  article-title: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
  publication-title: Nat. Methods
  doi: 10.1038/nmeth929
– volume: 11
  start-page: 313
  year: 2014
  end-page: 318
  ident: CR47
  article-title: Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2835
– ident: CR53
– volume: 5
  start-page: 687
  year: 2008
  end-page: 694
  ident: CR64
  article-title: Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1233
– volume: 7
  start-page: 14732
  year: 2017
  ident: CR35
  article-title: Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15433-2
– volume: 26
  start-page: 98
  year: 2009
  end-page: 117
  ident: CR24
  article-title: Mean squared error: love it or leave it? A new look at Signal Fidelity Measures
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.930649
– volume: 529
  start-page: 418
  year: 2016
  end-page: 422
  ident: CR37
  article-title: Super-resolution imaging reveals distinct chromatin folding for different epigenetic states
  publication-title: Nature
  doi: 10.1038/nature16496
– volume: 30
  start-page: 3
  year: 2013
  ident: CR51
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc. 30th Int. Conf. Mach. Learn.
– volume: 12
  start-page: 717
  year: 2015
  end-page: 724
  ident: CR19
  article-title: Quantitative evaluation of software packages for single-molecule localization microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3442
– volume: 12
  start-page: 503
  year: 2015
  end-page: 513
  ident: CR44
  article-title: Correlated light and electron microscopy: ultrastructure lights up!
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3400
– volume: 7
  start-page: 339
  year: 2010
  end-page: 340
  ident: CR59
  article-title: QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ
  publication-title: Nat. Methods
  doi: 10.1038/nmeth0510-339
– volume: 14
  start-page: 593
  year: 2017
  end-page: 599
  ident: CR43
  article-title: Iterative expansion microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4261
– volume: 27
  start-page: 2672
  year: 2014
  end-page: 2680
  ident: CR22
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  start-page: 359
  year: 2016
  end-page: 365
  ident: CR3
  article-title: High-density three-dimensional localization microscopy across large volumes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3797
– volume: 11
  start-page: 253
  year: 2014
  end-page: 266
  ident: CR4
  article-title: Precisely and accurately localizing single emitters in fluorescence microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2843
– volume: 2
  start-page: 1377
  year: 2011
  end-page: 1393
  ident: CR9
  article-title: Simultaneous multiple-emitter fitting for single molecule super-resolution imaging
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.2.001377
– volume: 341
  start-page: 655
  year: 2013
  end-page: 658
  ident: CR34
  article-title: Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging
  publication-title: Science
  doi: 10.1126/science.1240672
– ident: CR52
– volume: 2
  start-page: 12
  year: 2016
  end-page: 14
  ident: CR54
  article-title: TensorFlow: biology's gateway to deep learning?
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.01.009
– volume: 282
  start-page: 34801
  year: 2007
  end-page: 34808
  ident: CR30
  article-title: Microtubule motors regulate ISOC activation necessary to increase endothelial cell permeability
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704522200
– volume: 108
  start-page: 21081
  year: 2011
  end-page: 21086
  ident: CR10
  article-title: Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1117430109
– volume: 18
  start-page: 81
  year: 2017
  ident: CR28
  article-title: Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1199-x
– volume: 4
  start-page: 105
  year: 2017
  end-page: 113
  ident: CR41
  article-title: The imaging tsunami: computational opportunities and challenges
  publication-title: Curr. Opin. Syst. Biol.
  doi: 10.1016/j.coisb.2017.07.011
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: CR57
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– ident: CR20
– volume: 464
  start-page: 721
  year: 2010
  ident: BFnbt4106_CR39
  publication-title: Nature
  doi: 10.1038/nature08869
– ident: BFnbt4106_CR21
  doi: 10.1007/978-3-319-24574-4_28
– volume: 12
  start-page: 503
  year: 2015
  ident: BFnbt4106_CR44
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3400
– volume: 15
  start-page: 1929
  year: 2014
  ident: BFnbt4106_CR27
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 1377
  year: 2011
  ident: BFnbt4106_CR9
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.2.001377
– volume: 3
  start-page: 47
  year: 2017
  ident: BFnbt4106_CR25
  publication-title: IEEE Trans. Comput. IMAGING
  doi: 10.1109/TCI.2016.2644865
– volume: 8
  start-page: 499
  year: 2011
  ident: BFnbt4106_CR5
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1605
– volume: 5
  start-page: 1266
  year: 1996
  ident: BFnbt4106_CR55
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.506761
– volume: 109
  start-page: 8564
  year: 2012
  ident: BFnbt4106_CR60
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1013267109
– ident: BFnbt4106_CR53
– volume: 18
  start-page: 81
  year: 2017
  ident: BFnbt4106_CR28
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1199-x
– volume: 2013
  start-page: 8150
  year: 2013
  ident: BFnbt4106_CR23
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 30
  start-page: 3
  year: 2013
  ident: BFnbt4106_CR51
  publication-title: Proc. 30th Int. Conf. Mach. Learn.
– volume: 27
  start-page: 2672
  year: 2014
  ident: BFnbt4106_CR22
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2
  start-page: 12
  year: 2016
  ident: BFnbt4106_CR54
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.01.009
– volume: 9
  start-page: 195
  year: 2012
  ident: BFnbt4106_CR13
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1812
– volume: 12
  start-page: 23
  year: 2015
  ident: BFnbt4106_CR8
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3219
– volume: 11
  start-page: 5090
  year: 2011
  ident: BFnbt4106_CR11
  publication-title: Nano Lett.
  doi: 10.1021/nl203560r
– volume: 12
  start-page: 1198
  year: 2017
  ident: BFnbt4106_CR32
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2017.024
– volume: 92
  start-page: 14.20.1
  year: 2010
  ident: BFnbt4106_CR61
  publication-title: Curr. Protoc. Mol. Biol.
  doi: 10.1002/0471142727.mb1420s92
– volume: 529
  start-page: 418
  year: 2016
  ident: BFnbt4106_CR37
  publication-title: Nature
  doi: 10.1038/nature16496
– volume: 347
  start-page: 543
  year: 2015
  ident: BFnbt4106_CR42
  publication-title: Science
  doi: 10.1126/science.1260088
– volume: 313
  start-page: 504
  year: 2006
  ident: BFnbt4106_CR17
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 1
  start-page: 958
  year: 2003
  ident: BFnbt4106_CR56
  publication-title: Seventh Int. Conf. Doc. Anal. Recognition, 2003. Proceedings
  doi: 10.1109/ICDAR.2003.1227801
– ident: BFnbt4106_CR50
  doi: 10.1109/IWAENC.2016.7602891
– volume: 13
  start-page: 359
  year: 2016
  ident: BFnbt4106_CR3
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3797
– volume: 4
  start-page: 105
  year: 2017
  ident: BFnbt4106_CR41
  publication-title: Curr. Opin. Syst. Biol.
  doi: 10.1016/j.coisb.2017.07.011
– volume: 30
  start-page: 2389
  year: 2014
  ident: BFnbt4106_CR62
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu202
– volume: 14
  start-page: 785
  year: 2007
  ident: BFnbt4106_CR36
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4402055
– volume: 3
  start-page: 793
  year: 2006
  ident: BFnbt4106_CR2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth929
– volume: 1
  start-page: 177
  year: 1977
  ident: BFnbt4106_CR31
  publication-title: Cell Biol. Int. Rep.
  doi: 10.1016/0309-1651(77)90038-8
– volume: 341
  start-page: 655
  year: 2013
  ident: BFnbt4106_CR34
  publication-title: Science
  doi: 10.1126/science.1240672
– ident: BFnbt4106_CR16
– volume: 5
  start-page: 900
  year: 1995
  ident: BFnbt4106_CR29
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(95)00180-1
– volume: 30
  start-page: 5580
  year: 2017
  ident: BFnbt4106_CR49
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 5
  start-page: 687
  year: 2008
  ident: BFnbt4106_CR64
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1233
– volume: 317
  start-page: 1749
  year: 2007
  ident: BFnbt4106_CR46
  publication-title: Science
  doi: 10.1126/science.1146598
– volume: 11
  start-page: 253
  year: 2014
  ident: BFnbt4106_CR4
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2843
– volume: 25
  start-page: 1463
  year: 2009
  ident: BFnbt4106_CR63
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp184
– volume: 319
  start-page: 810
  year: 2008
  ident: BFnbt4106_CR45
  publication-title: Science
  doi: 10.1126/science.1153529
– volume: 15
  start-page: 263
  year: 2018
  ident: BFnbt4106_CR26
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4605
– volume: 6
  start-page: 991
  year: 2011
  ident: BFnbt4106_CR58
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.336
– volume: 10
  start-page: 653
  year: 2013
  ident: BFnbt4106_CR6
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2488
– volume: 9
  start-page: 721
  year: 2012
  ident: BFnbt4106_CR12
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1978
– volume: 282
  start-page: 34801
  year: 2007
  ident: BFnbt4106_CR30
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704522200
– volume: 11
  start-page: 313
  year: 2014
  ident: BFnbt4106_CR47
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2835
– volume: 108
  start-page: 21081
  year: 2011
  ident: BFnbt4106_CR10
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1117430109
– volume: 12
  start-page: 717
  year: 2015
  ident: BFnbt4106_CR19
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3442
– volume: 117
  start-page: 1
  year: 1995
  ident: BFnbt4106_CR57
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 26
  start-page: 98
  year: 2009
  ident: BFnbt4106_CR24
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.930649
– volume: 28
  start-page: 333
  year: 2017
  ident: BFnbt4106_CR38
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e16-06-0421
– volume: 125
  start-page: 570
  year: 2012
  ident: BFnbt4106_CR33
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.098822
– volume: 313
  start-page: 1642
  year: 2006
  ident: BFnbt4106_CR1
  publication-title: Science
  doi: 10.1126/science.1127344
– volume: 14
  start-page: 593
  year: 2017
  ident: BFnbt4106_CR43
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4261
– volume: 103
  start-page: 4457
  year: 2006
  ident: BFnbt4106_CR14
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0508047103
– volume: 5
  start-page: 417
  year: 2008
  ident: BFnbt4106_CR48
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1202
– volume: 7
  start-page: 14732
  year: 2017
  ident: BFnbt4106_CR35
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15433-2
– volume: 521
  start-page: 436
  year: 2015
  ident: BFnbt4106_CR15
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 14
  start-page: 1184
  year: 2017
  ident: BFnbt4106_CR40
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4486
– volume: 61
  start-page: 85
  year: 2015
  ident: BFnbt4106_CR18
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 107
  start-page: 16016
  year: 2010
  ident: BFnbt4106_CR7
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1004037107
– volume: 7
  start-page: 339
  year: 2010
  ident: BFnbt4106_CR59
  publication-title: Nat. Methods
  doi: 10.1038/nmeth0510-339
– ident: BFnbt4106_CR20
  doi: 10.1109/CVPR.2017.632
– ident: BFnbt4106_CR52
  doi: 10.1109/ICCV.2017.304
SSID ssj0006466
Score 2.6888614
Snippet Accelerating PALM/STORM microscopy with deep learning allows super-resolution imaging of >1,000 cells in a few hours. The speed of super-resolution microscopy...
The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many...
SourceID unpaywall
hal
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 460
SubjectTerms 13
14
14/1
14/34
14/63
631/114/1305
631/114/1564
631/1647/245/2225
631/1647/328
631/1647/328/2238
Agriculture
Algorithms
Artificial neural networks
Bioinformatics
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Computer applications
Computer simulation
Deep Learning
Frames
Image acquisition
Image quality
Image reconstruction
Image resolution
Irradiation
Life Sciences
Localization
Methods
Microscopy
Microscopy - methods
Microscopy - statistics & numerical data
Microscopy, Fluorescence
Microscopy, Fluorescence - methods
Microscopy, Fluorescence - statistics & numerical data
Microtubules
Mitochondria
Molecular chains
Nanotechnology
Nanotechnology - methods
Nanotechnology - statistics & numerical data
Neural networks
Neural Networks (Computer)
Nuclear pores
Palm
Radiation
Santé publique et épidémiologie
Spatial discrimination
Spatial resolution
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61qXj0gCC8AgWZCujJYHvXjz0gFKBVQG1ApUW9WevdTTmkjoljUP49M_baTVRAXHzxJ9u7Ozs745n5BuB5hL4_KsTMjY3MXB7I2BVCBq6RQus48wMTUzXy0TganfJPZ-HZBozbWhhKq2x1Yq2o9UzRP3J00sOEYkDMe1v8cKlrFEVX2xYa0rZW0G9qirFN2AqIGasHW-_2x1-OO90cNdFL30so4TKMWjpalrzOs8Ur7lPno5UDyqrpze-UJXnVBF0Jn27DjSov5PKXnE5XTqiD23DLmpbOsJGFO7Bh8j5ca5pNLvuwvUI92IfrRzaofhcOPxhTOLZ9xLlzgeY0qsDp0sHh4qFEXBKlU1aFmbvom1tRdepD0BZxOheU1kcFLst7cHKwf_J-5NomC66KwnDhmpBLww1nkqnQM9qISGqlszAyCeOBipVRGWNaxVr6KhIy44ZlvlBiMvFFwu5DL5_l5iE4HJ1FYXyNPlfApZ5INKcE14mMPMMDTw5gr53YVFkCcuqDMU3rQDhLUlyClJZgAM86ZNGQbvwB84LWJrW9OvFS0t-M8lxWZZkOiaWGRV4cD2C3xhHXRU7JNA3g4-dv_wH6erwG2rOgyQy_W0lbwICjJw6tNeTOGhJ3rFq7_RLlqRsZEXyPhodpIXFfV_MUDXjyEuOfPj6nFbnUqpYyvdwIOE3dbXoFpcvlZlYRJggT8lb5AB40otq9LiC6H8EZjrmV3cuHX53l3U6q_7oUj_79mY_hJlqZSZNftwO9xbwyT9CSW2RP7fb8Dae4RxQ
  priority: 102
  providerName: ProQuest
Title Deep learning massively accelerates super-resolution localization microscopy
URI https://link.springer.com/article/10.1038/nbt.4106
https://www.ncbi.nlm.nih.gov/pubmed/29658943
https://www.proquest.com/docview/2058241330
https://www.proquest.com/docview/2025800864
https://pasteur.hal.science/pasteur-02074397
UnpaywallVersion submittedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006466
  issn: 1546-1696
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20181231
  omitProxy: true
  ssIdentifier: ssj0006466
  issn: 1546-1696
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1546-1696
  dateEnd: 20181231
  omitProxy: true
  ssIdentifier: ssj0006466
  issn: 1546-1696
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0006466
  issn: 1546-1696
  databaseCode: 8FG
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB5tW_HYA4_yKixVWAF7ISWJHSc-FthS0Las9oHKKXIcd1eim1ZNAyq_nnHjhJYFqZcckk9JnBnbn-OZbwBeMlz744AY24ESsU09EdicC89WgidJELueCnQ28mDI-uf088gf7cCbMhdmJrBx-bxziczTzAHlORuZjabPQQ0azEfmXYfG-fC4-62IodcRlKtirUgKmO0yzkqtWRK-TeNFh7q6rNHa7GPG4NqlDoG8zi_X9kZ34VaezsTyp5hM1qaf3l0YVC--ijr53skXcUf--kvTcduW3YM7hoda3cJx7sOOSptwo6hMuWzC7ppOYRNuDswO_AM4-qDUzDK1Ji6sK-TeOF5OlpaQEmcwLTyRWVk-U3MbF_LGr63VjGkyPq0rHQOos2GWD-Gsd3j2vm-bigy2ZL6_sJVPhaKKEkGk76hEcSYSmcQ-UyGhngykkjEhiQwS4UrGRUwViV0u-Xjs8pA8gno6TdUTsCiuLLlyE1ygeVQkY4Hci9MkFMxR1HNECw5KQ0XSqJXrohmTaLVrTsIITRppk7bgRYWcFQod_8C80raOTGFPPGT610d2IfIsi7pa0oYwJwhasL_CaWGMVEfeFIBPX75uATo92QAdGNB4iu8thcl2wNZrwa0N5N4GEru33Lj8Gj2maplWA-93jyLjOVHpOT9cvE_pwpEZh7LIc_xQ75wSBz9TdVk_QsfWpWqaa4znh3ppS1vwuHD96nGe1gbilGCby77w5-bXv_J-1Uv-a4qn24CewW0kpmERkrcH9cU8V8-R_C3iNtSCUYDHsPexDY13h8Pjk7YZB34DAUBb0g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENb0MVB6YCBQCBQwHUpPLrYlvw4dJtB2EpoEpg1MbxpZUsohdUwc08mP47-xG8tuMgWGSy--eEe2pNU-tLvfEvImAN8fBGJih1okNvNEaMex8GwtYqXCxPV0iNXIvX7Q_so-nfvnK-RXVQuDaZWVTJwLajWWeEcOTrofYQyIOu-zHzZ2jcLoatVCQ5jWCupgDjFmCjtO9OwKXLj8oHMI-73recdHg49t23QZsGXg-1Nb-0xophkVVPqOVjoOhJIq8QMdUebJUGqZUKpkqIQrg1gkTNPEjWU8HILHTmHYVbLOKIvB91v_cNT_clqrgqAMlrpOhPmdflCh39LoXZpM95mLjZYW9KHRCqvfMSnzpsW7EK3dJBtFmonZlRiNFhTi8QNy31iyVqtkvYdkRacNcqfsbTlrkM0FpMMGudszMfxHpHuodWaZbhUX1iVY7yBxRzMLVhd0IEJX5FZeZHpiT3R1Mqy5zjU1o9YlZhFiPc3sMRncxmpvkbV0nOqnxGLgm8baVeDieUyooQDrLWYqEoGjmeeIJtmrFpZLg3eObTdGfB53pxGHLeC4BU3yuqbMSoyPP9Ds4t5w0xoUHjlenuQXoshz3kJQHBo4YdgkO3M6hNZIMXenJOh8_vYfRGenS0R7hmg4hv-WwtRLwOwRsmuJcnuJEgSEXHr9FvipnhniibdbXZ4JECPFhIO_gE5p-NOFcSqW40aS5fz63MEy1a_xE5idl-pxgTSeH6FzzJrkScmq9ec8RBeKGYU5V7x7PfjNVd6pufqvW_Hs37_5imy0B70u73b6J8_JPTBwozK1b5usTSeFfgFG5DR5aY6qRfgtC4ff4COGdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IQZ7QFAYFAaEibGnbEnsfD0gVFGqlnUDsYH6Zjm2Ox66NDQNU_80_jvuEidrNUC87CUv-cmJfef78J3vCHkdgO8PAjGxQy0Sm3kitONYeLYWsVJh4no6xNvIxydB_yv7OPJHa-RXfRcG0yprmVgKajWVeEYOTrofYQyIOodjkxbxudt7l_2wsYMURlrrdhoVixzpxSW4b_nbQRdoved5vQ9n7_u26TBgy8D357b2mdBMMyqo9B2tdBwIJVXiBzqizJOh1DKhVMlQCVcGsUiYpokby3g8Bm-dwrDr5FZIaYzZhOGo8fVA0ZdhUteJMLPTD-q6tzQ6TJP5AXOxxdKSJjT6YP07pmNet3WX4rRb5E6RZmJxKSaTJVXYu0_uGRvW6lRM94Cs6bRFblddLRctsrVU47BFNo9N9P4hGXa1zizTp-LcugC7HWTtZGEJKUH7YdGK3MqLTM_sma73hFVqW3Nb1LrA_EG8SbN4RM5uYq23yUY6TfUTYjHwSmPtKnDuPCbUWIDdFjMVicDRzHNEm-zXC8ulqXSODTcmvIy404gDCTiSoE1eNcisqu7xB8we0oabpqDwyPHYJD8XRZ7zDpbDoYEThm2yW-KwqEaK7FkBBp--_Qfo9MsKaN-AxlP4bynMTQmYPRbrWkHurCBBNMiV12-An5qZYSXxfmfIMwECpJhx8BTQHQ1_ujBOzXLcyLCcX-04WKbmNX4C8_JSPS0Q4_kRusWsTR5XrNp8zsO6QjGjMOead68Gv77Kuw1X_5UUT__9my_JJogEPhycHD0jd8Gyjaqcvh2yMZ8V-jlYj_PkRblPLcJvWC78BjnIhBA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5tnWDsgR9lQGGgMAF7ISWJHSd-rICpoHUg2KbxFDmOu0l0adU0oPLXc9c4oWUg9SUPyackzp3tz_HddwAvBK79cUBM3cio1OWBilwpVeAaJbMsSv3ARJSNPDgW_VP-8Tw834DXdS7MRGHjymn3EpmnnQPqcy4yG6LP0SZsiRCZdwu2To8_975VMfQUQbko1oqkQLi-kKLWmmXxmzyddblPZY2WZh87Bm9eUgjkdX65tDe6A9tlPlHzn2o0Wpp-Du_AoHnxRdTJ9245S7v611-ajuu27C7ctjzU6VWOcw82TN6GG1VlynkbdpZ0Cttwc2B34O_D0TtjJo6tNXHhXCH3xvFyNHeU1jiDkfBE4RTlxExdXMhbv3YWM6bN-HSuKAaQsmHmu3By-P7kbd-1FRlcLcJw5pqQK8MNZ4rp0DOZkUJlOktDYWLGAx1po1PGMh1lytdCqpQblvpSy-HQlzF7AK18nJtH4HBcWUrjZ7hAC7jKhgq5l-RZrIRneOCpDhzUhkq0VSunohmjZLFrzuIETZqQSTvwvEFOKoWOf2Bekq0TW9gTDwX9-iguVFkUSY8kbZjwoqgD-wscCWPkFHlTAT58OlsD9PXLCujAgoZjfG-tbLYDtp4Et1aQeytI7N565fIr9JimZaQG3u8dJdZzktpzfvh4n9qFEzsOFUnghTHtnDIPP1NzmR5BsXW5GZeECcKYlra8Aw8r128eF5A2kOQM21z3hT83v_6V95te8l9TPF4H9ARuITGNq5C8PWjNpqV5iuRvlj6zff43AWJYaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+massively+accelerates+super-resolution+localization+microscopy&rft.jtitle=Nature+biotechnology&rft.au=Ouyang%2C+Wei&rft.au=Aristov%2C+Andrey&rft.au=Lelek%2C+Micka%C3%ABl&rft.au=Hao%2C+Xian&rft.date=2018-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1087-0156&rft.volume=36&rft.issue=5&rft.spage=460&rft_id=info:doi/10.1038%2Fnbt.4106&rft.externalDocID=A537636077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon