Nuclear and mitochondrial data reveal different evolutionary processes in the Lake Tanganyika cichlid genus Tropheus

Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly...

Full description

Saved in:
Bibliographic Details
Published inBMC evolutionary biology Vol. 7; no. 1; p. 137
Main Authors Egger, Bernd, Koblmüller, Stephan, Sturmbauer, Christian, Sefc, Kristina M
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 14.08.2007
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1471-2148
1471-2148
DOI10.1186/1471-2148-7-137

Cover

Abstract Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly allopatric colour morphs remains to a large degree unresolved. Previous studies of mitochondrial DNA sequence data revealed polyphyly of the six nominally described species and complex phylogeographic patterns influenced by lake level fluctuations and population admixture, and suggested the parallel evolution of similar colour patterns in divergent evolutionary lineages. A gene tree of a rapidly radiating group may be subject to incomplete and stochastic lineage sorting, and to overcome this problem we used multi-locus, nuclear AFLP data in comparison with mtDNA sequences to study diversification, migration and introgression in Tropheus colour morphs in Lake Tanganyika. Significant incongruence between phylogenetic reconstructions from mitochondrial and AFLP data suggested incomplete sorting of mitochondrial haplotypes as well as frequent introgression between differentiated lineages. In contrast to the mitochondrial phylogeny, the AFLP phenogram was largely congruent with species classifications, colour pattern similarities, and in many cases also with the current geographic distribution of populations, and did not produce evidence of convergent colour pattern evolution. Homoplasy in the AFLP data was used to identify populations that were strongly affected by introgression. Different evolutionary processes were distinguished by the combination of mitochondrial and AFLP data. Mitochondrial phylogeographic patterns retained signals of large-scale migration events triggered by historical, major lake level fluctuations, whereas AFLP data indicated genetic cohesion among local groups of populations resulting from secondary contact of adjacent populations in the course of the more frequently occurring, minor lake level fluctuations. There was no support for the parallel evolution of similar colour patterns in the AFLP data. Genetic signatures of introgression and hybridisation detected in several populations suggest that lake level fluctuations drove the stunning diversification of Tropheus morphs not only through population fragmentation, but also by promoting hybridisation between differentiated morphs in secondary contact.
AbstractList Abstract Background Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly allopatric colour morphs remains to a large degree unresolved. Previous studies of mitochondrial DNA sequence data revealed polyphyly of the six nominally described species and complex phylogeographic patterns influenced by lake level fluctuations and population admixture, and suggested the parallel evolution of similar colour patterns in divergent evolutionary lineages. A gene tree of a rapidly radiating group may be subject to incomplete and stochastic lineage sorting, and to overcome this problem we used multi-locus, nuclear AFLP data in comparison with mtDNA sequences to study diversification, migration and introgression in Tropheus colour morphs in Lake Tanganyika. Results Significant incongruence between phylogenetic reconstructions from mitochondrial and AFLP data suggested incomplete sorting of mitochondrial haplotypes as well as frequent introgression between differentiated lineages. In contrast to the mitochondrial phylogeny, the AFLP phenogram was largely congruent with species classifications, colour pattern similarities, and in many cases also with the current geographic distribution of populations, and did not produce evidence of convergent colour pattern evolution. Homoplasy in the AFLP data was used to identify populations that were strongly affected by introgression. Conclusion Different evolutionary processes were distinguished by the combination of mitochondrial and AFLP data. Mitochondrial phylogeographic patterns retained signals of large-scale migration events triggered by historical, major lake level fluctuations, whereas AFLP data indicated genetic cohesion among local groups of populations resulting from secondary contact of adjacent populations in the course of the more frequently occurring, minor lake level fluctuations. There was no support for the parallel evolution of similar colour patterns in the AFLP data. Genetic signatures of introgression and hybridisation detected in several populations suggest that lake level fluctuations drove the stunning diversification of Tropheus morphs not only through population fragmentation, but also by promoting hybridisation between differentiated morphs in secondary contact.
Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly allopatric colour morphs remains to a large degree unresolved. Previous studies of mitochondrial DNA sequence data revealed polyphyly of the six nominally described species and complex phylogeographic patterns influenced by lake level fluctuations and population admixture, and suggested the parallel evolution of similar colour patterns in divergent evolutionary lineages. A gene tree of a rapidly radiating group may be subject to incomplete and stochastic lineage sorting, and to overcome this problem we used multi-locus, nuclear AFLP data in comparison with mtDNA sequences to study diversification, migration and introgression in Tropheus colour morphs in Lake Tanganyika. Significant incongruence between phylogenetic reconstructions from mitochondrial and AFLP data suggested incomplete sorting of mitochondrial haplotypes as well as frequent introgression between differentiated lineages. In contrast to the mitochondrial phylogeny, the AFLP phenogram was largely congruent with species classifications, colour pattern similarities, and in many cases also with the current geographic distribution of populations, and did not produce evidence of convergent colour pattern evolution. Homoplasy in the AFLP data was used to identify populations that were strongly affected by introgression. Different evolutionary processes were distinguished by the combination of mitochondrial and AFLP data. Mitochondrial phylogeographic patterns retained signals of large-scale migration events triggered by historical, major lake level fluctuations, whereas AFLP data indicated genetic cohesion among local groups of populations resulting from secondary contact of adjacent populations in the course of the more frequently occurring, minor lake level fluctuations. There was no support for the parallel evolution of similar colour patterns in the AFLP data. Genetic signatures of introgression and hybridisation detected in several populations suggest that lake level fluctuations drove the stunning diversification of Tropheus morphs not only through population fragmentation, but also by promoting hybridisation between differentiated morphs in secondary contact.
Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly allopatric colour morphs remains to a large degree unresolved. Previous studies of mitochondrial DNA sequence data revealed polyphyly of the six nominally described species and complex phylogeographic patterns influenced by lake level fluctuations and population admixture, and suggested the parallel evolution of similar colour patterns in divergent evolutionary lineages. A gene tree of a rapidly radiating group may be subject to incomplete and stochastic lineage sorting, and to overcome this problem we used multi-locus, nuclear AFLP data in comparison with mtDNA sequences to study diversification, migration and introgression in Tropheus colour morphs in Lake Tanganyika.BACKGROUNDCichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly allopatric colour morphs remains to a large degree unresolved. Previous studies of mitochondrial DNA sequence data revealed polyphyly of the six nominally described species and complex phylogeographic patterns influenced by lake level fluctuations and population admixture, and suggested the parallel evolution of similar colour patterns in divergent evolutionary lineages. A gene tree of a rapidly radiating group may be subject to incomplete and stochastic lineage sorting, and to overcome this problem we used multi-locus, nuclear AFLP data in comparison with mtDNA sequences to study diversification, migration and introgression in Tropheus colour morphs in Lake Tanganyika.Significant incongruence between phylogenetic reconstructions from mitochondrial and AFLP data suggested incomplete sorting of mitochondrial haplotypes as well as frequent introgression between differentiated lineages. In contrast to the mitochondrial phylogeny, the AFLP phenogram was largely congruent with species classifications, colour pattern similarities, and in many cases also with the current geographic distribution of populations, and did not produce evidence of convergent colour pattern evolution. Homoplasy in the AFLP data was used to identify populations that were strongly affected by introgression.RESULTSSignificant incongruence between phylogenetic reconstructions from mitochondrial and AFLP data suggested incomplete sorting of mitochondrial haplotypes as well as frequent introgression between differentiated lineages. In contrast to the mitochondrial phylogeny, the AFLP phenogram was largely congruent with species classifications, colour pattern similarities, and in many cases also with the current geographic distribution of populations, and did not produce evidence of convergent colour pattern evolution. Homoplasy in the AFLP data was used to identify populations that were strongly affected by introgression.Different evolutionary processes were distinguished by the combination of mitochondrial and AFLP data. Mitochondrial phylogeographic patterns retained signals of large-scale migration events triggered by historical, major lake level fluctuations, whereas AFLP data indicated genetic cohesion among local groups of populations resulting from secondary contact of adjacent populations in the course of the more frequently occurring, minor lake level fluctuations. There was no support for the parallel evolution of similar colour patterns in the AFLP data. Genetic signatures of introgression and hybridisation detected in several populations suggest that lake level fluctuations drove the stunning diversification of Tropheus morphs not only through population fragmentation, but also by promoting hybridisation between differentiated morphs in secondary contact.CONCLUSIONDifferent evolutionary processes were distinguished by the combination of mitochondrial and AFLP data. Mitochondrial phylogeographic patterns retained signals of large-scale migration events triggered by historical, major lake level fluctuations, whereas AFLP data indicated genetic cohesion among local groups of populations resulting from secondary contact of adjacent populations in the course of the more frequently occurring, minor lake level fluctuations. There was no support for the parallel evolution of similar colour patterns in the AFLP data. Genetic signatures of introgression and hybridisation detected in several populations suggest that lake level fluctuations drove the stunning diversification of Tropheus morphs not only through population fragmentation, but also by promoting hybridisation between differentiated morphs in secondary contact.
Background Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly allopatric colour morphs remains to a large degree unresolved. Previous studies of mitochondrial DNA sequence data revealed polyphyly of the six nominally described species and complex phylogeographic patterns influenced by lake level fluctuations and population admixture, and suggested the parallel evolution of similar colour patterns in divergent evolutionary lineages. A gene tree of a rapidly radiating group may be subject to incomplete and stochastic lineage sorting, and to overcome this problem we used multi-locus, nuclear AFLP data in comparison with mtDNA sequences to study diversification, migration and introgression in Tropheus colour morphs in Lake Tanganyika. Results Significant incongruence between phylogenetic reconstructions from mitochondrial and AFLP data suggested incomplete sorting of mitochondrial haplotypes as well as frequent introgression between differentiated lineages. In contrast to the mitochondrial phylogeny, the AFLP phenogram was largely congruent with species classifications, colour pattern similarities, and in many cases also with the current geographic distribution of populations, and did not produce evidence of convergent colour pattern evolution. Homoplasy in the AFLP data was used to identify populations that were strongly affected by introgression. Conclusion Different evolutionary processes were distinguished by the combination of mitochondrial and AFLP data. Mitochondrial phylogeographic patterns retained signals of large-scale migration events triggered by historical, major lake level fluctuations, whereas AFLP data indicated genetic cohesion among local groups of populations resulting from secondary contact of adjacent populations in the course of the more frequently occurring, minor lake level fluctuations. There was no support for the parallel evolution of similar colour patterns in the AFLP data. Genetic signatures of introgression and hybridisation detected in several populations suggest that lake level fluctuations drove the stunning diversification of Tropheus morphs not only through population fragmentation, but also by promoting hybridisation between differentiated morphs in secondary contact.
ArticleNumber 137
Audience Academic
Author Egger, Bernd
Sturmbauer, Christian
Koblmüller, Stephan
Sefc, Kristina M
AuthorAffiliation 1 Department of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
AuthorAffiliation_xml – name: 1 Department of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
Author_xml – sequence: 1
  givenname: Bernd
  surname: Egger
  fullname: Egger, Bernd
– sequence: 2
  givenname: Stephan
  surname: Koblmüller
  fullname: Koblmüller, Stephan
– sequence: 3
  givenname: Christian
  surname: Sturmbauer
  fullname: Sturmbauer, Christian
– sequence: 4
  givenname: Kristina M
  surname: Sefc
  fullname: Sefc, Kristina M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17697335$$D View this record in MEDLINE/PubMed
BookMark eNqFkt1rFDEUxQep2A999k0CguDDtslkJh8vQil-FBYFXZ_D3eTObtrZZE1miv3vzbi1dkWRPCTc-Z0zyeEcVwchBqyq54yeMqbEGWskm9WsUTM5Y1w-qo7uJwcPzofVcc5XlDKpavakOmRSaMl5e1QNH0fbIyQCwZGNH6Jdx-CSh544GIAkvMHp7LsOE4aB4E3sx8HHAOmWbFO0mDNm4gMZ1kjmcI1kAWEF4dZfA7HernvvyArDmMkixe0ax_y0etxBn_HZ3X5SfX33dnHxYTb_9P7y4nw-s6Jth9lStSgZF7RWsqbQOOE6SjnVVDnBG0VrvZSq1QycUEunOedoW64l0PJwqPlJdbnzdRGuzDb5Tbm0ieDNz0FMKwNp8CUAA6rGGqSwsrUNt62ivEGhQGuQbImueL3ZeW3H5QadLVkk6PdM978EvzareGNqSqkqaZ9Ur-4MUvw2Yh7MxmeLfQ8B45iNULzRWtT_BZkWQqh2Al_uwBWUF_jQxfJjO8HmnAndSN1qXajTv1BlOdx4W-rU-TLfE7zeExRmwO_DCsaczeWXz_vsi4ep3Mfxq2AFONsBNsWcE3a_EWqmCpuppGYqqZGmVLgo2j8U1g8wNa7c2_f_1P0AtXfytw
CitedBy_id crossref_primary_10_1007_s10750_013_1692_5
crossref_primary_10_1016_j_bse_2015_02_011
crossref_primary_10_1111_j_1365_294X_2012_05607_x
crossref_primary_10_1371_journal_pone_0031236
crossref_primary_10_1016_j_semcdb_2013_05_003
crossref_primary_10_1111_j_1095_8649_2010_02792_x
crossref_primary_10_1002_ece3_3860
crossref_primary_10_1016_j_ympev_2019_02_026
crossref_primary_10_1016_j_ympev_2009_09_032
crossref_primary_10_1002_ajpa_24099
crossref_primary_10_1186_2193_1801_3_614
crossref_primary_10_1007_s10750_014_1892_7
crossref_primary_10_1007_s12052_008_0049_4
crossref_primary_10_1007_s10750_008_9564_0
crossref_primary_10_1371_journal_pone_0025549
crossref_primary_10_3389_fevo_2014_00053
crossref_primary_10_1007_s10750_011_0766_5
crossref_primary_10_1371_journal_pone_0125043
crossref_primary_10_1155_2012_716209
crossref_primary_10_1111_j_1365_294X_2009_04399_x
crossref_primary_10_1186_1745_6150_5_4
crossref_primary_10_1111_mec_16636
crossref_primary_10_1016_j_jglr_2019_05_009
crossref_primary_10_1111_nph_13450
crossref_primary_10_1007_s10750_011_0698_0
crossref_primary_10_1002_ece3_1372
crossref_primary_10_1111_j_1558_5646_2009_00612_x
crossref_primary_10_1016_j_ympev_2012_02_033
crossref_primary_10_1016_j_ympev_2019_04_008
crossref_primary_10_1111_j_1365_294X_2009_04434_x
crossref_primary_10_1007_s10750_023_05347_8
crossref_primary_10_1016_j_tree_2009_06_010
crossref_primary_10_1111_1755_0998_12523
crossref_primary_10_1111_j_1365_294X_2010_04560_x
crossref_primary_10_1007_s10228_014_0396_9
crossref_primary_10_1111_j_1365_294X_2008_03988_x
crossref_primary_10_4061_2011_470875
crossref_primary_10_1007_s10750_016_2939_8
crossref_primary_10_1186_s12983_018_0287_4
crossref_primary_10_1643_CG_13_123
crossref_primary_10_1038_s41576_018_0043_9
crossref_primary_10_1186_s12862_017_1116_7
crossref_primary_10_1016_j_ympev_2015_06_001
crossref_primary_10_1038_hdy_2013_78
crossref_primary_10_3390_biology11020175
crossref_primary_10_1111_jeb_12467
crossref_primary_10_1016_j_ympev_2023_107856
crossref_primary_10_7717_peerj_2628
crossref_primary_10_1007_s00114_010_0751_2
crossref_primary_10_1111_ele_12766
crossref_primary_10_1007_s10228_015_0507_2
crossref_primary_10_1016_j_ympev_2014_05_010
crossref_primary_10_1111_j_1420_9101_2009_01906_x
crossref_primary_10_1111_j_1439_0469_2007_00456_x
crossref_primary_10_1007_s00239_009_9207_8
crossref_primary_10_1007_s10750_016_2896_2
crossref_primary_10_1016_j_ympev_2010_06_018
crossref_primary_10_1093_zoolinnean_zlae130
crossref_primary_10_1111_mec_13833
crossref_primary_10_1371_journal_pone_0182618
crossref_primary_10_1111_jeb_12074
crossref_primary_10_1016_j_ympev_2010_04_001
crossref_primary_10_1007_s10750_021_04536_7
crossref_primary_10_1111_j_1755_0998_2012_03169_x
crossref_primary_10_1016_j_margen_2014_01_001
crossref_primary_10_1002_ece3_4417
crossref_primary_10_1111_j_1463_6409_2011_00530_x
crossref_primary_10_1111_zsc_12110
crossref_primary_10_1111_j_1365_294X_2011_05088_x
crossref_primary_10_1111_j_1365_294X_2012_05634_x
crossref_primary_10_1007_s10750_016_2791_x
crossref_primary_10_3389_fmars_2019_00756
crossref_primary_10_1111_2041_210X_12490
crossref_primary_10_1111_mec_12374
crossref_primary_10_1016_j_bse_2016_03_006
crossref_primary_10_1111_mec_12494
crossref_primary_10_1186_s12862_016_0708_y
crossref_primary_10_1007_s10750_008_9552_4
crossref_primary_10_1007_s10750_017_3286_0
crossref_primary_10_1007_s10750_008_9557_z
crossref_primary_10_1007_s10750_020_04203_3
crossref_primary_10_1111_jeb_12283
crossref_primary_10_1007_s00265_014_1870_0
crossref_primary_10_1016_j_cbpa_2014_03_006
crossref_primary_10_1111_fwb_12492
crossref_primary_10_1111_jeb_12287
crossref_primary_10_1016_j_ympev_2013_09_005
crossref_primary_10_1146_annurev_ecolsys_39_110707_173447
crossref_primary_10_1016_j_ympev_2011_03_031
crossref_primary_10_1111_j_1365_294X_2009_04348_x
crossref_primary_10_3390_fishes9120481
crossref_primary_10_1016_j_ympev_2014_05_009
crossref_primary_10_1093_jhered_ess013
Cites_doi 10.1038/362444a0
10.1111/j.0014-3820.2004.tb00415.x
10.1126/science.277.5333.1808
10.1016/S0076-6879(05)95011-8
10.1093/oxfordjournals.molbev.a004042
10.1046/j.1365-294X.2003.01905.x
10.1093/oxfordjournals.molbev.a003747
10.1038/368539a0
10.1080/10635150590910249
10.1046/j.0962-1083.2001.01438.x
10.1007/PL00006204
10.2307/2410325
10.1093/bioinformatics/14.9.817
10.1016/j.ympev.2005.04.023
10.1046/j.1420-9101.2002.00394.x
10.2307/1446959
10.1016/j.ympev.2007.02.010
10.1093/nar/23.21.4407
10.1046/j.1365-294X.2001.01318.x
10.1073/pnas.96.9.5107
10.1186/1742-9994-1-5
10.1046/j.1365-294X.2001.01259.x
10.1093/oxfordjournals.molbev.a025936
10.1111/j.1365-294X.2005.02787.x
10.1007/s00239-002-2380-7
10.1038/342057a0
10.1007/s002390010240
10.1007/s00239-004-0017-8
10.1186/1471-2148-7-7
10.1007/BF00220992
10.1006/mpev.1999.0676
10.1007/s10750-004-4664-y
10.1046/j.1365-294X.2001.01220.x
10.1007/BF02101694
10.1073/pnas.95.24.14238
10.1016/j.ympev.2006.05.010
10.1038/358578a0
10.1098/rspb.2005.3321
10.1093/bioinformatics/17.8.754
10.1016/j.tree.2004.01.003
10.1186/1471-2148-5-17
10.1073/pnas.2332665100
10.1016/B978-012417540-2/50008-7
10.1093/nar/16.3.1215
10.1046/j.1365-294x.2000.01020.x
10.1093/oxfordjournals.molbev.a026200
10.1023/A:1024680201436
10.1007/BF00174041
10.1073/pnas.242585899
10.1073/pnas.76.10.5269
10.1007/s00239-006-0011-4
10.1093/oxfordjournals.molbev.a026201
ContentType Journal Article
Copyright COPYRIGHT 2007 BioMed Central Ltd.
Copyright © 2007 Egger et al; licensee BioMed Central Ltd. 2007 Egger et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2007 BioMed Central Ltd.
– notice: Copyright © 2007 Egger et al; licensee BioMed Central Ltd. 2007 Egger et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
F1W
H95
L.G
7X8
5PM
DOA
DOI 10.1186/1471-2148-7-137
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2148
EndPage 137
ExternalDocumentID oai_doaj_org_article_a82e2a76c75c43c58034e68a99a71bed
PMC2000897
A169479599
17697335
10_1186_1471_2148_7_137
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Africa, Central
Africa, Eastern
Austria
GeographicLocations_xml – name: Africa, Central
– name: Africa, Eastern
– name: Austria
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
AAHBH
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BCNDV
BFQNJ
C1A
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
M~E
O5R
O5S
OVT
P2P
PGMZT
RBZ
RIG
RNS
ROL
RPM
SBL
SV3
TR2
TUS
U2A
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
F1W
H95
L.G
7X8
5PM
ID FETCH-LOGICAL-c655t-b85e7136028720a4d6df0030908d6348029b78591ad68bd9333ec5397a0471a23
IEDL.DBID M48
ISSN 1471-2148
IngestDate Wed Aug 27 01:24:40 EDT 2025
Thu Aug 21 18:28:41 EDT 2025
Thu Sep 04 15:29:00 EDT 2025
Thu Sep 04 19:56:58 EDT 2025
Wed Mar 19 02:26:17 EDT 2025
Sat Mar 08 20:08:45 EST 2025
Fri Jun 27 05:55:24 EDT 2025
Mon Jul 21 06:02:32 EDT 2025
Tue Jul 01 04:27:17 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c655t-b85e7136028720a4d6df0030908d6348029b78591ad68bd9333ec5397a0471a23
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2148-7-137
PMID 17697335
PQID 19666852
PQPubID 23462
ParticipantIDs doaj_primary_oai_doaj_org_article_a82e2a76c75c43c58034e68a99a71bed
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2000897
proquest_miscellaneous_68349962
proquest_miscellaneous_19666852
gale_infotracmisc_A169479599
gale_infotracacademiconefile_A169479599
gale_incontextgauss_ISR_A169479599
pubmed_primary_17697335
crossref_primary_10_1186_1471_2148_7_137
crossref_citationtrail_10_1186_1471_2148_7_137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-08-14
PublicationDateYYYYMMDD 2007-08-14
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-08-14
  day: 14
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC evolutionary biology
PublicationTitleAlternate BMC Evol Biol
PublicationYear 2007
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References W-J Lee (431_CR54) 1995; 41
W Salzburger (431_CR50) 2006; 273
RG Harrison (431_CR37) 2003
C Sturmbauer (431_CR22) 2003; 500
M Nei (431_CR60) 1979; 76
W Link (431_CR61) 1995; 90
Y Van de Peer (431_CR59) 1994; 10
RC Albertson (431_CR12) 1999; 96
M Hasegawa (431_CR58) 1985; 22
KG McCracken (431_CR10) 2005; 54
TC Mendelson (431_CR21) 2005
N Duftner (431_CR52) 2005; 60
UK Schliewen (431_CR18) 2004; 1
M Clement (431_CR31) 2000; 9
J Snoeks (431_CR26) 1994; 44
PF Smith (431_CR35) 2003; 12
P Schupke (431_CR25) 2003
S Baric (431_CR29) 2003; 56
YM Parsons (431_CR14) 2001; 10
A Parker (431_CR42) 1997; 45
TE Dowling (431_CR1) 1993; 362
SA Miller (431_CR51) 1988; 16
431_CR47
M Beltrán (431_CR5) 2002; 19
TC Mendelson (431_CR20) 2006; 41
CJ Allender (431_CR17) 2003; 100
DL Swofford (431_CR57) 2003
P Moran (431_CR40) 1993; 10
M Barrier (431_CR3) 1999; 16
KM Sefc (431_CR33) 2007; 64
L Rüber (431_CR34) 2001; 10
H Shimodeira (431_CR38) 1999; 16
KL Shaw (431_CR4) 2002; 99
K Takahashi (431_CR43) 2001; 53
W Salzburger (431_CR23) 2005; 5
A Konings (431_CR24) 1998
R Schelly (431_CR46) 2006; 38
JP Huelsenbeck (431_CR55) 2001; 17
K Takahashi (431_CR9) 2001; 18
JP Sullivan (431_CR19) 2004; 58
K Takahashi (431_CR44) 1998; 15
S Koblmüller (431_CR36) 2007; 7
C Sturmbauer (431_CR28) 1992; 358
W Salzburger (431_CR6) 2002; 11
MV Schneider (431_CR15) 2002; 15
C Sturmbauer (431_CR30) 1997
F Gasse (431_CR32) 1989; 342
O Seehausen (431_CR48) 1997; 277
431_CR62
O Seehausen (431_CR7) 2004; 19
A Meyer (431_CR53) 1994; 368
C Sturmbauer (431_CR45) 1994; 11
JR Stauffer (431_CR49) 1996; 1
MR Kidd (431_CR16) 2006; 15
WS Moore (431_CR2) 1995; 49
S Nagl (431_CR39) 1998; 95
N Giannasi (431_CR13) 2001; 10
D Posada (431_CR56) 1998; 14
RDM Page (431_CR8) 2002; 14
P Vos (431_CR11) 1995; 23
C Sturmbauer (431_CR27) 2005; 542
P Moran (431_CR41) 1995; 12
References_xml – volume: 362
  start-page: 444
  year: 1993
  ident: 431_CR1
  publication-title: Nature
  doi: 10.1038/362444a0
– volume: 58
  start-page: 825
  year: 2004
  ident: 431_CR19
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2004.tb00415.x
– volume: 277
  start-page: 1808
  year: 1997
  ident: 431_CR48
  publication-title: Science
  doi: 10.1126/science.277.5333.1808
– start-page: 161
  volume-title: Methods in Enzymology v. 395: Molecular Evolution: Producing the Biochemical Data
  year: 2005
  ident: 431_CR21
  doi: 10.1016/S0076-6879(05)95011-8
– volume: 19
  start-page: 2176
  year: 2002
  ident: 431_CR5
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a004042
– volume: 12
  start-page: 2497
  year: 2003
  ident: 431_CR35
  publication-title: Mol Ecol
  doi: 10.1046/j.1365-294X.2003.01905.x
– volume: 18
  start-page: 2057
  year: 2001
  ident: 431_CR9
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a003747
– start-page: 3
  volume-title: Hybrid Zones and the Evolutionary Process
  year: 2003
  ident: 431_CR37
– volume: 368
  start-page: 539
  year: 1994
  ident: 431_CR53
  publication-title: Nature
  doi: 10.1038/368539a0
– volume: 54
  start-page: 35
  year: 2005
  ident: 431_CR10
  publication-title: Syst Biol
  doi: 10.1080/10635150590910249
– volume-title: Tanganyika cichlids in their natural habitat
  year: 1998
  ident: 431_CR24
– volume: 11
  start-page: 619
  year: 2002
  ident: 431_CR6
  publication-title: Mol Ecol
  doi: 10.1046/j.0962-1083.2001.01438.x
– volume: 45
  start-page: 70
  year: 1997
  ident: 431_CR42
  publication-title: J Mol Evol
  doi: 10.1007/PL00006204
– volume: 10
  start-page: 1015
  year: 1993
  ident: 431_CR40
  publication-title: Mol Biol Evol
– volume: 49
  start-page: 718
  year: 1995
  ident: 431_CR2
  publication-title: Evolution
  doi: 10.2307/2410325
– volume: 14
  start-page: 817
  year: 1998
  ident: 431_CR56
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.9.817
– volume: 38
  start-page: 426
  year: 2006
  ident: 431_CR46
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2005.04.023
– volume: 15
  start-page: 191
  year: 2002
  ident: 431_CR15
  publication-title: J Evol Biol
  doi: 10.1046/j.1420-9101.2002.00394.x
– volume: 1
  start-page: 203
  year: 1996
  ident: 431_CR49
  publication-title: Copeia
  doi: 10.2307/1446959
– ident: 431_CR47
  doi: 10.1016/j.ympev.2007.02.010
– volume: 23
  start-page: 4407
  year: 1995
  ident: 431_CR11
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/23.21.4407
– volume: 10
  start-page: 1765
  year: 2001
  ident: 431_CR14
  publication-title: Mol Ecol
  doi: 10.1046/j.1365-294X.2001.01318.x
– volume: 96
  start-page: 5107
  year: 1999
  ident: 431_CR12
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.9.5107
– volume: 1
  start-page: 5
  year: 2004
  ident: 431_CR18
  publication-title: Front Zool
  doi: 10.1186/1742-9994-1-5
– volume: 10
  start-page: 1207
  year: 2001
  ident: 431_CR34
  publication-title: Mol Ecol
  doi: 10.1046/j.1365-294X.2001.01259.x
– volume: 11
  start-page: 691
  year: 1994
  ident: 431_CR45
  publication-title: Mol Biol Evol
– volume: 15
  start-page: 391
  year: 1998
  ident: 431_CR44
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025936
– volume: 15
  start-page: 459
  year: 2006
  ident: 431_CR16
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2005.02787.x
– volume: 56
  start-page: 54
  year: 2003
  ident: 431_CR29
  publication-title: J Mol Evol
  doi: 10.1007/s00239-002-2380-7
– volume: 342
  start-page: 57
  year: 1989
  ident: 431_CR32
  publication-title: Nature
  doi: 10.1038/342057a0
– volume: 53
  start-page: 496
  year: 2001
  ident: 431_CR43
  publication-title: J Mol Evol
  doi: 10.1007/s002390010240
– volume: 60
  start-page: 277
  year: 2005
  ident: 431_CR52
  publication-title: J Mol Evol
  doi: 10.1007/s00239-004-0017-8
– volume: 7
  start-page: 7
  year: 2007
  ident: 431_CR36
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-7-7
– volume: 90
  start-page: 27
  year: 1995
  ident: 431_CR61
  publication-title: Theor Appl Genet
  doi: 10.1007/BF00220992
– volume: 14
  start-page: 89
  issue: 1
  year: 2002
  ident: 431_CR8
  publication-title: Mol Phyl Evol
  doi: 10.1006/mpev.1999.0676
– volume: 542
  start-page: 335
  year: 2005
  ident: 431_CR27
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-004-4664-y
– volume: 44
  start-page: 355
  year: 1994
  ident: 431_CR26
  publication-title: Archiv für Hydrobiologie, Beiheft Ergebnisse der Limnologie
– volume: 10
  start-page: 419
  year: 2001
  ident: 431_CR13
  publication-title: Mol Ecol
  doi: 10.1046/j.1365-294X.2001.01220.x
– volume-title: PAUP* – Phylogenetic Analysis Using Parsimony and other methods, version 4.0
  year: 2003
  ident: 431_CR57
– volume: 22
  start-page: 160
  year: 1985
  ident: 431_CR58
  publication-title: J Mol Evol
  doi: 10.1007/BF02101694
– volume: 95
  start-page: 14238
  year: 1998
  ident: 431_CR39
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.24.14238
– volume: 41
  start-page: 445
  issue: 2
  year: 2006
  ident: 431_CR20
  publication-title: Mol Phyl Evol
  doi: 10.1016/j.ympev.2006.05.010
– volume: 358
  start-page: 578
  year: 1992
  ident: 431_CR28
  publication-title: Nature
  doi: 10.1038/358578a0
– volume: 273
  start-page: 257
  issue: 1584
  year: 2006
  ident: 431_CR50
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2005.3321
– volume: 17
  start-page: 754
  year: 2001
  ident: 431_CR55
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.8.754
– volume: 19
  start-page: 198
  year: 2004
  ident: 431_CR7
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2004.01.003
– volume: 5
  start-page: 17
  year: 2005
  ident: 431_CR23
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-5-17
– volume: 100
  start-page: 14074
  year: 2003
  ident: 431_CR17
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2332665100
– start-page: 97
  volume-title: Molecular Systematics of Fishes
  year: 1997
  ident: 431_CR30
  doi: 10.1016/B978-012417540-2/50008-7
– volume: 16
  start-page: 1215
  year: 1988
  ident: 431_CR51
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/16.3.1215
– volume: 9
  start-page: 1657
  year: 2000
  ident: 431_CR31
  publication-title: Mol Ecol
  doi: 10.1046/j.1365-294x.2000.01020.x
– volume: 16
  start-page: 1105
  year: 1999
  ident: 431_CR3
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026200
– volume: 500
  start-page: 51
  year: 2003
  ident: 431_CR22
  publication-title: Hydrobiologia
  doi: 10.1023/A:1024680201436
– volume: 41
  start-page: 54
  year: 1995
  ident: 431_CR54
  publication-title: J Mol Evol
  doi: 10.1007/BF00174041
– volume: 10
  start-page: 569
  year: 1994
  ident: 431_CR59
  publication-title: Comput Appl Biosci
– volume: 99
  start-page: 16122
  year: 2002
  ident: 431_CR4
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.242585899
– volume: 12
  start-page: 1085
  year: 1995
  ident: 431_CR41
  publication-title: Mol Biol Evol
– volume: 76
  start-page: 5269
  year: 1979
  ident: 431_CR60
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.76.10.5269
– volume: 64
  start-page: 33
  year: 2007
  ident: 431_CR33
  publication-title: J Mol Evol
  doi: 10.1007/s00239-006-0011-4
– volume: 16
  start-page: 1114
  year: 1999
  ident: 431_CR38
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026201
– volume-title: African Cichlids II: Tanganyika I: Tropheus
  year: 2003
  ident: 431_CR25
– ident: 431_CR62
SSID ssj0017821
Score 2.2004745
Snippet Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents...
Background Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus...
Abstract Background Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 137
SubjectTerms Africa, Central
Africa, Eastern
Animals
Base Sequence
Cell nuclei
Cichlidae
Cichlids - genetics
Cichlids - physiology
DNA, Mitochondrial - genetics
Evaluation
Evolution, Molecular
Freshwater
Genetic aspects
Genetic Markers
Genetic Variation
Mitochondrial DNA
Molecular evolution
Phylogeny
Physiological aspects
Random Amplified Polymorphic DNA Technique
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kIHgRv422uoigl9gku9mPYxVLFelBX6G3ZbO7aUPbfeUlEfrfdybJe74gxYu3kJ1AmPntfCSzvyHkvc6dhkiu0qziOMKsDqkO2qWVULp2Ppe-Hhpkj8XRCf9-Wp5ujfrCnrCRHnhU3L5VRSisFE6WjjNXqozxIJTV2sq8Ch69b6azdTE1_T-AuDeUWuB60wIy_onUJ1dif3MvlWmO48-34tFA2_-3c96KTvPOya1QdPiIPJxySHowvvtjci_EJ-T-OFXy5inpjpGj2K6ojZ5ewY4FDxc9Ao1iPyhF0ia8nkajdDT8nvBnVzf0ejw5EFraRArZIf1hLwJd2HgGbqO5sNQ17vyy8RSQ17d0sUJigr59Rk4Ovy6-HKXTcIXUibLs0kqVAQpUAfmFLDLLvfD18F80U14wrrJCVxLJ7awXqvKaMRZcCdmLzUCBtmDPyU5cxvCS0DyIkhW2dpoHrqxX3OoQslxpyAYLzxPyaa1i4ybmcRyAcWmGCkQJgzYxaBMjDdgkIR83D1yPpBt3i35Gm23EkC17uAEYMhOGzL8wlJB3aHGDfBgRG27ObN-25tuvn-YgF5rjPHadkA-TUL2Et3d2Or8AOkAKrZnk7kwSNqybLb9dA8vgEna5xbDsWwPeUAhVFndLCMWgRBUg8WIE4h_9SKElY2VC5AyiM83MV2JzPvCJ42ktpeWr_6HK1-TB-PVbpTnfJTvdqg97kLZ11Zthh94CkW89Ig
  priority: 102
  providerName: Directory of Open Access Journals
Title Nuclear and mitochondrial data reveal different evolutionary processes in the Lake Tanganyika cichlid genus Tropheus
URI https://www.ncbi.nlm.nih.gov/pubmed/17697335
https://www.proquest.com/docview/19666852
https://www.proquest.com/docview/68349962
https://pubmed.ncbi.nlm.nih.gov/PMC2000897
https://doaj.org/article/a82e2a76c75c43c58034e68a99a71bed
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgCIkXxPcKY1gICV4yktjxxwNCG2IaCO1htNLEi-XYThetpCNpEf3vuUvSdRGbxEtUxdeqvg_fnX3-HSFvdOI0eHIVxTnHFmZFiHTQLsqF0oXzifRFWyB7LI4m_OtpdrppB9QzsLk2tcN-UpN6tvfn1-ojGPyH1uCVeJ_AAhuluDMmo4TJ2-ROe1iEdXx8c6QArrDNvtbEPc7PNT8wcFEtkv-_6_UVhzUsprzinQ4fkPt9WEn3Oz14SG6F6hG52zWaXD0mi2OELbY1tZWnP8GIYd6VR92jWCJKEccJP_fdUhY0_O5V0tYretFdJggNLSsKASP9Zs8DHdtqCitJeW6pK93ZrPQUlHHZ0HGNWAXL5gmZHH4efzqK-n4LkRNZtohylQXIWQWEHDKNLffCF-1Raay8YFzFqc4l4t1ZL1TuNWMsuAwCGhsDA23KnpKtal6FbUKTIDKW2sJpHriyXnGrQ4gTpSFATD0fkb01i43rwcixJ8bMtEmJEgZlYlAmRhqQyYi8u_zCRYfDcTPpAcrskgwBtNsX83pqens0VqUhtVI4mTnOXKZixoNQVmsrkzz4EXmNEjcIkVFhDc7ULpvGfPl-YvYToTm2aNcj8rYnKubw753trzQADxBVa0C5M6AEG3aD4VdrxTI4hIVvVZgvGwMLpBAqS2-mEIpB1iqA4lmniBv-SKElY9mIyIGKDjgzHKnKsxZiHC9wKS2f__cEX5B73a63ihK-Q7YW9TK8hHBtke-22xy7rTHC8-Tgx19Y9z0D
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+and+mitochondrial+data+reveal+different+evolutionary+processes+in+the+Lake+Tanganyika+cichlid+genus+Tropheus&rft.jtitle=BMC+evolutionary+biology&rft.au=Egger%2C+Bernd&rft.au=Koblmuller%2C+Stephan&rft.au=Sturmbauer%2C+Christian&rft.au=Sefc%2C+Kristina+M&rft.date=2007-08-14&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2148&rft.eissn=1471-2148&rft.volume=7&rft.spage=137&rft_id=info:doi/10.1186%2F1471-2148-7-137&rft.externalDocID=A169479599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2148&client=summon