Nuclear and mitochondrial data reveal different evolutionary processes in the Lake Tanganyika cichlid genus Tropheus
Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly...
Saved in:
Published in | BMC evolutionary biology Vol. 7; no. 1; p. 137 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
14.08.2007
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2148 1471-2148 |
DOI | 10.1186/1471-2148-7-137 |
Cover
Abstract | Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly allopatric colour morphs remains to a large degree unresolved. Previous studies of mitochondrial DNA sequence data revealed polyphyly of the six nominally described species and complex phylogeographic patterns influenced by lake level fluctuations and population admixture, and suggested the parallel evolution of similar colour patterns in divergent evolutionary lineages. A gene tree of a rapidly radiating group may be subject to incomplete and stochastic lineage sorting, and to overcome this problem we used multi-locus, nuclear AFLP data in comparison with mtDNA sequences to study diversification, migration and introgression in Tropheus colour morphs in Lake Tanganyika.
Significant incongruence between phylogenetic reconstructions from mitochondrial and AFLP data suggested incomplete sorting of mitochondrial haplotypes as well as frequent introgression between differentiated lineages. In contrast to the mitochondrial phylogeny, the AFLP phenogram was largely congruent with species classifications, colour pattern similarities, and in many cases also with the current geographic distribution of populations, and did not produce evidence of convergent colour pattern evolution. Homoplasy in the AFLP data was used to identify populations that were strongly affected by introgression.
Different evolutionary processes were distinguished by the combination of mitochondrial and AFLP data. Mitochondrial phylogeographic patterns retained signals of large-scale migration events triggered by historical, major lake level fluctuations, whereas AFLP data indicated genetic cohesion among local groups of populations resulting from secondary contact of adjacent populations in the course of the more frequently occurring, minor lake level fluctuations. There was no support for the parallel evolution of similar colour patterns in the AFLP data. Genetic signatures of introgression and hybridisation detected in several populations suggest that lake level fluctuations drove the stunning diversification of Tropheus morphs not only through population fragmentation, but also by promoting hybridisation between differentiated morphs in secondary contact. |
---|---|
AbstractList | Abstract Background Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly allopatric colour morphs remains to a large degree unresolved. Previous studies of mitochondrial DNA sequence data revealed polyphyly of the six nominally described species and complex phylogeographic patterns influenced by lake level fluctuations and population admixture, and suggested the parallel evolution of similar colour patterns in divergent evolutionary lineages. A gene tree of a rapidly radiating group may be subject to incomplete and stochastic lineage sorting, and to overcome this problem we used multi-locus, nuclear AFLP data in comparison with mtDNA sequences to study diversification, migration and introgression in Tropheus colour morphs in Lake Tanganyika. Results Significant incongruence between phylogenetic reconstructions from mitochondrial and AFLP data suggested incomplete sorting of mitochondrial haplotypes as well as frequent introgression between differentiated lineages. In contrast to the mitochondrial phylogeny, the AFLP phenogram was largely congruent with species classifications, colour pattern similarities, and in many cases also with the current geographic distribution of populations, and did not produce evidence of convergent colour pattern evolution. Homoplasy in the AFLP data was used to identify populations that were strongly affected by introgression. Conclusion Different evolutionary processes were distinguished by the combination of mitochondrial and AFLP data. Mitochondrial phylogeographic patterns retained signals of large-scale migration events triggered by historical, major lake level fluctuations, whereas AFLP data indicated genetic cohesion among local groups of populations resulting from secondary contact of adjacent populations in the course of the more frequently occurring, minor lake level fluctuations. There was no support for the parallel evolution of similar colour patterns in the AFLP data. Genetic signatures of introgression and hybridisation detected in several populations suggest that lake level fluctuations drove the stunning diversification of Tropheus morphs not only through population fragmentation, but also by promoting hybridisation between differentiated morphs in secondary contact. Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly allopatric colour morphs remains to a large degree unresolved. Previous studies of mitochondrial DNA sequence data revealed polyphyly of the six nominally described species and complex phylogeographic patterns influenced by lake level fluctuations and population admixture, and suggested the parallel evolution of similar colour patterns in divergent evolutionary lineages. A gene tree of a rapidly radiating group may be subject to incomplete and stochastic lineage sorting, and to overcome this problem we used multi-locus, nuclear AFLP data in comparison with mtDNA sequences to study diversification, migration and introgression in Tropheus colour morphs in Lake Tanganyika. Significant incongruence between phylogenetic reconstructions from mitochondrial and AFLP data suggested incomplete sorting of mitochondrial haplotypes as well as frequent introgression between differentiated lineages. In contrast to the mitochondrial phylogeny, the AFLP phenogram was largely congruent with species classifications, colour pattern similarities, and in many cases also with the current geographic distribution of populations, and did not produce evidence of convergent colour pattern evolution. Homoplasy in the AFLP data was used to identify populations that were strongly affected by introgression. Different evolutionary processes were distinguished by the combination of mitochondrial and AFLP data. Mitochondrial phylogeographic patterns retained signals of large-scale migration events triggered by historical, major lake level fluctuations, whereas AFLP data indicated genetic cohesion among local groups of populations resulting from secondary contact of adjacent populations in the course of the more frequently occurring, minor lake level fluctuations. There was no support for the parallel evolution of similar colour patterns in the AFLP data. Genetic signatures of introgression and hybridisation detected in several populations suggest that lake level fluctuations drove the stunning diversification of Tropheus morphs not only through population fragmentation, but also by promoting hybridisation between differentiated morphs in secondary contact. Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly allopatric colour morphs remains to a large degree unresolved. Previous studies of mitochondrial DNA sequence data revealed polyphyly of the six nominally described species and complex phylogeographic patterns influenced by lake level fluctuations and population admixture, and suggested the parallel evolution of similar colour patterns in divergent evolutionary lineages. A gene tree of a rapidly radiating group may be subject to incomplete and stochastic lineage sorting, and to overcome this problem we used multi-locus, nuclear AFLP data in comparison with mtDNA sequences to study diversification, migration and introgression in Tropheus colour morphs in Lake Tanganyika.BACKGROUNDCichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly allopatric colour morphs remains to a large degree unresolved. Previous studies of mitochondrial DNA sequence data revealed polyphyly of the six nominally described species and complex phylogeographic patterns influenced by lake level fluctuations and population admixture, and suggested the parallel evolution of similar colour patterns in divergent evolutionary lineages. A gene tree of a rapidly radiating group may be subject to incomplete and stochastic lineage sorting, and to overcome this problem we used multi-locus, nuclear AFLP data in comparison with mtDNA sequences to study diversification, migration and introgression in Tropheus colour morphs in Lake Tanganyika.Significant incongruence between phylogenetic reconstructions from mitochondrial and AFLP data suggested incomplete sorting of mitochondrial haplotypes as well as frequent introgression between differentiated lineages. In contrast to the mitochondrial phylogeny, the AFLP phenogram was largely congruent with species classifications, colour pattern similarities, and in many cases also with the current geographic distribution of populations, and did not produce evidence of convergent colour pattern evolution. Homoplasy in the AFLP data was used to identify populations that were strongly affected by introgression.RESULTSSignificant incongruence between phylogenetic reconstructions from mitochondrial and AFLP data suggested incomplete sorting of mitochondrial haplotypes as well as frequent introgression between differentiated lineages. In contrast to the mitochondrial phylogeny, the AFLP phenogram was largely congruent with species classifications, colour pattern similarities, and in many cases also with the current geographic distribution of populations, and did not produce evidence of convergent colour pattern evolution. Homoplasy in the AFLP data was used to identify populations that were strongly affected by introgression.Different evolutionary processes were distinguished by the combination of mitochondrial and AFLP data. Mitochondrial phylogeographic patterns retained signals of large-scale migration events triggered by historical, major lake level fluctuations, whereas AFLP data indicated genetic cohesion among local groups of populations resulting from secondary contact of adjacent populations in the course of the more frequently occurring, minor lake level fluctuations. There was no support for the parallel evolution of similar colour patterns in the AFLP data. Genetic signatures of introgression and hybridisation detected in several populations suggest that lake level fluctuations drove the stunning diversification of Tropheus morphs not only through population fragmentation, but also by promoting hybridisation between differentiated morphs in secondary contact.CONCLUSIONDifferent evolutionary processes were distinguished by the combination of mitochondrial and AFLP data. Mitochondrial phylogeographic patterns retained signals of large-scale migration events triggered by historical, major lake level fluctuations, whereas AFLP data indicated genetic cohesion among local groups of populations resulting from secondary contact of adjacent populations in the course of the more frequently occurring, minor lake level fluctuations. There was no support for the parallel evolution of similar colour patterns in the AFLP data. Genetic signatures of introgression and hybridisation detected in several populations suggest that lake level fluctuations drove the stunning diversification of Tropheus morphs not only through population fragmentation, but also by promoting hybridisation between differentiated morphs in secondary contact. Background Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents the most impressive example for geographic variation in the pattern and hue of integument colouration, but the taxonomy of the over 100 mostly allopatric colour morphs remains to a large degree unresolved. Previous studies of mitochondrial DNA sequence data revealed polyphyly of the six nominally described species and complex phylogeographic patterns influenced by lake level fluctuations and population admixture, and suggested the parallel evolution of similar colour patterns in divergent evolutionary lineages. A gene tree of a rapidly radiating group may be subject to incomplete and stochastic lineage sorting, and to overcome this problem we used multi-locus, nuclear AFLP data in comparison with mtDNA sequences to study diversification, migration and introgression in Tropheus colour morphs in Lake Tanganyika. Results Significant incongruence between phylogenetic reconstructions from mitochondrial and AFLP data suggested incomplete sorting of mitochondrial haplotypes as well as frequent introgression between differentiated lineages. In contrast to the mitochondrial phylogeny, the AFLP phenogram was largely congruent with species classifications, colour pattern similarities, and in many cases also with the current geographic distribution of populations, and did not produce evidence of convergent colour pattern evolution. Homoplasy in the AFLP data was used to identify populations that were strongly affected by introgression. Conclusion Different evolutionary processes were distinguished by the combination of mitochondrial and AFLP data. Mitochondrial phylogeographic patterns retained signals of large-scale migration events triggered by historical, major lake level fluctuations, whereas AFLP data indicated genetic cohesion among local groups of populations resulting from secondary contact of adjacent populations in the course of the more frequently occurring, minor lake level fluctuations. There was no support for the parallel evolution of similar colour patterns in the AFLP data. Genetic signatures of introgression and hybridisation detected in several populations suggest that lake level fluctuations drove the stunning diversification of Tropheus morphs not only through population fragmentation, but also by promoting hybridisation between differentiated morphs in secondary contact. |
ArticleNumber | 137 |
Audience | Academic |
Author | Egger, Bernd Sturmbauer, Christian Koblmüller, Stephan Sefc, Kristina M |
AuthorAffiliation | 1 Department of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria |
AuthorAffiliation_xml | – name: 1 Department of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria |
Author_xml | – sequence: 1 givenname: Bernd surname: Egger fullname: Egger, Bernd – sequence: 2 givenname: Stephan surname: Koblmüller fullname: Koblmüller, Stephan – sequence: 3 givenname: Christian surname: Sturmbauer fullname: Sturmbauer, Christian – sequence: 4 givenname: Kristina M surname: Sefc fullname: Sefc, Kristina M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17697335$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt1rFDEUxQep2A999k0CguDDtslkJh8vQil-FBYFXZ_D3eTObtrZZE1miv3vzbi1dkWRPCTc-Z0zyeEcVwchBqyq54yeMqbEGWskm9WsUTM5Y1w-qo7uJwcPzofVcc5XlDKpavakOmRSaMl5e1QNH0fbIyQCwZGNH6Jdx-CSh544GIAkvMHp7LsOE4aB4E3sx8HHAOmWbFO0mDNm4gMZ1kjmcI1kAWEF4dZfA7HernvvyArDmMkixe0ax_y0etxBn_HZ3X5SfX33dnHxYTb_9P7y4nw-s6Jth9lStSgZF7RWsqbQOOE6SjnVVDnBG0VrvZSq1QycUEunOedoW64l0PJwqPlJdbnzdRGuzDb5Tbm0ieDNz0FMKwNp8CUAA6rGGqSwsrUNt62ivEGhQGuQbImueL3ZeW3H5QadLVkk6PdM978EvzareGNqSqkqaZ9Ur-4MUvw2Yh7MxmeLfQ8B45iNULzRWtT_BZkWQqh2Al_uwBWUF_jQxfJjO8HmnAndSN1qXajTv1BlOdx4W-rU-TLfE7zeExRmwO_DCsaczeWXz_vsi4ep3Mfxq2AFONsBNsWcE3a_EWqmCpuppGYqqZGmVLgo2j8U1g8wNa7c2_f_1P0AtXfytw |
CitedBy_id | crossref_primary_10_1007_s10750_013_1692_5 crossref_primary_10_1016_j_bse_2015_02_011 crossref_primary_10_1111_j_1365_294X_2012_05607_x crossref_primary_10_1371_journal_pone_0031236 crossref_primary_10_1016_j_semcdb_2013_05_003 crossref_primary_10_1111_j_1095_8649_2010_02792_x crossref_primary_10_1002_ece3_3860 crossref_primary_10_1016_j_ympev_2019_02_026 crossref_primary_10_1016_j_ympev_2009_09_032 crossref_primary_10_1002_ajpa_24099 crossref_primary_10_1186_2193_1801_3_614 crossref_primary_10_1007_s10750_014_1892_7 crossref_primary_10_1007_s12052_008_0049_4 crossref_primary_10_1007_s10750_008_9564_0 crossref_primary_10_1371_journal_pone_0025549 crossref_primary_10_3389_fevo_2014_00053 crossref_primary_10_1007_s10750_011_0766_5 crossref_primary_10_1371_journal_pone_0125043 crossref_primary_10_1155_2012_716209 crossref_primary_10_1111_j_1365_294X_2009_04399_x crossref_primary_10_1186_1745_6150_5_4 crossref_primary_10_1111_mec_16636 crossref_primary_10_1016_j_jglr_2019_05_009 crossref_primary_10_1111_nph_13450 crossref_primary_10_1007_s10750_011_0698_0 crossref_primary_10_1002_ece3_1372 crossref_primary_10_1111_j_1558_5646_2009_00612_x crossref_primary_10_1016_j_ympev_2012_02_033 crossref_primary_10_1016_j_ympev_2019_04_008 crossref_primary_10_1111_j_1365_294X_2009_04434_x crossref_primary_10_1007_s10750_023_05347_8 crossref_primary_10_1016_j_tree_2009_06_010 crossref_primary_10_1111_1755_0998_12523 crossref_primary_10_1111_j_1365_294X_2010_04560_x crossref_primary_10_1007_s10228_014_0396_9 crossref_primary_10_1111_j_1365_294X_2008_03988_x crossref_primary_10_4061_2011_470875 crossref_primary_10_1007_s10750_016_2939_8 crossref_primary_10_1186_s12983_018_0287_4 crossref_primary_10_1643_CG_13_123 crossref_primary_10_1038_s41576_018_0043_9 crossref_primary_10_1186_s12862_017_1116_7 crossref_primary_10_1016_j_ympev_2015_06_001 crossref_primary_10_1038_hdy_2013_78 crossref_primary_10_3390_biology11020175 crossref_primary_10_1111_jeb_12467 crossref_primary_10_1016_j_ympev_2023_107856 crossref_primary_10_7717_peerj_2628 crossref_primary_10_1007_s00114_010_0751_2 crossref_primary_10_1111_ele_12766 crossref_primary_10_1007_s10228_015_0507_2 crossref_primary_10_1016_j_ympev_2014_05_010 crossref_primary_10_1111_j_1420_9101_2009_01906_x crossref_primary_10_1111_j_1439_0469_2007_00456_x crossref_primary_10_1007_s00239_009_9207_8 crossref_primary_10_1007_s10750_016_2896_2 crossref_primary_10_1016_j_ympev_2010_06_018 crossref_primary_10_1093_zoolinnean_zlae130 crossref_primary_10_1111_mec_13833 crossref_primary_10_1371_journal_pone_0182618 crossref_primary_10_1111_jeb_12074 crossref_primary_10_1016_j_ympev_2010_04_001 crossref_primary_10_1007_s10750_021_04536_7 crossref_primary_10_1111_j_1755_0998_2012_03169_x crossref_primary_10_1016_j_margen_2014_01_001 crossref_primary_10_1002_ece3_4417 crossref_primary_10_1111_j_1463_6409_2011_00530_x crossref_primary_10_1111_zsc_12110 crossref_primary_10_1111_j_1365_294X_2011_05088_x crossref_primary_10_1111_j_1365_294X_2012_05634_x crossref_primary_10_1007_s10750_016_2791_x crossref_primary_10_3389_fmars_2019_00756 crossref_primary_10_1111_2041_210X_12490 crossref_primary_10_1111_mec_12374 crossref_primary_10_1016_j_bse_2016_03_006 crossref_primary_10_1111_mec_12494 crossref_primary_10_1186_s12862_016_0708_y crossref_primary_10_1007_s10750_008_9552_4 crossref_primary_10_1007_s10750_017_3286_0 crossref_primary_10_1007_s10750_008_9557_z crossref_primary_10_1007_s10750_020_04203_3 crossref_primary_10_1111_jeb_12283 crossref_primary_10_1007_s00265_014_1870_0 crossref_primary_10_1016_j_cbpa_2014_03_006 crossref_primary_10_1111_fwb_12492 crossref_primary_10_1111_jeb_12287 crossref_primary_10_1016_j_ympev_2013_09_005 crossref_primary_10_1146_annurev_ecolsys_39_110707_173447 crossref_primary_10_1016_j_ympev_2011_03_031 crossref_primary_10_1111_j_1365_294X_2009_04348_x crossref_primary_10_3390_fishes9120481 crossref_primary_10_1016_j_ympev_2014_05_009 crossref_primary_10_1093_jhered_ess013 |
Cites_doi | 10.1038/362444a0 10.1111/j.0014-3820.2004.tb00415.x 10.1126/science.277.5333.1808 10.1016/S0076-6879(05)95011-8 10.1093/oxfordjournals.molbev.a004042 10.1046/j.1365-294X.2003.01905.x 10.1093/oxfordjournals.molbev.a003747 10.1038/368539a0 10.1080/10635150590910249 10.1046/j.0962-1083.2001.01438.x 10.1007/PL00006204 10.2307/2410325 10.1093/bioinformatics/14.9.817 10.1016/j.ympev.2005.04.023 10.1046/j.1420-9101.2002.00394.x 10.2307/1446959 10.1016/j.ympev.2007.02.010 10.1093/nar/23.21.4407 10.1046/j.1365-294X.2001.01318.x 10.1073/pnas.96.9.5107 10.1186/1742-9994-1-5 10.1046/j.1365-294X.2001.01259.x 10.1093/oxfordjournals.molbev.a025936 10.1111/j.1365-294X.2005.02787.x 10.1007/s00239-002-2380-7 10.1038/342057a0 10.1007/s002390010240 10.1007/s00239-004-0017-8 10.1186/1471-2148-7-7 10.1007/BF00220992 10.1006/mpev.1999.0676 10.1007/s10750-004-4664-y 10.1046/j.1365-294X.2001.01220.x 10.1007/BF02101694 10.1073/pnas.95.24.14238 10.1016/j.ympev.2006.05.010 10.1038/358578a0 10.1098/rspb.2005.3321 10.1093/bioinformatics/17.8.754 10.1016/j.tree.2004.01.003 10.1186/1471-2148-5-17 10.1073/pnas.2332665100 10.1016/B978-012417540-2/50008-7 10.1093/nar/16.3.1215 10.1046/j.1365-294x.2000.01020.x 10.1093/oxfordjournals.molbev.a026200 10.1023/A:1024680201436 10.1007/BF00174041 10.1073/pnas.242585899 10.1073/pnas.76.10.5269 10.1007/s00239-006-0011-4 10.1093/oxfordjournals.molbev.a026201 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2007 BioMed Central Ltd. Copyright © 2007 Egger et al; licensee BioMed Central Ltd. 2007 Egger et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2007 BioMed Central Ltd. – notice: Copyright © 2007 Egger et al; licensee BioMed Central Ltd. 2007 Egger et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR F1W H95 L.G 7X8 5PM DOA |
DOI | 10.1186/1471-2148-7-137 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2148 |
EndPage | 137 |
ExternalDocumentID | oai_doaj_org_article_a82e2a76c75c43c58034e68a99a71bed PMC2000897 A169479599 17697335 10_1186_1471_2148_7_137 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Africa, Central Africa, Eastern Austria |
GeographicLocations_xml | – name: Africa, Central – name: Africa, Eastern – name: Austria |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 AAHBH AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BCNDV BFQNJ C1A CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 M48 M~E O5R O5S OVT P2P PGMZT RBZ RIG RNS ROL RPM SBL SV3 TR2 TUS U2A WOQ WOW XSB CGR CUY CVF ECM EIF NPM F1W H95 L.G 7X8 5PM |
ID | FETCH-LOGICAL-c655t-b85e7136028720a4d6df0030908d6348029b78591ad68bd9333ec5397a0471a23 |
IEDL.DBID | M48 |
ISSN | 1471-2148 |
IngestDate | Wed Aug 27 01:24:40 EDT 2025 Thu Aug 21 18:28:41 EDT 2025 Thu Sep 04 15:29:00 EDT 2025 Thu Sep 04 19:56:58 EDT 2025 Wed Mar 19 02:26:17 EDT 2025 Sat Mar 08 20:08:45 EST 2025 Fri Jun 27 05:55:24 EDT 2025 Mon Jul 21 06:02:32 EDT 2025 Tue Jul 01 04:27:17 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c655t-b85e7136028720a4d6df0030908d6348029b78591ad68bd9333ec5397a0471a23 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2148-7-137 |
PMID | 17697335 |
PQID | 19666852 |
PQPubID | 23462 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a82e2a76c75c43c58034e68a99a71bed pubmedcentral_primary_oai_pubmedcentral_nih_gov_2000897 proquest_miscellaneous_68349962 proquest_miscellaneous_19666852 gale_infotracmisc_A169479599 gale_infotracacademiconefile_A169479599 gale_incontextgauss_ISR_A169479599 pubmed_primary_17697335 crossref_primary_10_1186_1471_2148_7_137 crossref_citationtrail_10_1186_1471_2148_7_137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-08-14 |
PublicationDateYYYYMMDD | 2007-08-14 |
PublicationDate_xml | – month: 08 year: 2007 text: 2007-08-14 day: 14 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC evolutionary biology |
PublicationTitleAlternate | BMC Evol Biol |
PublicationYear | 2007 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | W-J Lee (431_CR54) 1995; 41 W Salzburger (431_CR50) 2006; 273 RG Harrison (431_CR37) 2003 C Sturmbauer (431_CR22) 2003; 500 M Nei (431_CR60) 1979; 76 W Link (431_CR61) 1995; 90 Y Van de Peer (431_CR59) 1994; 10 RC Albertson (431_CR12) 1999; 96 M Hasegawa (431_CR58) 1985; 22 KG McCracken (431_CR10) 2005; 54 TC Mendelson (431_CR21) 2005 N Duftner (431_CR52) 2005; 60 UK Schliewen (431_CR18) 2004; 1 M Clement (431_CR31) 2000; 9 J Snoeks (431_CR26) 1994; 44 PF Smith (431_CR35) 2003; 12 P Schupke (431_CR25) 2003 S Baric (431_CR29) 2003; 56 YM Parsons (431_CR14) 2001; 10 A Parker (431_CR42) 1997; 45 TE Dowling (431_CR1) 1993; 362 SA Miller (431_CR51) 1988; 16 431_CR47 M Beltrán (431_CR5) 2002; 19 TC Mendelson (431_CR20) 2006; 41 CJ Allender (431_CR17) 2003; 100 DL Swofford (431_CR57) 2003 P Moran (431_CR40) 1993; 10 M Barrier (431_CR3) 1999; 16 KM Sefc (431_CR33) 2007; 64 L Rüber (431_CR34) 2001; 10 H Shimodeira (431_CR38) 1999; 16 KL Shaw (431_CR4) 2002; 99 K Takahashi (431_CR43) 2001; 53 W Salzburger (431_CR23) 2005; 5 A Konings (431_CR24) 1998 R Schelly (431_CR46) 2006; 38 JP Huelsenbeck (431_CR55) 2001; 17 K Takahashi (431_CR9) 2001; 18 JP Sullivan (431_CR19) 2004; 58 K Takahashi (431_CR44) 1998; 15 S Koblmüller (431_CR36) 2007; 7 C Sturmbauer (431_CR28) 1992; 358 W Salzburger (431_CR6) 2002; 11 MV Schneider (431_CR15) 2002; 15 C Sturmbauer (431_CR30) 1997 F Gasse (431_CR32) 1989; 342 O Seehausen (431_CR48) 1997; 277 431_CR62 O Seehausen (431_CR7) 2004; 19 A Meyer (431_CR53) 1994; 368 C Sturmbauer (431_CR45) 1994; 11 JR Stauffer (431_CR49) 1996; 1 MR Kidd (431_CR16) 2006; 15 WS Moore (431_CR2) 1995; 49 S Nagl (431_CR39) 1998; 95 N Giannasi (431_CR13) 2001; 10 D Posada (431_CR56) 1998; 14 RDM Page (431_CR8) 2002; 14 P Vos (431_CR11) 1995; 23 C Sturmbauer (431_CR27) 2005; 542 P Moran (431_CR41) 1995; 12 |
References_xml | – volume: 362 start-page: 444 year: 1993 ident: 431_CR1 publication-title: Nature doi: 10.1038/362444a0 – volume: 58 start-page: 825 year: 2004 ident: 431_CR19 publication-title: Evolution doi: 10.1111/j.0014-3820.2004.tb00415.x – volume: 277 start-page: 1808 year: 1997 ident: 431_CR48 publication-title: Science doi: 10.1126/science.277.5333.1808 – start-page: 161 volume-title: Methods in Enzymology v. 395: Molecular Evolution: Producing the Biochemical Data year: 2005 ident: 431_CR21 doi: 10.1016/S0076-6879(05)95011-8 – volume: 19 start-page: 2176 year: 2002 ident: 431_CR5 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a004042 – volume: 12 start-page: 2497 year: 2003 ident: 431_CR35 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.2003.01905.x – volume: 18 start-page: 2057 year: 2001 ident: 431_CR9 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003747 – start-page: 3 volume-title: Hybrid Zones and the Evolutionary Process year: 2003 ident: 431_CR37 – volume: 368 start-page: 539 year: 1994 ident: 431_CR53 publication-title: Nature doi: 10.1038/368539a0 – volume: 54 start-page: 35 year: 2005 ident: 431_CR10 publication-title: Syst Biol doi: 10.1080/10635150590910249 – volume-title: Tanganyika cichlids in their natural habitat year: 1998 ident: 431_CR24 – volume: 11 start-page: 619 year: 2002 ident: 431_CR6 publication-title: Mol Ecol doi: 10.1046/j.0962-1083.2001.01438.x – volume: 45 start-page: 70 year: 1997 ident: 431_CR42 publication-title: J Mol Evol doi: 10.1007/PL00006204 – volume: 10 start-page: 1015 year: 1993 ident: 431_CR40 publication-title: Mol Biol Evol – volume: 49 start-page: 718 year: 1995 ident: 431_CR2 publication-title: Evolution doi: 10.2307/2410325 – volume: 14 start-page: 817 year: 1998 ident: 431_CR56 publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.9.817 – volume: 38 start-page: 426 year: 2006 ident: 431_CR46 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2005.04.023 – volume: 15 start-page: 191 year: 2002 ident: 431_CR15 publication-title: J Evol Biol doi: 10.1046/j.1420-9101.2002.00394.x – volume: 1 start-page: 203 year: 1996 ident: 431_CR49 publication-title: Copeia doi: 10.2307/1446959 – ident: 431_CR47 doi: 10.1016/j.ympev.2007.02.010 – volume: 23 start-page: 4407 year: 1995 ident: 431_CR11 publication-title: Nucl Acids Res doi: 10.1093/nar/23.21.4407 – volume: 10 start-page: 1765 year: 2001 ident: 431_CR14 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.2001.01318.x – volume: 96 start-page: 5107 year: 1999 ident: 431_CR12 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.9.5107 – volume: 1 start-page: 5 year: 2004 ident: 431_CR18 publication-title: Front Zool doi: 10.1186/1742-9994-1-5 – volume: 10 start-page: 1207 year: 2001 ident: 431_CR34 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.2001.01259.x – volume: 11 start-page: 691 year: 1994 ident: 431_CR45 publication-title: Mol Biol Evol – volume: 15 start-page: 391 year: 1998 ident: 431_CR44 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025936 – volume: 15 start-page: 459 year: 2006 ident: 431_CR16 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2005.02787.x – volume: 56 start-page: 54 year: 2003 ident: 431_CR29 publication-title: J Mol Evol doi: 10.1007/s00239-002-2380-7 – volume: 342 start-page: 57 year: 1989 ident: 431_CR32 publication-title: Nature doi: 10.1038/342057a0 – volume: 53 start-page: 496 year: 2001 ident: 431_CR43 publication-title: J Mol Evol doi: 10.1007/s002390010240 – volume: 60 start-page: 277 year: 2005 ident: 431_CR52 publication-title: J Mol Evol doi: 10.1007/s00239-004-0017-8 – volume: 7 start-page: 7 year: 2007 ident: 431_CR36 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-7-7 – volume: 90 start-page: 27 year: 1995 ident: 431_CR61 publication-title: Theor Appl Genet doi: 10.1007/BF00220992 – volume: 14 start-page: 89 issue: 1 year: 2002 ident: 431_CR8 publication-title: Mol Phyl Evol doi: 10.1006/mpev.1999.0676 – volume: 542 start-page: 335 year: 2005 ident: 431_CR27 publication-title: Hydrobiologia doi: 10.1007/s10750-004-4664-y – volume: 44 start-page: 355 year: 1994 ident: 431_CR26 publication-title: Archiv für Hydrobiologie, Beiheft Ergebnisse der Limnologie – volume: 10 start-page: 419 year: 2001 ident: 431_CR13 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.2001.01220.x – volume-title: PAUP* – Phylogenetic Analysis Using Parsimony and other methods, version 4.0 year: 2003 ident: 431_CR57 – volume: 22 start-page: 160 year: 1985 ident: 431_CR58 publication-title: J Mol Evol doi: 10.1007/BF02101694 – volume: 95 start-page: 14238 year: 1998 ident: 431_CR39 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.24.14238 – volume: 41 start-page: 445 issue: 2 year: 2006 ident: 431_CR20 publication-title: Mol Phyl Evol doi: 10.1016/j.ympev.2006.05.010 – volume: 358 start-page: 578 year: 1992 ident: 431_CR28 publication-title: Nature doi: 10.1038/358578a0 – volume: 273 start-page: 257 issue: 1584 year: 2006 ident: 431_CR50 publication-title: Proc Biol Sci doi: 10.1098/rspb.2005.3321 – volume: 17 start-page: 754 year: 2001 ident: 431_CR55 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.8.754 – volume: 19 start-page: 198 year: 2004 ident: 431_CR7 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2004.01.003 – volume: 5 start-page: 17 year: 2005 ident: 431_CR23 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-5-17 – volume: 100 start-page: 14074 year: 2003 ident: 431_CR17 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2332665100 – start-page: 97 volume-title: Molecular Systematics of Fishes year: 1997 ident: 431_CR30 doi: 10.1016/B978-012417540-2/50008-7 – volume: 16 start-page: 1215 year: 1988 ident: 431_CR51 publication-title: Nucl Acids Res doi: 10.1093/nar/16.3.1215 – volume: 9 start-page: 1657 year: 2000 ident: 431_CR31 publication-title: Mol Ecol doi: 10.1046/j.1365-294x.2000.01020.x – volume: 16 start-page: 1105 year: 1999 ident: 431_CR3 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026200 – volume: 500 start-page: 51 year: 2003 ident: 431_CR22 publication-title: Hydrobiologia doi: 10.1023/A:1024680201436 – volume: 41 start-page: 54 year: 1995 ident: 431_CR54 publication-title: J Mol Evol doi: 10.1007/BF00174041 – volume: 10 start-page: 569 year: 1994 ident: 431_CR59 publication-title: Comput Appl Biosci – volume: 99 start-page: 16122 year: 2002 ident: 431_CR4 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.242585899 – volume: 12 start-page: 1085 year: 1995 ident: 431_CR41 publication-title: Mol Biol Evol – volume: 76 start-page: 5269 year: 1979 ident: 431_CR60 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.76.10.5269 – volume: 64 start-page: 33 year: 2007 ident: 431_CR33 publication-title: J Mol Evol doi: 10.1007/s00239-006-0011-4 – volume: 16 start-page: 1114 year: 1999 ident: 431_CR38 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026201 – volume-title: African Cichlids II: Tanganyika I: Tropheus year: 2003 ident: 431_CR25 – ident: 431_CR62 |
SSID | ssj0017821 |
Score | 2.2004745 |
Snippet | Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus represents... Background Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus Tropheus... Abstract Background Cichlid fishes are notorious for their wealth of intra- and interspecific colour pattern diversity. In Lake Tanganyika, the endemic genus... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 137 |
SubjectTerms | Africa, Central Africa, Eastern Animals Base Sequence Cell nuclei Cichlidae Cichlids - genetics Cichlids - physiology DNA, Mitochondrial - genetics Evaluation Evolution, Molecular Freshwater Genetic aspects Genetic Markers Genetic Variation Mitochondrial DNA Molecular evolution Phylogeny Physiological aspects Random Amplified Polymorphic DNA Technique |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kIHgRv422uoigl9gku9mPYxVLFelBX6G3ZbO7aUPbfeUlEfrfdybJe74gxYu3kJ1AmPntfCSzvyHkvc6dhkiu0qziOMKsDqkO2qWVULp2Ppe-Hhpkj8XRCf9-Wp5ujfrCnrCRHnhU3L5VRSisFE6WjjNXqozxIJTV2sq8Ch69b6azdTE1_T-AuDeUWuB60wIy_onUJ1dif3MvlWmO48-34tFA2_-3c96KTvPOya1QdPiIPJxySHowvvtjci_EJ-T-OFXy5inpjpGj2K6ojZ5ewY4FDxc9Ao1iPyhF0ia8nkajdDT8nvBnVzf0ejw5EFraRArZIf1hLwJd2HgGbqO5sNQ17vyy8RSQ17d0sUJigr59Rk4Ovy6-HKXTcIXUibLs0kqVAQpUAfmFLDLLvfD18F80U14wrrJCVxLJ7awXqvKaMRZcCdmLzUCBtmDPyU5cxvCS0DyIkhW2dpoHrqxX3OoQslxpyAYLzxPyaa1i4ybmcRyAcWmGCkQJgzYxaBMjDdgkIR83D1yPpBt3i35Gm23EkC17uAEYMhOGzL8wlJB3aHGDfBgRG27ObN-25tuvn-YgF5rjPHadkA-TUL2Et3d2Or8AOkAKrZnk7kwSNqybLb9dA8vgEna5xbDsWwPeUAhVFndLCMWgRBUg8WIE4h_9SKElY2VC5AyiM83MV2JzPvCJ42ktpeWr_6HK1-TB-PVbpTnfJTvdqg97kLZ11Zthh94CkW89Ig priority: 102 providerName: Directory of Open Access Journals |
Title | Nuclear and mitochondrial data reveal different evolutionary processes in the Lake Tanganyika cichlid genus Tropheus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/17697335 https://www.proquest.com/docview/19666852 https://www.proquest.com/docview/68349962 https://pubmed.ncbi.nlm.nih.gov/PMC2000897 https://doaj.org/article/a82e2a76c75c43c58034e68a99a71bed |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgCIkXxPcKY1gICV4yktjxxwNCG2IaCO1htNLEi-XYThetpCNpEf3vuUvSdRGbxEtUxdeqvg_fnX3-HSFvdOI0eHIVxTnHFmZFiHTQLsqF0oXzifRFWyB7LI4m_OtpdrppB9QzsLk2tcN-UpN6tvfn1-ojGPyH1uCVeJ_AAhuluDMmo4TJ2-ROe1iEdXx8c6QArrDNvtbEPc7PNT8wcFEtkv-_6_UVhzUsprzinQ4fkPt9WEn3Oz14SG6F6hG52zWaXD0mi2OELbY1tZWnP8GIYd6VR92jWCJKEccJP_fdUhY0_O5V0tYretFdJggNLSsKASP9Zs8DHdtqCitJeW6pK93ZrPQUlHHZ0HGNWAXL5gmZHH4efzqK-n4LkRNZtohylQXIWQWEHDKNLffCF-1Raay8YFzFqc4l4t1ZL1TuNWMsuAwCGhsDA23KnpKtal6FbUKTIDKW2sJpHriyXnGrQ4gTpSFATD0fkb01i43rwcixJ8bMtEmJEgZlYlAmRhqQyYi8u_zCRYfDcTPpAcrskgwBtNsX83pqens0VqUhtVI4mTnOXKZixoNQVmsrkzz4EXmNEjcIkVFhDc7ULpvGfPl-YvYToTm2aNcj8rYnKubw753trzQADxBVa0C5M6AEG3aD4VdrxTI4hIVvVZgvGwMLpBAqS2-mEIpB1iqA4lmniBv-SKElY9mIyIGKDjgzHKnKsxZiHC9wKS2f__cEX5B73a63ihK-Q7YW9TK8hHBtke-22xy7rTHC8-Tgx19Y9z0D |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+and+mitochondrial+data+reveal+different+evolutionary+processes+in+the+Lake+Tanganyika+cichlid+genus+Tropheus&rft.jtitle=BMC+evolutionary+biology&rft.au=Egger%2C+Bernd&rft.au=Koblmuller%2C+Stephan&rft.au=Sturmbauer%2C+Christian&rft.au=Sefc%2C+Kristina+M&rft.date=2007-08-14&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2148&rft.eissn=1471-2148&rft.volume=7&rft.spage=137&rft_id=info:doi/10.1186%2F1471-2148-7-137&rft.externalDocID=A169479599 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2148&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2148&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2148&client=summon |