ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species
ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 133; no. 2; pp. 838 - 849 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.10.2003
American Society of Plant Physiologists Oxford University Press ; American Society of Plant Biologists The American Society for Plant Biologists |
Subjects | |
Online Access | Get full text |
ISSN | 0032-0889 1532-2548 1532-2548 |
DOI | 10.1104/pp.103.024513 |
Cover
Abstract | ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farre, P. Geigenberger [2002] Plant Cell 14: 2191-2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis. |
---|---|
AbstractList | ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farre, P. Geigenberger [2002] Plant Cell 14: 2191-2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis. ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farré, P. Geigenberger [2002] Plant Cell 14: 2191–2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis. Abstract ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farré, P. Geigenberger [2002] Plant Cell 14: 2191–2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis. ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farré, P. Geigenberger [2002] Plant Cell 14: 2191-2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis. ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farré, P. Geigenberger [2002] Plant Cell 14: 2191-2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis.ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farré, P. Geigenberger [2002] Plant Cell 14: 2191-2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis. |
Author | Kolbe, A Stitt, M Geigenberger, P Hendriks, J.H.M Gibon, Y |
AuthorAffiliation | Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany |
AuthorAffiliation_xml | – name: Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany |
Author_xml | – sequence: 1 fullname: Hendriks, J.H.M – sequence: 2 fullname: Kolbe, A – sequence: 3 fullname: Gibon, Y – sequence: 4 fullname: Stitt, M – sequence: 5 fullname: Geigenberger, P |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15210780$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12972664$$D View this record in MEDLINE/PubMed https://hal.science/hal-03321577$$DView record in HAL |
BookMark | eNqFk8uO0zAUhiM0iOkMLNkh8AYkFim-xU4WLKrhMkiVQIJZW47jtB65sbHdQl-I58SZVBRGQl1YOTnn-335fXxRnA1u0EXxFME5QpC-8X6OIJlDTCtEHhQzVBFc4orWZ8UMwhzDum7Oi4sYbyGEiCD6qDhHuOGYMTorfi3efSlXdqtc1MDvg_NrF_MIeytzxkQgVTI7mXQH2j3wLqYU5BCtTMYN0oKgO_ez3LjO9EbdJYEZcjZ6N-QJkgPWrNYJyKEbf-J2JUMcEavlTkfgerAIsjWd83FcLWMurXUA3sohgei1Mjo-Lh720kb95PC9LG4-vP92dV0uP3_8dLVYlopVVSpbxglikHOqeNNi2LKqJ7rSUOeY5EMrLDWlDHECu4ZImguU6rblFKKGIXJZzKd5t4OX-x_SWuGD2ciwFwiK0XDhfQ6JmAzPgreTwG_bje6UHrI9R5GTRvxbGcxarNxOYNTAimf960m_vqe6XizFmIOEYFRxvhs39-qwVnDftzomsTFRaZuN0m4bBUeYQ1KzkyBtEOccVidBxOu6ZmwEn_99zKMph0bKwMsDIKOSts89okw8chVGkNcwc2TiVHAxBt0LZdJd22R3jP2vy-U91albeTbxtzG58AemuEakGf15MZV76YRchbzRm684Pw4IG8IaWpPfPi0Mag |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1104_pp_105_073957 crossref_primary_10_1104_pp_113_213843 crossref_primary_10_1104_pp_109_141291 crossref_primary_10_1186_s13595_024_01246_7 crossref_primary_10_1080_1343943X_2022_2160362 crossref_primary_10_1016_j_stress_2024_100553 crossref_primary_10_3390_plants8120543 crossref_primary_10_1104_pp_104_046854 crossref_primary_10_1111_j_1399_3054_2006_00758_x crossref_primary_10_1016_j_plantsci_2010_01_010 crossref_primary_10_1093_mp_sst129 crossref_primary_10_1016_j_plantsci_2015_03_021 crossref_primary_10_1093_mp_sst127 crossref_primary_10_1111_j_1742_4658_2012_08546_x crossref_primary_10_1105_tpc_108_058271 crossref_primary_10_1007_s11738_017_2515_5 crossref_primary_10_1093_pcp_pcr067 crossref_primary_10_1186_s12864_018_5192_x crossref_primary_10_1071_FP05055 crossref_primary_10_1016_j_abb_2013_07_019 crossref_primary_10_1093_jxb_eraa302 crossref_primary_10_1016_j_gene_2005_09_021 crossref_primary_10_1007_s00425_023_04115_1 crossref_primary_10_1089_ars_2019_7823 crossref_primary_10_1093_aob_mcr303 crossref_primary_10_1093_pcp_pci148 crossref_primary_10_3390_ijms251910850 crossref_primary_10_1111_j_1365_3040_2008_01921_x crossref_primary_10_1104_pp_106_086629 crossref_primary_10_3389_fpls_2021_704960 crossref_primary_10_1073_pnas_2112825118 crossref_primary_10_1146_annurev_arplant_050718_100241 crossref_primary_10_1038_s41598_021_90685_7 crossref_primary_10_1073_pnas_0406674102 crossref_primary_10_1093_jxb_erx291 crossref_primary_10_1093_pcp_pcr193 crossref_primary_10_1104_pp_111_181594 crossref_primary_10_1093_jxb_erx496 crossref_primary_10_1016_j_molp_2021_05_024 crossref_primary_10_1105_tpc_109_067041 crossref_primary_10_1016_j_jmgm_2024_108761 crossref_primary_10_1016_j_flora_2024_152621 crossref_primary_10_1093_jxb_ert216 crossref_primary_10_1111_j_1365_3040_2012_02549_x crossref_primary_10_1111_pce_12900 crossref_primary_10_1016_j_pbi_2004_03_002 crossref_primary_10_1104_pp_113_223420 crossref_primary_10_1007_s11120_018_0524_x crossref_primary_10_1016_j_plantsci_2009_09_015 crossref_primary_10_1093_pcp_pcp108 crossref_primary_10_1016_j_bbrc_2016_04_103 crossref_primary_10_1016_j_pbi_2004_03_006 crossref_primary_10_1590_1519_6984_18815 crossref_primary_10_1016_j_jplph_2005_01_010 crossref_primary_10_1111_tpj_13114 crossref_primary_10_1111_nph_19506 crossref_primary_10_1371_journal_pone_0127562 crossref_primary_10_1111_j_1365_2486_2010_02359_x crossref_primary_10_1080_13102818_2014_901674 crossref_primary_10_3390_antiox10030401 crossref_primary_10_1111_gcb_12237 crossref_primary_10_1626_pps_15_10 crossref_primary_10_1111_j_1365_2486_2008_01818_x crossref_primary_10_1038_s41438_019_0178_7 crossref_primary_10_1007_s00216_011_4678_z crossref_primary_10_3390_ijms221910450 crossref_primary_10_1038_hortres_2017_18 crossref_primary_10_1002_pca_982 crossref_primary_10_1093_jxb_erac187 crossref_primary_10_3389_fpls_2018_01397 crossref_primary_10_1104_pp_107_115592 crossref_primary_10_1371_journal_pone_0196102 crossref_primary_10_1093_mp_sst137 crossref_primary_10_1104_pp_103_036053 crossref_primary_10_1093_mp_sst131 crossref_primary_10_1016_j_plaphy_2023_107796 crossref_primary_10_1093_pcp_pcs180 crossref_primary_10_1093_pcp_pci040 crossref_primary_10_1105_tpc_19_00837 crossref_primary_10_1111_nph_15812 crossref_primary_10_3389_fpls_2022_848560 crossref_primary_10_1093_jxb_eraa594 crossref_primary_10_1073_pnas_1808284115 crossref_primary_10_3390_antiox12111902 crossref_primary_10_3390_agriculture14101712 crossref_primary_10_1111_ppl_70142 crossref_primary_10_3389_fpls_2022_959118 crossref_primary_10_1111_j_1365_3040_2011_02293_x crossref_primary_10_1093_pcp_pcab150 crossref_primary_10_1074_jbc_M707447200 crossref_primary_10_1371_journal_pone_0049641 crossref_primary_10_1104_pp_110_170399 crossref_primary_10_1073_pnas_1515513112 crossref_primary_10_1111_pce_14631 crossref_primary_10_1186_s12870_014_0309_0 crossref_primary_10_1093_jxb_erv460 crossref_primary_10_1093_pcp_pcq174 crossref_primary_10_1016_j_tplants_2005_01_001 crossref_primary_10_1093_jxb_erae146 crossref_primary_10_1111_j_1742_4658_2010_07633_x crossref_primary_10_1016_j_carbpol_2024_122592 crossref_primary_10_1007_s00294_007_0128_z crossref_primary_10_1104_pp_112_205591 crossref_primary_10_1111_j_1365_3040_2009_01964_x crossref_primary_10_1111_j_1365_3040_2010_02245_x crossref_primary_10_1111_tpj_16617 crossref_primary_10_1093_mp_ssq049 crossref_primary_10_1042_BJ20060083 crossref_primary_10_1093_pcp_pci101 crossref_primary_10_3389_fpls_2017_01785 crossref_primary_10_1111_ppl_12039 crossref_primary_10_1111_j_1365_3040_2006_01503_x crossref_primary_10_1016_j_envpol_2009_07_004 crossref_primary_10_1093_aob_mcaa082 crossref_primary_10_1104_pp_112_204016 crossref_primary_10_3389_fpls_2021_699085 crossref_primary_10_1093_jxb_ers163 crossref_primary_10_1073_pnas_0503410102 crossref_primary_10_3389_fpls_2021_778717 crossref_primary_10_1016_j_carres_2009_08_025 crossref_primary_10_1104_pp_106_086256 crossref_primary_10_1093_jxb_erj027 crossref_primary_10_1002_star_201100163 crossref_primary_10_1186_s12870_019_2055_9 crossref_primary_10_3390_ijms160819308 crossref_primary_10_1093_jxb_eri178 crossref_primary_10_1111_pce_12675 crossref_primary_10_1111_ppl_12962 crossref_primary_10_1089_ars_2007_1931 crossref_primary_10_1002_2211_5463_12415 crossref_primary_10_1016_j_algal_2020_102060 crossref_primary_10_1093_jxb_erab109 crossref_primary_10_1111_nph_16956 crossref_primary_10_1093_plphys_kiaa106 crossref_primary_10_1111_j_1365_3040_2004_01183_x crossref_primary_10_1016_j_abb_2013_04_003 crossref_primary_10_1016_j_plantsci_2015_06_009 crossref_primary_10_1186_s12870_016_0842_0 crossref_primary_10_1104_pp_113_231241 crossref_primary_10_1080_10242420500518839 crossref_primary_10_1093_plphys_kiae254 crossref_primary_10_1126_sciadv_abi8307 crossref_primary_10_1111_j_1469_8137_2012_04333_x crossref_primary_10_1074_jbc_M113_514794 crossref_primary_10_1073_pnas_0603329103 crossref_primary_10_1042_BJ20061393 crossref_primary_10_1007_s11627_018_09950_6 crossref_primary_10_1093_jxb_err408 crossref_primary_10_3390_metabo11040230 crossref_primary_10_1073_pnas_1601309113 crossref_primary_10_1007_s00122_010_1480_9 crossref_primary_10_1104_pp_105_061903 crossref_primary_10_1146_annurev_arplant_57_032905_105441 crossref_primary_10_1111_j_1365_313X_2004_02017_x crossref_primary_10_1111_tpj_13560 crossref_primary_10_1111_tpj_16240 crossref_primary_10_1105_tpc_109_071001 crossref_primary_10_1074_jbc_M109_037614 crossref_primary_10_1371_journal_pgen_1004845 crossref_primary_10_1016_j_plantsci_2008_05_011 crossref_primary_10_1111_tpj_17215 crossref_primary_10_21273_JASHS03944_16 crossref_primary_10_3389_fpls_2021_781508 crossref_primary_10_1111_j_1399_3054_2011_01562_x crossref_primary_10_3389_fpls_2021_637508 crossref_primary_10_1104_pp_109_150045 crossref_primary_10_3390_ijms19092506 crossref_primary_10_1093_mp_ssr106 crossref_primary_10_1016_j_plantsci_2020_110746 crossref_primary_10_1111_pce_13735 crossref_primary_10_1007_s11418_022_01656_9 crossref_primary_10_1093_jxb_eraa272 crossref_primary_10_1093_jxb_erm312 crossref_primary_10_4161_psb_4_7_8992 crossref_primary_10_1371_journal_pone_0119641 crossref_primary_10_1371_journal_pone_0172504 crossref_primary_10_1105_tpc_104_025973 crossref_primary_10_2478_s11756_018_0154_y crossref_primary_10_3389_fpls_2020_00209 crossref_primary_10_1016_j_cub_2022_06_056 crossref_primary_10_1016_j_jplph_2011_01_013 crossref_primary_10_1093_jxb_ert082 crossref_primary_10_1104_pp_107_102095 crossref_primary_10_1093_plphys_kiae196 crossref_primary_10_1111_nph_14584 crossref_primary_10_1089_ars_2008_2177 crossref_primary_10_1104_pp_113_217380 crossref_primary_10_1007_s13762_022_04281_x crossref_primary_10_1039_D3GC01020A crossref_primary_10_1146_annurev_arplant_57_032905_105224 crossref_primary_10_1111_pce_13993 crossref_primary_10_1104_pp_104_040469 crossref_primary_10_1104_pp_113_217141 crossref_primary_10_1105_tpc_105_035261 crossref_primary_10_3390_ijms241813720 crossref_primary_10_3390_ijms20040986 crossref_primary_10_1038_s41598_017_08325_y crossref_primary_10_1093_plphys_kiab350 crossref_primary_10_1093_jxb_erz157 crossref_primary_10_1104_pp_104_041301 crossref_primary_10_1111_j_1365_313X_2011_04860_x crossref_primary_10_1146_annurev_arplant_56_032604_144257 crossref_primary_10_5897_IJGMB2016_0247 crossref_primary_10_1111_j_1747_0765_2005_tb00118_x crossref_primary_10_1016_j_jprot_2009_01_003 crossref_primary_10_1199_tab_0160 crossref_primary_10_1094_MPMI_05_11_0112 crossref_primary_10_1104_pp_114_247759 crossref_primary_10_1105_tpc_114_124537 crossref_primary_10_1074_jbc_M411713200 crossref_primary_10_1007_s00122_015_2565_2 crossref_primary_10_1007_s11103_021_01235_8 crossref_primary_10_1093_jxb_erab016 crossref_primary_10_15171_ijb_1342 crossref_primary_10_1002_pro_4747 crossref_primary_10_1111_j_1365_3040_2009_01965_x crossref_primary_10_1186_s12870_017_1188_y crossref_primary_10_1104_pp_106_081208 crossref_primary_10_1007_s00709_023_01844_8 crossref_primary_10_3389_fpls_2017_01679 crossref_primary_10_1111_pce_12634 crossref_primary_10_1104_pp_113_226787 crossref_primary_10_1007_s00425_007_0657_1 crossref_primary_10_1104_pp_112_201400 crossref_primary_10_3389_fpls_2018_01423 crossref_primary_10_1093_jxb_eraa604 crossref_primary_10_1093_plphys_kiac433 crossref_primary_10_1007_s11033_010_9961_0 crossref_primary_10_1016_j_procs_2013_10_015 crossref_primary_10_1371_journal_pone_0017806 crossref_primary_10_1016_j_plantsci_2020_110703 crossref_primary_10_3389_fpls_2018_01344 crossref_primary_10_1104_pp_108_115758 crossref_primary_10_1093_pcp_pcj021 crossref_primary_10_1111_nph_15127 crossref_primary_10_1111_tpj_12881 crossref_primary_10_1111_j_1365_313X_2010_04142_x crossref_primary_10_1016_j_biotechadv_2013_06_006 crossref_primary_10_1093_plphys_kiac011 crossref_primary_10_1111_tpj_16215 crossref_primary_10_1016_j_tplants_2014_01_008 crossref_primary_10_4161_psb_23316 crossref_primary_10_1007_s00425_004_1384_5 crossref_primary_10_1038_s41477_020_0729_9 crossref_primary_10_1111_tpj_14707 crossref_primary_10_1371_journal_pone_0009991 crossref_primary_10_1104_pp_104_044347 crossref_primary_10_1111_j_1365_3040_2010_02241_x crossref_primary_10_1016_j_semcdb_2023_02_009 crossref_primary_10_1631_jzus_B1200130 crossref_primary_10_1007_s13580_020_00294_y crossref_primary_10_1016_j_envexpbot_2017_09_004 crossref_primary_10_1016_j_bbagen_2008_03_015 crossref_primary_10_1111_j_1365_313X_2008_03468_x crossref_primary_10_1073_pnas_0903559106 crossref_primary_10_1007_s11306_018_1427_8 crossref_primary_10_1111_j_1365_313X_2004_02173_x crossref_primary_10_1371_journal_pone_0136997 crossref_primary_10_1016_j_plaphy_2012_06_017 crossref_primary_10_1051_ocl_2021029 crossref_primary_10_1089_ars_2014_6018 crossref_primary_10_1007_s11306_019_1515_4 crossref_primary_10_1016_j_plantsci_2016_05_010 crossref_primary_10_1111_tpj_13705 crossref_primary_10_1016_j_febslet_2012_07_003 crossref_primary_10_3390_ijms23116194 crossref_primary_10_1111_pce_13000 crossref_primary_10_1016_j_plantsci_2019_110303 crossref_primary_10_3389_fpls_2019_01444 crossref_primary_10_1093_jxb_erx220 crossref_primary_10_1007_s11103_007_9153_z crossref_primary_10_3389_fpls_2020_588433 crossref_primary_10_1111_febs_13041 crossref_primary_10_1093_jxb_erab057 crossref_primary_10_1016_j_carbpol_2023_121141 crossref_primary_10_1199_tab_0117 crossref_primary_10_1111_tpj_12509 crossref_primary_10_1104_pp_110_168716 crossref_primary_10_1104_pp_109_136036 crossref_primary_10_1371_journal_pone_0127905 crossref_primary_10_1071_FP06249 crossref_primary_10_1093_hr_uhab070 crossref_primary_10_1111_j_1365_3040_2007_01708_x crossref_primary_10_1104_pp_106_081885 crossref_primary_10_1016_j_bbabio_2016_07_007 crossref_primary_10_1242_dev_060830 crossref_primary_10_1002_1873_3468_13198 crossref_primary_10_1093_pcp_pcq126 crossref_primary_10_1111_pbi_12052 crossref_primary_10_1111_pce_13490 crossref_primary_10_3390_ijms22010318 crossref_primary_10_1016_j_phytochem_2004_12_020 crossref_primary_10_1111_nph_17518 |
Cites_doi | 10.1007/BF00394774 10.1104/pp.59.6.1146 10.1104/pp.123.1.403 10.1007/0-306-48135-9_6 10.1104/pp.010058 10.1111/j.1469-8137.1980.tb03184.x 10.1104/pp.94.3.1345 10.1111/j.1365-3040.1996.tb00225.x 10.1007/BF00193014 10.1046/j.1365-313X.2003.01823.x 10.1042/bj3590591 10.1104/pp.85.1.182 10.1104/pp.93.2.785 10.1111/j.1744-7348.2001.tb00084.x 10.1046/j.1365-313X.1996.9050671.x 10.1016/0378-1119(89)90153-4 10.1104/pp.95.3.890 10.1093/nar/25.24.4876 10.1007/BF00259460 10.1074/jbc.275.2.1315 10.1104/pp.91.2.656 10.1007/BF00202587 10.1104/pp.96.1.1 10.1046/j.1365-3040.1998.00295.x 10.1104/pp.83.2.399 10.1016/S0005-2728(89)80347-0 10.1007/s004250050095 10.1080/10409230008984165 10.1016/S0168-9452(01)00431-9 10.1104/pp.010363 10.1104/pp.126.2.750 10.1038/227680a0 10.1105/tpc.003640 10.1016/B978-0-08-092615-5.50012-6 10.1007/PL00008698 10.1046/j.1365-3040.2002.00893.x 10.1093/oxfordjournals.molbev.a026334 10.1042/bj3360681 10.1007/s004250000433 10.1146/annurev.arplant.51.1.371 10.1074/jbc.273.39.25045 10.1046/j.1365-313X.2001.01278.x 10.1104/pp.107.2.507 10.1016/S0176-1617(88)80025-7 10.1046/j.1365-313x.2000.00848.x |
ContentType | Journal Article |
Copyright | Copyright 2003 American Society of Plant Biologists 2004 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2003, The American Society for Plant Biologists 2003 |
Copyright_xml | – notice: Copyright 2003 American Society of Plant Biologists – notice: 2004 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2003, The American Society for Plant Biologists 2003 |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TM 7S9 L.6 7X8 1XC 5PM ADTOC UNPAY |
DOI | 10.1104/pp.103.024513 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA Nucleic Acids Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Chemistry |
EISSN | 1532-2548 |
EndPage | 849 |
ExternalDocumentID | 10.1104/pp.103.024513 PMC219057 oai_HAL_hal_03321577v1 12972664 15210780 10_1104_pp_103_024513 4281396 US201300936948 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 123 29O 2AX 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHKG AAPXW AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABPLY ABPPZ ABPTD ABPTK ABTLG ABUWG ABXZS ACBTR ACFRR ACGOD ACIPB ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADIYS ADULT ADVEK ADYHW ADZLD AEEJZ AENEX AESBF AEUPB AFAZZ AFDAS AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGUYK AHMBA AICQM AIDAL AIDBO AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AQDSO AS~ ATCPS AZQEC BAWUL BBNVY BCRHZ BENPR BHPHI BPHCQ BTFSW BVXVI BYORX C1A CBGCD CCPQU CS3 CWIXF D1J DATOO DFEDG DIK DOOOF DU5 DWIUU DWQXO E3Z EBS ECGQY EJD F20 F5P FBQ FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2O M2P M2Q M7P MV1 MVM NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X QZG RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM 0R~ AAHBH AARHZ AAUAY ABDFA ABEJV ABGNP ABMNT ABVGC ABXSQ ABXVV ACHIC ADGKP ADQBN ADXHL AEUYN AGORE AHXOZ AJBYB AJNCP ALIPV AQVQM ATGXG BEYMZ H13 IPSME JXSIZ NU- PHGZM PHGZT AAYXX CITATION PJZUB PPXIY PQGLB PUEGO ABIME ABPIB ABZEO ACVCV ACZBC AGMDO AHGBF AJDVS APJGH IQODW LU7 CGR CUY CVF ECM EIF NPM 7TM 7S9 L.6 7X8 1XC 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c655t-b673160774c79b20b65f3e5e0e20b3297c2ae4461730d93a40e244ebb74019613 |
IEDL.DBID | UNPAY |
ISSN | 0032-0889 1532-2548 |
IngestDate | Wed Oct 01 16:32:17 EDT 2025 Tue Sep 30 16:57:05 EDT 2025 Fri Sep 12 12:47:59 EDT 2025 Sun Sep 28 09:51:21 EDT 2025 Wed Oct 01 14:10:46 EDT 2025 Sun Sep 28 02:33:26 EDT 2025 Tue Aug 05 11:40:08 EDT 2025 Mon Jul 21 09:13:24 EDT 2025 Wed Oct 01 03:35:14 EDT 2025 Thu Apr 24 22:55:07 EDT 2025 Fri Jun 20 02:19:12 EDT 2025 Wed Dec 27 19:28:53 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Phosphates Sucrose Environmental factor Disaccharide Arabidopsis thaliana Posttranslational modification Regulation(control) Enzymatic activity Cruciferae Dicotyledones Light Angiospermae Carbohydrate Chemical concentration Solanaceae Light effect Redox state Enzyme Solanum tuberosum Transferases Plant leaf Grain legume Nucleotidyltransferases Leguminosae Pisum sativum Glucose-1-phosphate adenylyltransferase Spermatophyta Tuber plant Experimental plant |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c655t-b673160774c79b20b65f3e5e0e20b3297c2ae4461730d93a40e244ebb74019613 |
Notes | http://www.plantphysiol.org/ ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 PMCID: PMC219057 Corresponding author; e-mail geigenberger@mpimp-golm.mpg.de; fax 49–331–567–8408. The online version of this article contains Web-only data. This work was supported by the Deutsche Forschungsgemeinschaft (grant no. SFB 429 TP–B7 to A.K. and P.G.) and by the Bundesministerium für Bildung und Forschung (GABI; grant to Y.G. and M.S.). Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/doi/10.1104/pp.103.024513. |
ORCID | 0000-0002-4900-1763 0000-0001-8161-1089 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/plphys/article-pdf/133/2/838/37556006/plphys_v133_2_838.pdf |
PMID | 12972664 |
PQID | 17888665 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | unpaywall_primary_10_1104_pp_103_024513 pubmedcentral_primary_oai_pubmedcentral_nih_gov_219057 hal_primary_oai_HAL_hal_03321577v1 proquest_miscellaneous_71270386 proquest_miscellaneous_49177705 proquest_miscellaneous_17888665 pubmed_primary_12972664 pascalfrancis_primary_15210780 crossref_citationtrail_10_1104_pp_103_024513 crossref_primary_10_1104_pp_103_024513 jstor_primary_4281396 fao_agris_US201300936948 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-10-01 |
PublicationDateYYYYMMDD | 2003-10-01 |
PublicationDate_xml | – month: 10 year: 2003 text: 2003-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2003 |
Publisher | American Society of Plant Biologists American Society of Plant Physiologists Oxford University Press ; American Society of Plant Biologists The American Society for Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists – name: American Society of Plant Physiologists – name: Oxford University Press ; American Society of Plant Biologists – name: The American Society for Plant Biologists |
References | 2021042909353770500_REF52 2021042909353770500_REF53 2021042909353770500_REF50 2021042909353770500_REF51 2021042909353770500_REF12 2021042909353770500_REF56 2021042909353770500_REF13 2021042909353770500_REF57 2021042909353770500_REF10 2021042909353770500_REF54 2021042909353770500_REF11 2021042909353770500_REF55 2021042909353770500_REF16 2021042909353770500_REF17 2021042909353770500_REF9 2021042909353770500_REF14 2021042909353770500_REF58 2021042909353770500_REF15 2021042909353770500_REF59 2021042909353770500_REF7 2021042909353770500_REF8 2021042909353770500_REF5 2021042909353770500_REF18 2021042909353770500_REF6 2021042909353770500_REF19 2021042909353770500_REF3 2021042909353770500_REF4 2021042909353770500_REF1 2021042909353770500_REF2 2021042909353770500_REF60 2021042909353770500_REF20 2021042909353770500_REF61 2021042909353770500_REF62 2021042909353770500_REF23 2021042909353770500_REF24 2021042909353770500_REF21 2021042909353770500_REF22 2021042909353770500_REF27 2021042909353770500_REF28 2021042909353770500_REF25 2021042909353770500_REF26 2021042909353770500_REF29 2021042909353770500_REF30 2021042909353770500_REF31 2021042909353770500_REF34 2021042909353770500_REF35 2021042909353770500_REF32 2021042909353770500_REF33 2021042909353770500_REF38 2021042909353770500_REF39 2021042909353770500_REF36 2021042909353770500_REF37 2021042909353770500_REF41 2021042909353770500_REF42 2021042909353770500_REF40 2021042909353770500_REF45 2021042909353770500_REF46 2021042909353770500_REF43 2021042909353770500_REF44 2021042909353770500_REF49 2021042909353770500_REF47 2021042909353770500_REF48 |
References_xml | – ident: 2021042909353770500_REF52 doi: 10.1007/BF00394774 – ident: 2021042909353770500_REF18 doi: 10.1104/pp.59.6.1146 – ident: 2021042909353770500_REF22 – ident: 2021042909353770500_REF16 – ident: 2021042909353770500_REF41 – ident: 2021042909353770500_REF58 doi: 10.1104/pp.123.1.403 – ident: 2021042909353770500_REF51 – ident: 2021042909353770500_REF12 – ident: 2021042909353770500_REF49 doi: 10.1007/0-306-48135-9_6 – ident: 2021042909353770500_REF54 doi: 10.1104/pp.010058 – ident: 2021042909353770500_REF19 doi: 10.1111/j.1469-8137.1980.tb03184.x – ident: 2021042909353770500_REF27 doi: 10.1104/pp.94.3.1345 – ident: 2021042909353770500_REF9 doi: 10.1111/j.1365-3040.1996.tb00225.x – ident: 2021042909353770500_REF34 doi: 10.1007/BF00193014 – ident: 2021042909353770500_REF57 doi: 10.1046/j.1365-313X.2003.01823.x – ident: 2021042909353770500_REF29 – ident: 2021042909353770500_REF59 doi: 10.1042/bj3590591 – ident: 2021042909353770500_REF30 doi: 10.1104/pp.85.1.182 – ident: 2021042909353770500_REF36 doi: 10.1104/pp.93.2.785 – ident: 2021042909353770500_REF2 doi: 10.1111/j.1744-7348.2001.tb00084.x – ident: 2021042909353770500_REF62 doi: 10.1046/j.1365-313X.1996.9050671.x – ident: 2021042909353770500_REF32 – ident: 2021042909353770500_REF4 – ident: 2021042909353770500_REF53 – ident: 2021042909353770500_REF39 doi: 10.1016/0378-1119(89)90153-4 – ident: 2021042909353770500_REF42 doi: 10.1104/pp.95.3.890 – ident: 2021042909353770500_REF26 – ident: 2021042909353770500_REF55 doi: 10.1093/nar/25.24.4876 – ident: 2021042909353770500_REF31 doi: 10.1007/BF00259460 – ident: 2021042909353770500_REF1 doi: 10.1074/jbc.275.2.1315 – ident: 2021042909353770500_REF20 doi: 10.1104/pp.91.2.656 – ident: 2021042909353770500_REF47 – ident: 2021042909353770500_REF23 doi: 10.1007/BF00202587 – ident: 2021042909353770500_REF7 – ident: 2021042909353770500_REF40 doi: 10.1104/pp.96.1.1 – ident: 2021042909353770500_REF35 doi: 10.1046/j.1365-3040.1998.00295.x – ident: 2021042909353770500_REF33 – ident: 2021042909353770500_REF14 doi: 10.1104/pp.83.2.399 – ident: 2021042909353770500_REF37 doi: 10.1016/S0005-2728(89)80347-0 – ident: 2021042909353770500_REF10 doi: 10.1007/s004250050095 – ident: 2021042909353770500_REF61 doi: 10.1080/10409230008984165 – ident: 2021042909353770500_REF45 doi: 10.1016/S0168-9452(01)00431-9 – ident: 2021042909353770500_REF3 doi: 10.1104/pp.010363 – ident: 2021042909353770500_REF44 – ident: 2021042909353770500_REF6 doi: 10.1104/pp.126.2.750 – ident: 2021042909353770500_REF24 doi: 10.1038/227680a0 – ident: 2021042909353770500_REF56 doi: 10.1105/tpc.003640 – ident: 2021042909353770500_REF17 – ident: 2021042909353770500_REF48 – ident: 2021042909353770500_REF38 doi: 10.1016/B978-0-08-092615-5.50012-6 – ident: 2021042909353770500_REF21 doi: 10.1007/PL00008698 – ident: 2021042909353770500_REF60 doi: 10.1046/j.1365-3040.2002.00893.x – ident: 2021042909353770500_REF5 doi: 10.1093/oxfordjournals.molbev.a026334 – ident: 2021042909353770500_REF46 doi: 10.1042/bj3360681 – ident: 2021042909353770500_REF25 doi: 10.1007/s004250000433 – ident: 2021042909353770500_REF28 – ident: 2021042909353770500_REF43 doi: 10.1146/annurev.arplant.51.1.371 – ident: 2021042909353770500_REF8 doi: 10.1074/jbc.273.39.25045 – ident: 2021042909353770500_REF15 doi: 10.1046/j.1365-313X.2001.01278.x – ident: 2021042909353770500_REF13 doi: 10.1104/pp.107.2.507 – ident: 2021042909353770500_REF50 doi: 10.1016/S0176-1617(88)80025-7 – ident: 2021042909353770500_REF11 doi: 10.1046/j.1365-313x.2000.00848.x |
SSID | ssj0001314 |
Score | 2.2969713 |
Snippet | ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum... Abstract ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato... |
SourceID | unpaywall pubmedcentral hal proquest pubmed pascalfrancis crossref jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 838 |
SubjectTerms | ADP-glucose pyrophosphorylase Agronomy. Soil science and plant productions Amino Acid Sequence Arabidopsis Arabidopsis - enzymology Arabidopsis - radiation effects Arabidopsis Proteins Arabidopsis Proteins - metabolism Arabidopsis Proteins - radiation effects Arabidopsis thaliana Biochemical Processes and Macromolecular Structures Biological and medical sciences biosynthesis carbohydrate content Carbohydrate Metabolism chemistry Chloroplasts Conserved Sequence conserved sequences Darkness Dimerization drug effects Economic plant physiology Enzyme Activation enzymology Fundamental and applied biological sciences. Psychology gene expression Glucose-1-Phosphate Adenylyltransferase grain crops Kinetics Leaves Life Sciences Light Metabolism Monomers Net assimilation, photosynthesis, carbon metabolism. Photorespiration, respiration, fermentation (anoxia, hypoxia) nucleotidyltransferases Nucleotidyltransferases - chemistry Nucleotidyltransferases - metabolism Nucleotidyltransferases - radiation effects Nutrition. Photosynthesis. Respiration. Metabolism peas pharmacology Phosphates phosphoglucomutase Photosynthesis Photosynthesis, respiration. Anabolism, catabolism Physiological regulation Pisum sativum Pisum sativum - enzymology Pisum sativum - radiation effects Plant Leaves Plant Leaves - drug effects Plant Leaves - enzymology Plant physiology and development plant proteins Plants post-translational modification potatoes protein conformation Protein Processing, Post-Translational radiation effects redox reactions Solanum tuberosum Species Specificity starch Starches Sucrose Sucrose - pharmacology Sugars Tubers vegetable crops Vegetal Biology |
Title | ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species |
URI | https://www.jstor.org/stable/4281396 https://www.ncbi.nlm.nih.gov/pubmed/12972664 https://www.proquest.com/docview/17888665 https://www.proquest.com/docview/49177705 https://www.proquest.com/docview/71270386 https://hal.science/hal-03321577 https://pubmed.ncbi.nlm.nih.gov/PMC219057 https://academic.oup.com/plphys/article-pdf/133/2/838/37556006/plphys_v133_2_838.pdf |
UnpaywallVersion | publishedVersion |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1532-2548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: KQ8 dateStart: 19260101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1532-2548 dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: DIK dateStart: 19260101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1532-2548 dateEnd: 20120831 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: 7X7 dateStart: 19981001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1532-2548 dateEnd: 20120831 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: BENPR dateStart: 19981001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tAwle-BwsfBQLIXghbRondvLYwcZA26i2VRpPkZ04W0WVREs6KH8Qfyd3SdpRYBMPPLRKnYvquue739k_3wG85MLEInV8W-nEsb0gdu1Qq9T2hecYT6VC1cl09g_E7sj7eOKfrMDx_CyMalnh3fmRhmJCIX6vHUe7SNIehlU9txfwoMelTx5btFIY8XEeuRHe6qLgKqwL2nZag_XRwXDwucnQ6NrE7GnSqLo2xkfBIvWm1ysKOoXepf3IPl9yVaupyvH9jOiSDXORaJSqxJFMmxIYf8Oof1Itb06zQs2-qsnkFz-2cwem8xFo6CtfutNKd-PvvyWH_N9DdBdut8CXDZrH78GKye7Dja0cwensAfwYvBva7xv6PBvOzvPiLC_xdT5DdG_Yh5IN4roQm0mYnjEqMVyRl520a5ns0CT5N3s_T4j6VDeycYatNQPYsCpne7QMwVSW0Iej6SlG9CSyZ9SFKVmeYteUHid5UY7LWuwTYWNGVZ0qdlQYNILlBox2to_f7tptCQk7Fr5f2VpQZS4HMW4sQ-06WvgpN75xDF5zN5SxqwxGxH00dEnIFSoo4h2jNRUqDBHqPIS1LM_MJrC-5tLRyk1CDOR97WoR8zCOk8DIWISusuDNXFuiuM2vTmU-JlEdZzleVBR4yaNGuSx4tRAvmsQiVwluoupF6hSNfjQ6cmmr2aEyjF5gwQvUx8XjlCl8d7AXUZvDOYI5KS_6FmzU6roQw4ATYb-woLOkvpe9QESHwNGx4PlcnyO0ObSRpDKTT8uoT-smQvhXS3hhX0rpXCMhifLAA-zGo2aGXH4__i0IGz0LxNLcWfqdy3ey8VmdGR3dL8YfFrxeTLLrx_bxP0s-gVuXNM6nsFadT80zhKOV7sCqPJEdWN_aPhgedlpb8xOcEocc |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe2Dgle-BwsfAwLIXghzYcTJ3ksH6OgblRslbanyHactaJKoiYdlD-Iv5O7JG0psIkHHlqlzkV13fPd7-yf7wh5zrhWPLV9U8jENr1QuWYkRWr63LO1J1Iu6mQ6h0e8P_I-nvqnW-RkeRZGtKzw7vJIQzHFEN9qx9EsktSCsMpyrZCFFgt89Ni8lYKIj7HYjeFWFwS3yQ7HbacO2RkdDXtnTYZG10RmT5NG1TUhPgpXqTc9qyjwFHoX9yMdtuGqtlORw_sY6ZINcxFplKKEkUybEhh_w6h_Ui2vz7NCLL6K6fQXP3Zwi8yXI9DQV75055Xsqu-_JYf830N0m9xsgS_tNY_fIVs6u0uuvc4BnC7ukR-9t0PzfUOfp8PFLC_GeQmv2QLQvaYfStpTdSE2nVC5oFhiuEIvO23XMulnneTfzMM8QepT3UgnGbTWDGBNq5wOcBmCiizBD8fzc4joUWSgxYUuaZ5C14ScJHlRTspa7BNiY4pVnSp6XGgwguUuGR28O3nTN9sSEqbivl-ZkmNlLhswrgoi6dqS-ynTvrY1XDM3CpQrNETEDhi6JGICFBTwjpYSCxVGAHXuk06WZ3qPUEeywJbCTSII5H3pSq5YpFQS6kDxyBUGebXUlli1-dWxzMc0ruMs24uLAi5Z3CiXQV6sxIsmschlgnugerE4B6Mfj45d3Gq2sQyjFxrkGejj6nHMFN7vDWJssxkDMBcEF45Bdmt1XYlBwAmwnxtkf0N9170ARAfA0TbI06U-x2BzcCNJZDqfl7GD6yac-5dLeJETBIF9hUSAlAcWQjceNDNk_f3wtwBs9AzCN-bOxu_cvJNNxnVmdHC_EH8Y5OVqkl09tg__WfIRubGmcT4mnWo2108AjlZyv7UuPwFP-4Sb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADP-Glucose+Pyrophosphorylase+Is+Activated+by+Posttranslational+Redox-Modification+in+Response+to+Light+and+to+Sugars+in+Leaves+of+Arabidopsis+and+Other+Plant+Species&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Hendriks%2C+Janneke+H.M.&rft.au=Kolbe%2C+Anna&rft.au=Gibon%2C+Yves&rft.au=Stitt%2C+Mark&rft.date=2003-10-01&rft.pub=Oxford+University+Press+%3B+American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=133&rft.issue=2&rft.spage=838&rft.epage=849&rft_id=info:doi/10.1104%2Fpp.103.024513&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03321577v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |