ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species

ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 133; no. 2; pp. 838 - 849
Main Authors Hendriks, J.H.M, Kolbe, A, Gibon, Y, Stitt, M, Geigenberger, P
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.10.2003
American Society of Plant Physiologists
Oxford University Press ; American Society of Plant Biologists
The American Society for Plant Biologists
Subjects
Online AccessGet full text
ISSN0032-0889
1532-2548
1532-2548
DOI10.1104/pp.103.024513

Cover

Abstract ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farre, P. Geigenberger [2002] Plant Cell 14: 2191-2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis.
AbstractList ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farre, P. Geigenberger [2002] Plant Cell 14: 2191-2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis.
ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farré, P. Geigenberger [2002] Plant Cell 14: 2191–2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis.
Abstract ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farré, P. Geigenberger [2002] Plant Cell 14: 2191–2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis.
ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farré, P. Geigenberger [2002] Plant Cell 14: 2191-2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis.
ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farré, P. Geigenberger [2002] Plant Cell 14: 2191-2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis.ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farré, P. Geigenberger [2002] Plant Cell 14: 2191-2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis.
Author Kolbe, A
Stitt, M
Geigenberger, P
Hendriks, J.H.M
Gibon, Y
AuthorAffiliation Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
AuthorAffiliation_xml – name: Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
Author_xml – sequence: 1
  fullname: Hendriks, J.H.M
– sequence: 2
  fullname: Kolbe, A
– sequence: 3
  fullname: Gibon, Y
– sequence: 4
  fullname: Stitt, M
– sequence: 5
  fullname: Geigenberger, P
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15210780$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12972664$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03321577$$DView record in HAL
BookMark eNqFk8uO0zAUhiM0iOkMLNkh8AYkFim-xU4WLKrhMkiVQIJZW47jtB65sbHdQl-I58SZVBRGQl1YOTnn-335fXxRnA1u0EXxFME5QpC-8X6OIJlDTCtEHhQzVBFc4orWZ8UMwhzDum7Oi4sYbyGEiCD6qDhHuOGYMTorfi3efSlXdqtc1MDvg_NrF_MIeytzxkQgVTI7mXQH2j3wLqYU5BCtTMYN0oKgO_ez3LjO9EbdJYEZcjZ6N-QJkgPWrNYJyKEbf-J2JUMcEavlTkfgerAIsjWd83FcLWMurXUA3sohgei1Mjo-Lh720kb95PC9LG4-vP92dV0uP3_8dLVYlopVVSpbxglikHOqeNNi2LKqJ7rSUOeY5EMrLDWlDHECu4ZImguU6rblFKKGIXJZzKd5t4OX-x_SWuGD2ciwFwiK0XDhfQ6JmAzPgreTwG_bje6UHrI9R5GTRvxbGcxarNxOYNTAimf960m_vqe6XizFmIOEYFRxvhs39-qwVnDftzomsTFRaZuN0m4bBUeYQ1KzkyBtEOccVidBxOu6ZmwEn_99zKMph0bKwMsDIKOSts89okw8chVGkNcwc2TiVHAxBt0LZdJd22R3jP2vy-U91albeTbxtzG58AemuEakGf15MZV76YRchbzRm684Pw4IG8IaWpPfPi0Mag
CODEN PPHYA5
CitedBy_id crossref_primary_10_1104_pp_105_073957
crossref_primary_10_1104_pp_113_213843
crossref_primary_10_1104_pp_109_141291
crossref_primary_10_1186_s13595_024_01246_7
crossref_primary_10_1080_1343943X_2022_2160362
crossref_primary_10_1016_j_stress_2024_100553
crossref_primary_10_3390_plants8120543
crossref_primary_10_1104_pp_104_046854
crossref_primary_10_1111_j_1399_3054_2006_00758_x
crossref_primary_10_1016_j_plantsci_2010_01_010
crossref_primary_10_1093_mp_sst129
crossref_primary_10_1016_j_plantsci_2015_03_021
crossref_primary_10_1093_mp_sst127
crossref_primary_10_1111_j_1742_4658_2012_08546_x
crossref_primary_10_1105_tpc_108_058271
crossref_primary_10_1007_s11738_017_2515_5
crossref_primary_10_1093_pcp_pcr067
crossref_primary_10_1186_s12864_018_5192_x
crossref_primary_10_1071_FP05055
crossref_primary_10_1016_j_abb_2013_07_019
crossref_primary_10_1093_jxb_eraa302
crossref_primary_10_1016_j_gene_2005_09_021
crossref_primary_10_1007_s00425_023_04115_1
crossref_primary_10_1089_ars_2019_7823
crossref_primary_10_1093_aob_mcr303
crossref_primary_10_1093_pcp_pci148
crossref_primary_10_3390_ijms251910850
crossref_primary_10_1111_j_1365_3040_2008_01921_x
crossref_primary_10_1104_pp_106_086629
crossref_primary_10_3389_fpls_2021_704960
crossref_primary_10_1073_pnas_2112825118
crossref_primary_10_1146_annurev_arplant_050718_100241
crossref_primary_10_1038_s41598_021_90685_7
crossref_primary_10_1073_pnas_0406674102
crossref_primary_10_1093_jxb_erx291
crossref_primary_10_1093_pcp_pcr193
crossref_primary_10_1104_pp_111_181594
crossref_primary_10_1093_jxb_erx496
crossref_primary_10_1016_j_molp_2021_05_024
crossref_primary_10_1105_tpc_109_067041
crossref_primary_10_1016_j_jmgm_2024_108761
crossref_primary_10_1016_j_flora_2024_152621
crossref_primary_10_1093_jxb_ert216
crossref_primary_10_1111_j_1365_3040_2012_02549_x
crossref_primary_10_1111_pce_12900
crossref_primary_10_1016_j_pbi_2004_03_002
crossref_primary_10_1104_pp_113_223420
crossref_primary_10_1007_s11120_018_0524_x
crossref_primary_10_1016_j_plantsci_2009_09_015
crossref_primary_10_1093_pcp_pcp108
crossref_primary_10_1016_j_bbrc_2016_04_103
crossref_primary_10_1016_j_pbi_2004_03_006
crossref_primary_10_1590_1519_6984_18815
crossref_primary_10_1016_j_jplph_2005_01_010
crossref_primary_10_1111_tpj_13114
crossref_primary_10_1111_nph_19506
crossref_primary_10_1371_journal_pone_0127562
crossref_primary_10_1111_j_1365_2486_2010_02359_x
crossref_primary_10_1080_13102818_2014_901674
crossref_primary_10_3390_antiox10030401
crossref_primary_10_1111_gcb_12237
crossref_primary_10_1626_pps_15_10
crossref_primary_10_1111_j_1365_2486_2008_01818_x
crossref_primary_10_1038_s41438_019_0178_7
crossref_primary_10_1007_s00216_011_4678_z
crossref_primary_10_3390_ijms221910450
crossref_primary_10_1038_hortres_2017_18
crossref_primary_10_1002_pca_982
crossref_primary_10_1093_jxb_erac187
crossref_primary_10_3389_fpls_2018_01397
crossref_primary_10_1104_pp_107_115592
crossref_primary_10_1371_journal_pone_0196102
crossref_primary_10_1093_mp_sst137
crossref_primary_10_1104_pp_103_036053
crossref_primary_10_1093_mp_sst131
crossref_primary_10_1016_j_plaphy_2023_107796
crossref_primary_10_1093_pcp_pcs180
crossref_primary_10_1093_pcp_pci040
crossref_primary_10_1105_tpc_19_00837
crossref_primary_10_1111_nph_15812
crossref_primary_10_3389_fpls_2022_848560
crossref_primary_10_1093_jxb_eraa594
crossref_primary_10_1073_pnas_1808284115
crossref_primary_10_3390_antiox12111902
crossref_primary_10_3390_agriculture14101712
crossref_primary_10_1111_ppl_70142
crossref_primary_10_3389_fpls_2022_959118
crossref_primary_10_1111_j_1365_3040_2011_02293_x
crossref_primary_10_1093_pcp_pcab150
crossref_primary_10_1074_jbc_M707447200
crossref_primary_10_1371_journal_pone_0049641
crossref_primary_10_1104_pp_110_170399
crossref_primary_10_1073_pnas_1515513112
crossref_primary_10_1111_pce_14631
crossref_primary_10_1186_s12870_014_0309_0
crossref_primary_10_1093_jxb_erv460
crossref_primary_10_1093_pcp_pcq174
crossref_primary_10_1016_j_tplants_2005_01_001
crossref_primary_10_1093_jxb_erae146
crossref_primary_10_1111_j_1742_4658_2010_07633_x
crossref_primary_10_1016_j_carbpol_2024_122592
crossref_primary_10_1007_s00294_007_0128_z
crossref_primary_10_1104_pp_112_205591
crossref_primary_10_1111_j_1365_3040_2009_01964_x
crossref_primary_10_1111_j_1365_3040_2010_02245_x
crossref_primary_10_1111_tpj_16617
crossref_primary_10_1093_mp_ssq049
crossref_primary_10_1042_BJ20060083
crossref_primary_10_1093_pcp_pci101
crossref_primary_10_3389_fpls_2017_01785
crossref_primary_10_1111_ppl_12039
crossref_primary_10_1111_j_1365_3040_2006_01503_x
crossref_primary_10_1016_j_envpol_2009_07_004
crossref_primary_10_1093_aob_mcaa082
crossref_primary_10_1104_pp_112_204016
crossref_primary_10_3389_fpls_2021_699085
crossref_primary_10_1093_jxb_ers163
crossref_primary_10_1073_pnas_0503410102
crossref_primary_10_3389_fpls_2021_778717
crossref_primary_10_1016_j_carres_2009_08_025
crossref_primary_10_1104_pp_106_086256
crossref_primary_10_1093_jxb_erj027
crossref_primary_10_1002_star_201100163
crossref_primary_10_1186_s12870_019_2055_9
crossref_primary_10_3390_ijms160819308
crossref_primary_10_1093_jxb_eri178
crossref_primary_10_1111_pce_12675
crossref_primary_10_1111_ppl_12962
crossref_primary_10_1089_ars_2007_1931
crossref_primary_10_1002_2211_5463_12415
crossref_primary_10_1016_j_algal_2020_102060
crossref_primary_10_1093_jxb_erab109
crossref_primary_10_1111_nph_16956
crossref_primary_10_1093_plphys_kiaa106
crossref_primary_10_1111_j_1365_3040_2004_01183_x
crossref_primary_10_1016_j_abb_2013_04_003
crossref_primary_10_1016_j_plantsci_2015_06_009
crossref_primary_10_1186_s12870_016_0842_0
crossref_primary_10_1104_pp_113_231241
crossref_primary_10_1080_10242420500518839
crossref_primary_10_1093_plphys_kiae254
crossref_primary_10_1126_sciadv_abi8307
crossref_primary_10_1111_j_1469_8137_2012_04333_x
crossref_primary_10_1074_jbc_M113_514794
crossref_primary_10_1073_pnas_0603329103
crossref_primary_10_1042_BJ20061393
crossref_primary_10_1007_s11627_018_09950_6
crossref_primary_10_1093_jxb_err408
crossref_primary_10_3390_metabo11040230
crossref_primary_10_1073_pnas_1601309113
crossref_primary_10_1007_s00122_010_1480_9
crossref_primary_10_1104_pp_105_061903
crossref_primary_10_1146_annurev_arplant_57_032905_105441
crossref_primary_10_1111_j_1365_313X_2004_02017_x
crossref_primary_10_1111_tpj_13560
crossref_primary_10_1111_tpj_16240
crossref_primary_10_1105_tpc_109_071001
crossref_primary_10_1074_jbc_M109_037614
crossref_primary_10_1371_journal_pgen_1004845
crossref_primary_10_1016_j_plantsci_2008_05_011
crossref_primary_10_1111_tpj_17215
crossref_primary_10_21273_JASHS03944_16
crossref_primary_10_3389_fpls_2021_781508
crossref_primary_10_1111_j_1399_3054_2011_01562_x
crossref_primary_10_3389_fpls_2021_637508
crossref_primary_10_1104_pp_109_150045
crossref_primary_10_3390_ijms19092506
crossref_primary_10_1093_mp_ssr106
crossref_primary_10_1016_j_plantsci_2020_110746
crossref_primary_10_1111_pce_13735
crossref_primary_10_1007_s11418_022_01656_9
crossref_primary_10_1093_jxb_eraa272
crossref_primary_10_1093_jxb_erm312
crossref_primary_10_4161_psb_4_7_8992
crossref_primary_10_1371_journal_pone_0119641
crossref_primary_10_1371_journal_pone_0172504
crossref_primary_10_1105_tpc_104_025973
crossref_primary_10_2478_s11756_018_0154_y
crossref_primary_10_3389_fpls_2020_00209
crossref_primary_10_1016_j_cub_2022_06_056
crossref_primary_10_1016_j_jplph_2011_01_013
crossref_primary_10_1093_jxb_ert082
crossref_primary_10_1104_pp_107_102095
crossref_primary_10_1093_plphys_kiae196
crossref_primary_10_1111_nph_14584
crossref_primary_10_1089_ars_2008_2177
crossref_primary_10_1104_pp_113_217380
crossref_primary_10_1007_s13762_022_04281_x
crossref_primary_10_1039_D3GC01020A
crossref_primary_10_1146_annurev_arplant_57_032905_105224
crossref_primary_10_1111_pce_13993
crossref_primary_10_1104_pp_104_040469
crossref_primary_10_1104_pp_113_217141
crossref_primary_10_1105_tpc_105_035261
crossref_primary_10_3390_ijms241813720
crossref_primary_10_3390_ijms20040986
crossref_primary_10_1038_s41598_017_08325_y
crossref_primary_10_1093_plphys_kiab350
crossref_primary_10_1093_jxb_erz157
crossref_primary_10_1104_pp_104_041301
crossref_primary_10_1111_j_1365_313X_2011_04860_x
crossref_primary_10_1146_annurev_arplant_56_032604_144257
crossref_primary_10_5897_IJGMB2016_0247
crossref_primary_10_1111_j_1747_0765_2005_tb00118_x
crossref_primary_10_1016_j_jprot_2009_01_003
crossref_primary_10_1199_tab_0160
crossref_primary_10_1094_MPMI_05_11_0112
crossref_primary_10_1104_pp_114_247759
crossref_primary_10_1105_tpc_114_124537
crossref_primary_10_1074_jbc_M411713200
crossref_primary_10_1007_s00122_015_2565_2
crossref_primary_10_1007_s11103_021_01235_8
crossref_primary_10_1093_jxb_erab016
crossref_primary_10_15171_ijb_1342
crossref_primary_10_1002_pro_4747
crossref_primary_10_1111_j_1365_3040_2009_01965_x
crossref_primary_10_1186_s12870_017_1188_y
crossref_primary_10_1104_pp_106_081208
crossref_primary_10_1007_s00709_023_01844_8
crossref_primary_10_3389_fpls_2017_01679
crossref_primary_10_1111_pce_12634
crossref_primary_10_1104_pp_113_226787
crossref_primary_10_1007_s00425_007_0657_1
crossref_primary_10_1104_pp_112_201400
crossref_primary_10_3389_fpls_2018_01423
crossref_primary_10_1093_jxb_eraa604
crossref_primary_10_1093_plphys_kiac433
crossref_primary_10_1007_s11033_010_9961_0
crossref_primary_10_1016_j_procs_2013_10_015
crossref_primary_10_1371_journal_pone_0017806
crossref_primary_10_1016_j_plantsci_2020_110703
crossref_primary_10_3389_fpls_2018_01344
crossref_primary_10_1104_pp_108_115758
crossref_primary_10_1093_pcp_pcj021
crossref_primary_10_1111_nph_15127
crossref_primary_10_1111_tpj_12881
crossref_primary_10_1111_j_1365_313X_2010_04142_x
crossref_primary_10_1016_j_biotechadv_2013_06_006
crossref_primary_10_1093_plphys_kiac011
crossref_primary_10_1111_tpj_16215
crossref_primary_10_1016_j_tplants_2014_01_008
crossref_primary_10_4161_psb_23316
crossref_primary_10_1007_s00425_004_1384_5
crossref_primary_10_1038_s41477_020_0729_9
crossref_primary_10_1111_tpj_14707
crossref_primary_10_1371_journal_pone_0009991
crossref_primary_10_1104_pp_104_044347
crossref_primary_10_1111_j_1365_3040_2010_02241_x
crossref_primary_10_1016_j_semcdb_2023_02_009
crossref_primary_10_1631_jzus_B1200130
crossref_primary_10_1007_s13580_020_00294_y
crossref_primary_10_1016_j_envexpbot_2017_09_004
crossref_primary_10_1016_j_bbagen_2008_03_015
crossref_primary_10_1111_j_1365_313X_2008_03468_x
crossref_primary_10_1073_pnas_0903559106
crossref_primary_10_1007_s11306_018_1427_8
crossref_primary_10_1111_j_1365_313X_2004_02173_x
crossref_primary_10_1371_journal_pone_0136997
crossref_primary_10_1016_j_plaphy_2012_06_017
crossref_primary_10_1051_ocl_2021029
crossref_primary_10_1089_ars_2014_6018
crossref_primary_10_1007_s11306_019_1515_4
crossref_primary_10_1016_j_plantsci_2016_05_010
crossref_primary_10_1111_tpj_13705
crossref_primary_10_1016_j_febslet_2012_07_003
crossref_primary_10_3390_ijms23116194
crossref_primary_10_1111_pce_13000
crossref_primary_10_1016_j_plantsci_2019_110303
crossref_primary_10_3389_fpls_2019_01444
crossref_primary_10_1093_jxb_erx220
crossref_primary_10_1007_s11103_007_9153_z
crossref_primary_10_3389_fpls_2020_588433
crossref_primary_10_1111_febs_13041
crossref_primary_10_1093_jxb_erab057
crossref_primary_10_1016_j_carbpol_2023_121141
crossref_primary_10_1199_tab_0117
crossref_primary_10_1111_tpj_12509
crossref_primary_10_1104_pp_110_168716
crossref_primary_10_1104_pp_109_136036
crossref_primary_10_1371_journal_pone_0127905
crossref_primary_10_1071_FP06249
crossref_primary_10_1093_hr_uhab070
crossref_primary_10_1111_j_1365_3040_2007_01708_x
crossref_primary_10_1104_pp_106_081885
crossref_primary_10_1016_j_bbabio_2016_07_007
crossref_primary_10_1242_dev_060830
crossref_primary_10_1002_1873_3468_13198
crossref_primary_10_1093_pcp_pcq126
crossref_primary_10_1111_pbi_12052
crossref_primary_10_1111_pce_13490
crossref_primary_10_3390_ijms22010318
crossref_primary_10_1016_j_phytochem_2004_12_020
crossref_primary_10_1111_nph_17518
Cites_doi 10.1007/BF00394774
10.1104/pp.59.6.1146
10.1104/pp.123.1.403
10.1007/0-306-48135-9_6
10.1104/pp.010058
10.1111/j.1469-8137.1980.tb03184.x
10.1104/pp.94.3.1345
10.1111/j.1365-3040.1996.tb00225.x
10.1007/BF00193014
10.1046/j.1365-313X.2003.01823.x
10.1042/bj3590591
10.1104/pp.85.1.182
10.1104/pp.93.2.785
10.1111/j.1744-7348.2001.tb00084.x
10.1046/j.1365-313X.1996.9050671.x
10.1016/0378-1119(89)90153-4
10.1104/pp.95.3.890
10.1093/nar/25.24.4876
10.1007/BF00259460
10.1074/jbc.275.2.1315
10.1104/pp.91.2.656
10.1007/BF00202587
10.1104/pp.96.1.1
10.1046/j.1365-3040.1998.00295.x
10.1104/pp.83.2.399
10.1016/S0005-2728(89)80347-0
10.1007/s004250050095
10.1080/10409230008984165
10.1016/S0168-9452(01)00431-9
10.1104/pp.010363
10.1104/pp.126.2.750
10.1038/227680a0
10.1105/tpc.003640
10.1016/B978-0-08-092615-5.50012-6
10.1007/PL00008698
10.1046/j.1365-3040.2002.00893.x
10.1093/oxfordjournals.molbev.a026334
10.1042/bj3360681
10.1007/s004250000433
10.1146/annurev.arplant.51.1.371
10.1074/jbc.273.39.25045
10.1046/j.1365-313X.2001.01278.x
10.1104/pp.107.2.507
10.1016/S0176-1617(88)80025-7
10.1046/j.1365-313x.2000.00848.x
ContentType Journal Article
Copyright Copyright 2003 American Society of Plant Biologists
2004 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2003, The American Society for Plant Biologists 2003
Copyright_xml – notice: Copyright 2003 American Society of Plant Biologists
– notice: 2004 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2003, The American Society for Plant Biologists 2003
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7S9
L.6
7X8
1XC
5PM
ADTOC
UNPAY
DOI 10.1104/pp.103.024513
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
Nucleic Acids Abstracts
CrossRef

MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Chemistry
EISSN 1532-2548
EndPage 849
ExternalDocumentID 10.1104/pp.103.024513
PMC219057
oai_HAL_hal_03321577v1
12972664
15210780
10_1104_pp_103_024513
4281396
US201300936948
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGOD
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFDAS
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGUYK
AHMBA
AICQM
AIDAL
AIDBO
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
FBQ
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
0R~
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABVGC
ABXSQ
ABXVV
ACHIC
ADGKP
ADQBN
ADXHL
AEUYN
AGORE
AHXOZ
AJBYB
AJNCP
ALIPV
AQVQM
ATGXG
BEYMZ
H13
IPSME
JXSIZ
NU-
PHGZM
PHGZT
AAYXX
CITATION
PJZUB
PPXIY
PQGLB
PUEGO
ABIME
ABPIB
ABZEO
ACVCV
ACZBC
AGMDO
AHGBF
AJDVS
APJGH
IQODW
LU7
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7S9
L.6
7X8
1XC
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c655t-b673160774c79b20b65f3e5e0e20b3297c2ae4461730d93a40e244ebb74019613
IEDL.DBID UNPAY
ISSN 0032-0889
1532-2548
IngestDate Wed Oct 01 16:32:17 EDT 2025
Tue Sep 30 16:57:05 EDT 2025
Fri Sep 12 12:47:59 EDT 2025
Sun Sep 28 09:51:21 EDT 2025
Wed Oct 01 14:10:46 EDT 2025
Sun Sep 28 02:33:26 EDT 2025
Tue Aug 05 11:40:08 EDT 2025
Mon Jul 21 09:13:24 EDT 2025
Wed Oct 01 03:35:14 EDT 2025
Thu Apr 24 22:55:07 EDT 2025
Fri Jun 20 02:19:12 EDT 2025
Wed Dec 27 19:28:53 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Phosphates
Sucrose
Environmental factor
Disaccharide
Arabidopsis thaliana
Posttranslational modification
Regulation(control)
Enzymatic activity
Cruciferae
Dicotyledones
Light
Angiospermae
Carbohydrate
Chemical concentration
Solanaceae
Light effect
Redox state
Enzyme
Solanum tuberosum
Transferases
Plant leaf
Grain legume
Nucleotidyltransferases
Leguminosae
Pisum sativum
Glucose-1-phosphate adenylyltransferase
Spermatophyta
Tuber plant
Experimental plant
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c655t-b673160774c79b20b65f3e5e0e20b3297c2ae4461730d93a40e244ebb74019613
Notes http://www.plantphysiol.org/
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMCID: PMC219057
Corresponding author; e-mail geigenberger@mpimp-golm.mpg.de; fax 49–331–567–8408.
The online version of this article contains Web-only data.
This work was supported by the Deutsche Forschungsgemeinschaft (grant no. SFB 429 TP–B7 to A.K. and P.G.) and by the Bundesministerium für Bildung und Forschung (GABI; grant to Y.G. and M.S.).
Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/doi/10.1104/pp.103.024513.
ORCID 0000-0002-4900-1763
0000-0001-8161-1089
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/plphys/article-pdf/133/2/838/37556006/plphys_v133_2_838.pdf
PMID 12972664
PQID 17888665
PQPubID 23462
PageCount 12
ParticipantIDs unpaywall_primary_10_1104_pp_103_024513
pubmedcentral_primary_oai_pubmedcentral_nih_gov_219057
hal_primary_oai_HAL_hal_03321577v1
proquest_miscellaneous_71270386
proquest_miscellaneous_49177705
proquest_miscellaneous_17888665
pubmed_primary_12972664
pascalfrancis_primary_15210780
crossref_citationtrail_10_1104_pp_103_024513
crossref_primary_10_1104_pp_103_024513
jstor_primary_4281396
fao_agris_US201300936948
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-10-01
PublicationDateYYYYMMDD 2003-10-01
PublicationDate_xml – month: 10
  year: 2003
  text: 2003-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2003
Publisher American Society of Plant Biologists
American Society of Plant Physiologists
Oxford University Press ; American Society of Plant Biologists
The American Society for Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
– name: American Society of Plant Physiologists
– name: Oxford University Press ; American Society of Plant Biologists
– name: The American Society for Plant Biologists
References 2021042909353770500_REF52
2021042909353770500_REF53
2021042909353770500_REF50
2021042909353770500_REF51
2021042909353770500_REF12
2021042909353770500_REF56
2021042909353770500_REF13
2021042909353770500_REF57
2021042909353770500_REF10
2021042909353770500_REF54
2021042909353770500_REF11
2021042909353770500_REF55
2021042909353770500_REF16
2021042909353770500_REF17
2021042909353770500_REF9
2021042909353770500_REF14
2021042909353770500_REF58
2021042909353770500_REF15
2021042909353770500_REF59
2021042909353770500_REF7
2021042909353770500_REF8
2021042909353770500_REF5
2021042909353770500_REF18
2021042909353770500_REF6
2021042909353770500_REF19
2021042909353770500_REF3
2021042909353770500_REF4
2021042909353770500_REF1
2021042909353770500_REF2
2021042909353770500_REF60
2021042909353770500_REF20
2021042909353770500_REF61
2021042909353770500_REF62
2021042909353770500_REF23
2021042909353770500_REF24
2021042909353770500_REF21
2021042909353770500_REF22
2021042909353770500_REF27
2021042909353770500_REF28
2021042909353770500_REF25
2021042909353770500_REF26
2021042909353770500_REF29
2021042909353770500_REF30
2021042909353770500_REF31
2021042909353770500_REF34
2021042909353770500_REF35
2021042909353770500_REF32
2021042909353770500_REF33
2021042909353770500_REF38
2021042909353770500_REF39
2021042909353770500_REF36
2021042909353770500_REF37
2021042909353770500_REF41
2021042909353770500_REF42
2021042909353770500_REF40
2021042909353770500_REF45
2021042909353770500_REF46
2021042909353770500_REF43
2021042909353770500_REF44
2021042909353770500_REF49
2021042909353770500_REF47
2021042909353770500_REF48
References_xml – ident: 2021042909353770500_REF52
  doi: 10.1007/BF00394774
– ident: 2021042909353770500_REF18
  doi: 10.1104/pp.59.6.1146
– ident: 2021042909353770500_REF22
– ident: 2021042909353770500_REF16
– ident: 2021042909353770500_REF41
– ident: 2021042909353770500_REF58
  doi: 10.1104/pp.123.1.403
– ident: 2021042909353770500_REF51
– ident: 2021042909353770500_REF12
– ident: 2021042909353770500_REF49
  doi: 10.1007/0-306-48135-9_6
– ident: 2021042909353770500_REF54
  doi: 10.1104/pp.010058
– ident: 2021042909353770500_REF19
  doi: 10.1111/j.1469-8137.1980.tb03184.x
– ident: 2021042909353770500_REF27
  doi: 10.1104/pp.94.3.1345
– ident: 2021042909353770500_REF9
  doi: 10.1111/j.1365-3040.1996.tb00225.x
– ident: 2021042909353770500_REF34
  doi: 10.1007/BF00193014
– ident: 2021042909353770500_REF57
  doi: 10.1046/j.1365-313X.2003.01823.x
– ident: 2021042909353770500_REF29
– ident: 2021042909353770500_REF59
  doi: 10.1042/bj3590591
– ident: 2021042909353770500_REF30
  doi: 10.1104/pp.85.1.182
– ident: 2021042909353770500_REF36
  doi: 10.1104/pp.93.2.785
– ident: 2021042909353770500_REF2
  doi: 10.1111/j.1744-7348.2001.tb00084.x
– ident: 2021042909353770500_REF62
  doi: 10.1046/j.1365-313X.1996.9050671.x
– ident: 2021042909353770500_REF32
– ident: 2021042909353770500_REF4
– ident: 2021042909353770500_REF53
– ident: 2021042909353770500_REF39
  doi: 10.1016/0378-1119(89)90153-4
– ident: 2021042909353770500_REF42
  doi: 10.1104/pp.95.3.890
– ident: 2021042909353770500_REF26
– ident: 2021042909353770500_REF55
  doi: 10.1093/nar/25.24.4876
– ident: 2021042909353770500_REF31
  doi: 10.1007/BF00259460
– ident: 2021042909353770500_REF1
  doi: 10.1074/jbc.275.2.1315
– ident: 2021042909353770500_REF20
  doi: 10.1104/pp.91.2.656
– ident: 2021042909353770500_REF47
– ident: 2021042909353770500_REF23
  doi: 10.1007/BF00202587
– ident: 2021042909353770500_REF7
– ident: 2021042909353770500_REF40
  doi: 10.1104/pp.96.1.1
– ident: 2021042909353770500_REF35
  doi: 10.1046/j.1365-3040.1998.00295.x
– ident: 2021042909353770500_REF33
– ident: 2021042909353770500_REF14
  doi: 10.1104/pp.83.2.399
– ident: 2021042909353770500_REF37
  doi: 10.1016/S0005-2728(89)80347-0
– ident: 2021042909353770500_REF10
  doi: 10.1007/s004250050095
– ident: 2021042909353770500_REF61
  doi: 10.1080/10409230008984165
– ident: 2021042909353770500_REF45
  doi: 10.1016/S0168-9452(01)00431-9
– ident: 2021042909353770500_REF3
  doi: 10.1104/pp.010363
– ident: 2021042909353770500_REF44
– ident: 2021042909353770500_REF6
  doi: 10.1104/pp.126.2.750
– ident: 2021042909353770500_REF24
  doi: 10.1038/227680a0
– ident: 2021042909353770500_REF56
  doi: 10.1105/tpc.003640
– ident: 2021042909353770500_REF17
– ident: 2021042909353770500_REF48
– ident: 2021042909353770500_REF38
  doi: 10.1016/B978-0-08-092615-5.50012-6
– ident: 2021042909353770500_REF21
  doi: 10.1007/PL00008698
– ident: 2021042909353770500_REF60
  doi: 10.1046/j.1365-3040.2002.00893.x
– ident: 2021042909353770500_REF5
  doi: 10.1093/oxfordjournals.molbev.a026334
– ident: 2021042909353770500_REF46
  doi: 10.1042/bj3360681
– ident: 2021042909353770500_REF25
  doi: 10.1007/s004250000433
– ident: 2021042909353770500_REF28
– ident: 2021042909353770500_REF43
  doi: 10.1146/annurev.arplant.51.1.371
– ident: 2021042909353770500_REF8
  doi: 10.1074/jbc.273.39.25045
– ident: 2021042909353770500_REF15
  doi: 10.1046/j.1365-313X.2001.01278.x
– ident: 2021042909353770500_REF13
  doi: 10.1104/pp.107.2.507
– ident: 2021042909353770500_REF50
  doi: 10.1016/S0176-1617(88)80025-7
– ident: 2021042909353770500_REF11
  doi: 10.1046/j.1365-313x.2000.00848.x
SSID ssj0001314
Score 2.2969713
Snippet ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum...
Abstract ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato...
SourceID unpaywall
pubmedcentral
hal
proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 838
SubjectTerms ADP-glucose pyrophosphorylase
Agronomy. Soil science and plant productions
Amino Acid Sequence
Arabidopsis
Arabidopsis - enzymology
Arabidopsis - radiation effects
Arabidopsis Proteins
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - radiation effects
Arabidopsis thaliana
Biochemical Processes and Macromolecular Structures
Biological and medical sciences
biosynthesis
carbohydrate content
Carbohydrate Metabolism
chemistry
Chloroplasts
Conserved Sequence
conserved sequences
Darkness
Dimerization
drug effects
Economic plant physiology
Enzyme Activation
enzymology
Fundamental and applied biological sciences. Psychology
gene expression
Glucose-1-Phosphate Adenylyltransferase
grain crops
Kinetics
Leaves
Life Sciences
Light
Metabolism
Monomers
Net assimilation, photosynthesis, carbon metabolism. Photorespiration, respiration, fermentation (anoxia, hypoxia)
nucleotidyltransferases
Nucleotidyltransferases - chemistry
Nucleotidyltransferases - metabolism
Nucleotidyltransferases - radiation effects
Nutrition. Photosynthesis. Respiration. Metabolism
peas
pharmacology
Phosphates
phosphoglucomutase
Photosynthesis
Photosynthesis, respiration. Anabolism, catabolism
Physiological regulation
Pisum sativum
Pisum sativum - enzymology
Pisum sativum - radiation effects
Plant Leaves
Plant Leaves - drug effects
Plant Leaves - enzymology
Plant physiology and development
plant proteins
Plants
post-translational modification
potatoes
protein conformation
Protein Processing, Post-Translational
radiation effects
redox reactions
Solanum tuberosum
Species Specificity
starch
Starches
Sucrose
Sucrose - pharmacology
Sugars
Tubers
vegetable crops
Vegetal Biology
Title ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species
URI https://www.jstor.org/stable/4281396
https://www.ncbi.nlm.nih.gov/pubmed/12972664
https://www.proquest.com/docview/17888665
https://www.proquest.com/docview/49177705
https://www.proquest.com/docview/71270386
https://hal.science/hal-03321577
https://pubmed.ncbi.nlm.nih.gov/PMC219057
https://academic.oup.com/plphys/article-pdf/133/2/838/37556006/plphys_v133_2_838.pdf
UnpaywallVersion publishedVersion
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1532-2548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: KQ8
  dateStart: 19260101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1532-2548
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: DIK
  dateStart: 19260101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1532-2548
  dateEnd: 20120831
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: 7X7
  dateStart: 19981001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1532-2548
  dateEnd: 20120831
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: BENPR
  dateStart: 19981001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tAwle-BwsfBQLIXghbRondvLYwcZA26i2VRpPkZ04W0WVREs6KH8Qfyd3SdpRYBMPPLRKnYvquue739k_3wG85MLEInV8W-nEsb0gdu1Qq9T2hecYT6VC1cl09g_E7sj7eOKfrMDx_CyMalnh3fmRhmJCIX6vHUe7SNIehlU9txfwoMelTx5btFIY8XEeuRHe6qLgKqwL2nZag_XRwXDwucnQ6NrE7GnSqLo2xkfBIvWm1ysKOoXepf3IPl9yVaupyvH9jOiSDXORaJSqxJFMmxIYf8Oof1Itb06zQs2-qsnkFz-2cwem8xFo6CtfutNKd-PvvyWH_N9DdBdut8CXDZrH78GKye7Dja0cwensAfwYvBva7xv6PBvOzvPiLC_xdT5DdG_Yh5IN4roQm0mYnjEqMVyRl520a5ns0CT5N3s_T4j6VDeycYatNQPYsCpne7QMwVSW0Iej6SlG9CSyZ9SFKVmeYteUHid5UY7LWuwTYWNGVZ0qdlQYNILlBox2to_f7tptCQk7Fr5f2VpQZS4HMW4sQ-06WvgpN75xDF5zN5SxqwxGxH00dEnIFSoo4h2jNRUqDBHqPIS1LM_MJrC-5tLRyk1CDOR97WoR8zCOk8DIWISusuDNXFuiuM2vTmU-JlEdZzleVBR4yaNGuSx4tRAvmsQiVwluoupF6hSNfjQ6cmmr2aEyjF5gwQvUx8XjlCl8d7AXUZvDOYI5KS_6FmzU6roQw4ATYb-woLOkvpe9QESHwNGx4PlcnyO0ObSRpDKTT8uoT-smQvhXS3hhX0rpXCMhifLAA-zGo2aGXH4__i0IGz0LxNLcWfqdy3ey8VmdGR3dL8YfFrxeTLLrx_bxP0s-gVuXNM6nsFadT80zhKOV7sCqPJEdWN_aPhgedlpb8xOcEocc
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe2Dgle-BwsfAwLIXghzYcTJ3ksH6OgblRslbanyHactaJKoiYdlD-Iv5O7JG0psIkHHlqlzkV13fPd7-yf7wh5zrhWPLV9U8jENr1QuWYkRWr63LO1J1Iu6mQ6h0e8P_I-nvqnW-RkeRZGtKzw7vJIQzHFEN9qx9EsktSCsMpyrZCFFgt89Ni8lYKIj7HYjeFWFwS3yQ7HbacO2RkdDXtnTYZG10RmT5NG1TUhPgpXqTc9qyjwFHoX9yMdtuGqtlORw_sY6ZINcxFplKKEkUybEhh_w6h_Ui2vz7NCLL6K6fQXP3Zwi8yXI9DQV75055Xsqu-_JYf830N0m9xsgS_tNY_fIVs6u0uuvc4BnC7ukR-9t0PzfUOfp8PFLC_GeQmv2QLQvaYfStpTdSE2nVC5oFhiuEIvO23XMulnneTfzMM8QepT3UgnGbTWDGBNq5wOcBmCiizBD8fzc4joUWSgxYUuaZ5C14ScJHlRTspa7BNiY4pVnSp6XGgwguUuGR28O3nTN9sSEqbivl-ZkmNlLhswrgoi6dqS-ynTvrY1XDM3CpQrNETEDhi6JGICFBTwjpYSCxVGAHXuk06WZ3qPUEeywJbCTSII5H3pSq5YpFQS6kDxyBUGebXUlli1-dWxzMc0ruMs24uLAi5Z3CiXQV6sxIsmschlgnugerE4B6Mfj45d3Gq2sQyjFxrkGejj6nHMFN7vDWJssxkDMBcEF45Bdmt1XYlBwAmwnxtkf0N9170ARAfA0TbI06U-x2BzcCNJZDqfl7GD6yac-5dLeJETBIF9hUSAlAcWQjceNDNk_f3wtwBs9AzCN-bOxu_cvJNNxnVmdHC_EH8Y5OVqkl09tg__WfIRubGmcT4mnWo2108AjlZyv7UuPwFP-4Sb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADP-Glucose+Pyrophosphorylase+Is+Activated+by+Posttranslational+Redox-Modification+in+Response+to+Light+and+to+Sugars+in+Leaves+of+Arabidopsis+and+Other+Plant+Species&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Hendriks%2C+Janneke+H.M.&rft.au=Kolbe%2C+Anna&rft.au=Gibon%2C+Yves&rft.au=Stitt%2C+Mark&rft.date=2003-10-01&rft.pub=Oxford+University+Press+%3B+American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=133&rft.issue=2&rft.spage=838&rft.epage=849&rft_id=info:doi/10.1104%2Fpp.103.024513&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03321577v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon