Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation

This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly id...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 126; p. 104037
Main Authors Amyar, Amine, Modzelewski, Romain, Li, Hua, Ruan, Su
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2020
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2020.104037

Cover

Abstract This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification. •Multitask deep learning based model can be used to detect COVID-19 lesions on CT scans.•The proposed model can improve state of the art U-NET by leveraging useful information contained in multiple related tasks.•Obtained a dice coefficient of 88% for image segmentation and an accuracy of 94.67 for multiclass classification.•The proposed model can be used as a support tool to assist physicians.
AbstractList This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification.This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification.
This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification.
AbstractThis paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification.
This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification. • Multitask deep learning based model can be used to detect COVID-19 lesions on CT scans. • The proposed model can improve state of the art U-NET by leveraging useful information contained in multiple related tasks. • Obtained a dice coefficient of 88% for image segmentation and an accuracy of 94.67 for multiclass classification. • The proposed model can be used as a support tool to assist physicians.
This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification. •Multitask deep learning based model can be used to detect COVID-19 lesions on CT scans.•The proposed model can improve state of the art U-NET by leveraging useful information contained in multiple related tasks.•Obtained a dice coefficient of 88% for image segmentation and an accuracy of 94.67 for multiclass classification.•The proposed model can be used as a support tool to assist physicians.
ArticleNumber 104037
Author Li, Hua
Amyar, Amine
Modzelewski, Romain
Ruan, Su
Author_xml – sequence: 1
  givenname: Amine
  surname: Amyar
  fullname: Amyar, Amine
  email: amine.amyar@ge.com
  organization: General Electric Healthcare, Buc, France
– sequence: 2
  givenname: Romain
  orcidid: 0000-0003-2172-3155
  surname: Modzelewski
  fullname: Modzelewski, Romain
  email: romain.modzelewski@chb.unicancer.fr
  organization: LITIS - EA4108 - Quantif, University of Rouen, Rouen, France
– sequence: 3
  givenname: Hua
  surname: Li
  fullname: Li, Hua
  email: huali19@illinois.edu
  organization: Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 4
  givenname: Su
  surname: Ruan
  fullname: Ruan, Su
  email: su.ruan@univ-rouen.fr
  organization: LITIS - EA4108 - Quantif, University of Rouen, Rouen, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33065387$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03223080$$DView record in HAL
BookMark eNqVUstuFDEQtFAQecAvIEtc4DCLPZ6HhwNKWB6JtCgHAlfLa_dsvPHYiz2z0v49nkzYQCSkcGqpXV1drq5jdOC8A4QwJTNKaPV2PVO-2yyN70DPcpKP7YKw-gk6orxuMlKy4gAdEUJJVvC8PETHMa4JGUHkGTpkjFQl4_URWn8dbG-yXsYbrAE22IIMzrgVXsoIGs-vsOnkamxIJ-0umohbH_D88sfFx4w2eONg6Lwz8h2eWxmjaY2SvfEu4TWOsOrA9beN5-hpK22EF3f1BH3__Olqfp4tLr9czM8WmUqa-kzWqpSVZFouKS2UhlTbMucNB1qVTdMSDbTRkkjOq7bhuiYEmpwyVpOaLit2gt5PvJthmfxRaX-QVmxC-kjYCS-N-PvFmWux8ltRlwWrG5YI3kwE1w_Gzs8WYuwRlueMcLKlCfv6blnwPweIvehMVGCtdOCHKPKipLwoCz7qevUAuvZDSKbeooqCVow2CfXyT_X7_b9PlgB8AqjgYwzQ7iGUiDEdYi3u0yHGdIgpHffO7EeVmW6TfDD2MQQfJgJI99saCCIqA06BNgFUL7Q3_6FiT6KscSk19gZ2EPemUBFzQcS3McVjiPOUXVbx0fPTfxM8TsMvTSkGUQ
CitedBy_id crossref_primary_10_1038_s41598_024_70367_w
crossref_primary_10_1007_s00500_024_10362_5
crossref_primary_10_3233_IDT_200178
crossref_primary_10_1016_j_knosys_2024_112835
crossref_primary_10_1038_s41598_022_24936_6
crossref_primary_10_1109_MSP_2021_3090674
crossref_primary_10_1002_ima_22772
crossref_primary_10_1007_s12530_023_09484_2
crossref_primary_10_32604_cmc_2021_016037
crossref_primary_10_1016_j_compbiomed_2021_104579
crossref_primary_10_3390_tomography10080091
crossref_primary_10_1007_s11042_023_14941_w
crossref_primary_10_3348_jksr_2022_0155
crossref_primary_10_1109_ACCESS_2024_3396728
crossref_primary_10_3390_app12083895
crossref_primary_10_1016_j_neucom_2023_126244
crossref_primary_10_48175_IJARSCT_22321
crossref_primary_10_1016_j_compbiomed_2023_107167
crossref_primary_10_1038_s41598_023_32462_2
crossref_primary_10_1007_s44196_023_00236_3
crossref_primary_10_1016_j_bbe_2021_09_004
crossref_primary_10_29328_journal_jprr_1001044
crossref_primary_10_1080_21681163_2023_2287521
crossref_primary_10_1007_s00354_022_00195_x
crossref_primary_10_1109_JBHI_2023_3291433
crossref_primary_10_1088_1361_6560_adb23d
crossref_primary_10_1186_s12911_021_01521_x
crossref_primary_10_1007_s11042_024_18735_6
crossref_primary_10_1007_s10489_022_03893_7
crossref_primary_10_32604_cmc_2021_017385
crossref_primary_10_1049_ipr2_12736
crossref_primary_10_1016_j_patcog_2021_108071
crossref_primary_10_1007_s10845_024_02388_1
crossref_primary_10_3389_fpubh_2022_886958
crossref_primary_10_1038_s41598_022_20804_5
crossref_primary_10_4015_S1016237222500028
crossref_primary_10_1016_j_bspc_2022_104297
crossref_primary_10_1016_j_neucom_2021_12_045
crossref_primary_10_1002_ima_22876
crossref_primary_10_1007_s11042_023_17884_4
crossref_primary_10_1109_TAI_2022_3187388
crossref_primary_10_3934_mbe_2022236
crossref_primary_10_1109_TMI_2022_3226575
crossref_primary_10_3233_XST_221360
crossref_primary_10_1016_j_medengphy_2022_103819
crossref_primary_10_1088_1361_6560_abc04e
crossref_primary_10_1016_j_compbiomed_2022_106496
crossref_primary_10_1016_j_bspc_2023_105615
crossref_primary_10_1016_j_ijleo_2021_167780
crossref_primary_10_2139_ssrn_4789742
crossref_primary_10_3390_ai2020016
crossref_primary_10_3389_fmed_2023_1282200
crossref_primary_10_3389_fonc_2022_773840
crossref_primary_10_1016_j_asoc_2021_108347
crossref_primary_10_1007_s10462_024_10717_2
crossref_primary_10_3348_kjr_2023_0393
crossref_primary_10_1002_ima_22862
crossref_primary_10_1002_ima_22747
crossref_primary_10_3390_jimaging8100267
crossref_primary_10_1016_j_sbi_2024_102778
crossref_primary_10_1007_s10115_022_01672_x
crossref_primary_10_1016_j_compmedimag_2024_102369
crossref_primary_10_1038_s41598_024_70661_7
crossref_primary_10_14326_abe_11_25
crossref_primary_10_1155_2023_4301745
crossref_primary_10_1007_s11517_022_02619_8
crossref_primary_10_1016_j_eswa_2023_120174
crossref_primary_10_1007_s00330_023_09833_4
crossref_primary_10_3390_electronics12020344
crossref_primary_10_1109_ACCESS_2023_3264582
crossref_primary_10_32604_cmc_2023_033413
crossref_primary_10_1016_j_chemolab_2021_104256
crossref_primary_10_1109_TEM_2021_3103334
crossref_primary_10_1007_s42979_022_01184_z
crossref_primary_10_1002_ima_23028
crossref_primary_10_3390_diagnostics11030530
crossref_primary_10_1016_j_radonc_2024_110266
crossref_primary_10_1016_j_eswa_2023_120425
crossref_primary_10_1093_comjnl_bxaa191
crossref_primary_10_1007_s00371_022_02414_4
crossref_primary_10_1007_s10278_024_01062_5
crossref_primary_10_1007_s00521_024_10336_6
crossref_primary_10_1007_s11548_023_02976_1
crossref_primary_10_1016_j_clinsp_2023_100210
crossref_primary_10_1098_rsos_240113
crossref_primary_10_3390_app14219893
crossref_primary_10_3390_diagnostics14121313
crossref_primary_10_3390_info14060333
crossref_primary_10_1007_s12553_025_00952_0
crossref_primary_10_1016_j_ejmp_2024_104505
crossref_primary_10_1111_coin_70031
crossref_primary_10_1002_mp_16468
crossref_primary_10_1038_s41598_022_06931_z
crossref_primary_10_1016_j_compbiomed_2022_106149
crossref_primary_10_1016_j_eswa_2022_116554
crossref_primary_10_1016_j_compbiomed_2022_105730
crossref_primary_10_1134_S0361768821030063
crossref_primary_10_32604_cmes_2021_016981
crossref_primary_10_1088_1361_6560_ac34b2
crossref_primary_10_1109_ACCESS_2021_3058537
crossref_primary_10_1016_j_metrad_2023_100018
crossref_primary_10_1016_j_bbe_2021_06_011
crossref_primary_10_1016_j_compbiomed_2021_104919
crossref_primary_10_1097_MD_0000000000031346
crossref_primary_10_1016_j_media_2022_102639
crossref_primary_10_1109_TGRS_2023_3324223
crossref_primary_10_1007_s00500_021_06142_0
crossref_primary_10_1007_s40846_023_00783_2
crossref_primary_10_1016_j_bspc_2023_105424
crossref_primary_10_1088_2057_1976_ad1e76
crossref_primary_10_3389_fmolb_2021_614277
crossref_primary_10_1186_s12880_020_00529_5
crossref_primary_10_1016_j_jocs_2024_102324
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_1007_s00354_023_00213_6
crossref_primary_10_1016_j_compbiomed_2023_106698
crossref_primary_10_1016_j_asoc_2021_108261
crossref_primary_10_1155_2021_2456429
crossref_primary_10_1007_s00521_021_06810_0
crossref_primary_10_1016_j_heliyon_2023_e14453
crossref_primary_10_1007_s13198_024_02463_z
crossref_primary_10_1007_s11227_024_06163_0
crossref_primary_10_1016_j_compbiomed_2021_104927
crossref_primary_10_1016_j_cmpb_2021_105996
crossref_primary_10_1002_cpe_7314
crossref_primary_10_1080_24725579_2022_2142866
crossref_primary_10_1007_s10489_021_02359_6
crossref_primary_10_1016_j_jrras_2025_101374
crossref_primary_10_1109_ACCESS_2024_3360004
crossref_primary_10_1142_S0218001423570033
crossref_primary_10_1080_03091902_2022_2080883
crossref_primary_10_1016_j_sasc_2024_200077
crossref_primary_10_1109_JBHI_2022_3181791
crossref_primary_10_1007_s42979_022_01464_8
crossref_primary_10_1038_s41598_021_83237_6
crossref_primary_10_54392_irjmt24318
crossref_primary_10_1016_j_media_2024_103199
crossref_primary_10_1016_j_chaos_2021_111310
crossref_primary_10_3390_jpm12020310
crossref_primary_10_1016_j_geoderma_2022_116072
crossref_primary_10_1016_j_patcog_2023_109665
crossref_primary_10_1002_mp_15582
crossref_primary_10_1007_s11548_022_02625_z
crossref_primary_10_2174_1573405619666221222161832
crossref_primary_10_3390_cancers15194897
crossref_primary_10_1016_j_cmpb_2022_106731
crossref_primary_10_3390_jimaging10090234
crossref_primary_10_1109_TMI_2022_3202183
crossref_primary_10_1016_j_patcog_2021_108452
crossref_primary_10_1111_exsy_12842
crossref_primary_10_3389_frai_2021_612914
crossref_primary_10_3390_s22249983
crossref_primary_10_1007_s00354_024_00255_4
crossref_primary_10_1109_TFUZZ_2021_3097806
crossref_primary_10_1080_0952813X_2023_2165724
crossref_primary_10_3390_e24040436
crossref_primary_10_1016_j_measen_2023_100876
crossref_primary_10_1038_s42256_021_00307_0
crossref_primary_10_1038_s41598_022_06854_9
crossref_primary_10_3389_frai_2022_912022
crossref_primary_10_1007_s11042_024_20287_8
crossref_primary_10_1007_s00034_022_02035_1
crossref_primary_10_3233_XST_211031
crossref_primary_10_1007_s13246_022_01110_w
crossref_primary_10_1140_epjp_s13360_023_03896_4
crossref_primary_10_1097_JS9_0000000000000380
crossref_primary_10_1080_0952813X_2022_2093980
crossref_primary_10_33769_aupse_1227857
crossref_primary_10_5194_tc_17_4957_2023
crossref_primary_10_1016_j_compmedimag_2022_102068
crossref_primary_10_1155_2023_6070970
crossref_primary_10_1016_j_bspc_2024_106866
crossref_primary_10_1016_j_compeleceng_2023_108711
crossref_primary_10_3390_s22197303
crossref_primary_10_1007_s10489_022_03490_8
crossref_primary_10_1016_j_bspc_2024_106861
crossref_primary_10_1515_bmt_2022_0221
crossref_primary_10_1016_j_procs_2022_12_192
crossref_primary_10_1038_s41598_023_46625_8
crossref_primary_10_7717_peerj_cs_2517
crossref_primary_10_1016_j_compbiomed_2021_104742
crossref_primary_10_1016_j_bspc_2024_106857
crossref_primary_10_3389_fmed_2022_860574
crossref_primary_10_3390_diagnostics13101783
crossref_primary_10_1016_j_eswa_2023_120477
crossref_primary_10_1016_j_media_2022_102489
crossref_primary_10_1016_j_asoc_2022_109568
crossref_primary_10_1016_j_compbiomed_2023_107570
crossref_primary_10_4018_IJSKD_324164
crossref_primary_10_1109_TMI_2021_3079709
crossref_primary_10_3390_diagnostics14242791
crossref_primary_10_1109_JBHI_2022_3190293
crossref_primary_10_1587_transcom_2021EBP3102
crossref_primary_10_2174_1573405617666210713113439
crossref_primary_10_1007_s00521_024_10809_8
crossref_primary_10_1016_j_neucom_2025_129459
crossref_primary_10_1016_j_compbiomed_2021_105123
crossref_primary_10_1109_TNNLS_2022_3230821
crossref_primary_10_1007_s10489_022_04011_3
crossref_primary_10_3233_XST_211047
crossref_primary_10_1038_s41598_023_35922_x
crossref_primary_10_3390_bioengineering10050529
crossref_primary_10_1109_TCYB_2022_3164412
crossref_primary_10_1111_exsy_12759
crossref_primary_10_1007_s00530_023_01096_9
crossref_primary_10_1109_ACCESS_2022_3225746
crossref_primary_10_1109_JBHI_2021_3106341
crossref_primary_10_1038_s41598_022_25539_x
crossref_primary_10_3390_app12125768
crossref_primary_10_3390_healthcare11172388
crossref_primary_10_1016_j_compbiomed_2024_108610
crossref_primary_10_15302_J_QB_021_0274
crossref_primary_10_3390_healthcare10071251
crossref_primary_10_3390_app122010535
crossref_primary_10_1016_j_compbiomed_2021_104605
crossref_primary_10_1186_s12874_022_01768_6
crossref_primary_10_1016_j_bbe_2021_11_004
crossref_primary_10_1007_s00521_021_06636_w
crossref_primary_10_1038_s41598_023_47183_9
crossref_primary_10_1371_journal_pone_0259179
crossref_primary_10_1016_j_measen_2024_101117
crossref_primary_10_1007_s10278_024_01011_2
crossref_primary_10_1155_2022_2564022
crossref_primary_10_1038_s41598_023_35938_3
crossref_primary_10_3389_fpubh_2022_855994
crossref_primary_10_1007_s10479_021_04154_5
crossref_primary_10_1016_j_bspc_2023_105285
crossref_primary_10_1016_j_patcog_2021_108499
crossref_primary_10_1109_JBHI_2022_3192010
crossref_primary_10_1016_j_ejrad_2021_109583
crossref_primary_10_1016_j_chemolab_2022_104539
crossref_primary_10_32604_cmc_2022_020698
crossref_primary_10_1007_s13755_021_00169_1
crossref_primary_10_1109_TMI_2021_3083586
crossref_primary_10_1016_j_asoc_2023_110511
crossref_primary_10_1016_j_compbiomed_2021_104895
crossref_primary_10_1016_j_compbiomed_2022_105464
crossref_primary_10_1007_s42979_022_01593_0
crossref_primary_10_1016_j_artmed_2025_103096
crossref_primary_10_3934_mbe_2024090
crossref_primary_10_1016_j_aej_2021_03_048
crossref_primary_10_1080_21681163_2022_2099299
crossref_primary_10_1016_j_media_2022_102447
crossref_primary_10_1016_j_neucom_2021_06_024
crossref_primary_10_1016_j_compbiomed_2021_104304
crossref_primary_10_2174_1573405617666210806123720
crossref_primary_10_1155_2022_5329014
crossref_primary_10_29109_gujsc_1210343
crossref_primary_10_1109_JSAC_2023_3310096
crossref_primary_10_3390_diagnostics12051283
crossref_primary_10_3390_s21165482
crossref_primary_10_1016_j_compbiomed_2023_106723
crossref_primary_10_1016_j_compbiomed_2021_104665
crossref_primary_10_1016_j_patcog_2025_111371
crossref_primary_10_1038_s41746_024_01410_3
crossref_primary_10_17482_uumfd_1179180
crossref_primary_10_32604_cmes_2021_017679
crossref_primary_10_3390_jimaging8100284
crossref_primary_10_1016_j_media_2022_102687
crossref_primary_10_3233_XST_211113
crossref_primary_10_1080_03772063_2022_2098194
crossref_primary_10_1007_s11548_021_02418_w
crossref_primary_10_1038_s41598_023_36712_1
crossref_primary_10_1016_j_knosys_2022_108877
crossref_primary_10_1049_ipr2_13246
crossref_primary_10_1016_j_eswa_2022_119095
crossref_primary_10_1007_s13246_022_01102_w
crossref_primary_10_1016_j_bspc_2023_104974
crossref_primary_10_1177_09720634241229252
crossref_primary_10_1016_j_aiopen_2025_01_003
crossref_primary_10_1155_2022_7377502
crossref_primary_10_1007_s00354_023_00232_3
crossref_primary_10_1007_s00530_023_01083_0
crossref_primary_10_1109_TII_2022_3142782
crossref_primary_10_1007_s43657_021_00011_4
crossref_primary_10_1080_15368378_2022_2065679
crossref_primary_10_1016_j_compbiomed_2024_109067
crossref_primary_10_1088_2057_1976_ad6f12
crossref_primary_10_1007_s11517_023_02803_4
crossref_primary_10_1007_s42979_021_00605_9
crossref_primary_10_1016_j_bbe_2021_10_004
crossref_primary_10_1038_s41598_023_49218_7
crossref_primary_10_1109_TPAMI_2021_3059968
crossref_primary_10_32604_csse_2022_019288
crossref_primary_10_1016_j_ipemt_2022_100008
crossref_primary_10_1109_ACCESS_2024_3359428
crossref_primary_10_3390_app14093946
crossref_primary_10_3390_cancers14051341
crossref_primary_10_1088_1742_6596_1916_1_012064
crossref_primary_10_1016_j_engappai_2024_108999
crossref_primary_10_1109_TCYB_2021_3123173
crossref_primary_10_1016_j_bspc_2023_104834
crossref_primary_10_20525_ijrbs_v13i2_2955
crossref_primary_10_3390_tomography10120139
crossref_primary_10_1007_s10916_021_01747_2
crossref_primary_10_1016_j_compmedimag_2022_102127
crossref_primary_10_1002_jmv_28293
crossref_primary_10_1007_s11277_021_09076_w
crossref_primary_10_1080_21681163_2022_2061376
crossref_primary_10_1016_j_bea_2022_100041
crossref_primary_10_1016_j_sciaf_2023_e01681
crossref_primary_10_1177_09544119241293007
Cites_doi 10.1049/trit.2019.0028
10.1109/TPAMI.2016.2644615
10.1016/j.patrec.2005.10.010
10.1002/jum.14731
10.1109/5.726791
10.1023/A:1007379606734
10.1016/j.compmedimag.2016.12.002
10.1049/trit.2018.1045
10.1109/TRPMS.2019.2896399
10.1016/j.compbiomed.2020.103792
10.1109/TMI.2016.2553401
10.3390/sym12040651
10.1109/TMI.2020.2996645
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020. Elsevier Ltd
Attribution - NonCommercial
2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020. Elsevier Ltd
– notice: Attribution - NonCommercial
– notice: 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOI 10.1016/j.compbiomed.2020.104037
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Research Library Prep



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 104037
ExternalDocumentID PMC7543793
oai_HAL_hal_03223080v1
33065387
10_1016_j_compbiomed_2020_104037
S0010482520303681
1_s2_0_S0010482520303681
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
77I
AAYXX
CITATION
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c653t-a7c5a6a3dab114cdeab1f52898e16599f0de19da0a886f98d700e921337071b63
IEDL.DBID AIKHN
ISSN 0010-4825
1879-0534
IngestDate Thu Aug 21 14:10:15 EDT 2025
Fri Sep 12 12:45:26 EDT 2025
Fri Sep 05 10:35:27 EDT 2025
Wed Aug 13 06:40:41 EDT 2025
Thu Apr 03 07:07:56 EDT 2025
Thu Sep 18 00:14:02 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
Fri Feb 23 02:41:31 EST 2024
Tue Feb 25 20:12:00 EST 2025
Tue Aug 26 16:34:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Multitask learning
Image segmentation
Coronavirus (COVID-19)
Computed tomography images
Image classification
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c653t-a7c5a6a3dab114cdeab1f52898e16599f0de19da0a886f98d700e921337071b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC7543793
ORCID 0000-0003-2172-3155
0000-0002-5629-2247
0000-0001-8785-6917
OpenAccessLink https://hal.science/hal-03223080
PMID 33065387
PQID 2454416319
PQPubID 1226355
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7543793
hal_primary_oai_HAL_hal_03223080v1
proquest_miscellaneous_2451845486
proquest_journals_2454416319
pubmed_primary_33065387
crossref_primary_10_1016_j_compbiomed_2020_104037
crossref_citationtrail_10_1016_j_compbiomed_2020_104037
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_104037
elsevier_clinicalkeyesjournals_1_s2_0_S0010482520303681
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2020_104037
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
– name: Elsevier
References Kingma, Ba (bib20) 2014
Shi, Wang, Shi, Wu, Wang, Tang, He, Shi, Shen (bib34) 2020
Deng, Dong, Socher, Li, Li, Fei-Fei (bib11) 2009
Afshar, Heidarian, Naderkhani, Oikonomou, Plataniotis, Mohammadi (bib2) 2020
Fawcett (bib13) 2006; 27
Wu, Gao, Mei, Xu, Fan, Zhao, Cheng (bib41) 2020
Fan, Zhou, Ji, Zhou, Chen, Fu, Shen, Shao (bib12) 2020; 39
Song, Zheng, Li, Zhang, Zhang, Huang, Chen, Zhao, Jie, Wang (bib36) 2020
Wang, Wong (bib38) 2020
Zhang, Yang (bib44) 2017
Chen, Yao, Zhang (bib9) 2020
Amyar, Ruan, Gardin, Chatelain, Decazes, Modzelewski (bib3) 2019; 3
Jin, Wang, Xu, Luo, Wei, Zhao, Hou, Ma, Xu, Zheng (bib18) 2020
Ronneberger, Fischer, Brox (bib31) 2015
Wang, Kang, Ma, Zeng, Xiao, Guo, Cai, Yang, Li, Meng (bib39) 2020
Zheng, Deng, Fu, Zhou, Feng, Ma, Liu, Wang (bib46) 2020
Ciregan, Meier, Schmidhuber (bib10) 2012
Xu, Jiang, Ma, Du, Li, Lv, Yu, Chen, Su, Lang (bib42) 2020
Amyar, Ruan, Gardin, Herault, Clement, Decazes, Modzelewski (bib4) 2018; 59
Loey, Smarandache, M Khalifa (bib24) 2020; 12
LeCun, Bottou, Bengio, Haffner (bib22) 1998; 86
Yosinski, Clune, Bengio, Lipson (bib43) 2014
Paul, Su, Romain, Sébastien, Pierre, Isabelle (bib28) 2017; 60
Caruana (bib8) 1997; 28
Pathak, Shukla, Tiwari, Stalin, Singh, Shukla (bib27) 2020
Basavegowda, Dagnew (bib6) 2020; 5
Greenspan, Van Ginneken, Summers (bib14) 2016; 35
Hemdan, Shouman, Karar (bib15) 2020
Qi, Wang, Haner, Weng, Chen, Zhu (bib29) 2019; 4
Hinton, Sabour, Frosst (bib16) 2018
Zhou, Canu, Ruan (bib47) 2020
Butt, Gill, Chun, Babu (bib7) 2020; vol. 1
Narin, Kaya, Pamuk (bib25) 2020
Abbasian Ardakani, Bitarafan-Rajabi, Mohammadzadeh, Mohammadi, Riazi, Abolghasemi, Homayoun Jafari, Bagher Shiran (bib1) 2019; 38
Ozturk, Talo, Yildirim, Baloglu, Yildirim, Acharya (bib26) 2020; 121
Ruder (bib32) 2017
Singh, Kumar, Kaur (bib35) 2020
Zhao, Zhang, He, Xie (bib45) 2020
Huang, Liu, Van Der Maaten, Weinberger (bib17) 2017
Szegedy, Toshev, Erhan (bib37) 2013
Redmon, Divvala, Girshick, Farhadi (bib30) 2016
Wang, Peng, Lu, Lu, Bagheri, Summers (bib40) 2017
Badrinarayanan, Kendall, Cipolla (bib5) 2017; 39
Kayalibay, Jensen, van der Smagt (bib19) 2017
Krizhevsky, Sutskever, Hinton (bib21) 2012
Li, Zhu (bib23) 2020
Sethy, Behera (bib33) 2020
Wu (10.1016/j.compbiomed.2020.104037_bib41) 2020
LeCun (10.1016/j.compbiomed.2020.104037_bib22) 1998; 86
Redmon (10.1016/j.compbiomed.2020.104037_bib30) 2016
Butt (10.1016/j.compbiomed.2020.104037_bib7) 2020; vol. 1
Hemdan (10.1016/j.compbiomed.2020.104037_bib15) 2020
Li (10.1016/j.compbiomed.2020.104037_bib23) 2020
Narin (10.1016/j.compbiomed.2020.104037_bib25) 2020
Paul (10.1016/j.compbiomed.2020.104037_bib28) 2017; 60
Chen (10.1016/j.compbiomed.2020.104037_bib9) 2020
Ciregan (10.1016/j.compbiomed.2020.104037_bib10) 2012
Singh (10.1016/j.compbiomed.2020.104037_bib35) 2020
Kayalibay (10.1016/j.compbiomed.2020.104037_bib19) 2017
Krizhevsky (10.1016/j.compbiomed.2020.104037_bib21) 2012
Xu (10.1016/j.compbiomed.2020.104037_bib42) 2020
Abbasian Ardakani (10.1016/j.compbiomed.2020.104037_bib1) 2019; 38
Amyar (10.1016/j.compbiomed.2020.104037_bib4) 2018; 59
Wang (10.1016/j.compbiomed.2020.104037_bib38) 2020
Deng (10.1016/j.compbiomed.2020.104037_bib11) 2009
Fan (10.1016/j.compbiomed.2020.104037_bib12) 2020; 39
Badrinarayanan (10.1016/j.compbiomed.2020.104037_bib5) 2017; 39
Fawcett (10.1016/j.compbiomed.2020.104037_bib13) 2006; 27
Ozturk (10.1016/j.compbiomed.2020.104037_bib26) 2020; 121
Yosinski (10.1016/j.compbiomed.2020.104037_bib43) 2014
Hinton (10.1016/j.compbiomed.2020.104037_bib16) 2018
Greenspan (10.1016/j.compbiomed.2020.104037_bib14) 2016; 35
Wang (10.1016/j.compbiomed.2020.104037_bib40) 2017
Szegedy (10.1016/j.compbiomed.2020.104037_bib37) 2013
Caruana (10.1016/j.compbiomed.2020.104037_bib8) 1997; 28
Afshar (10.1016/j.compbiomed.2020.104037_bib2) 2020
Ronneberger (10.1016/j.compbiomed.2020.104037_bib31) 2015
Amyar (10.1016/j.compbiomed.2020.104037_bib3) 2019; 3
Ruder (10.1016/j.compbiomed.2020.104037_bib32) 2017
Loey (10.1016/j.compbiomed.2020.104037_bib24) 2020; 12
Song (10.1016/j.compbiomed.2020.104037_bib36) 2020
Sethy (10.1016/j.compbiomed.2020.104037_bib33) 2020
Shi (10.1016/j.compbiomed.2020.104037_bib34) 2020
Zhao (10.1016/j.compbiomed.2020.104037_bib45) 2020
Zhou (10.1016/j.compbiomed.2020.104037_bib47) 2020
Zheng (10.1016/j.compbiomed.2020.104037_bib46) 2020
Huang (10.1016/j.compbiomed.2020.104037_bib17) 2017
Zhang (10.1016/j.compbiomed.2020.104037_bib44) 2017
Jin (10.1016/j.compbiomed.2020.104037_bib18) 2020
Wang (10.1016/j.compbiomed.2020.104037_bib39) 2020
Basavegowda (10.1016/j.compbiomed.2020.104037_bib6) 2020; 5
Pathak (10.1016/j.compbiomed.2020.104037_bib27) 2020
Kingma (10.1016/j.compbiomed.2020.104037_bib20) 2014
Qi (10.1016/j.compbiomed.2020.104037_bib29) 2019; 4
References_xml – year: 2020
  ident: bib33
  article-title: Detection of Coronavirus Disease (Covid-19) Based on Deep Features
– volume: 39
  year: 2020
  ident: bib12
  article-title: Inf-net: automatic covid-19 lung infection segmentation from ct images
  publication-title: IEEE Trans. Med. Imag.
– year: 2020
  ident: bib18
  article-title: Ai-assisted Ct Imaging Analysis for Covid-19 Screening: Building and Deploying a Medical Ai System in Four Weeks
– start-page: 3642
  year: 2012
  end-page: 3649
  ident: bib10
  article-title: Multi-column deep neural networks for image classification
  publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE
– volume: 12
  start-page: 651
  year: 2020
  ident: bib24
  article-title: Within the lack of chest covid-19 x-ray dataset: a novel detection model based on gan and deep transfer learning
  publication-title: Symmetry
– year: 2020
  ident: bib2
  article-title: Covid-caps: A Capsule Network-Based Framework for Identification of Covid-19 Cases from X-Ray Images
– year: 2014
  ident: bib20
  article-title: Adam: A Method for Stochastic Optimization
– year: 2020
  ident: bib36
  article-title: Deep Learning Enables Accurate Diagnosis of Novel Coronavirus (Covid-19) with Ct Images
– year: 2020
  ident: bib23
  article-title: Covid-xpert: an Ai Powered Population Screening of Covid-19 Cases Using Chest Radiography Images
– year: 2020
  ident: bib41
  article-title: Jcs: an Explainable Covid-19 Diagnosis System by Joint Classification and Segmentation
– year: 2020
  ident: bib39
  article-title: A Deep Learning Algorithm Using Ct Images to Screen for Corona Virus Disease (Covid-19)
– year: 2020
  ident: bib45
  article-title: Covid-ct-dataset: A Ct Scan Dataset about Covid-19
– start-page: 2097
  year: 2017
  end-page: 2106
  ident: bib40
  article-title: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: vol. 1
  year: 2020
  ident: bib7
  publication-title: Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia
– year: 2020
  ident: bib47
  article-title: An Automatic Covid-19 Ct Segmentation Based on U-Net with Attention Mechanism
– year: 2020
  ident: bib46
  article-title: Deep Learning-Based Detection for Covid-19 from Chest Ct Using Weak Label
– year: 2020
  ident: bib27
  article-title: Deep Transfer Learning Based Classification Model for Covid-19 Disease
– year: 2018
  ident: bib16
  article-title: Matrix Capsules with Em Routing
– volume: 121
  year: 2020
  ident: bib26
  article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images
  publication-title: Comput. Biol. Med.
– year: 2020
  ident: bib25
  article-title: Automatic Detection of Coronavirus Disease (Covid-19) Using X-Ray Images and Deep Convolutional Neural Networks
– volume: 60
  start-page: 42
  year: 2017
  end-page: 49
  ident: bib28
  article-title: Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier
  publication-title: Comput. Med. Imag. Graph.
– volume: 4
  start-page: 80
  year: 2019
  end-page: 91
  ident: bib29
  article-title: Convolutional neural network based detection and judgement of environmental obstacle in vehicle operation
  publication-title: CAAI Trans. Intell. Technol.
– year: 2020
  ident: bib34
  article-title: Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation and Diagnosis for Covid-19
– start-page: 3320
  year: 2014
  end-page: 3328
  ident: bib43
  article-title: How transferable are features in deep neural networks?
  publication-title: Advances in Neural Information Processing Systems
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib11
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Ieee
– start-page: 2553
  year: 2013
  end-page: 2561
  ident: bib37
  article-title: Deep neural networks for object detection
  publication-title: Advances in Neural Information Processing Systems
– year: 2020
  ident: bib42
  article-title: Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib17
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 59
  year: 2018
  ident: bib4
  article-title: Radiomics-net: convolutional neural networks on fdg pet images for predicting cancer treatment response
  publication-title: J. Nucl. Med.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib31
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2020
  ident: bib38
  article-title: Covid-net: A Tailored Deep Convolutional Neural Network Design for Detection of Covid-19 Cases from Chest Radiography Images
– start-page: 1
  year: 2020
  end-page: 11
  ident: bib35
  article-title: Classification of covid-19 patients from chest ct images using multi-objective differential evolution–based convolutional neural networks
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
– year: 2017
  ident: bib32
  article-title: An Overview of Multi-Task Learning in Deep Neural Networks
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib22
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib5
  article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2020
  ident: bib9
  article-title: Residual Attention U-Net for Automated Multi-Class Segmentation of Covid-19 Chest Ct Images
– volume: 35
  start-page: 1153
  year: 2016
  end-page: 1159
  ident: bib14
  article-title: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique
  publication-title: IEEE Trans. Med. Imag.
– year: 2017
  ident: bib19
  article-title: Cnn-based Segmentation of Medical Imaging Data
– volume: 28
  start-page: 41
  year: 1997
  end-page: 75
  ident: bib8
  article-title: Multitask learning
  publication-title: Mach. Learn.
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib13
  article-title: An introduction to roc analysis
  publication-title: Pattern Recogn. Lett.
– start-page: 779
  year: 2016
  end-page: 788
  ident: bib30
  article-title: You only look once: unified, real-time object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bib15
  article-title: Covidx-net: A Framework of Deep Learning Classifiers to Diagnose Covid-19 in X-Ray Images
– year: 2017
  ident: bib44
  article-title: A Survey on Multi-Task Learning
– volume: 5
  start-page: 22
  year: 2020
  end-page: 33
  ident: bib6
  article-title: Deep learning approach for microarray cancer data classification
  publication-title: CAAI Trans. Intell. Technol.
– volume: 38
  start-page: 629
  year: 2019
  end-page: 640
  ident: bib1
  article-title: A hybrid multilayer filtering approach for thyroid nodule segmentation on ultrasound images
  publication-title: J. Ultrasound Med.
– volume: 3
  start-page: 225
  year: 2019
  end-page: 231
  ident: bib3
  article-title: 3-d rpet-net: development of a 3-d pet imaging convolutional neural network for radiomics analysis and outcome prediction
  publication-title: IEEE Transactions on Radiation and Plasma Medical Sciences
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib21
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 5
  start-page: 22
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib6
  article-title: Deep learning approach for microarray cancer data classification
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2019.0028
– volume: 39
  start-page: 2481
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104037_bib5
  article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib41
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib45
– volume: vol. 1
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib7
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib34
– volume: 27
  start-page: 861
  year: 2006
  ident: 10.1016/j.compbiomed.2020.104037_bib13
  article-title: An introduction to roc analysis
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib23
– start-page: 2097
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104037_bib40
  article-title: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
– volume: 38
  start-page: 629
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104037_bib1
  article-title: A hybrid multilayer filtering approach for thyroid nodule segmentation on ultrasound images
  publication-title: J. Ultrasound Med.
  doi: 10.1002/jum.14731
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib47
– volume: 59
  year: 2018
  ident: 10.1016/j.compbiomed.2020.104037_bib4
  article-title: Radiomics-net: convolutional neural networks on fdg pet images for predicting cancer treatment response
  publication-title: J. Nucl. Med.
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.compbiomed.2020.104037_bib22
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– year: 2017
  ident: 10.1016/j.compbiomed.2020.104037_bib32
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib38
– volume: 28
  start-page: 41
  year: 1997
  ident: 10.1016/j.compbiomed.2020.104037_bib8
  article-title: Multitask learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007379606734
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib46
– start-page: 248
  year: 2009
  ident: 10.1016/j.compbiomed.2020.104037_bib11
  article-title: Imagenet: a large-scale hierarchical image database
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib2
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib33
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib35
  article-title: Classification of covid-19 patients from chest ct images using multi-objective differential evolution–based convolutional neural networks
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
– year: 2017
  ident: 10.1016/j.compbiomed.2020.104037_bib44
– start-page: 2553
  year: 2013
  ident: 10.1016/j.compbiomed.2020.104037_bib37
  article-title: Deep neural networks for object detection
– start-page: 234
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104037_bib31
  article-title: U-net: convolutional networks for biomedical image segmentation
– year: 2014
  ident: 10.1016/j.compbiomed.2020.104037_bib20
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib25
– start-page: 4700
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104037_bib17
  article-title: Densely connected convolutional networks
– volume: 60
  start-page: 42
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104037_bib28
  article-title: Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier
  publication-title: Comput. Med. Imag. Graph.
  doi: 10.1016/j.compmedimag.2016.12.002
– volume: 4
  start-page: 80
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104037_bib29
  article-title: Convolutional neural network based detection and judgement of environmental obstacle in vehicle operation
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2018.1045
– volume: 3
  start-page: 225
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104037_bib3
  article-title: 3-d rpet-net: development of a 3-d pet imaging convolutional neural network for radiomics analysis and outcome prediction
  publication-title: IEEE Transactions on Radiation and Plasma Medical Sciences
  doi: 10.1109/TRPMS.2019.2896399
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib42
– year: 2018
  ident: 10.1016/j.compbiomed.2020.104037_bib16
– year: 2017
  ident: 10.1016/j.compbiomed.2020.104037_bib19
– volume: 121
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib26
  article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103792
– start-page: 3320
  year: 2014
  ident: 10.1016/j.compbiomed.2020.104037_bib43
  article-title: How transferable are features in deep neural networks?
– volume: 35
  start-page: 1153
  year: 2016
  ident: 10.1016/j.compbiomed.2020.104037_bib14
  article-title: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2016.2553401
– volume: 12
  start-page: 651
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib24
  article-title: Within the lack of chest covid-19 x-ray dataset: a novel detection model based on gan and deep transfer learning
  publication-title: Symmetry
  doi: 10.3390/sym12040651
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib15
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib18
– volume: 39
  issue: 8
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib12
  article-title: Inf-net: automatic covid-19 lung infection segmentation from ct images
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2020.2996645
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib27
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib36
– start-page: 3642
  year: 2012
  ident: 10.1016/j.compbiomed.2020.104037_bib10
  article-title: Multi-column deep neural networks for image classification
– start-page: 1097
  year: 2012
  ident: 10.1016/j.compbiomed.2020.104037_bib21
  article-title: Imagenet classification with deep convolutional neural networks
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib9
– start-page: 779
  year: 2016
  ident: 10.1016/j.compbiomed.2020.104037_bib30
  article-title: You only look once: unified, real-time object detection
– year: 2020
  ident: 10.1016/j.compbiomed.2020.104037_bib39
SSID ssj0004030
Score 2.682643
Snippet This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can...
AbstractThis paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104037
SubjectTerms Accuracy
Artificial intelligence
Betacoronavirus
Chest
Classification
Coders
Cognitive tasks
Computed tomography
Computed tomography images
Coronavirus (COVID-19)
Coronavirus Infections
Coronavirus Infections - diagnostic imaging
Coronaviruses
COVID-19
Datasets
Decoders
Deep Learning
Female
Humans
Image classification
Image processing
Image reconstruction
Image segmentation
Infections
Internal Medicine
Life Sciences
Lung
Lung - diagnostic imaging
Lung cancer
Machine learning
Male
Medical imaging
Motivation
Multilayers
Multitask learning
Neural networks
Other
Pandemics
Pneumonia
Pneumonia, Viral
Pneumonia, Viral - diagnostic imaging
SARS-CoV-2
Tomography, X-Ray Computed
Viral infections
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYkBAvaPxc2EAG8RrhxImdjAc0FaaCGDywob5ZTmxvHSztlnZ_P3eOk1KYUJ8qJXFt587n7-K7-wh5g4muTjIXu0LUcSZFGRfGgauSZKmtZVUJX4np-KsYn2afJ_kkfHBrQ1hlbxO9oTazGr-Rv00zZMsSoDHv51cxskbh6Wqg0NgidxNAIkjdICdylRfJeJeCArYmA1coRPJ08V0Yst2luIOXmPrDToZs6LdvT1vnGCf5Lwj9O5byj83paIc8CKiSHnZq8JDcsc0jcu84nJs_Jhc-zzZe6PYnNdbOaSCLOKO4ixk6OqHTS89XRHWoUkIBzdLRtx-fPsRJSeeNXcIbmOoD6mk0McDIyxSeN7S1Z5chh6l5Qk6PPp6MxnFgWYhrkfNFrGWda6G50RUIrjYWfl0OflhhE5GXpWPGJqXRTBeFcGVhJGO2TMG3lQBPKsGfku1m1thdQpllRQWLWvJcZPAf2oGGMGfAScqE4Twisn-5qg4lyJEJ45fqY80u1EosCsWiOrFEJBlazrsyHBu0KXv5qT7NFAyjgr1ig7bytra2DSu8VYlqU8XUd1_gCHQrZQgGiiQi74aWAcR04GTDfl-Dog1TxNrf48MvCq8xML0c8P0NdLHf66EaxrNaHxF5NdwGW4EHQLqxs6V_Bhx68FFFRJ51ajt0xTlWKS5w5msKvTaW9TvN9NzXI5c5FrXkz_8_rD1yHyfa5XHuk-3F9dK-AEC3qF76VfsbHTJJBQ
  priority: 102
  providerName: ProQuest
Title Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482520303681
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482520303681
https://dx.doi.org/10.1016/j.compbiomed.2020.104037
https://www.ncbi.nlm.nih.gov/pubmed/33065387
https://www.proquest.com/docview/2454416319
https://www.proquest.com/docview/2451845486
https://hal.science/hal-03223080
https://pubmed.ncbi.nlm.nih.gov/PMC7543793
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe2TkK8IL6XMSaDeA1z4sRO4KmUlQ5YQWhDfbOc2NkytqwiLY_87dwlTkbZHirxkigfF9u58_lOvt8dIa8Q6FpIVvhFInI_kiL1E1OAqxJEoc1llokmE9PRVExOoo-zeLZBRh0WBsMqne5vdXqjrd2dffc39-dliRhfcCXAwQkZqmGEX2-FsNonA7I1PPw0mV7DIxlvkSigcpDABfS0YV4Yud0i3cFZDJs9T4ZF0W9fpTbPMFzypi36b0jlX2vU-D6554xLOmz7_4Bs2OohuXPkts8fkfMGbusvdP2DGmvn1NWMOKW4mBk6OqblZVO2iGqXrISCUUtHX74fvveDlM4ruwS5LfUb2lTTxDijhrXwvqG1Pb10UKbqMTkZHxyPJr4rtuDnIuYLX8s81kJzozPgX24snIsY3LHEBiJO04IZG6RGM50kokgTIxmzaQgurgQrJRP8CRlUV5XdJpRZlmQwtyWPRQTf0AUICisM-EqRMJx7RHY_V-UuEzkWxLhQXcjZubpmi0K2qJYtHgl6ynmbjWMNmrTjn-rQpqAfFSwZa9DK22ht7SZ6rQJVh4qpG8Lokbc95Yo8r9nuSxC0foiYAnwy_KzwHgMNzMHM_wVN7HZyqPr-hBEWlROgWD3yon8MKgP3gXRlr5bNO-DXg6sqPPK0Fdu-Kc4xWXGCI18R6JW-rD6pyrMmLbmMMbcl3_mvkT8jd_GqRXvuksHi59I-B7Nvke2Rzde_AzjKmYRjMv6w5yY6nN8dTL9--wNWv1nk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2ToK9IL4pDDAIHiOcOHEc0IRGt6llbUHQob0ZJ3a2biwtpAXxz_G3cXaclMKE-rKnSIkvdnKX-4jv7ofQM1Pomsck93LOMi-MWeJxlUOo4oeBzuI0ZbYT02DIuofh26PoaA39qmthTFplrROtolaTzPwjfxGEBi2LgcS8nn71DGqU2V2tITSkg1ZQ27bFmCvsONA_f0AIV273doHfz4Ngf2_U6XoOZcDLWERnnoyzSDJJlUxh4ZnScMwjiEO49lmUJDlR2k-UJJJzlidcxYToJIDYLgbznDIK911HG6H5gdJCG2_2hu8_LCozCa2KYEDbhRCMuVyiKsPMJI1XRfYQpwZ2u5UYPPaLDeT6icnU_NcN_jub8w_zuH8dXXN-Ld6pBPEGWtPFTXRl4Hbub6FTW-nrzWR5hpXWU-zgKo6xsaMKd0Z4fG4Rk7B0fVIw-NO48-5Tb9fzEzwt9Bx4MJYvsQXyNClOVqpgvMKlPj53VVTFbXR4KRy4g1rFpND3ECaa8BTUSkwjFsI9ZA4ySnIFYVrIFKVtFNcvV2SuCbrB4vgi6my3U7FgizBsERVb2shvKKdVI5AVaJKaf6IudAXVLMBarUAbX0SrS6djSuGLMhBEfLQtlkC2AmLcEe630auG0rlRlXu04rxPQdCaRzTdx7s7fWHOEVD-FCKM7zDFVi2HolnP4gttoyfNZdBWZgtKFnoyt2N8DuM4a6O7ldg2U1Fq-iRz8-RLAr20luUrxfjEdkSPI9NWk97__7Ieo6vd0aAv-r3hwQO0Ca4vM0l_Ad9Crdm3uX4I7uUsfeS-YYw-X7ba-A1Vloxf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELf2IU28IL4JDDAIHqM5cWI7oAmNdlXLtjLBhvZmnNjZOlhaSAviX-Sv4pw4KYUJ9WVPkRJfbPcu91Hf3Q-h57bQNeck93PBMj_iLPGFziFUCaLQZDxNWdWJ6WDI-sfR25P4ZAX9amphbFploxMrRa3Hmf2PfCuMLFoWA4nZyl1axGG393ry1bcIUvaktYHTUA5mQW9X7cZckcee-fkDwrlye9AF3r8Iw97uUafvO8QBP2MxnfqKZ7FiimqVwiYybeCaxxCTCBOwOElyok2QaEWUECxPhOaEmCSEOI-DqU4ZhfeuonUOVh8CwfU3u8PD9_MqTULrghjQfBEEZi6vqM42swnkdcE9xKxhdfRKLDb75cZy9cxmbf7rEv-d2fmHqezdQNedj4t3aqG8iVZMcQttHLhT_NvovKr69aeq_Iy1MRPsoCtOsbWpGneO8OiiQk_CyvVMweBb4867j4OuHyR4UpgZ8GCkXuIK1NOmO1USBuM1Ls3phauoKu6g4yvhwF20VowLcx9hYohIQcVwGrMI3qFykFeSawjZIqYp9RBvflyZuYboFpfji2wy387lnC3SskXWbPFQ0FJO6qYgS9AkDf9kU_QKalqC5VqCll9Ga0qnb0oZyDKURH6o2i2BbIXEuiYi8NCrltK5VLWrtOS8z0DQ2i3aTuT9nX1p7xEwBBSije8wxWYjh7Jdz_xr9dDT9jFoLnscpQoznlVjAgHjBPPQvVps26kotT2Thd35gkAvrGXxSTE6q7qj89i22KQP_r-sJ2gD1IfcHwz3HqJrds91gekmWpt-m5lH4GlO08fuE8bo01Vrjd8zsJCR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-task+deep+learning+based+CT+imaging+analysis+for+COVID-19+pneumonia%3A+Classification+and+segmentation&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Amyar%2C+Amine&rft.au=Modzelewski%2C+Romain&rft.au=Li%2C+Hua&rft.au=Ruan%2C+Su&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=126&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.104037&rft.externalDocID=S0010482520303681
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif