Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation
This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly id...
Saved in:
Published in | Computers in biology and medicine Vol. 126; p. 104037 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.11.2020
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4825 1879-0534 1879-0534 |
DOI | 10.1016/j.compbiomed.2020.104037 |
Cover
Abstract | This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification.
•Multitask deep learning based model can be used to detect COVID-19 lesions on CT scans.•The proposed model can improve state of the art U-NET by leveraging useful information contained in multiple related tasks.•Obtained a dice coefficient of 88% for image segmentation and an accuracy of 94.67 for multiclass classification.•The proposed model can be used as a support tool to assist physicians. |
---|---|
AbstractList | This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification.This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification. This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification. AbstractThis paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification. This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification. • Multitask deep learning based model can be used to detect COVID-19 lesions on CT scans. • The proposed model can improve state of the art U-NET by leveraging useful information contained in multiple related tasks. • Obtained a dice coefficient of 88% for image segmentation and an accuracy of 94.67 for multiclass classification. • The proposed model can be used as a support tool to assist physicians. This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly identify COVID-19 patient and segment COVID-19 lesion from chest CT images. Three learning tasks: segmentation, classification and reconstruction are jointly performed with different datasets. Our motivation is on the one hand to leverage useful information contained in multiple related tasks to improve both segmentation and classification performances, and on the other hand to deal with the problems of small data because each task can have a relatively small dataset. Our architecture is composed of a common encoder for disentangled feature representation with three tasks, and two decoders and a multi-layer perceptron for reconstruction, segmentation and classification respectively. The proposed model is evaluated and compared with other image segmentation techniques using a dataset of 1369 patients including 449 patients with COVID-19, 425 normal ones, 98 with lung cancer and 397 of different kinds of pathology. The obtained results show very encouraging performance of our method with a dice coefficient higher than 0.88 for the segmentation and an area under the ROC curve higher than 97% for the classification. •Multitask deep learning based model can be used to detect COVID-19 lesions on CT scans.•The proposed model can improve state of the art U-NET by leveraging useful information contained in multiple related tasks.•Obtained a dice coefficient of 88% for image segmentation and an accuracy of 94.67 for multiclass classification.•The proposed model can be used as a support tool to assist physicians. |
ArticleNumber | 104037 |
Author | Li, Hua Amyar, Amine Modzelewski, Romain Ruan, Su |
Author_xml | – sequence: 1 givenname: Amine surname: Amyar fullname: Amyar, Amine email: amine.amyar@ge.com organization: General Electric Healthcare, Buc, France – sequence: 2 givenname: Romain orcidid: 0000-0003-2172-3155 surname: Modzelewski fullname: Modzelewski, Romain email: romain.modzelewski@chb.unicancer.fr organization: LITIS - EA4108 - Quantif, University of Rouen, Rouen, France – sequence: 3 givenname: Hua surname: Li fullname: Li, Hua email: huali19@illinois.edu organization: Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 4 givenname: Su surname: Ruan fullname: Ruan, Su email: su.ruan@univ-rouen.fr organization: LITIS - EA4108 - Quantif, University of Rouen, Rouen, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33065387$$D View this record in MEDLINE/PubMed https://hal.science/hal-03223080$$DView record in HAL |
BookMark | eNqVUstuFDEQtFAQecAvIEtc4DCLPZ6HhwNKWB6JtCgHAlfLa_dsvPHYiz2z0v49nkzYQCSkcGqpXV1drq5jdOC8A4QwJTNKaPV2PVO-2yyN70DPcpKP7YKw-gk6orxuMlKy4gAdEUJJVvC8PETHMa4JGUHkGTpkjFQl4_URWn8dbG-yXsYbrAE22IIMzrgVXsoIGs-vsOnkamxIJ-0umohbH_D88sfFx4w2eONg6Lwz8h2eWxmjaY2SvfEu4TWOsOrA9beN5-hpK22EF3f1BH3__Olqfp4tLr9czM8WmUqa-kzWqpSVZFouKS2UhlTbMucNB1qVTdMSDbTRkkjOq7bhuiYEmpwyVpOaLit2gt5PvJthmfxRaX-QVmxC-kjYCS-N-PvFmWux8ltRlwWrG5YI3kwE1w_Gzs8WYuwRlueMcLKlCfv6blnwPweIvehMVGCtdOCHKPKipLwoCz7qevUAuvZDSKbeooqCVow2CfXyT_X7_b9PlgB8AqjgYwzQ7iGUiDEdYi3u0yHGdIgpHffO7EeVmW6TfDD2MQQfJgJI99saCCIqA06BNgFUL7Q3_6FiT6KscSk19gZ2EPemUBFzQcS3McVjiPOUXVbx0fPTfxM8TsMvTSkGUQ |
CitedBy_id | crossref_primary_10_1038_s41598_024_70367_w crossref_primary_10_1007_s00500_024_10362_5 crossref_primary_10_3233_IDT_200178 crossref_primary_10_1016_j_knosys_2024_112835 crossref_primary_10_1038_s41598_022_24936_6 crossref_primary_10_1109_MSP_2021_3090674 crossref_primary_10_1002_ima_22772 crossref_primary_10_1007_s12530_023_09484_2 crossref_primary_10_32604_cmc_2021_016037 crossref_primary_10_1016_j_compbiomed_2021_104579 crossref_primary_10_3390_tomography10080091 crossref_primary_10_1007_s11042_023_14941_w crossref_primary_10_3348_jksr_2022_0155 crossref_primary_10_1109_ACCESS_2024_3396728 crossref_primary_10_3390_app12083895 crossref_primary_10_1016_j_neucom_2023_126244 crossref_primary_10_48175_IJARSCT_22321 crossref_primary_10_1016_j_compbiomed_2023_107167 crossref_primary_10_1038_s41598_023_32462_2 crossref_primary_10_1007_s44196_023_00236_3 crossref_primary_10_1016_j_bbe_2021_09_004 crossref_primary_10_29328_journal_jprr_1001044 crossref_primary_10_1080_21681163_2023_2287521 crossref_primary_10_1007_s00354_022_00195_x crossref_primary_10_1109_JBHI_2023_3291433 crossref_primary_10_1088_1361_6560_adb23d crossref_primary_10_1186_s12911_021_01521_x crossref_primary_10_1007_s11042_024_18735_6 crossref_primary_10_1007_s10489_022_03893_7 crossref_primary_10_32604_cmc_2021_017385 crossref_primary_10_1049_ipr2_12736 crossref_primary_10_1016_j_patcog_2021_108071 crossref_primary_10_1007_s10845_024_02388_1 crossref_primary_10_3389_fpubh_2022_886958 crossref_primary_10_1038_s41598_022_20804_5 crossref_primary_10_4015_S1016237222500028 crossref_primary_10_1016_j_bspc_2022_104297 crossref_primary_10_1016_j_neucom_2021_12_045 crossref_primary_10_1002_ima_22876 crossref_primary_10_1007_s11042_023_17884_4 crossref_primary_10_1109_TAI_2022_3187388 crossref_primary_10_3934_mbe_2022236 crossref_primary_10_1109_TMI_2022_3226575 crossref_primary_10_3233_XST_221360 crossref_primary_10_1016_j_medengphy_2022_103819 crossref_primary_10_1088_1361_6560_abc04e crossref_primary_10_1016_j_compbiomed_2022_106496 crossref_primary_10_1016_j_bspc_2023_105615 crossref_primary_10_1016_j_ijleo_2021_167780 crossref_primary_10_2139_ssrn_4789742 crossref_primary_10_3390_ai2020016 crossref_primary_10_3389_fmed_2023_1282200 crossref_primary_10_3389_fonc_2022_773840 crossref_primary_10_1016_j_asoc_2021_108347 crossref_primary_10_1007_s10462_024_10717_2 crossref_primary_10_3348_kjr_2023_0393 crossref_primary_10_1002_ima_22862 crossref_primary_10_1002_ima_22747 crossref_primary_10_3390_jimaging8100267 crossref_primary_10_1016_j_sbi_2024_102778 crossref_primary_10_1007_s10115_022_01672_x crossref_primary_10_1016_j_compmedimag_2024_102369 crossref_primary_10_1038_s41598_024_70661_7 crossref_primary_10_14326_abe_11_25 crossref_primary_10_1155_2023_4301745 crossref_primary_10_1007_s11517_022_02619_8 crossref_primary_10_1016_j_eswa_2023_120174 crossref_primary_10_1007_s00330_023_09833_4 crossref_primary_10_3390_electronics12020344 crossref_primary_10_1109_ACCESS_2023_3264582 crossref_primary_10_32604_cmc_2023_033413 crossref_primary_10_1016_j_chemolab_2021_104256 crossref_primary_10_1109_TEM_2021_3103334 crossref_primary_10_1007_s42979_022_01184_z crossref_primary_10_1002_ima_23028 crossref_primary_10_3390_diagnostics11030530 crossref_primary_10_1016_j_radonc_2024_110266 crossref_primary_10_1016_j_eswa_2023_120425 crossref_primary_10_1093_comjnl_bxaa191 crossref_primary_10_1007_s00371_022_02414_4 crossref_primary_10_1007_s10278_024_01062_5 crossref_primary_10_1007_s00521_024_10336_6 crossref_primary_10_1007_s11548_023_02976_1 crossref_primary_10_1016_j_clinsp_2023_100210 crossref_primary_10_1098_rsos_240113 crossref_primary_10_3390_app14219893 crossref_primary_10_3390_diagnostics14121313 crossref_primary_10_3390_info14060333 crossref_primary_10_1007_s12553_025_00952_0 crossref_primary_10_1016_j_ejmp_2024_104505 crossref_primary_10_1111_coin_70031 crossref_primary_10_1002_mp_16468 crossref_primary_10_1038_s41598_022_06931_z crossref_primary_10_1016_j_compbiomed_2022_106149 crossref_primary_10_1016_j_eswa_2022_116554 crossref_primary_10_1016_j_compbiomed_2022_105730 crossref_primary_10_1134_S0361768821030063 crossref_primary_10_32604_cmes_2021_016981 crossref_primary_10_1088_1361_6560_ac34b2 crossref_primary_10_1109_ACCESS_2021_3058537 crossref_primary_10_1016_j_metrad_2023_100018 crossref_primary_10_1016_j_bbe_2021_06_011 crossref_primary_10_1016_j_compbiomed_2021_104919 crossref_primary_10_1097_MD_0000000000031346 crossref_primary_10_1016_j_media_2022_102639 crossref_primary_10_1109_TGRS_2023_3324223 crossref_primary_10_1007_s00500_021_06142_0 crossref_primary_10_1007_s40846_023_00783_2 crossref_primary_10_1016_j_bspc_2023_105424 crossref_primary_10_1088_2057_1976_ad1e76 crossref_primary_10_3389_fmolb_2021_614277 crossref_primary_10_1186_s12880_020_00529_5 crossref_primary_10_1016_j_jocs_2024_102324 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_1007_s00354_023_00213_6 crossref_primary_10_1016_j_compbiomed_2023_106698 crossref_primary_10_1016_j_asoc_2021_108261 crossref_primary_10_1155_2021_2456429 crossref_primary_10_1007_s00521_021_06810_0 crossref_primary_10_1016_j_heliyon_2023_e14453 crossref_primary_10_1007_s13198_024_02463_z crossref_primary_10_1007_s11227_024_06163_0 crossref_primary_10_1016_j_compbiomed_2021_104927 crossref_primary_10_1016_j_cmpb_2021_105996 crossref_primary_10_1002_cpe_7314 crossref_primary_10_1080_24725579_2022_2142866 crossref_primary_10_1007_s10489_021_02359_6 crossref_primary_10_1016_j_jrras_2025_101374 crossref_primary_10_1109_ACCESS_2024_3360004 crossref_primary_10_1142_S0218001423570033 crossref_primary_10_1080_03091902_2022_2080883 crossref_primary_10_1016_j_sasc_2024_200077 crossref_primary_10_1109_JBHI_2022_3181791 crossref_primary_10_1007_s42979_022_01464_8 crossref_primary_10_1038_s41598_021_83237_6 crossref_primary_10_54392_irjmt24318 crossref_primary_10_1016_j_media_2024_103199 crossref_primary_10_1016_j_chaos_2021_111310 crossref_primary_10_3390_jpm12020310 crossref_primary_10_1016_j_geoderma_2022_116072 crossref_primary_10_1016_j_patcog_2023_109665 crossref_primary_10_1002_mp_15582 crossref_primary_10_1007_s11548_022_02625_z crossref_primary_10_2174_1573405619666221222161832 crossref_primary_10_3390_cancers15194897 crossref_primary_10_1016_j_cmpb_2022_106731 crossref_primary_10_3390_jimaging10090234 crossref_primary_10_1109_TMI_2022_3202183 crossref_primary_10_1016_j_patcog_2021_108452 crossref_primary_10_1111_exsy_12842 crossref_primary_10_3389_frai_2021_612914 crossref_primary_10_3390_s22249983 crossref_primary_10_1007_s00354_024_00255_4 crossref_primary_10_1109_TFUZZ_2021_3097806 crossref_primary_10_1080_0952813X_2023_2165724 crossref_primary_10_3390_e24040436 crossref_primary_10_1016_j_measen_2023_100876 crossref_primary_10_1038_s42256_021_00307_0 crossref_primary_10_1038_s41598_022_06854_9 crossref_primary_10_3389_frai_2022_912022 crossref_primary_10_1007_s11042_024_20287_8 crossref_primary_10_1007_s00034_022_02035_1 crossref_primary_10_3233_XST_211031 crossref_primary_10_1007_s13246_022_01110_w crossref_primary_10_1140_epjp_s13360_023_03896_4 crossref_primary_10_1097_JS9_0000000000000380 crossref_primary_10_1080_0952813X_2022_2093980 crossref_primary_10_33769_aupse_1227857 crossref_primary_10_5194_tc_17_4957_2023 crossref_primary_10_1016_j_compmedimag_2022_102068 crossref_primary_10_1155_2023_6070970 crossref_primary_10_1016_j_bspc_2024_106866 crossref_primary_10_1016_j_compeleceng_2023_108711 crossref_primary_10_3390_s22197303 crossref_primary_10_1007_s10489_022_03490_8 crossref_primary_10_1016_j_bspc_2024_106861 crossref_primary_10_1515_bmt_2022_0221 crossref_primary_10_1016_j_procs_2022_12_192 crossref_primary_10_1038_s41598_023_46625_8 crossref_primary_10_7717_peerj_cs_2517 crossref_primary_10_1016_j_compbiomed_2021_104742 crossref_primary_10_1016_j_bspc_2024_106857 crossref_primary_10_3389_fmed_2022_860574 crossref_primary_10_3390_diagnostics13101783 crossref_primary_10_1016_j_eswa_2023_120477 crossref_primary_10_1016_j_media_2022_102489 crossref_primary_10_1016_j_asoc_2022_109568 crossref_primary_10_1016_j_compbiomed_2023_107570 crossref_primary_10_4018_IJSKD_324164 crossref_primary_10_1109_TMI_2021_3079709 crossref_primary_10_3390_diagnostics14242791 crossref_primary_10_1109_JBHI_2022_3190293 crossref_primary_10_1587_transcom_2021EBP3102 crossref_primary_10_2174_1573405617666210713113439 crossref_primary_10_1007_s00521_024_10809_8 crossref_primary_10_1016_j_neucom_2025_129459 crossref_primary_10_1016_j_compbiomed_2021_105123 crossref_primary_10_1109_TNNLS_2022_3230821 crossref_primary_10_1007_s10489_022_04011_3 crossref_primary_10_3233_XST_211047 crossref_primary_10_1038_s41598_023_35922_x crossref_primary_10_3390_bioengineering10050529 crossref_primary_10_1109_TCYB_2022_3164412 crossref_primary_10_1111_exsy_12759 crossref_primary_10_1007_s00530_023_01096_9 crossref_primary_10_1109_ACCESS_2022_3225746 crossref_primary_10_1109_JBHI_2021_3106341 crossref_primary_10_1038_s41598_022_25539_x crossref_primary_10_3390_app12125768 crossref_primary_10_3390_healthcare11172388 crossref_primary_10_1016_j_compbiomed_2024_108610 crossref_primary_10_15302_J_QB_021_0274 crossref_primary_10_3390_healthcare10071251 crossref_primary_10_3390_app122010535 crossref_primary_10_1016_j_compbiomed_2021_104605 crossref_primary_10_1186_s12874_022_01768_6 crossref_primary_10_1016_j_bbe_2021_11_004 crossref_primary_10_1007_s00521_021_06636_w crossref_primary_10_1038_s41598_023_47183_9 crossref_primary_10_1371_journal_pone_0259179 crossref_primary_10_1016_j_measen_2024_101117 crossref_primary_10_1007_s10278_024_01011_2 crossref_primary_10_1155_2022_2564022 crossref_primary_10_1038_s41598_023_35938_3 crossref_primary_10_3389_fpubh_2022_855994 crossref_primary_10_1007_s10479_021_04154_5 crossref_primary_10_1016_j_bspc_2023_105285 crossref_primary_10_1016_j_patcog_2021_108499 crossref_primary_10_1109_JBHI_2022_3192010 crossref_primary_10_1016_j_ejrad_2021_109583 crossref_primary_10_1016_j_chemolab_2022_104539 crossref_primary_10_32604_cmc_2022_020698 crossref_primary_10_1007_s13755_021_00169_1 crossref_primary_10_1109_TMI_2021_3083586 crossref_primary_10_1016_j_asoc_2023_110511 crossref_primary_10_1016_j_compbiomed_2021_104895 crossref_primary_10_1016_j_compbiomed_2022_105464 crossref_primary_10_1007_s42979_022_01593_0 crossref_primary_10_1016_j_artmed_2025_103096 crossref_primary_10_3934_mbe_2024090 crossref_primary_10_1016_j_aej_2021_03_048 crossref_primary_10_1080_21681163_2022_2099299 crossref_primary_10_1016_j_media_2022_102447 crossref_primary_10_1016_j_neucom_2021_06_024 crossref_primary_10_1016_j_compbiomed_2021_104304 crossref_primary_10_2174_1573405617666210806123720 crossref_primary_10_1155_2022_5329014 crossref_primary_10_29109_gujsc_1210343 crossref_primary_10_1109_JSAC_2023_3310096 crossref_primary_10_3390_diagnostics12051283 crossref_primary_10_3390_s21165482 crossref_primary_10_1016_j_compbiomed_2023_106723 crossref_primary_10_1016_j_compbiomed_2021_104665 crossref_primary_10_1016_j_patcog_2025_111371 crossref_primary_10_1038_s41746_024_01410_3 crossref_primary_10_17482_uumfd_1179180 crossref_primary_10_32604_cmes_2021_017679 crossref_primary_10_3390_jimaging8100284 crossref_primary_10_1016_j_media_2022_102687 crossref_primary_10_3233_XST_211113 crossref_primary_10_1080_03772063_2022_2098194 crossref_primary_10_1007_s11548_021_02418_w crossref_primary_10_1038_s41598_023_36712_1 crossref_primary_10_1016_j_knosys_2022_108877 crossref_primary_10_1049_ipr2_13246 crossref_primary_10_1016_j_eswa_2022_119095 crossref_primary_10_1007_s13246_022_01102_w crossref_primary_10_1016_j_bspc_2023_104974 crossref_primary_10_1177_09720634241229252 crossref_primary_10_1016_j_aiopen_2025_01_003 crossref_primary_10_1155_2022_7377502 crossref_primary_10_1007_s00354_023_00232_3 crossref_primary_10_1007_s00530_023_01083_0 crossref_primary_10_1109_TII_2022_3142782 crossref_primary_10_1007_s43657_021_00011_4 crossref_primary_10_1080_15368378_2022_2065679 crossref_primary_10_1016_j_compbiomed_2024_109067 crossref_primary_10_1088_2057_1976_ad6f12 crossref_primary_10_1007_s11517_023_02803_4 crossref_primary_10_1007_s42979_021_00605_9 crossref_primary_10_1016_j_bbe_2021_10_004 crossref_primary_10_1038_s41598_023_49218_7 crossref_primary_10_1109_TPAMI_2021_3059968 crossref_primary_10_32604_csse_2022_019288 crossref_primary_10_1016_j_ipemt_2022_100008 crossref_primary_10_1109_ACCESS_2024_3359428 crossref_primary_10_3390_app14093946 crossref_primary_10_3390_cancers14051341 crossref_primary_10_1088_1742_6596_1916_1_012064 crossref_primary_10_1016_j_engappai_2024_108999 crossref_primary_10_1109_TCYB_2021_3123173 crossref_primary_10_1016_j_bspc_2023_104834 crossref_primary_10_20525_ijrbs_v13i2_2955 crossref_primary_10_3390_tomography10120139 crossref_primary_10_1007_s10916_021_01747_2 crossref_primary_10_1016_j_compmedimag_2022_102127 crossref_primary_10_1002_jmv_28293 crossref_primary_10_1007_s11277_021_09076_w crossref_primary_10_1080_21681163_2022_2061376 crossref_primary_10_1016_j_bea_2022_100041 crossref_primary_10_1016_j_sciaf_2023_e01681 crossref_primary_10_1177_09544119241293007 |
Cites_doi | 10.1049/trit.2019.0028 10.1109/TPAMI.2016.2644615 10.1016/j.patrec.2005.10.010 10.1002/jum.14731 10.1109/5.726791 10.1023/A:1007379606734 10.1016/j.compmedimag.2016.12.002 10.1049/trit.2018.1045 10.1109/TRPMS.2019.2896399 10.1016/j.compbiomed.2020.103792 10.1109/TMI.2016.2553401 10.3390/sym12040651 10.1109/TMI.2020.2996645 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. 2020. Elsevier Ltd Attribution - NonCommercial 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. – notice: 2020. Elsevier Ltd – notice: Attribution - NonCommercial – notice: 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM |
DOI | 10.1016/j.compbiomed.2020.104037 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 104037 |
ExternalDocumentID | PMC7543793 oai_HAL_hal_03223080v1 33065387 10_1016_j_compbiomed_2020_104037 S0010482520303681 1_s2_0_S0010482520303681 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR 77I AAYXX CITATION ~HD CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c653t-a7c5a6a3dab114cdeab1f52898e16599f0de19da0a886f98d700e921337071b63 |
IEDL.DBID | AIKHN |
ISSN | 0010-4825 1879-0534 |
IngestDate | Thu Aug 21 14:10:15 EDT 2025 Fri Sep 12 12:45:26 EDT 2025 Fri Sep 05 10:35:27 EDT 2025 Wed Aug 13 06:40:41 EDT 2025 Thu Apr 03 07:07:56 EDT 2025 Thu Sep 18 00:14:02 EDT 2025 Thu Apr 24 22:59:25 EDT 2025 Fri Feb 23 02:41:31 EST 2024 Tue Feb 25 20:12:00 EST 2025 Tue Aug 26 16:34:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Multitask learning Image segmentation Coronavirus (COVID-19) Computed tomography images Image classification |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c653t-a7c5a6a3dab114cdeab1f52898e16599f0de19da0a886f98d700e921337071b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC7543793 |
ORCID | 0000-0003-2172-3155 0000-0002-5629-2247 0000-0001-8785-6917 |
OpenAccessLink | https://hal.science/hal-03223080 |
PMID | 33065387 |
PQID | 2454416319 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7543793 hal_primary_oai_HAL_hal_03223080v1 proquest_miscellaneous_2451845486 proquest_journals_2454416319 pubmed_primary_33065387 crossref_primary_10_1016_j_compbiomed_2020_104037 crossref_citationtrail_10_1016_j_compbiomed_2020_104037 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_104037 elsevier_clinicalkeyesjournals_1_s2_0_S0010482520303681 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2020_104037 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited – name: Elsevier |
References | Kingma, Ba (bib20) 2014 Shi, Wang, Shi, Wu, Wang, Tang, He, Shi, Shen (bib34) 2020 Deng, Dong, Socher, Li, Li, Fei-Fei (bib11) 2009 Afshar, Heidarian, Naderkhani, Oikonomou, Plataniotis, Mohammadi (bib2) 2020 Fawcett (bib13) 2006; 27 Wu, Gao, Mei, Xu, Fan, Zhao, Cheng (bib41) 2020 Fan, Zhou, Ji, Zhou, Chen, Fu, Shen, Shao (bib12) 2020; 39 Song, Zheng, Li, Zhang, Zhang, Huang, Chen, Zhao, Jie, Wang (bib36) 2020 Wang, Wong (bib38) 2020 Zhang, Yang (bib44) 2017 Chen, Yao, Zhang (bib9) 2020 Amyar, Ruan, Gardin, Chatelain, Decazes, Modzelewski (bib3) 2019; 3 Jin, Wang, Xu, Luo, Wei, Zhao, Hou, Ma, Xu, Zheng (bib18) 2020 Ronneberger, Fischer, Brox (bib31) 2015 Wang, Kang, Ma, Zeng, Xiao, Guo, Cai, Yang, Li, Meng (bib39) 2020 Zheng, Deng, Fu, Zhou, Feng, Ma, Liu, Wang (bib46) 2020 Ciregan, Meier, Schmidhuber (bib10) 2012 Xu, Jiang, Ma, Du, Li, Lv, Yu, Chen, Su, Lang (bib42) 2020 Amyar, Ruan, Gardin, Herault, Clement, Decazes, Modzelewski (bib4) 2018; 59 Loey, Smarandache, M Khalifa (bib24) 2020; 12 LeCun, Bottou, Bengio, Haffner (bib22) 1998; 86 Yosinski, Clune, Bengio, Lipson (bib43) 2014 Paul, Su, Romain, Sébastien, Pierre, Isabelle (bib28) 2017; 60 Caruana (bib8) 1997; 28 Pathak, Shukla, Tiwari, Stalin, Singh, Shukla (bib27) 2020 Basavegowda, Dagnew (bib6) 2020; 5 Greenspan, Van Ginneken, Summers (bib14) 2016; 35 Hemdan, Shouman, Karar (bib15) 2020 Qi, Wang, Haner, Weng, Chen, Zhu (bib29) 2019; 4 Hinton, Sabour, Frosst (bib16) 2018 Zhou, Canu, Ruan (bib47) 2020 Butt, Gill, Chun, Babu (bib7) 2020; vol. 1 Narin, Kaya, Pamuk (bib25) 2020 Abbasian Ardakani, Bitarafan-Rajabi, Mohammadzadeh, Mohammadi, Riazi, Abolghasemi, Homayoun Jafari, Bagher Shiran (bib1) 2019; 38 Ozturk, Talo, Yildirim, Baloglu, Yildirim, Acharya (bib26) 2020; 121 Ruder (bib32) 2017 Singh, Kumar, Kaur (bib35) 2020 Zhao, Zhang, He, Xie (bib45) 2020 Huang, Liu, Van Der Maaten, Weinberger (bib17) 2017 Szegedy, Toshev, Erhan (bib37) 2013 Redmon, Divvala, Girshick, Farhadi (bib30) 2016 Wang, Peng, Lu, Lu, Bagheri, Summers (bib40) 2017 Badrinarayanan, Kendall, Cipolla (bib5) 2017; 39 Kayalibay, Jensen, van der Smagt (bib19) 2017 Krizhevsky, Sutskever, Hinton (bib21) 2012 Li, Zhu (bib23) 2020 Sethy, Behera (bib33) 2020 Wu (10.1016/j.compbiomed.2020.104037_bib41) 2020 LeCun (10.1016/j.compbiomed.2020.104037_bib22) 1998; 86 Redmon (10.1016/j.compbiomed.2020.104037_bib30) 2016 Butt (10.1016/j.compbiomed.2020.104037_bib7) 2020; vol. 1 Hemdan (10.1016/j.compbiomed.2020.104037_bib15) 2020 Li (10.1016/j.compbiomed.2020.104037_bib23) 2020 Narin (10.1016/j.compbiomed.2020.104037_bib25) 2020 Paul (10.1016/j.compbiomed.2020.104037_bib28) 2017; 60 Chen (10.1016/j.compbiomed.2020.104037_bib9) 2020 Ciregan (10.1016/j.compbiomed.2020.104037_bib10) 2012 Singh (10.1016/j.compbiomed.2020.104037_bib35) 2020 Kayalibay (10.1016/j.compbiomed.2020.104037_bib19) 2017 Krizhevsky (10.1016/j.compbiomed.2020.104037_bib21) 2012 Xu (10.1016/j.compbiomed.2020.104037_bib42) 2020 Abbasian Ardakani (10.1016/j.compbiomed.2020.104037_bib1) 2019; 38 Amyar (10.1016/j.compbiomed.2020.104037_bib4) 2018; 59 Wang (10.1016/j.compbiomed.2020.104037_bib38) 2020 Deng (10.1016/j.compbiomed.2020.104037_bib11) 2009 Fan (10.1016/j.compbiomed.2020.104037_bib12) 2020; 39 Badrinarayanan (10.1016/j.compbiomed.2020.104037_bib5) 2017; 39 Fawcett (10.1016/j.compbiomed.2020.104037_bib13) 2006; 27 Ozturk (10.1016/j.compbiomed.2020.104037_bib26) 2020; 121 Yosinski (10.1016/j.compbiomed.2020.104037_bib43) 2014 Hinton (10.1016/j.compbiomed.2020.104037_bib16) 2018 Greenspan (10.1016/j.compbiomed.2020.104037_bib14) 2016; 35 Wang (10.1016/j.compbiomed.2020.104037_bib40) 2017 Szegedy (10.1016/j.compbiomed.2020.104037_bib37) 2013 Caruana (10.1016/j.compbiomed.2020.104037_bib8) 1997; 28 Afshar (10.1016/j.compbiomed.2020.104037_bib2) 2020 Ronneberger (10.1016/j.compbiomed.2020.104037_bib31) 2015 Amyar (10.1016/j.compbiomed.2020.104037_bib3) 2019; 3 Ruder (10.1016/j.compbiomed.2020.104037_bib32) 2017 Loey (10.1016/j.compbiomed.2020.104037_bib24) 2020; 12 Song (10.1016/j.compbiomed.2020.104037_bib36) 2020 Sethy (10.1016/j.compbiomed.2020.104037_bib33) 2020 Shi (10.1016/j.compbiomed.2020.104037_bib34) 2020 Zhao (10.1016/j.compbiomed.2020.104037_bib45) 2020 Zhou (10.1016/j.compbiomed.2020.104037_bib47) 2020 Zheng (10.1016/j.compbiomed.2020.104037_bib46) 2020 Huang (10.1016/j.compbiomed.2020.104037_bib17) 2017 Zhang (10.1016/j.compbiomed.2020.104037_bib44) 2017 Jin (10.1016/j.compbiomed.2020.104037_bib18) 2020 Wang (10.1016/j.compbiomed.2020.104037_bib39) 2020 Basavegowda (10.1016/j.compbiomed.2020.104037_bib6) 2020; 5 Pathak (10.1016/j.compbiomed.2020.104037_bib27) 2020 Kingma (10.1016/j.compbiomed.2020.104037_bib20) 2014 Qi (10.1016/j.compbiomed.2020.104037_bib29) 2019; 4 |
References_xml | – year: 2020 ident: bib33 article-title: Detection of Coronavirus Disease (Covid-19) Based on Deep Features – volume: 39 year: 2020 ident: bib12 article-title: Inf-net: automatic covid-19 lung infection segmentation from ct images publication-title: IEEE Trans. Med. Imag. – year: 2020 ident: bib18 article-title: Ai-assisted Ct Imaging Analysis for Covid-19 Screening: Building and Deploying a Medical Ai System in Four Weeks – start-page: 3642 year: 2012 end-page: 3649 ident: bib10 article-title: Multi-column deep neural networks for image classification publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE – volume: 12 start-page: 651 year: 2020 ident: bib24 article-title: Within the lack of chest covid-19 x-ray dataset: a novel detection model based on gan and deep transfer learning publication-title: Symmetry – year: 2020 ident: bib2 article-title: Covid-caps: A Capsule Network-Based Framework for Identification of Covid-19 Cases from X-Ray Images – year: 2014 ident: bib20 article-title: Adam: A Method for Stochastic Optimization – year: 2020 ident: bib36 article-title: Deep Learning Enables Accurate Diagnosis of Novel Coronavirus (Covid-19) with Ct Images – year: 2020 ident: bib23 article-title: Covid-xpert: an Ai Powered Population Screening of Covid-19 Cases Using Chest Radiography Images – year: 2020 ident: bib41 article-title: Jcs: an Explainable Covid-19 Diagnosis System by Joint Classification and Segmentation – year: 2020 ident: bib39 article-title: A Deep Learning Algorithm Using Ct Images to Screen for Corona Virus Disease (Covid-19) – year: 2020 ident: bib45 article-title: Covid-ct-dataset: A Ct Scan Dataset about Covid-19 – start-page: 2097 year: 2017 end-page: 2106 ident: bib40 article-title: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: vol. 1 year: 2020 ident: bib7 publication-title: Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia – year: 2020 ident: bib47 article-title: An Automatic Covid-19 Ct Segmentation Based on U-Net with Attention Mechanism – year: 2020 ident: bib46 article-title: Deep Learning-Based Detection for Covid-19 from Chest Ct Using Weak Label – year: 2020 ident: bib27 article-title: Deep Transfer Learning Based Classification Model for Covid-19 Disease – year: 2018 ident: bib16 article-title: Matrix Capsules with Em Routing – volume: 121 year: 2020 ident: bib26 article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images publication-title: Comput. Biol. Med. – year: 2020 ident: bib25 article-title: Automatic Detection of Coronavirus Disease (Covid-19) Using X-Ray Images and Deep Convolutional Neural Networks – volume: 60 start-page: 42 year: 2017 end-page: 49 ident: bib28 article-title: Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier publication-title: Comput. Med. Imag. Graph. – volume: 4 start-page: 80 year: 2019 end-page: 91 ident: bib29 article-title: Convolutional neural network based detection and judgement of environmental obstacle in vehicle operation publication-title: CAAI Trans. Intell. Technol. – year: 2020 ident: bib34 article-title: Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation and Diagnosis for Covid-19 – start-page: 3320 year: 2014 end-page: 3328 ident: bib43 article-title: How transferable are features in deep neural networks? publication-title: Advances in Neural Information Processing Systems – start-page: 248 year: 2009 end-page: 255 ident: bib11 article-title: Imagenet: a large-scale hierarchical image database publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Ieee – start-page: 2553 year: 2013 end-page: 2561 ident: bib37 article-title: Deep neural networks for object detection publication-title: Advances in Neural Information Processing Systems – year: 2020 ident: bib42 article-title: Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia – start-page: 4700 year: 2017 end-page: 4708 ident: bib17 article-title: Densely connected convolutional networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 59 year: 2018 ident: bib4 article-title: Radiomics-net: convolutional neural networks on fdg pet images for predicting cancer treatment response publication-title: J. Nucl. Med. – start-page: 234 year: 2015 end-page: 241 ident: bib31 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2020 ident: bib38 article-title: Covid-net: A Tailored Deep Convolutional Neural Network Design for Detection of Covid-19 Cases from Chest Radiography Images – start-page: 1 year: 2020 end-page: 11 ident: bib35 article-title: Classification of covid-19 patients from chest ct images using multi-objective differential evolution–based convolutional neural networks publication-title: Eur. J. Clin. Microbiol. Infect. Dis. – year: 2017 ident: bib32 article-title: An Overview of Multi-Task Learning in Deep Neural Networks – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib22 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: bib5 article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2020 ident: bib9 article-title: Residual Attention U-Net for Automated Multi-Class Segmentation of Covid-19 Chest Ct Images – volume: 35 start-page: 1153 year: 2016 end-page: 1159 ident: bib14 article-title: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique publication-title: IEEE Trans. Med. Imag. – year: 2017 ident: bib19 article-title: Cnn-based Segmentation of Medical Imaging Data – volume: 28 start-page: 41 year: 1997 end-page: 75 ident: bib8 article-title: Multitask learning publication-title: Mach. Learn. – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: bib13 article-title: An introduction to roc analysis publication-title: Pattern Recogn. Lett. – start-page: 779 year: 2016 end-page: 788 ident: bib30 article-title: You only look once: unified, real-time object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: bib15 article-title: Covidx-net: A Framework of Deep Learning Classifiers to Diagnose Covid-19 in X-Ray Images – year: 2017 ident: bib44 article-title: A Survey on Multi-Task Learning – volume: 5 start-page: 22 year: 2020 end-page: 33 ident: bib6 article-title: Deep learning approach for microarray cancer data classification publication-title: CAAI Trans. Intell. Technol. – volume: 38 start-page: 629 year: 2019 end-page: 640 ident: bib1 article-title: A hybrid multilayer filtering approach for thyroid nodule segmentation on ultrasound images publication-title: J. Ultrasound Med. – volume: 3 start-page: 225 year: 2019 end-page: 231 ident: bib3 article-title: 3-d rpet-net: development of a 3-d pet imaging convolutional neural network for radiomics analysis and outcome prediction publication-title: IEEE Transactions on Radiation and Plasma Medical Sciences – start-page: 1097 year: 2012 end-page: 1105 ident: bib21 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 5 start-page: 22 year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib6 article-title: Deep learning approach for microarray cancer data classification publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2019.0028 – volume: 39 start-page: 2481 year: 2017 ident: 10.1016/j.compbiomed.2020.104037_bib5 article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib41 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib45 – volume: vol. 1 year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib7 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib34 – volume: 27 start-page: 861 year: 2006 ident: 10.1016/j.compbiomed.2020.104037_bib13 article-title: An introduction to roc analysis publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.10.010 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib23 – start-page: 2097 year: 2017 ident: 10.1016/j.compbiomed.2020.104037_bib40 article-title: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases – volume: 38 start-page: 629 year: 2019 ident: 10.1016/j.compbiomed.2020.104037_bib1 article-title: A hybrid multilayer filtering approach for thyroid nodule segmentation on ultrasound images publication-title: J. Ultrasound Med. doi: 10.1002/jum.14731 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib47 – volume: 59 year: 2018 ident: 10.1016/j.compbiomed.2020.104037_bib4 article-title: Radiomics-net: convolutional neural networks on fdg pet images for predicting cancer treatment response publication-title: J. Nucl. Med. – volume: 86 start-page: 2278 year: 1998 ident: 10.1016/j.compbiomed.2020.104037_bib22 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – year: 2017 ident: 10.1016/j.compbiomed.2020.104037_bib32 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib38 – volume: 28 start-page: 41 year: 1997 ident: 10.1016/j.compbiomed.2020.104037_bib8 article-title: Multitask learning publication-title: Mach. Learn. doi: 10.1023/A:1007379606734 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib46 – start-page: 248 year: 2009 ident: 10.1016/j.compbiomed.2020.104037_bib11 article-title: Imagenet: a large-scale hierarchical image database – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib2 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib33 – start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib35 article-title: Classification of covid-19 patients from chest ct images using multi-objective differential evolution–based convolutional neural networks publication-title: Eur. J. Clin. Microbiol. Infect. Dis. – year: 2017 ident: 10.1016/j.compbiomed.2020.104037_bib44 – start-page: 2553 year: 2013 ident: 10.1016/j.compbiomed.2020.104037_bib37 article-title: Deep neural networks for object detection – start-page: 234 year: 2015 ident: 10.1016/j.compbiomed.2020.104037_bib31 article-title: U-net: convolutional networks for biomedical image segmentation – year: 2014 ident: 10.1016/j.compbiomed.2020.104037_bib20 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib25 – start-page: 4700 year: 2017 ident: 10.1016/j.compbiomed.2020.104037_bib17 article-title: Densely connected convolutional networks – volume: 60 start-page: 42 year: 2017 ident: 10.1016/j.compbiomed.2020.104037_bib28 article-title: Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier publication-title: Comput. Med. Imag. Graph. doi: 10.1016/j.compmedimag.2016.12.002 – volume: 4 start-page: 80 year: 2019 ident: 10.1016/j.compbiomed.2020.104037_bib29 article-title: Convolutional neural network based detection and judgement of environmental obstacle in vehicle operation publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2018.1045 – volume: 3 start-page: 225 year: 2019 ident: 10.1016/j.compbiomed.2020.104037_bib3 article-title: 3-d rpet-net: development of a 3-d pet imaging convolutional neural network for radiomics analysis and outcome prediction publication-title: IEEE Transactions on Radiation and Plasma Medical Sciences doi: 10.1109/TRPMS.2019.2896399 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib42 – year: 2018 ident: 10.1016/j.compbiomed.2020.104037_bib16 – year: 2017 ident: 10.1016/j.compbiomed.2020.104037_bib19 – volume: 121 year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib26 article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103792 – start-page: 3320 year: 2014 ident: 10.1016/j.compbiomed.2020.104037_bib43 article-title: How transferable are features in deep neural networks? – volume: 35 start-page: 1153 year: 2016 ident: 10.1016/j.compbiomed.2020.104037_bib14 article-title: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2016.2553401 – volume: 12 start-page: 651 year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib24 article-title: Within the lack of chest covid-19 x-ray dataset: a novel detection model based on gan and deep transfer learning publication-title: Symmetry doi: 10.3390/sym12040651 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib15 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib18 – volume: 39 issue: 8 year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib12 article-title: Inf-net: automatic covid-19 lung infection segmentation from ct images publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2020.2996645 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib27 – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib36 – start-page: 3642 year: 2012 ident: 10.1016/j.compbiomed.2020.104037_bib10 article-title: Multi-column deep neural networks for image classification – start-page: 1097 year: 2012 ident: 10.1016/j.compbiomed.2020.104037_bib21 article-title: Imagenet classification with deep convolutional neural networks – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib9 – start-page: 779 year: 2016 ident: 10.1016/j.compbiomed.2020.104037_bib30 article-title: You only look once: unified, real-time object detection – year: 2020 ident: 10.1016/j.compbiomed.2020.104037_bib39 |
SSID | ssj0004030 |
Score | 2.682643 |
Snippet | This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can... AbstractThis paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented... |
SourceID | pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104037 |
SubjectTerms | Accuracy Artificial intelligence Betacoronavirus Chest Classification Coders Cognitive tasks Computed tomography Computed tomography images Coronavirus (COVID-19) Coronavirus Infections Coronavirus Infections - diagnostic imaging Coronaviruses COVID-19 Datasets Decoders Deep Learning Female Humans Image classification Image processing Image reconstruction Image segmentation Infections Internal Medicine Life Sciences Lung Lung - diagnostic imaging Lung cancer Machine learning Male Medical imaging Motivation Multilayers Multitask learning Neural networks Other Pandemics Pneumonia Pneumonia, Viral Pneumonia, Viral - diagnostic imaging SARS-CoV-2 Tomography, X-Ray Computed Viral infections |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYkBAvaPxc2EAG8RrhxImdjAc0FaaCGDywob5ZTmxvHSztlnZ_P3eOk1KYUJ8qJXFt587n7-K7-wh5g4muTjIXu0LUcSZFGRfGgauSZKmtZVUJX4np-KsYn2afJ_kkfHBrQ1hlbxO9oTazGr-Rv00zZMsSoDHv51cxskbh6Wqg0NgidxNAIkjdICdylRfJeJeCArYmA1coRPJ08V0Yst2luIOXmPrDToZs6LdvT1vnGCf5Lwj9O5byj83paIc8CKiSHnZq8JDcsc0jcu84nJs_Jhc-zzZe6PYnNdbOaSCLOKO4ixk6OqHTS89XRHWoUkIBzdLRtx-fPsRJSeeNXcIbmOoD6mk0McDIyxSeN7S1Z5chh6l5Qk6PPp6MxnFgWYhrkfNFrGWda6G50RUIrjYWfl0OflhhE5GXpWPGJqXRTBeFcGVhJGO2TMG3lQBPKsGfku1m1thdQpllRQWLWvJcZPAf2oGGMGfAScqE4Twisn-5qg4lyJEJ45fqY80u1EosCsWiOrFEJBlazrsyHBu0KXv5qT7NFAyjgr1ig7bytra2DSu8VYlqU8XUd1_gCHQrZQgGiiQi74aWAcR04GTDfl-Dog1TxNrf48MvCq8xML0c8P0NdLHf66EaxrNaHxF5NdwGW4EHQLqxs6V_Bhx68FFFRJ51ajt0xTlWKS5w5msKvTaW9TvN9NzXI5c5FrXkz_8_rD1yHyfa5XHuk-3F9dK-AEC3qF76VfsbHTJJBQ priority: 102 providerName: ProQuest |
Title | Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482520303681 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482520303681 https://dx.doi.org/10.1016/j.compbiomed.2020.104037 https://www.ncbi.nlm.nih.gov/pubmed/33065387 https://www.proquest.com/docview/2454416319 https://www.proquest.com/docview/2451845486 https://hal.science/hal-03223080 https://pubmed.ncbi.nlm.nih.gov/PMC7543793 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe2TkK8IL6XMSaDeA1z4sRO4KmUlQ5YQWhDfbOc2NkytqwiLY_87dwlTkbZHirxkigfF9u58_lOvt8dIa8Q6FpIVvhFInI_kiL1E1OAqxJEoc1llokmE9PRVExOoo-zeLZBRh0WBsMqne5vdXqjrd2dffc39-dliRhfcCXAwQkZqmGEX2-FsNonA7I1PPw0mV7DIxlvkSigcpDABfS0YV4Yud0i3cFZDJs9T4ZF0W9fpTbPMFzypi36b0jlX2vU-D6554xLOmz7_4Bs2OohuXPkts8fkfMGbusvdP2DGmvn1NWMOKW4mBk6OqblZVO2iGqXrISCUUtHX74fvveDlM4ruwS5LfUb2lTTxDijhrXwvqG1Pb10UKbqMTkZHxyPJr4rtuDnIuYLX8s81kJzozPgX24snIsY3LHEBiJO04IZG6RGM50kokgTIxmzaQgurgQrJRP8CRlUV5XdJpRZlmQwtyWPRQTf0AUICisM-EqRMJx7RHY_V-UuEzkWxLhQXcjZubpmi0K2qJYtHgl6ynmbjWMNmrTjn-rQpqAfFSwZa9DK22ht7SZ6rQJVh4qpG8Lokbc95Yo8r9nuSxC0foiYAnwy_KzwHgMNzMHM_wVN7HZyqPr-hBEWlROgWD3yon8MKgP3gXRlr5bNO-DXg6sqPPK0Fdu-Kc4xWXGCI18R6JW-rD6pyrMmLbmMMbcl3_mvkT8jd_GqRXvuksHi59I-B7Nvke2Rzde_AzjKmYRjMv6w5yY6nN8dTL9--wNWv1nk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2ToK9IL4pDDAIHiOcOHEc0IRGt6llbUHQob0ZJ3a2biwtpAXxz_G3cXaclMKE-rKnSIkvdnKX-4jv7ofQM1Pomsck93LOMi-MWeJxlUOo4oeBzuI0ZbYT02DIuofh26PoaA39qmthTFplrROtolaTzPwjfxGEBi2LgcS8nn71DGqU2V2tITSkg1ZQ27bFmCvsONA_f0AIV273doHfz4Ngf2_U6XoOZcDLWERnnoyzSDJJlUxh4ZnScMwjiEO49lmUJDlR2k-UJJJzlidcxYToJIDYLgbznDIK911HG6H5gdJCG2_2hu8_LCozCa2KYEDbhRCMuVyiKsPMJI1XRfYQpwZ2u5UYPPaLDeT6icnU_NcN_jub8w_zuH8dXXN-Ld6pBPEGWtPFTXRl4Hbub6FTW-nrzWR5hpXWU-zgKo6xsaMKd0Z4fG4Rk7B0fVIw-NO48-5Tb9fzEzwt9Bx4MJYvsQXyNClOVqpgvMKlPj53VVTFbXR4KRy4g1rFpND3ECaa8BTUSkwjFsI9ZA4ySnIFYVrIFKVtFNcvV2SuCbrB4vgi6my3U7FgizBsERVb2shvKKdVI5AVaJKaf6IudAXVLMBarUAbX0SrS6djSuGLMhBEfLQtlkC2AmLcEe630auG0rlRlXu04rxPQdCaRzTdx7s7fWHOEVD-FCKM7zDFVi2HolnP4gttoyfNZdBWZgtKFnoyt2N8DuM4a6O7ldg2U1Fq-iRz8-RLAr20luUrxfjEdkSPI9NWk97__7Ieo6vd0aAv-r3hwQO0Ca4vM0l_Ad9Crdm3uX4I7uUsfeS-YYw-X7ba-A1Vloxf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELf2IU28IL4JDDAIHqM5cWI7oAmNdlXLtjLBhvZmnNjZOlhaSAviX-Sv4pw4KYUJ9WVPkRJfbPcu91Hf3Q-h57bQNeck93PBMj_iLPGFziFUCaLQZDxNWdWJ6WDI-sfR25P4ZAX9amphbFploxMrRa3Hmf2PfCuMLFoWA4nZyl1axGG393ry1bcIUvaktYHTUA5mQW9X7cZckcee-fkDwrlye9AF3r8Iw97uUafvO8QBP2MxnfqKZ7FiimqVwiYybeCaxxCTCBOwOElyok2QaEWUECxPhOaEmCSEOI-DqU4ZhfeuonUOVh8CwfU3u8PD9_MqTULrghjQfBEEZi6vqM42swnkdcE9xKxhdfRKLDb75cZy9cxmbf7rEv-d2fmHqezdQNedj4t3aqG8iVZMcQttHLhT_NvovKr69aeq_Iy1MRPsoCtOsbWpGneO8OiiQk_CyvVMweBb4867j4OuHyR4UpgZ8GCkXuIK1NOmO1USBuM1Ls3phauoKu6g4yvhwF20VowLcx9hYohIQcVwGrMI3qFykFeSawjZIqYp9RBvflyZuYboFpfji2wy387lnC3SskXWbPFQ0FJO6qYgS9AkDf9kU_QKalqC5VqCll9Ga0qnb0oZyDKURH6o2i2BbIXEuiYi8NCrltK5VLWrtOS8z0DQ2i3aTuT9nX1p7xEwBBSije8wxWYjh7Jdz_xr9dDT9jFoLnscpQoznlVjAgHjBPPQvVps26kotT2Thd35gkAvrGXxSTE6q7qj89i22KQP_r-sJ2gD1IfcHwz3HqJrds91gekmWpt-m5lH4GlO08fuE8bo01Vrjd8zsJCR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-task+deep+learning+based+CT+imaging+analysis+for+COVID-19+pneumonia%3A+Classification+and+segmentation&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Amyar%2C+Amine&rft.au=Modzelewski%2C+Romain&rft.au=Li%2C+Hua&rft.au=Ruan%2C+Su&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=126&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.104037&rft.externalDocID=S0010482520303681 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif |