The temporal relationship of thresholds between muscle activity and ventilation during bicycle ramp exercise in community dwelling elderly males

[Purpose] To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus lateralis, rectus femoris, biceps femoris long head and gastrocnemius lateral head muscles during ramp cycling exercise in elderly males. [Subjects and Method...

Full description

Saved in:
Bibliographic Details
Published inJournal of Physical Therapy Science Vol. 28; no. 11; pp. 3213 - 3219
Main Authors Higuchi, Hiroyuki, Sasaki, Kentaro, Kimura, Tsuyoshi, Kojima, Satoshi
Format Journal Article
LanguageEnglish
Published Japan The Society of Physical Therapy Science 2016
Subjects
Online AccessGet full text
ISSN0915-5287
2187-5626
2187-5626
DOI10.1589/jpts.28.3213

Cover

Abstract [Purpose] To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus lateralis, rectus femoris, biceps femoris long head and gastrocnemius lateral head muscles during ramp cycling exercise in elderly males. [Subjects and Methods] Eleven community dwelling elderly males participated in this study. Subjects performed exercise testing with an expiratory gas analyzer and surface electromyography to evaluate the tested muscle activities during ramp exercise. [Results] The electromyographic threshold for rectus femoris was not valid because the slope after electromyographic threshold was not significant as compared to that before electromyographic threshold. The slope of the regression line for vastus lateralis was significantly decreased after electromyographic threshold while biceps femoris and gastrocnemius were increased. The electromyographic threshold appearance times for vastus lateralis and gastrocnemius were significantly earlier than ventilatory threshold point. There were no difference in electromyographic threshold appearance times among three muscles. [Conclusion] These results suggest that the increase in the slope of the regression line after electromyographic threshold for vastus lateralis was decreased, possibly indicating to postpone muscular fatigue resulting from the activation of biceps femoris and gastrocnemius as biarticular antagonists. This recruitment pattern might be an elderly-specific strategy.
AbstractList [Purpose] To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus lateralis, rectus femoris, biceps femoris long head and gastrocnemius lateral head muscles during ramp cycling exercise in elderly males. [Subjects and Methods] Eleven community dwelling elderly males participated in this study. Subjects performed exercise testing with an expiratory gas analyzer and surface electromyography to evaluate the tested muscle activities during ramp exercise. [Results] The electromyographic threshold for rectus femoris was not valid because the slope after electromyographic threshold was not significant as compared to that before electromyographic threshold. The slope of the regression line for vastus lateralis was significantly decreased after electromyographic threshold while biceps femoris and gastrocnemius were increased. The electromyographic threshold appearance times for vastus lateralis and gastrocnemius were significantly earlier than ventilatory threshold point. There were no difference in electromyographic threshold appearance times among three muscles. [Conclusion] These results suggest that the increase in the slope of the regression line after electromyographic threshold for vastus lateralis was decreased, possibly indicating to postpone muscular fatigue resulting from the activation of biceps femoris and gastrocnemius as biarticular antagonists. This recruitment pattern might be an elderly-specific strategy.
[Abstract.] [Purpose] To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus lateralis, rectus femoris, biceps femoris long head and gastrocnemius lateral head muscles during ramp cycling exercise in elderly males. [Subjects and Methods] Eleven community dwelling elderly males participated in this study. Subjects performed exercise testing with an expiratory gas analyzer and surface electromyography to evaluate the tested muscle activities during ramp exercise. [Results] The electromyographic threshold for rectus femoris was not valid because the slope after electromyographic threshold was not significant as compared to that before electromyographic threshold. The slope of the regression line for vastus lateralis was significantly decreased after electromyographic threshold while biceps femoris and gastrocnemius were increased. The electromyographic threshold appearance times for vastus lateralis and gastrocnemius were significantly earlier than ventilatory threshold point. There were no difference in electromyographic threshold appearance times among three muscles. [Conclusion] These results suggest that the increase in the slope of the regression line after electromyographic threshold for vastus lateralis was decreased, possibly indicating to postpone muscular fatigue resulting from the activation of biceps femoris and gastrocnemius as biarticular antagonists. This recruitment pattern might be an elderly-specific strategy.
Purpose: To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus lateralis, rectus femoris, biceps femoris long head and gastrocnemius lateral head muscles during ramp cycling exercise in elderly males. Subjects and Methods: Eleven community dwelling elderly males participated in this study. Subjects performed exercise testing with an expiratory gas analyzer and surface electromyography to evaluate the tested muscle activities during ramp exercise. Results: The electromyographic threshold for rectus femoris was not valid because the slope after electromyographic threshold was not significant as compared to that before electromyographic threshold. The slope of the regression line for vastus lateralis was significantly decreased after electromyographic threshold while biceps femoris and gastrocnemius were increased. The electromyographic threshold appearance times for vastus lateralis and gastrocnemius were significantly earlier than ventilatory threshold point. There were no difference in electromyographic threshold appearance times among three muscles. Conclusion: These results suggest that the increase in the slope of the regression line after electromyographic threshold for vastus lateralis was decreased, possibly indicating to postpone muscular fatigue resulting from the activation of biceps femoris and gastrocnemius as biarticular antagonists. This recruitment pattern might be an elderly-specific strategy.
[Purpose] To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus lateralis, rectus femoris, biceps femoris long head and gastrocnemius lateral head muscles during ramp cycling exercise in elderly males. [Subjects and Methods] Eleven community dwelling elderly males participated in this study. Subjects performed exercise testing with an expiratory gas analyzer and surface electromyography to evaluate the tested muscle activities during ramp exercise. [Results] The electromyographic threshold for rectus femoris was not valid because the slope after electromyographic threshold was not significant as compared to that before electromyographic threshold. The slope of the regression line for vastus lateralis was significantly decreased after electromyographic threshold while biceps femoris and gastrocnemius were increased. The electromyographic threshold appearance times for vastus lateralis and gastrocnemius were significantly earlier than ventilatory threshold point. There were no difference in electromyographic threshold appearance times among three muscles. [Conclusion] These results suggest that the increase in the slope of the regression line after electromyographic threshold for vastus lateralis was decreased, possibly indicating to postpone muscular fatigue resulting from the activation of biceps femoris and gastrocnemius as biarticular antagonists. This recruitment pattern might be an elderly-specific strategy.
Author Higuchi, Hiroyuki
Sasaki, Kentaro
Kimura, Tsuyoshi
Kojima, Satoshi
Author_xml – sequence: 1
  fullname: Higuchi, Hiroyuki
  organization: Graduate School of Health Sciences (Division of Distance Education), Kyushu University of Health and Welfare, Japan
– sequence: 1
  fullname: Sasaki, Kentaro
  organization: Graduate School of Health Sciences (Division of Distance Education), Kyushu University of Health and Welfare, Japan
– sequence: 1
  fullname: Kimura, Tsuyoshi
  organization: Department of Social Welfare, Faculty of Social Welfare, Kinjo University, Japan
– sequence: 1
  fullname: Kojima, Satoshi
  organization: Department of Physical Therapy, Kinjo University: 1200 Kasama-machi, Hakusan-city, Ishikawa 924-8511, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27942152$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxSNURLeFG2fkIwey2E6cOBckVEGpVIlLOVuOM9n1yrGD7ex2vwUfGacpyx8JwcU--PeeZ97MRXZmnYUse0nwmjDevN2NMawpXxeUFE-yFSW8zllFq7NshRvCckZ5fZ5dhLDDmNa45M-yc1o3JSWMrrJvd1tAEYbReWmQByOjdjZs9Yhcj-LWQ9g60wXUQjwAWDRMQRlAUkW91_GIpO3QHmzUixJ1k9d2g1qtjjPn5TAiuAevdACkLVJuGCY7K7sDGDOzYDrw5ogGaSA8z5720gR48XhfZl8-fri7-pTffr6-uXp_m6uKFUXO2pZx2hOcesQlppyXJelA9RIwVi3ualVI6HEvecE5bhhULZO8Jz1IKnFbXGb54jvZUR4P0hgxej1IfxQEizlZMScrKBdzsol_t_Dj1A7QqdRySuykcVKL31-s3oqN2wtGSswLmgxePxp493WCEMWgg0oRSAtuCoJw1pS8KkryPyitEtnMrq9-LetUz48JJ-DNAijvQvDQ_6tN-geudHyYbGpKm7-JrhdRqkAraZxNcwWxc5O3aYZCSb5bBJhUIq0hJ0TgsnpQz0dD66qo2ex0szjtQpQbONUqfdRpnU7fJn06f3pWrDwxaiu9AFt8BzFz_zc
CitedBy_id crossref_primary_10_1016_j_ancard_2017_09_006
crossref_primary_10_1109_THMS_2023_3347404
crossref_primary_10_3389_fphys_2022_821584
Cites_doi 10.1152/japplphysiol.00606.2004
10.1177/2047487312460484
10.1249/MSS.0b013e3182100261
10.1136/bjsm.33.3.178
10.1113/expphysiol.2012.067314
10.3389/fphys.2014.00142
10.1152/ajpheart.00790.2002
10.1016/0306-4522(92)90019-X
10.2466/06.10.15.PMS.112.1.310-318
10.2170/jjphysiol.31.585
10.1249/00005768-199208000-00013
10.1016/0002-9149(64)90012-8
10.2165/00007256-198805050-00002
10.1152/japplphysiol.01216.2010
10.1001/jama.298.21.2507
10.1007/s00421-003-0949-5
10.1111/j.1469-7793.2000.00211.x
10.1111/j.1748-1716.1985.tb07663.x
10.1139/Y08-020
10.1016/j.jelekin.2007.10.010
10.1253/circj.CJ-13-0847
10.7600/jspfsm1949.49.183
10.1016/j.jjcc.2012.09.010
10.1007/s00421-007-0568-7
10.1016/j.jelekin.2010.02.004
10.1093/ajcn/81.5.953
10.1007/s00421-007-0509-5
10.1007/s11357-012-9442-6
ContentType Journal Article
Copyright 2016 by the Society of Physical Therapy Science. Published by IPEC Inc.
2016©by the Society of Physical Therapy Science. Published by IPEC Inc. 2016
Copyright_xml – notice: 2016 by the Society of Physical Therapy Science. Published by IPEC Inc.
– notice: 2016©by the Society of Physical Therapy Science. Published by IPEC Inc. 2016
CorporateAuthor Faculty of Social Welfare
Department of Social Welfare
Graduate School of Health Sciences (Division of Distance Education
Kinjo University
Department of Physical Therapy
Kyushu University of Health and Welfare
CorporateAuthor_xml – name: Faculty of Social Welfare
– name: Graduate School of Health Sciences (Division of Distance Education
– name: Department of Physical Therapy
– name: Kinjo University
– name: Kyushu University of Health and Welfare
– name: Department of Social Welfare
DBID AAYXX
CITATION
NPM
7X8
7TS
5PM
ADTOC
UNPAY
DOI 10.1589/jpts.28.3213
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Physical Education Index
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Physical Education Index
DatabaseTitleList MEDLINE - Academic

PubMed
Physical Education Index


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physical Therapy
EISSN 2187-5626
EndPage 3219
ExternalDocumentID 10.1589/jpts.28.3213
PMC5140832
27942152
10_1589_jpts_28_3213
ca8jjpts_2016_002811_046_3213_32192763753
article_jpts_28_11_28_jpts_2016_654_article_char_en
Genre Journal Article
GroupedDBID .55
07C
29L
2WC
53G
5GY
AAEJM
AAWTL
ACGFO
ADBBV
ADRAZ
AENEX
AIAGR
AJJEV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BMSDO
CS3
DIK
DU5
E3Z
EBS
EJD
FRP
GX1
HYE
JMI
JSF
JSH
KQ8
M48
MOJWN
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
W2D
X7M
XSB
AAYXX
CITATION
ACRZS
NPM
7X8
7TS
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c6533-5bb582f10091040288441decfae00cb0d7c3aef0fa8388095e6b5a8f1fea2a0b3
IEDL.DBID M48
ISSN 0915-5287
2187-5626
IngestDate Wed Oct 29 12:20:42 EDT 2025
Thu Aug 21 18:24:54 EDT 2025
Fri Jul 11 08:25:58 EDT 2025
Thu Jul 10 18:27:59 EDT 2025
Sat Sep 28 07:58:30 EDT 2024
Tue Jul 01 04:12:10 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Thu Jul 10 16:12:56 EDT 2025
Wed Sep 03 06:30:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords Electromyographic threshold
Community dwelling elderly males
Ventilatory threshold
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6533-5bb582f10091040288441decfae00cb0d7c3aef0fa8388095e6b5a8f1fea2a0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1589/jpts.28.3213
PMID 27942152
PQID 1852663492
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1589_jpts_28_3213
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5140832
proquest_miscellaneous_1859486341
proquest_miscellaneous_1852663492
pubmed_primary_27942152
crossref_primary_10_1589_jpts_28_3213
crossref_citationtrail_10_1589_jpts_28_3213
medicalonline_journals_ca8jjpts_2016_002811_046_3213_32192763753
jstage_primary_article_jpts_28_11_28_jpts_2016_654_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160000
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 20160000
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Physical Therapy Science
PublicationTitleAlternate Journal of Physical Therapy Science
PublicationYear 2016
Publisher The Society of Physical Therapy Science
Publisher_xml – name: The Society of Physical Therapy Science
References 19) Candotti CT, Loss JF, Melo MO, et al.: Comparing the lactate and EMG thresholds of recreational cyclists during incremental pedaling exercise. Can J Physiol Pharmacol, 2008, 86: 272–278.
9) Nagata A, Muro M, Moritani T, et al.: Anaerobic threshold determination by blood lactate and myoelectric signals. Jpn J Physiol, 1981, 31: 585–597.
30) Farina D, Macaluso A, Ferguson RA, et al.: Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling. J Appl Physiol 1985, 2004, 97: 2035–2041.
15) Lucía A, Sánchez O, Carvajal A, et al.: Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. Br J Sports Med, 1999, 33: 178–185.
20) Osawa T, Kime R, Hamaoka T, et al.: Attenuation of muscle deoxygenation precedes EMG threshold in normoxia and hypoxia. Med Sci Sports Exerc, 2011, 43: 1406–1413.
31) Nair KS: Aging muscle. Am J Clin Nutr, 2005, 81: 953–963.
10) Moritani T, deVries HA: Reexamination of the relationship between the surface integrated electromyogram (IEMG) and force of isometric contraction. Am J Phys Med, 1978, 57: 263–277.
28) Ericson M: On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer. Scand J Rehabil Med Suppl, 1986, 16: 1–43.
33) Layec G, Haseler LJ, Richardson RS: Reduced muscle oxidative capacity is independent of O2 availability in elderly people. Age (Dordr), 2013, 35: 1183–1192.
25) Hug F, Dorel S: Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol, 2009, 19: 182–198.
34) Poole JG, Lawrenson L, Kim J, et al.: Vascular and metabolic response to cycle exercise in sedentary humans: effect of age. Am J Physiol Heart Circ Physiol, 2003, 284: H1251–H1259.
17) Jürimäe J, von Duvillard SP, Mäestu J, et al.: Aerobic-anaerobic transition intensity measured via EMG signals in athletes with different physical activity patterns. Eur J Appl Physiol, 2007, 101: 341–346.
27) Chin LM, Kowalchuk JM, Barstow TJ, et al.: The relationship between muscle deoxygenation and activation in different muscles of the quadriceps during cycle ramp exercise. J Appl Physiol 1985, 2011, 111: 1259–1265.
7) Miura K, Nagai M, Ohkubo T: Epidemiology of hypertension in Japan: where are we now? Circ J, 2013, 77: 2226–2231.
16) Hug F, Laplaud D, Savin B, et al.: Occurrence of electromyographic and ventilatory thresholds in professional road cyclists. Eur J Appl Physiol, 2003, 90: 643–646.
29) Lenti M, De Vito G, Sbriccoli P, et al.: Muscle fibre conduction velocity and cardiorespiratory response during incremental cycling exercise in young and older individuals with different training status. J Electromyogr Kinesiol, 2010, 20: 566–571.
32) Conley KE, Jubrias SA, Cress ME, et al.: Exercise efficiency is reduced by mitochondrial uncoupling in the elderly. Exp Physiol, 2013, 98: 768–777.
6) Goss FL, Robertson RJ, Haile L, et al.: Use of ratings of perceived exertion to anticipate treadmill test termination in patients taking beta-blockers. Percept Mot Skills, 2011, 112: 310–318.
14) Glass SC, Knowlton RG, Sanjabi PB, et al.: Identifying the integrated electromyographic threshold using different muscles during incremental cycling exercise. J Sports Med Phys Fitness, 1998, 38: 47–52.
22) Lieber RL: Skeletal muscle structure, function, and plasticity, 3rd ed. Baltimore: Lippincott Williams & Wilkins, a Wolters Kluwer business, 2009, pp 207–212.
36) Higuchi H, Katsumura T, Hamaoka T, et al.: Pattern of deoxygenation in vastus lateralis and rectus femoris muscles during a ramp-road cycling. JPFSM, 2000, 49: 183–192 (in Japanese).
24) Itoh H, Ajisaka R, Koike A, et al. Committee on Exercise Prescription for Patients (CEPP) Members: Heart rate and blood pressure response to ramp exercise and exercise capacity in relation to age, gender, and mode of exercise in a healthy population. J Cardiol, 2013, 61: 71–78.
1) Sawada S, Muto T: [Prospective study on the relationship between physical fitness and all-cause mortality in Japanese men]. Nippon Koshu Eisei Zasshi, 1999, 46: 113–121 (in Japanese).
3) Wasserman K, McIlroy MB: Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol, 1964, 14: 844–852.
26) Conley KE, Esselman PC, Jubrias SA, et al.: Ageing, muscle properties and maximal O(2) uptake rate in humans. J Physiol, 2000, 526: 211–217.
18) Rupp T, Perrey S: Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol, 2008, 102: 153–163.
21) Racinais S, Buchheit M, Girard O: Breakpoints in ventilation, cerebral and muscle oxygenation, and muscle activity during an incremental cycling exercise. Front Physiol, 2014, 5: 142.
13) Seburn KL, Sanderson DJ, Belcastro AN, et al.: Effect of manipulation of plasma lactate on integrated EMG during cycling. Med Sci Sports Exerc, 1992, 24: 911–916.
8) The Japanese Society of Hypertension: Guidelines for the management of hypertension 2014. Tokyo: The Japanese Society of hypertension, 2014, pp 7–11.
12) Viitasalo JT, Luhtanen P, Rahkila P, et al.: Electromyographic activity related to aerobic and anaerobic threshold in ergometer bicycling. Acta Physiol Scand, 1985, 124: 287–293.
35) van Ingen Schenau GJ, Boots PJ, de Groot G, et al.: The constrained control of force and position in multi-joint movements. Neuroscience, 1992, 46: 197–207.
4) Mezzani A, Hamm LF, Jones AM, et al. European Association for Cardiovascular Prevention and Rehabilitation American Association of Cardiovascular and Pulmonary Rehabilitation Canadian Association of Cardiac Rehabilitation: Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: a joint position statement of the European Association for Cardiovascular Prevention and Rehabilitation, the American Association of Cardiovascular and Pulmonary Rehabilitation and the Canadian Association of Cardiac Rehabilitation. Eur J Prev Cardiol, 2013, 20: 442–467.
5) Karvonen J, Vuorimaa T: Heart rate and exercise intensity during sports activities. Practical application. Sports Med, 1988, 5: 303–311.
2) Sui X, LaMonte MJ, Laditka JN, et al.: Cardiorespiratory fitness and adiposity as mortality predictors in older adults. JAMA, 2007, 298: 2507–2516.
11) Miyashita M, Kanehisa H, Nemoto I: EMG related to anaerobic threshold. J Sports Med Phys Fitness, 1981, 21: 209–217.
23) Ministry of Health: Labour and Welfare. Healthy Japan 21 (physical activity·exercise). http://www1.mhlw.go.jp/topics/kenko21_11/b2.html (Accessed Jun. 6, 2015
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
21266933 - Med Sci Sports Exerc. 2011 Aug;43(8):1406-13
18093842 - J Electromyogr Kinesiol. 2009 Apr;19(2):182-98
10878113 - J Physiol. 2000 Jul 1;526 Pt 1:211-7
15883415 - Am J Clin Nutr. 2005 May;81(5):953-63
7321550 - J Sports Med Phys Fitness. 1981 Sep;21(3):209-17
14232808 - Am J Cardiol. 1964 Dec;14:844-52
1406177 - Med Sci Sports Exerc. 1992 Aug;24(8):911-6
15286050 - J Appl Physiol (1985). 2004 Dec;97(6):2035-41
10331296 - Nihon Koshu Eisei Zasshi. 1999 Feb;46(2):113-21
21466104 - Percept Mot Skills. 2011 Feb;112(1):310-8
17882449 - Eur J Appl Physiol. 2008 Jan;102(2):153-63
23085769 - Exp Physiol. 2013 Mar;98(3):768-77
20202863 - J Electromyogr Kinesiol. 2010 Aug;20(4):566-71
18432288 - Can J Physiol Pharmacol. 2008 May;86(5):272-8
7328909 - Jpn J Physiol. 1981;31(4):585-97
21799133 - J Appl Physiol (1985). 2011 Nov;111(5):1259-65
23902998 - Circ J. 2013;77(9):2226-31
742657 - Am J Phys Med. 1978 Dec;57(6):263-77
14508692 - Eur J Appl Physiol. 2003 Nov;90(5-6):643-6
23104970 - Eur J Prev Cardiol. 2013 Jun;20(3):442-67
24782786 - Front Physiol. 2014 Apr 11;5:142
18056904 - JAMA. 2007 Dec 5;298(21):2507-16
17624542 - Eur J Appl Physiol. 2007 Oct;101(3):341-6
1594103 - Neuroscience. 1992;46(1):197-207
3387734 - Sports Med. 1988 May;5(5):303-11
10378070 - Br J Sports Med. 1999 Jun;33(3):178-85
22760857 - Age (Dordr). 2013 Aug;35(4):1183-92
9638032 - J Sports Med Phys Fitness. 1998 Mar;38(1):47-52
23182944 - J Cardiol. 2013 Jan;61(1):71-8
12595287 - Am J Physiol Heart Circ Physiol. 2003 Apr;284(4):H1251-9
3468609 - Scand J Rehabil Med Suppl. 1986;16:1-43
4013794 - Acta Physiol Scand. 1985 Jun;124(2):287-93
References_xml – reference: 35) van Ingen Schenau GJ, Boots PJ, de Groot G, et al.: The constrained control of force and position in multi-joint movements. Neuroscience, 1992, 46: 197–207.
– reference: 34) Poole JG, Lawrenson L, Kim J, et al.: Vascular and metabolic response to cycle exercise in sedentary humans: effect of age. Am J Physiol Heart Circ Physiol, 2003, 284: H1251–H1259.
– reference: 33) Layec G, Haseler LJ, Richardson RS: Reduced muscle oxidative capacity is independent of O2 availability in elderly people. Age (Dordr), 2013, 35: 1183–1192.
– reference: 22) Lieber RL: Skeletal muscle structure, function, and plasticity, 3rd ed. Baltimore: Lippincott Williams & Wilkins, a Wolters Kluwer business, 2009, pp 207–212.
– reference: 12) Viitasalo JT, Luhtanen P, Rahkila P, et al.: Electromyographic activity related to aerobic and anaerobic threshold in ergometer bicycling. Acta Physiol Scand, 1985, 124: 287–293.
– reference: 8) The Japanese Society of Hypertension: Guidelines for the management of hypertension 2014. Tokyo: The Japanese Society of hypertension, 2014, pp 7–11.
– reference: 11) Miyashita M, Kanehisa H, Nemoto I: EMG related to anaerobic threshold. J Sports Med Phys Fitness, 1981, 21: 209–217.
– reference: 25) Hug F, Dorel S: Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol, 2009, 19: 182–198.
– reference: 7) Miura K, Nagai M, Ohkubo T: Epidemiology of hypertension in Japan: where are we now? Circ J, 2013, 77: 2226–2231.
– reference: 16) Hug F, Laplaud D, Savin B, et al.: Occurrence of electromyographic and ventilatory thresholds in professional road cyclists. Eur J Appl Physiol, 2003, 90: 643–646.
– reference: 15) Lucía A, Sánchez O, Carvajal A, et al.: Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. Br J Sports Med, 1999, 33: 178–185.
– reference: 24) Itoh H, Ajisaka R, Koike A, et al. Committee on Exercise Prescription for Patients (CEPP) Members: Heart rate and blood pressure response to ramp exercise and exercise capacity in relation to age, gender, and mode of exercise in a healthy population. J Cardiol, 2013, 61: 71–78.
– reference: 2) Sui X, LaMonte MJ, Laditka JN, et al.: Cardiorespiratory fitness and adiposity as mortality predictors in older adults. JAMA, 2007, 298: 2507–2516.
– reference: 21) Racinais S, Buchheit M, Girard O: Breakpoints in ventilation, cerebral and muscle oxygenation, and muscle activity during an incremental cycling exercise. Front Physiol, 2014, 5: 142.
– reference: 32) Conley KE, Jubrias SA, Cress ME, et al.: Exercise efficiency is reduced by mitochondrial uncoupling in the elderly. Exp Physiol, 2013, 98: 768–777.
– reference: 13) Seburn KL, Sanderson DJ, Belcastro AN, et al.: Effect of manipulation of plasma lactate on integrated EMG during cycling. Med Sci Sports Exerc, 1992, 24: 911–916.
– reference: 29) Lenti M, De Vito G, Sbriccoli P, et al.: Muscle fibre conduction velocity and cardiorespiratory response during incremental cycling exercise in young and older individuals with different training status. J Electromyogr Kinesiol, 2010, 20: 566–571.
– reference: 31) Nair KS: Aging muscle. Am J Clin Nutr, 2005, 81: 953–963.
– reference: 14) Glass SC, Knowlton RG, Sanjabi PB, et al.: Identifying the integrated electromyographic threshold using different muscles during incremental cycling exercise. J Sports Med Phys Fitness, 1998, 38: 47–52.
– reference: 26) Conley KE, Esselman PC, Jubrias SA, et al.: Ageing, muscle properties and maximal O(2) uptake rate in humans. J Physiol, 2000, 526: 211–217.
– reference: 27) Chin LM, Kowalchuk JM, Barstow TJ, et al.: The relationship between muscle deoxygenation and activation in different muscles of the quadriceps during cycle ramp exercise. J Appl Physiol 1985, 2011, 111: 1259–1265.
– reference: 17) Jürimäe J, von Duvillard SP, Mäestu J, et al.: Aerobic-anaerobic transition intensity measured via EMG signals in athletes with different physical activity patterns. Eur J Appl Physiol, 2007, 101: 341–346.
– reference: 20) Osawa T, Kime R, Hamaoka T, et al.: Attenuation of muscle deoxygenation precedes EMG threshold in normoxia and hypoxia. Med Sci Sports Exerc, 2011, 43: 1406–1413.
– reference: 18) Rupp T, Perrey S: Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol, 2008, 102: 153–163.
– reference: 4) Mezzani A, Hamm LF, Jones AM, et al. European Association for Cardiovascular Prevention and Rehabilitation American Association of Cardiovascular and Pulmonary Rehabilitation Canadian Association of Cardiac Rehabilitation: Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: a joint position statement of the European Association for Cardiovascular Prevention and Rehabilitation, the American Association of Cardiovascular and Pulmonary Rehabilitation and the Canadian Association of Cardiac Rehabilitation. Eur J Prev Cardiol, 2013, 20: 442–467.
– reference: 9) Nagata A, Muro M, Moritani T, et al.: Anaerobic threshold determination by blood lactate and myoelectric signals. Jpn J Physiol, 1981, 31: 585–597.
– reference: 28) Ericson M: On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer. Scand J Rehabil Med Suppl, 1986, 16: 1–43.
– reference: 5) Karvonen J, Vuorimaa T: Heart rate and exercise intensity during sports activities. Practical application. Sports Med, 1988, 5: 303–311.
– reference: 6) Goss FL, Robertson RJ, Haile L, et al.: Use of ratings of perceived exertion to anticipate treadmill test termination in patients taking beta-blockers. Percept Mot Skills, 2011, 112: 310–318.
– reference: 23) Ministry of Health: Labour and Welfare. Healthy Japan 21 (physical activity·exercise). http://www1.mhlw.go.jp/topics/kenko21_11/b2.html (Accessed Jun. 6, 2015)
– reference: 1) Sawada S, Muto T: [Prospective study on the relationship between physical fitness and all-cause mortality in Japanese men]. Nippon Koshu Eisei Zasshi, 1999, 46: 113–121 (in Japanese).
– reference: 30) Farina D, Macaluso A, Ferguson RA, et al.: Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling. J Appl Physiol 1985, 2004, 97: 2035–2041.
– reference: 3) Wasserman K, McIlroy MB: Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol, 1964, 14: 844–852.
– reference: 36) Higuchi H, Katsumura T, Hamaoka T, et al.: Pattern of deoxygenation in vastus lateralis and rectus femoris muscles during a ramp-road cycling. JPFSM, 2000, 49: 183–192 (in Japanese).
– reference: 19) Candotti CT, Loss JF, Melo MO, et al.: Comparing the lactate and EMG thresholds of recreational cyclists during incremental pedaling exercise. Can J Physiol Pharmacol, 2008, 86: 272–278.
– reference: 10) Moritani T, deVries HA: Reexamination of the relationship between the surface integrated electromyogram (IEMG) and force of isometric contraction. Am J Phys Med, 1978, 57: 263–277.
– ident: 30
  doi: 10.1152/japplphysiol.00606.2004
– ident: 4
  doi: 10.1177/2047487312460484
– ident: 20
  doi: 10.1249/MSS.0b013e3182100261
– ident: 10
– ident: 15
  doi: 10.1136/bjsm.33.3.178
– ident: 32
  doi: 10.1113/expphysiol.2012.067314
– ident: 14
– ident: 21
  doi: 10.3389/fphys.2014.00142
– ident: 28
– ident: 34
  doi: 10.1152/ajpheart.00790.2002
– ident: 35
  doi: 10.1016/0306-4522(92)90019-X
– ident: 6
  doi: 10.2466/06.10.15.PMS.112.1.310-318
– ident: 9
  doi: 10.2170/jjphysiol.31.585
– ident: 13
  doi: 10.1249/00005768-199208000-00013
– ident: 3
  doi: 10.1016/0002-9149(64)90012-8
– ident: 22
– ident: 5
  doi: 10.2165/00007256-198805050-00002
– ident: 27
  doi: 10.1152/japplphysiol.01216.2010
– ident: 2
  doi: 10.1001/jama.298.21.2507
– ident: 1
– ident: 11
– ident: 16
  doi: 10.1007/s00421-003-0949-5
– ident: 26
  doi: 10.1111/j.1469-7793.2000.00211.x
– ident: 12
  doi: 10.1111/j.1748-1716.1985.tb07663.x
– ident: 19
  doi: 10.1139/Y08-020
– ident: 25
  doi: 10.1016/j.jelekin.2007.10.010
– ident: 7
  doi: 10.1253/circj.CJ-13-0847
– ident: 36
  doi: 10.7600/jspfsm1949.49.183
– ident: 24
  doi: 10.1016/j.jjcc.2012.09.010
– ident: 18
  doi: 10.1007/s00421-007-0568-7
– ident: 29
  doi: 10.1016/j.jelekin.2010.02.004
– ident: 31
  doi: 10.1093/ajcn/81.5.953
– ident: 17
  doi: 10.1007/s00421-007-0509-5
– ident: 8
– ident: 23
– ident: 33
  doi: 10.1007/s11357-012-9442-6
– reference: 22760857 - Age (Dordr). 2013 Aug;35(4):1183-92
– reference: 7321550 - J Sports Med Phys Fitness. 1981 Sep;21(3):209-17
– reference: 21266933 - Med Sci Sports Exerc. 2011 Aug;43(8):1406-13
– reference: 23182944 - J Cardiol. 2013 Jan;61(1):71-8
– reference: 1406177 - Med Sci Sports Exerc. 1992 Aug;24(8):911-6
– reference: 3387734 - Sports Med. 1988 May;5(5):303-11
– reference: 3468609 - Scand J Rehabil Med Suppl. 1986;16:1-43
– reference: 18093842 - J Electromyogr Kinesiol. 2009 Apr;19(2):182-98
– reference: 9638032 - J Sports Med Phys Fitness. 1998 Mar;38(1):47-52
– reference: 23085769 - Exp Physiol. 2013 Mar;98(3):768-77
– reference: 23104970 - Eur J Prev Cardiol. 2013 Jun;20(3):442-67
– reference: 4013794 - Acta Physiol Scand. 1985 Jun;124(2):287-93
– reference: 10878113 - J Physiol. 2000 Jul 1;526 Pt 1:211-7
– reference: 20202863 - J Electromyogr Kinesiol. 2010 Aug;20(4):566-71
– reference: 21466104 - Percept Mot Skills. 2011 Feb;112(1):310-8
– reference: 24782786 - Front Physiol. 2014 Apr 11;5:142
– reference: 15883415 - Am J Clin Nutr. 2005 May;81(5):953-63
– reference: 21799133 - J Appl Physiol (1985). 2011 Nov;111(5):1259-65
– reference: 742657 - Am J Phys Med. 1978 Dec;57(6):263-77
– reference: 17882449 - Eur J Appl Physiol. 2008 Jan;102(2):153-63
– reference: 1594103 - Neuroscience. 1992;46(1):197-207
– reference: 7328909 - Jpn J Physiol. 1981;31(4):585-97
– reference: 12595287 - Am J Physiol Heart Circ Physiol. 2003 Apr;284(4):H1251-9
– reference: 14508692 - Eur J Appl Physiol. 2003 Nov;90(5-6):643-6
– reference: 18432288 - Can J Physiol Pharmacol. 2008 May;86(5):272-8
– reference: 14232808 - Am J Cardiol. 1964 Dec;14:844-52
– reference: 10331296 - Nihon Koshu Eisei Zasshi. 1999 Feb;46(2):113-21
– reference: 10378070 - Br J Sports Med. 1999 Jun;33(3):178-85
– reference: 15286050 - J Appl Physiol (1985). 2004 Dec;97(6):2035-41
– reference: 17624542 - Eur J Appl Physiol. 2007 Oct;101(3):341-6
– reference: 23902998 - Circ J. 2013;77(9):2226-31
– reference: 18056904 - JAMA. 2007 Dec 5;298(21):2507-16
SSID ssj0027048
Score 2.0134957
Snippet [Purpose] To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus lateralis, rectus...
[Abstract.] [Purpose] To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus...
Purpose: To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus lateralis, rectus...
[Purpose] To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus lateralis, rectus...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
medicalonline
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3213
SubjectTerms Community dwelling elderly males
Electromyographic threshold
Original
Ventilatory threshold
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwELdGhwQIMd6El4wEfEFJ83LifGOgTRMS0z6s0vhk2Ym9tbRp1LRC5a_gT-YudgPlMSHxJW3Vs9P6zne_i-9ByEvADEanPPM5y7Wfqoj7yujKT2NQhChFpot2_3icHY3SD2fsbIccbHJhMKxyArjoXONLcD4PJs3QLeJw0izbYcyHUQRXgZ-AyVHmZywdiqYyV8huxgCSD8ju6Phk_1NXZy9i4Gx1jfLAmuU-2PvMBcAzXnRTBjEPkjhKtkzTVfsrbpCbM3tiYitX_AmI_h5PeW1VN3L9RU6nPxmrwz0bVNJ2NQ4xRuVzsFqqoPz6SwXI_16H2-SWg7N03w65Q3Z0fZfsnTjm01Nbs-Ae-QbvqCuDNaWLTQTexbihc0OXIFAtnoO11MWN0dmqhQkppl1gdwsq64p2oZl2JLXplVSNyzXSLeSsoZv2UXRc09ImvsDICh9PIq3GhuTTNZ2BTWzvk9Hhwen7I981g_DLDCCpz5RiPDZRiAAHnF7OAchVujRSh2GpwiovE6lNaCTH-jYF05likpvIaBnLUCUPyKCe1_oRoamRYSFjxRKVp0orlSaalSzPZSElOFgeebORA1G6SunYsGMq0GMCqemWXMDSo9R45FVP3dgKIX-he2cZ2lM5dvZU4Io5dgpkpwB29jSYgweKzCNvt8RROI3TilLyyY-h6ErDdGGadffGSxGDKQHn1CMvNhIsQJXg-ZCs9XzVCsyjBwCaFvGlNAVsbcA-Hnlopb7_PzHodmyT7JF8az_0BFjKfPubenzRlTQH2A6-AIx83e-cSxfz8b8SPiHXu63RPTR7SgbLxUo_Axi5VM-dkvgODxp3Fw
  priority: 102
  providerName: Unpaywall
Title The temporal relationship of thresholds between muscle activity and ventilation during bicycle ramp exercise in community dwelling elderly males
URI https://www.jstage.jst.go.jp/article/jpts/28/11/28_jpts-2016-654/_article/-char/en
http://mol.medicalonline.jp/en/journal/download?GoodsID=ca8jjpts/2016/002811/046&name=3213-3219e
https://www.ncbi.nlm.nih.gov/pubmed/27942152
https://www.proquest.com/docview/1852663492
https://www.proquest.com/docview/1859486341
https://pubmed.ncbi.nlm.nih.gov/PMC5140832
https://www.jstage.jst.go.jp/article/jpts/28/11/28_jpts-2016-654/_pdf
UnpaywallVersion publishedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Physical Therapy Science, 2016, Vol.28(11), pp.3213-3219
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2187-5626
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027048
  issn: 0915-5287
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2187-5626
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027048
  issn: 0915-5287
  databaseCode: KQ8
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2187-5626
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027048
  issn: 0915-5287
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2187-5626
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027048
  issn: 0915-5287
  databaseCode: GX1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central (Open Access)
  customDbUrl:
  eissn: 2187-5626
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027048
  issn: 0915-5287
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2187-5626
  dateEnd: 20250731
  omitProxy: true
  ssIdentifier: ssj0027048
  issn: 0915-5287
  databaseCode: M48
  dateStart: 20130501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2gQQS4nNA-KiMBHtBKfmwE-cBwUCMCWnTHlapPEV2Ymut0jRrWkH_C_5k7uIkozAmXqJEPbuK72z_Lr67HyGvADMYzUTkCh5rlylfuMro3GUBLIRoRaaJdj8-iY5G7OuYj7dIFz_fDmB9pWuHfFKjRTH8cbF-DxP-XcPeI5K302pZDwMxDAM_3K8uXKSUwqPXll9jm-zCtpUgr8MxE5femNdQa8F-ycEbE3EbFf9nhxv71Y0pQDbMxb89s8cotpzFVej07yDLm6uykuvvsih-28EO75E7LfSkB9ZW7pMtXT4gd09bRdEzW1_gIfkJd7QtWVXQRRctdz6p6NzQJSi_xjOrmrYxXnS2qqFDiikSyERBZZnTJozStqQ2FZKqSbZGuYWcVbSjeqKTkmY2SQVa5vgpEWU1kocXazqD_aveI6PDz2efjtyWuMHNIoCPLleKi8D4HoIRcFCFANCV68xI7XmZ8vI4C6U2npECa9EkXEeKS2F8o2UgPRU-IjvlvNRPCGVGeokMFA9VzJRWioWaZzyOZSIlOEMOedOpJ83aquZIrlGk6N2AMlNUZhqIFJXpkNe9dGWrefxD7qPVdC_VzuNeCtwmuNonDJKLOOtlMF8OFh2HfNiwkrQz7jSTYnrZFN1e6M5jUfPfeEkCWPbBkXTIy86wUpj2eJYjSz1f1SnmvANYZElwrUwC0xBwikMeW2Ps3yeAdRgpjR0Sb5hpL4Blxzd_KSfnTflxgNiA26Hlfm_Q1w7m0_94iWfkFo6F_bb1nOwsFyv9AtDeUg3I9pexP2jm7oDsjk5OD779At2EXYI
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwELdGhwQIMd6El4wEfEFJ83LifGOgTRMS0z6s0vhk2Ym9tbRp1LRC5a_gT-YudgPlMSHxJW3Vs9P6zne_i-9ByEvADEanPPM5y7Wfqoj7yujKT2NQhChFpot2_3icHY3SD2fsbIccbHJhMKxyArjoXONLcD4PJs3QLeJw0izbYcyHUQRXgZ-AyVHmZywdiqYyV8huxgCSD8ju6Phk_1NXZy9i4Gx1jfLAmuU-2PvMBcAzXnRTBjEPkjhKtkzTVfsrbpCbM3tiYitX_AmI_h5PeW1VN3L9RU6nPxmrwz0bVNJ2NQ4xRuVzsFqqoPz6SwXI_16H2-SWg7N03w65Q3Z0fZfsnTjm01Nbs-Ae-QbvqCuDNaWLTQTexbihc0OXIFAtnoO11MWN0dmqhQkppl1gdwsq64p2oZl2JLXplVSNyzXSLeSsoZv2UXRc09ImvsDICh9PIq3GhuTTNZ2BTWzvk9Hhwen7I981g_DLDCCpz5RiPDZRiAAHnF7OAchVujRSh2GpwiovE6lNaCTH-jYF05likpvIaBnLUCUPyKCe1_oRoamRYSFjxRKVp0orlSaalSzPZSElOFgeebORA1G6SunYsGMq0GMCqemWXMDSo9R45FVP3dgKIX-he2cZ2lM5dvZU4Io5dgpkpwB29jSYgweKzCNvt8RROI3TilLyyY-h6ErDdGGadffGSxGDKQHn1CMvNhIsQJXg-ZCs9XzVCsyjBwCaFvGlNAVsbcA-Hnlopb7_PzHodmyT7JF8az_0BFjKfPubenzRlTQH2A6-AIx83e-cSxfz8b8SPiHXu63RPTR7SgbLxUo_Axi5VM-dkvgODxp3Fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+temporal+relationship+of+thresholds+between+muscle+activity+and+ventilation+during+bicycle+ramp+exercise+in+community+dwelling+elderly+males&rft.jtitle=Journal+of+physical+therapy+science&rft.au=Sasaki%2C+Kentaro&rft.au=Kimura%2C+Tsuyoshi&rft.au=Kojima%2C+Satoshi&rft.au=Higuchi%2C+Hiroyuki&rft.date=2016&rft.issn=0915-5287&rft.volume=28&rft.issue=11&rft.spage=3213&rft.epage=3219&rft_id=info:doi/10.1589%2Fjpts.28.3213&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-5287&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-5287&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-5287&client=summon