Transposable element expansion and low-level piRNA silencing in grasshoppers may cause genome gigantism

Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imp...

Full description

Saved in:
Bibliographic Details
Published inBMC biology Vol. 20; no. 1; pp. 1 - 16
Main Authors Liu, Xuanzeng, Majid, Muhammad, Yuan, Hao, Chang, Huihui, Zhao, Lina, Nie, Yimeng, He, Lang, Liu, Xiaojing, He, Xiaoting, Huang, Yuan
Format Journal Article
LanguageEnglish
Published London BioMed Central 28.10.2022
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1741-7007
1741-7007
DOI10.1186/s12915-022-01441-w

Cover

Abstract Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae ( Locusta migratoria manilensis ♀1C = 6.60 pg, Angaracris rhodopa ♀1C = 16.36 pg) to ascertain the influence of piRNAs. Results We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria , and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct “landscapes” of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level. Conclusions Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes.
AbstractList Abstract Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensis♀1C = 6.60 pg, Angaracris rhodopa♀1C = 16.36 pg) to ascertain the influence of piRNAs. Results We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct “landscapes” of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level. Conclusions Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes.
Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensisâ1C = 6.60 pg, Angaracris rhodopaâ1C = 16.36 pg) to ascertain the influence of piRNAs. We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct "landscapes" of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level. Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes.
Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensis♀1C = 6.60 pg, Angaracris rhodopa♀1C = 16.36 pg) to ascertain the influence of piRNAs. Results We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct “landscapes” of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level. Conclusions Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes.
Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensisâ1C = 6.60 pg, Angaracris rhodopaâ1C = 16.36 pg) to ascertain the influence of piRNAs. Results We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct "landscapes" of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level. Conclusions Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes. Keywords: Genome size, Transposable elements, TE transcripts, piRNA silencing, Grasshopper
Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae ( Locusta migratoria manilensis ♀1C = 6.60 pg, Angaracris rhodopa ♀1C = 16.36 pg) to ascertain the influence of piRNAs. Results We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria , and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct “landscapes” of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level. Conclusions Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes.
Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensis♀1C = 6.60 pg, Angaracris rhodopa♀1C = 16.36 pg) to ascertain the influence of piRNAs.BACKGROUNDTransposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensis♀1C = 6.60 pg, Angaracris rhodopa♀1C = 16.36 pg) to ascertain the influence of piRNAs.We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct "landscapes" of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level.RESULTSWe discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct "landscapes" of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level.Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes.CONCLUSIONSOur study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes.
ArticleNumber 243
Audience Academic
Author Zhao, Lina
He, Xiaoting
Majid, Muhammad
Chang, Huihui
Yuan, Hao
Liu, Xuanzeng
He, Lang
Liu, Xiaojing
Huang, Yuan
Nie, Yimeng
Author_xml – sequence: 1
  givenname: Xuanzeng
  surname: Liu
  fullname: Liu, Xuanzeng
  organization: College of Life Sciences, Shaanxi Normal University
– sequence: 2
  givenname: Muhammad
  surname: Majid
  fullname: Majid, Muhammad
  organization: College of Life Sciences, Shaanxi Normal University
– sequence: 3
  givenname: Hao
  surname: Yuan
  fullname: Yuan, Hao
  organization: School of Basic Medical Sciences, Xi’an Medical University
– sequence: 4
  givenname: Huihui
  surname: Chang
  fullname: Chang, Huihui
  organization: College of Life Science and Engineering, Henan University of Urban Construction
– sequence: 5
  givenname: Lina
  surname: Zhao
  fullname: Zhao, Lina
  organization: College of Life Sciences, Shaanxi Normal University
– sequence: 6
  givenname: Yimeng
  surname: Nie
  fullname: Nie, Yimeng
  organization: College of Life Sciences, Shaanxi Normal University
– sequence: 7
  givenname: Lang
  surname: He
  fullname: He, Lang
  organization: College of Life Sciences, Shaanxi Normal University
– sequence: 8
  givenname: Xiaojing
  surname: Liu
  fullname: Liu, Xiaojing
  organization: College of Life Sciences, Shaanxi Normal University
– sequence: 9
  givenname: Xiaoting
  surname: He
  fullname: He, Xiaoting
  organization: College of Life Sciences, Shaanxi Normal University
– sequence: 10
  givenname: Yuan
  orcidid: 0000-0001-7683-9193
  surname: Huang
  fullname: Huang, Yuan
  email: yuanh@snnu.edu.cn
  organization: College of Life Sciences, Shaanxi Normal University
BookMark eNqNkl9rFDEUxQep2Hb1C_g04Is-TM2fmSTzIpRSdaFYqNXXkEnuTFMyyZjMdttvb7ZbrFukSB4Sbn7nXHJzDos9HzwUxVuMjjAW7GPCpMVNhQipEK5rXK1fFAeY5wNHiO_9dd4vDlO6Rog0nNNXxT5lFHGB0EExXEbl0xSS6hyU4GAEP5dwO-WqDb5U3pQurCsHN-DKyV58Oy6TdeC19UNpfTlEldJVmCaIqRzVXanVKkE5gA9j3uyg_GzT-Lp42SuX4M3Dvih-fD69PPlanZ1_WZ4cn1WaNWSutDC0Y0QTLZqOAtSECsWFMsowY9quNwT6DtqOYNpz3bbUEE5aLrRAPUGKLorl1tcEdS2naEcV72RQVt4XQhykirPVDmTbE84U0KZmpAZKlGgRFnXLTS10lzsvik9br2nVjWB0nkxUbsd098bbKzmEG9ky3BCGs8H7B4MYfq0gzXK0SYNzykNYJUk4RZQg0dCMvnuCXodV9HlUG4ozwhgmj9Sg8gOs70Puqzem8piTuq4Jbzdtj_5B5WVgtDpnqM8fuCv4sCPIzAy385B_Msnl94v_Z89_7rJky-oYUorQ_5kdRnITYbmNsMwRlvcRlussEk9E2s5qzmHMr7DueSndSlPu4weIj0N8RvUb5ckFJg
CitedBy_id crossref_primary_10_1016_j_ibmb_2024_104251
crossref_primary_10_1111_syen_12629
crossref_primary_10_1101_gr_277387_122
crossref_primary_10_1186_s12864_023_09499_8
crossref_primary_10_3390_biom14080915
crossref_primary_10_1016_j_gene_2024_149090
crossref_primary_10_1186_s12864_024_10596_5
crossref_primary_10_1038_s41586_024_07830_1
crossref_primary_10_1186_s12915_025_02155_5
crossref_primary_10_1371_journal_pone_0275551
crossref_primary_10_3390_genes14020255
crossref_primary_10_1186_s13100_024_00316_x
crossref_primary_10_1093_g3journal_jkae115
crossref_primary_10_1016_j_ygeno_2024_110971
crossref_primary_10_1016_j_ympev_2024_108221
crossref_primary_10_1016_j_ygeno_2024_110896
crossref_primary_10_3389_fcell_2023_1124374
Cites_doi 10.1093/gbe/evv050
10.1016/j.tibs.2015.12.008
10.1093/oxfordjournals.molbev.a003933
10.1186/s13100-018-0144-1
10.1017/S0016672300027695
10.1016/j.tplants.2016.06.003
10.7554/eLife.45954
10.1126/science.1222077
10.1038/nature25458
10.1186/s12862-020-1580-3
10.1016/j.molcel.2011.10.011
10.1126/science.1251343
10.1016/j.cub.2019.01.080
10.1139/G06-155
10.1146/annurev.ge.05.120171.001321
10.1093/gbe/evaa094
10.1126/science.1146484
10.1016/j.mrfmmm.2006.11.021
10.1093/gigascience/giac011
10.1186/s12915-020-00925-x
10.1016/j.tig.2010.08.007
10.1016/j.cois.2019.11.002
10.1016/j.cell.2009.01.045
10.1038/nature08501
10.1111/j.1365-2583.2010.00992.x
10.1186/s12915-021-01158-2
10.1093/gbe/evs103
10.1186/s12915-022-01302-6
10.1038/nprot.2007.310
10.3389/fphys.2016.00569
10.1038/nrg793
10.1002/ece3.3163
10.1126/science.1178534
10.1126/science.aaa1039
10.1016/j.cell.2009.07.014
10.1038/284601a0
10.1371/journal.pgen.1000733
10.1016/j.cell.2014.04.031
10.1093/molbev/mst081
10.1093/bioinformatics/btu170
10.1073/pnas.1616702114
10.1093/molbev/msq284
10.1186/gb-2009-10-1-r6
10.1038/ncomms10286
10.1093/hmg/ddm105
10.1023/A:1003957323876
10.1093/genetics/92.4.1127
10.1186/s13059-018-1577-z
10.1101/gr.095406.109
10.1093/genetics/112.4.947
10.1016/j.cell.2021.01.047
10.1038/nmeth.3176
10.12688/f1000research.25148.1
10.1038/nbt.1883
10.1242/dev.069187
10.1126/science.1089670
10.1093/nar/gkaa913
10.1111/mec.16311
10.1186/gb-2006-7-11-r112
10.14806/ej.17.1.200
10.1038/284604a0
10.1007/s00114-008-0395-7
10.1038/s41586-020-1966-9
10.1038/nrg2504
10.1016/j.cell.2009.04.027
10.1111/j.0962-1075.2004.00514.x
10.3389/fgene.2021.693541
10.1371/journal.pgen.1005620
10.1101/gad.209841.112
10.1073/pnas.1213283110
10.1146/annurev-genet-120417-031441
10.1101/gad.267252.115
10.1093/nar/gkaa1047
10.1016/j.tig.2017.09.002
10.1098/rstb.2014.0331
10.1093/gbe/evv005
10.1111/nyas.13295
10.1007/s10577-011-9248-x
10.1002/bies.201600125
10.1038/s41598-019-51888-1
10.1016/j.cell.2007.01.043
10.1371/journal.pgen.1005406
10.1111/1755-0998.13305
10.1186/s12915-021-01004-5
10.1016/j.tig.2010.10.003
10.1038/s41576-018-0073-3
10.1016/j.cell.2010.05.020
10.1101/gr.161554.113
10.1016/j.mrfmmm.2011.05.002
10.1016/0092-8674(93)90078-5
10.1093/molbev/msp042
10.3389/fphys.2020.567125
10.1016/j.cell.2012.10.040
10.1101/gr.5290206
10.1093/gbe/evy218
10.1159/000444429
10.1126/science.1140494
10.1016/j.molcel.2007.05.001
10.1093/nar/gkv1193
10.6084/m9.figshare.21256878
10.1242/dev.006486
10.1093/nar/gki323
10.1038/nature10811
10.1186/gb-2009-10-3-r25
10.1016/j.cub.2019.02.032
10.1093/molbev/msz079
10.1371/journal.pbio.0050310
10.1101/gad.245514.114
10.1093/molbev/msab336
10.1186/s12915-022-01249-8
10.1016/j.devcel.2018.10.011
10.1016/j.tig.2007.12.001
10.1079/BER2005361
10.1111/syen.12401
10.1002/cyto.a.10013
10.1073/pnas.0702207104
10.1017/S0016672300021455
10.1101/2022.06.02.494618
10.7554/eLife.63194
10.1093/genetics/112.2.359
10.2108/zs140166
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
IOV
ISR
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12915-022-01441-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
University Readers
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Proquest Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
University Readers
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1741-7007
EndPage 16
ExternalDocumentID oai_doaj_org_article_9f276ae354624e32a89018497d48cb42
PMC9615261
A724442791
10_1186_s12915_022_01441_w
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31872217
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: GK202206021,GK202101003
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: ;
  grantid: GK202206021,GK202101003
– fundername: ;
  grantid: 31872217
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
8G5
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IOV
ISE
ISR
ITC
KQ8
LK8
M1P
M2O
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PADUT
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
PMFND
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c652t-c8d3b62c2c85b3ee4238a78adad6dd9bfd2efbe9b213f7c993d272978c80f20a3
IEDL.DBID M48
ISSN 1741-7007
IngestDate Wed Aug 27 01:22:34 EDT 2025
Thu Aug 21 18:38:42 EDT 2025
Fri Sep 05 12:30:47 EDT 2025
Fri Jul 25 10:44:49 EDT 2025
Tue Jun 17 21:16:42 EDT 2025
Tue Jun 10 20:44:45 EDT 2025
Fri Jun 27 04:38:41 EDT 2025
Fri Jun 27 04:53:41 EDT 2025
Tue Jul 01 02:58:11 EDT 2025
Thu Apr 24 22:53:30 EDT 2025
Sat Sep 06 07:28:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Genome size
TE transcripts
piRNA silencing
Grasshopper
Transposable elements
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c652t-c8d3b62c2c85b3ee4238a78adad6dd9bfd2efbe9b213f7c993d272978c80f20a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7683-9193
OpenAccessLink https://doi.org/10.1186/s12915-022-01441-w
PMID 36307800
PQID 2737626612
PQPubID 42637
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_9f276ae354624e32a89018497d48cb42
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9615261
proquest_miscellaneous_2730320853
proquest_journals_2737626612
gale_infotracmisc_A724442791
gale_infotracacademiconefile_A724442791
gale_incontextgauss_ISR_A724442791
gale_incontextgauss_IOV_A724442791
crossref_primary_10_1186_s12915_022_01441_w
crossref_citationtrail_10_1186_s12915_022_01441_w
springer_journals_10_1186_s12915_022_01441_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-28
PublicationDateYYYYMMDD 2022-10-28
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC biology
PublicationTitleAbbrev BMC Biol
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References I Kalvari (1441_CR119) 2021; 49
D de Jong (1441_CR41) 2009; 26
AM Larracuente (1441_CR103) 2008; 24
DM Ozata (1441_CR94) 2019; 20
S Liu (1441_CR52) 2009; 5
B Czech (1441_CR46) 2018; 52
I Schubert (1441_CR16) 2016; 21
JP Blumenstiel (1441_CR32) 2011; 27
K He (1441_CR74) 2016; 7
B Charlesworth (1441_CR24) 1986; 112
G Sienski (1441_CR35) 2012; 151
J Yuan (1441_CR8) 2022; 20
ES Kelleher (1441_CR29) 2020; 37
X Wang (1441_CR66) 2014; 5
R Cornette (1441_CR75) 2015; 32
CH Langley (1441_CR25) 1988; 52
D Haig (1441_CR82) 2016; 38
F Shao (1441_CR56) 2019; 9
R Rahman (1441_CR71) 2015; 43
M Martin (1441_CR118) 2011; 17
M Ghildiyal (1441_CR42) 2009; 10
F Mohn (1441_CR36) 2015; 348
1441_CR80
J Dolezel (1441_CR1) 2003; 51
C Sun (1441_CR5) 2012; 4
S Koshikawa (1441_CR79) 2008; 95
J Doležel (1441_CR108) 2007; 2
E Lee (1441_CR88) 2012; 337
AL Zamparini (1441_CR63) 2011; 138
CD Malone (1441_CR93) 2009; 136
HH Kazazian Jr (1441_CR114) 2004; 303
B Charlesworth (1441_CR18) 1983; 42
J Brennecke (1441_CR33) 2007; 128
CM Bergman (1441_CR92) 2006; 7
XZ Liu (1441_CR128) 2022
AI Kalmykova (1441_CR37) 2005; 33
DJ Rees (1441_CR7) 2007; 50
B Buchfink (1441_CR113) 2015; 12
DJ Begun (1441_CR102) 2007; 5
AM Bolger (1441_CR110) 2014; 30
OM Palacios-Gimenez (1441_CR58) 2020; 18
F Mohn (1441_CR40) 2014; 157
1441_CR10
RC Iskow (1441_CR87) 2010; 141
WF Doolittle (1441_CR21) 1980; 284
D Chalopin (1441_CR55) 2015; 7
B Charlesworth (1441_CR50) 1986; 112
M Lynch (1441_CR28) 2007; 104
MG Kidwell (1441_CR81) 1979; 92
M Naville (1441_CR12) 2019; 29
JL Garcia-Perez (1441_CR85) 2007; 16
L Peters (1441_CR38) 2007; 26
J Mistry (1441_CR112) 2021; 49
JM Tubio (1441_CR89) 2014; 345
J Brown (1441_CR107) 2005; 95
B Langmead (1441_CR120) 2009; 10
Z Zhang (1441_CR62) 2011; 44
S Luo (1441_CR97) 2020; 20
K Alfsnes (1441_CR54) 2017; 7
MG Grabherr (1441_CR111) 2011; 29
AM Liu (1441_CR123) 2020; 45
R Kofler (1441_CR101) 2019; 36
DD Luan (1441_CR117) 1993; 72
Y Wang (1441_CR122) 2015; 5
ES Kelleher (1441_CR30) 2013; 30
LE Orgel (1441_CR19) 1980; 284
A Ardila-Garcia (1441_CR77) 2010; 19
N Izumi (1441_CR64) 2020; 578
Y Wei (1441_CR121) 2009; 10
A Kapusta (1441_CR11) 2017; 114
R Kofler (1441_CR70) 2015; 11
J Wen (1441_CR124) 2014; 24
J Castañeda (1441_CR98) 2011; 714
P Neumann (1441_CR115) 2019; 10
F Dufresne (1441_CR2) 2011; 19
SV Nuzhdin (1441_CR22) 1999; 107
A Suh (1441_CR90) 2019; 29
N Darricarrère (1441_CR44) 2013; 110
CA Thomas Jr (1441_CR76) 1971; 5
B Piegu (1441_CR13) 2006; 16
A Le Thomas (1441_CR47) 2014; 28
B Saint-Leandre (1441_CR84) 2020; 12
RT Todd (1441_CR106) 2019; 8
M Lynch (1441_CR27) 2003; 302
TF Mackay (1441_CR105) 2012; 482
PS Schnable (1441_CR51) 2009; 326
A Kapusta (1441_CR57) 2017; 1389
TA Elliott (1441_CR3) 2015; 370
1441_CR9
C Li (1441_CR60) 2009; 137
C Feschotte (1441_CR91) 2002; 3
Q Liu (1441_CR73) 2021; 19
S Moon (1441_CR23) 2018; 47
S Negm (1441_CR69) 2021; 21
SL Lim (1441_CR65) 2015; 11
C Goubert (1441_CR109) 2015; 7
LS Gunawardane (1441_CR34) 2007; 315
D Hedges (1441_CR26) 2007; 616
N Parisot (1441_CR17) 2021; 19
ES Kelleher (1441_CR100) 2018; 10
Y Cong (1441_CR72) 2019; 56
Q Guo (1441_CR14) 2022; 20
J Lu (1441_CR99) 2010; 20
I Said (1441_CR45) 2022; 39
K-A Senti (1441_CR59) 2015; 29
S Klawitter (1441_CR86) 2016; 7
Y-A Bae (1441_CR116) 2001; 18
X Huang (1441_CR48) 2017; 33
1441_CR53
1441_CR68
K Wang (1441_CR4) 2021; 184
A Canapa (1441_CR15) 2015; 147
RW Nowell (1441_CR20) 2021; 10
B Czech (1441_CR49) 2016; 41
C Klattenhoff (1441_CR61) 2009; 138
K Saito (1441_CR39) 2009; 461
S Nowoshilow (1441_CR6) 2018; 554
AA Aravin (1441_CR31) 2007; 318
1441_CR125
1441_CR126
J Johnston (1441_CR78) 2004; 13
C Klattenhoff (1441_CR96) 2008; 135
B Kolaczkowski (1441_CR104) 2011; 28
K-A Senti (1441_CR95) 2010; 26
1441_CR67
G Bourque (1441_CR83) 2018; 19
1441_CR127
A Le Thomas (1441_CR43) 2013; 27
References_xml – volume: 7
  start-page: 1192
  issue: 4
  year: 2015
  ident: 1441_CR109
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evv050
– volume: 41
  start-page: 324
  issue: 4
  year: 2016
  ident: 1441_CR49
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2015.12.008
– volume: 18
  start-page: 1474
  issue: 8
  year: 2001
  ident: 1441_CR116
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a003933
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 1441_CR115
  publication-title: Mob DNA
  doi: 10.1186/s13100-018-0144-1
– volume: 52
  start-page: 223
  issue: 3
  year: 1988
  ident: 1441_CR25
  publication-title: Genet Res (Camb)
  doi: 10.1017/S0016672300027695
– volume: 21
  start-page: 749
  issue: 9
  year: 2016
  ident: 1441_CR16
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2016.06.003
– volume: 8
  year: 2019
  ident: 1441_CR106
  publication-title: Elife.
  doi: 10.7554/eLife.45954
– volume: 337
  start-page: 967
  issue: 6097
  year: 2012
  ident: 1441_CR88
  publication-title: Science.
  doi: 10.1126/science.1222077
– volume: 554
  start-page: 50
  issue: 7690
  year: 2018
  ident: 1441_CR6
  publication-title: Nature.
  doi: 10.1038/nature25458
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 1441_CR97
  publication-title: BMC Evol Biol
  doi: 10.1186/s12862-020-1580-3
– volume: 44
  start-page: 572
  issue: 4
  year: 2011
  ident: 1441_CR62
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.10.011
– volume: 345
  start-page: 1251343
  issue: 6196
  year: 2014
  ident: 1441_CR89
  publication-title: Science.
  doi: 10.1126/science.1251343
– volume: 29
  start-page: 1161
  issue: 7
  year: 2019
  ident: 1441_CR12
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2019.01.080
– volume: 50
  start-page: 151
  issue: 2
  year: 2007
  ident: 1441_CR7
  publication-title: Genome.
  doi: 10.1139/G06-155
– volume: 5
  start-page: 237
  issue: 1
  year: 1971
  ident: 1441_CR76
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.ge.05.120171.001321
– volume: 12
  start-page: 931
  issue: 6
  year: 2020
  ident: 1441_CR84
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evaa094
– volume: 318
  start-page: 761
  issue: 5851
  year: 2007
  ident: 1441_CR31
  publication-title: Science.
  doi: 10.1126/science.1146484
– volume: 616
  start-page: 46
  issue: 1-2
  year: 2007
  ident: 1441_CR26
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2006.11.021
– ident: 1441_CR80
  doi: 10.1093/gigascience/giac011
– volume: 18
  start-page: 1
  issue: 1
  year: 2020
  ident: 1441_CR58
  publication-title: BMC Biol
  doi: 10.1186/s12915-020-00925-x
– volume: 26
  start-page: 499
  issue: 12
  year: 2010
  ident: 1441_CR95
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2010.08.007
– volume: 37
  start-page: 49
  year: 2020
  ident: 1441_CR29
  publication-title: Curr Opin Insect Sci
  doi: 10.1016/j.cois.2019.11.002
– volume: 136
  start-page: 656
  issue: 4
  year: 2009
  ident: 1441_CR93
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.01.045
– volume: 461
  start-page: 1296
  issue: 7268
  year: 2009
  ident: 1441_CR39
  publication-title: Nature.
  doi: 10.1038/nature08501
– volume: 19
  start-page: 337
  issue: 3
  year: 2010
  ident: 1441_CR77
  publication-title: Insect Mol Biol
  doi: 10.1111/j.1365-2583.2010.00992.x
– volume: 19
  start-page: 1
  issue: 1
  year: 2021
  ident: 1441_CR17
  publication-title: BMC Biol
  doi: 10.1186/s12915-021-01158-2
– volume: 4
  start-page: 1340
  issue: 12
  year: 2012
  ident: 1441_CR5
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evs103
– volume: 20
  start-page: 1
  issue: 1
  year: 2022
  ident: 1441_CR8
  publication-title: BMC Biol
  doi: 10.1186/s12915-022-01302-6
– volume: 2
  start-page: 2233
  issue: 9
  year: 2007
  ident: 1441_CR108
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.310
– volume: 7
  start-page: 569
  year: 2016
  ident: 1441_CR74
  publication-title: Front Physiol
  doi: 10.3389/fphys.2016.00569
– volume: 3
  start-page: 329
  issue: 5
  year: 2002
  ident: 1441_CR91
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg793
– volume: 7
  start-page: 5939
  issue: 15
  year: 2017
  ident: 1441_CR54
  publication-title: Ecol Evol
  doi: 10.1002/ece3.3163
– volume: 326
  start-page: 1112
  issue: 5956
  year: 2009
  ident: 1441_CR51
  publication-title: Science.
  doi: 10.1126/science.1178534
– volume: 348
  start-page: 812
  issue: 6236
  year: 2015
  ident: 1441_CR36
  publication-title: Science.
  doi: 10.1126/science.aaa1039
– volume: 138
  start-page: 1137
  issue: 6
  year: 2009
  ident: 1441_CR61
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.07.014
– volume: 284
  start-page: 601
  issue: 5757
  year: 1980
  ident: 1441_CR21
  publication-title: Nature.
  doi: 10.1038/284601a0
– volume: 5
  issue: 11
  year: 2009
  ident: 1441_CR52
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000733
– volume: 157
  start-page: 1364
  issue: 6
  year: 2014
  ident: 1441_CR40
  publication-title: Cell.
  doi: 10.1016/j.cell.2014.04.031
– volume: 30
  start-page: 1816
  issue: 8
  year: 2013
  ident: 1441_CR30
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst081
– volume: 30
  start-page: 2114
  issue: 15
  year: 2014
  ident: 1441_CR110
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu170
– volume: 114
  start-page: E1460
  issue: 8
  year: 2017
  ident: 1441_CR11
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1616702114
– volume: 28
  start-page: 1033
  issue: 2
  year: 2011
  ident: 1441_CR104
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msq284
– volume: 10
  start-page: 1
  issue: 1
  year: 2009
  ident: 1441_CR121
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-1-r6
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 1441_CR122
  publication-title: Sci Rep
– volume: 7
  start-page: 1
  issue: 1
  year: 2016
  ident: 1441_CR86
  publication-title: Nat Commun
  doi: 10.1038/ncomms10286
– volume: 16
  start-page: 1569
  issue: 13
  year: 2007
  ident: 1441_CR85
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddm105
– volume: 107
  start-page: 129
  issue: 1-3
  year: 1999
  ident: 1441_CR22
  publication-title: Genetica.
  doi: 10.1023/A:1003957323876
– volume: 92
  start-page: 1127
  issue: 4
  year: 1979
  ident: 1441_CR81
  publication-title: Genetics.
  doi: 10.1093/genetics/92.4.1127
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  ident: 1441_CR83
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1577-z
– volume: 20
  start-page: 212
  issue: 2
  year: 2010
  ident: 1441_CR99
  publication-title: Genome Res
  doi: 10.1101/gr.095406.109
– volume: 112
  start-page: 947
  issue: 4
  year: 1986
  ident: 1441_CR24
  publication-title: Genetics.
  doi: 10.1093/genetics/112.4.947
– volume: 184
  start-page: 1362
  issue: 5
  year: 2021
  ident: 1441_CR4
  publication-title: Cell.
  doi: 10.1016/j.cell.2021.01.047
– volume: 12
  start-page: 59
  issue: 1
  year: 2015
  ident: 1441_CR113
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3176
– ident: 1441_CR67
  doi: 10.12688/f1000research.25148.1
– volume: 29
  start-page: 644
  issue: 7
  year: 2011
  ident: 1441_CR111
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1883
– volume: 138
  start-page: 4039
  issue: 18
  year: 2011
  ident: 1441_CR63
  publication-title: Development.
  doi: 10.1242/dev.069187
– volume: 303
  start-page: 1626
  issue: 5664
  year: 2004
  ident: 1441_CR114
  publication-title: Science.
  doi: 10.1126/science.1089670
– ident: 1441_CR125
– volume: 49
  start-page: D412
  issue: D1
  year: 2021
  ident: 1441_CR112
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa913
– ident: 1441_CR53
  doi: 10.1111/mec.16311
– volume: 7
  start-page: 1
  issue: 11
  year: 2006
  ident: 1441_CR92
  publication-title: Genome Biol
  doi: 10.1186/gb-2006-7-11-r112
– volume: 17
  start-page: 10
  issue: 1
  year: 2011
  ident: 1441_CR118
  publication-title: EMBnet J
  doi: 10.14806/ej.17.1.200
– volume: 284
  start-page: 604
  issue: 5757
  year: 1980
  ident: 1441_CR19
  publication-title: Nature.
  doi: 10.1038/284604a0
– volume: 95
  start-page: 859
  issue: 9
  year: 2008
  ident: 1441_CR79
  publication-title: Naturwissenschaften.
  doi: 10.1007/s00114-008-0395-7
– volume: 578
  start-page: 311
  issue: 7794
  year: 2020
  ident: 1441_CR64
  publication-title: Nature.
  doi: 10.1038/s41586-020-1966-9
– volume: 10
  start-page: 94
  issue: 2
  year: 2009
  ident: 1441_CR42
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2504
– volume: 137
  start-page: 509
  issue: 3
  year: 2009
  ident: 1441_CR60
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.04.027
– volume: 13
  start-page: 581
  issue: 6
  year: 2004
  ident: 1441_CR78
  publication-title: Insect Mol Biol
  doi: 10.1111/j.0962-1075.2004.00514.x
– ident: 1441_CR10
  doi: 10.3389/fgene.2021.693541
– volume: 11
  issue: 10
  year: 2015
  ident: 1441_CR65
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005620
– volume: 27
  start-page: 390
  issue: 4
  year: 2013
  ident: 1441_CR43
  publication-title: Genes Dev
  doi: 10.1101/gad.209841.112
– volume: 110
  start-page: 1297
  issue: 4
  year: 2013
  ident: 1441_CR44
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1213283110
– volume: 52
  start-page: 131
  year: 2018
  ident: 1441_CR46
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-120417-031441
– volume: 29
  start-page: 1747
  issue: 16
  year: 2015
  ident: 1441_CR59
  publication-title: Genes Dev
  doi: 10.1101/gad.267252.115
– volume: 49
  start-page: D192
  issue: D1
  year: 2021
  ident: 1441_CR119
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa1047
– volume: 33
  start-page: 882
  issue: 11
  year: 2017
  ident: 1441_CR48
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2017.09.002
– volume: 370
  start-page: 20140331
  issue: 1678
  year: 2015
  ident: 1441_CR3
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2014.0331
– volume: 7
  start-page: 567
  issue: 2
  year: 2015
  ident: 1441_CR55
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evv005
– volume: 1389
  start-page: 164
  issue: 1
  year: 2017
  ident: 1441_CR57
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/nyas.13295
– volume: 19
  start-page: 925
  issue: 7
  year: 2011
  ident: 1441_CR2
  publication-title: Chromosome Res
  doi: 10.1007/s10577-011-9248-x
– volume: 38
  start-page: 1158
  issue: 11
  year: 2016
  ident: 1441_CR82
  publication-title: Bioessays.
  doi: 10.1002/bies.201600125
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 1441_CR56
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-51888-1
– volume: 128
  start-page: 1089
  issue: 6
  year: 2007
  ident: 1441_CR33
  publication-title: Cell.
  doi: 10.1016/j.cell.2007.01.043
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  ident: 1441_CR66
  publication-title: Nat Commun
– volume: 11
  issue: 7
  year: 2015
  ident: 1441_CR70
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005406
– volume: 21
  start-page: 969
  issue: 3
  year: 2021
  ident: 1441_CR69
  publication-title: Mol Ecol Resour
  doi: 10.1111/1755-0998.13305
– volume: 19
  start-page: 1
  issue: 1
  year: 2021
  ident: 1441_CR73
  publication-title: BMC Biol
  doi: 10.1186/s12915-021-01004-5
– volume: 27
  start-page: 23
  issue: 1
  year: 2011
  ident: 1441_CR32
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2010.10.003
– volume: 20
  start-page: 89
  issue: 2
  year: 2019
  ident: 1441_CR94
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-018-0073-3
– volume: 141
  start-page: 1253
  issue: 7
  year: 2010
  ident: 1441_CR87
  publication-title: Cell.
  doi: 10.1016/j.cell.2010.05.020
– ident: 1441_CR127
– volume: 24
  start-page: 1236
  issue: 7
  year: 2014
  ident: 1441_CR124
  publication-title: Genome Res
  doi: 10.1101/gr.161554.113
– volume: 714
  start-page: 95
  issue: 1-2
  year: 2011
  ident: 1441_CR98
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2011.05.002
– volume: 72
  start-page: 595
  issue: 4
  year: 1993
  ident: 1441_CR117
  publication-title: Cell.
  doi: 10.1016/0092-8674(93)90078-5
– volume: 26
  start-page: 1333
  issue: 6
  year: 2009
  ident: 1441_CR41
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msp042
– ident: 1441_CR9
  doi: 10.3389/fphys.2020.567125
– volume: 151
  start-page: 964
  issue: 5
  year: 2012
  ident: 1441_CR35
  publication-title: Cell.
  doi: 10.1016/j.cell.2012.10.040
– volume: 16
  start-page: 1262
  issue: 10
  year: 2006
  ident: 1441_CR13
  publication-title: Genome Res
  doi: 10.1101/gr.5290206
– volume: 10
  start-page: 3038
  issue: 11
  year: 2018
  ident: 1441_CR100
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evy218
– volume: 147
  start-page: 217
  issue: 4
  year: 2015
  ident: 1441_CR15
  publication-title: Cytogenet Genome Res
  doi: 10.1159/000444429
– volume: 315
  start-page: 1587
  issue: 5818
  year: 2007
  ident: 1441_CR34
  publication-title: Science.
  doi: 10.1126/science.1140494
– volume: 56
  start-page: 1216
  issue: 6
  year: 2019
  ident: 1441_CR72
  publication-title: Ying Yong Kun Chong Xue Bao
– volume: 26
  start-page: 611
  issue: 5
  year: 2007
  ident: 1441_CR38
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.05.001
– volume: 43
  start-page: 10655
  issue: 22
  year: 2015
  ident: 1441_CR71
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1193
– volume-title: Transposon consensus sequence, transcriptome assembly, and annotation information of Locusta migratoria manilensis and Angaracris rhodopa. figshare
  year: 2022
  ident: 1441_CR128
  doi: 10.6084/m9.figshare.21256878
– volume: 135
  start-page: 3
  issue: 1
  year: 2008
  ident: 1441_CR96
  publication-title: Development.
  doi: 10.1242/dev.006486
– volume: 33
  start-page: 2052
  issue: 6
  year: 2005
  ident: 1441_CR37
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki323
– volume: 482
  start-page: 173
  issue: 7384
  year: 2012
  ident: 1441_CR105
  publication-title: Nature.
  doi: 10.1038/nature10811
– volume: 10
  start-page: 1
  issue: 3
  year: 2009
  ident: 1441_CR120
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 29
  start-page: R241
  issue: 7
  year: 2019
  ident: 1441_CR90
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2019.02.032
– volume: 36
  start-page: 1457
  issue: 7
  year: 2019
  ident: 1441_CR101
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msz079
– ident: 1441_CR126
– volume: 5
  issue: 11
  year: 2007
  ident: 1441_CR102
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050310
– volume: 28
  start-page: 1667
  issue: 15
  year: 2014
  ident: 1441_CR47
  publication-title: Genes Dev
  doi: 10.1101/gad.245514.114
– volume: 39
  start-page: msab336
  issue: 1
  year: 2022
  ident: 1441_CR45
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msab336
– volume: 20
  start-page: 1
  issue: 1
  year: 2022
  ident: 1441_CR14
  publication-title: BMC Biol
  doi: 10.1186/s12915-022-01249-8
– volume: 47
  start-page: 660
  issue: 5
  year: 2018
  ident: 1441_CR23
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2018.10.011
– volume: 302
  start-page: 1401
  issue: 5649
  year: 2003
  ident: 1441_CR27
  publication-title: Cience
– volume: 24
  start-page: 114
  issue: 3
  year: 2008
  ident: 1441_CR103
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2007.12.001
– volume: 95
  start-page: 309
  issue: 4
  year: 2005
  ident: 1441_CR107
  publication-title: Bull Entomol Res
  doi: 10.1079/BER2005361
– volume: 45
  start-page: 365
  issue: 2
  year: 2020
  ident: 1441_CR123
  publication-title: Syst Entomol
  doi: 10.1111/syen.12401
– volume: 51
  start-page: 127
  year: 2003
  ident: 1441_CR1
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.10013
– volume: 104
  start-page: 8597
  issue: suppl 1
  year: 2007
  ident: 1441_CR28
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0702207104
– volume: 42
  start-page: 1
  issue: 1
  year: 1983
  ident: 1441_CR18
  publication-title: Genet Res (Camb)
  doi: 10.1017/S0016672300021455
– ident: 1441_CR68
  doi: 10.1101/2022.06.02.494618
– volume: 10
  year: 2021
  ident: 1441_CR20
  publication-title: Elife.
  doi: 10.7554/eLife.63194
– volume: 112
  start-page: 359
  issue: 2
  year: 1986
  ident: 1441_CR50
  publication-title: Genetics.
  doi: 10.1093/genetics/112.2.359
– volume: 32
  start-page: 248
  issue: 3
  year: 2015
  ident: 1441_CR75
  publication-title: Zoolog Sci
  doi: 10.2108/zs140166
SSID ssj0025773
Score 2.4736934
Snippet Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the...
Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host...
Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the...
Abstract Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously...
SourceID doaj
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Abundance
Analysis
Biomedical and Life Sciences
Comparative analysis
Copy number
Divergence
Evolutionary genetics
Evolutionary Genomics
Genome size
Genomes
Gigantism
Grasshopper
Grasshoppers
Life Sciences
Methylase
Parasites
piRNA silencing
Research Article
Ribonucleic acid
RNA
RNA sequencing
RNA-mediated interference
TE transcripts
Transposable elements
Transposition
Transposons
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgifmJslVUEHzQ02U12N4-nWKpghWqlb8t-5Rq4S47mjrP_vTP5OI2l-uJTIDthczOzO7_NzfyGkFdBJsFg1wAP8TTOQiZjK7I0BmMr4ZO0VBJrhz-fiOOz7NN5fv5bqy_MCevpgXvFHRYlk8IEnmeCZYEzoyCCqayQPlPOZt3umxTJeJgajlq5lHwskVHisIWolmIlMqYhAACIt5Mw1LH1X9-Tr-dJ_vFnaReDju6RuwN4pLP-pe-TW6F-QG737SSvHpL5wFTeYjkUDX1iOA0_YMHjNzFqak8XzTZeYKIQXVWnJzPaVlh1BLPRqqbzS4DSF81qBZiQLs0VdWbTBoo8rku4VHMwQ9UuH5Gzow_f3h_HQyOF2ImcrWOnPLeCOeZUbnkIAKGUkcp444X3hS09C6UNhWUpL6UDyOIZgG6pnEpKlhj-mOzVTR2eEAoIBYtVE15aWPuFNAApbGkEL2EGFfKIpKNetRtYxrHZxUJ3pw0ldG8LDbbQnS30NiJvds-seo6Nv0q_Q3PtJJEfu7sBXqMHr9H_8pqIvERja2TAqDHFZg76bPXHL9_1TALiyZgs0puEvp5OhF4PQmUDP9SZoawB1IXMWhPJg4kkrGM3HR4dTw_7SKsBXEK0AgwFb_xiN4xPYm5cHZpNJ5NwbLXKIyInDjvR0XSkri46LvECEC0coiPydnTtX5PfbIOn_8MG--QOwxUJQICpA7K3vtyEZ4Dw1vZ5t5h_AsNESkY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZGJyReED9FYCCDkHiAaImT2M4DQh3aNJAoqDC0N8uxnSxSm5SmVdl_z12adArT9lSpvsiJz3f3Obn7jpC3TgROY9cAC_HUj10s_IzHoQ_KltwGYS4F1g5_m_DTs_jreXK-RyZ9LQymVfY-sXXUtjb4jvwQwizYLUQT9mnxx8euUfh1tW-hobvWCvZjSzF2h-yDS06CEdk_Op78mO6OYIkQUV86I_lhA9EuxAplTE8AYOBvBuGpZfG_7quv50_-9xG1jU0nD8j9DlTS8XYXPCR7rnpE7m7bTF4-JkXHYN5gmRR124Rx6v6CI8B3ZVRXls7qjT_DBCK6KKeTMW1KrEaC2WhZ0WIJEPuiXiwAK9K5vqRGrxtHkd91Dj9lAeopm_kTcnZy_Ovzqd81WPANT9jKN9JGGWeGGZlkkXMAraQWUlttubVpllvm8sylGQujXBiAMpYBGBfSyCBngY6eklFVV-4ZoYBcsIg1iPIMfEIqNECNLNc8ymEG6RKPhP26KtOxj2MTjJlqTyGSq60uFOhCtbpQG4-8312z2HJv3Cp9hOraSSJvdvtHvSxUZ4YqzZng2kVJzFnsIqYl3LWMU2FjabKYeeQNKlshM0aFqTcFrGejvnz_rcYCkFDMRBreJPRzOhB61wnlNTyo0V25AywXMm4NJA8GkmDfZjjcbzzV-ZdGXVmDR17vhvFKzJmrXL1uZYIIW7BGHhGDDTtYo-FIVV60HOMpIF04XHvkQ7-1rya_WQfPb7_XF-QeQ1uD0M_kARmtlmv3EjDdKnvVGeo_AVNJnw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCIkXxKfIGMggJB4gInEc23ksFdNAYkiDob1Zjj-6SG1SLa3K_nvukrQQxpB4qlSf5fTO5_u5ufsdIa-8TLzBrgEO4mnMPZdxKXgag7GVcEkalMTa4c_H4uiUfzrLzwaaHKyF-f39farEuxbiUYo1xJhAAKE73twkt3I4eHE3T8V0d7nKpcy2RTF_nTcKPB0__9VT-Gpm5B-vR7uoc3iP3B3gIp309r1Pbvj6AbndN5C8fEhmAzd5iwVQ1Pep4NT_ABfHf8GoqR2dN5t4jqlBdFmdHE9oW2GdEaxGq5rOLgA8nzfLJaBAujCX1Jp16ykyty7go5qB4qt28YicHn74Nj2Kh9YJsRU5W8VWuawUzDKr8jLzHkCTMlIZZ5xwriiDYz6UvihZmgVpAaQ4BjBbKquSwBKTPSZ7dVP7J4QCJsHy1CQLJXh7IQ2AiDIYkQVYQfk8IulWr9oOvOLY3mKuu_uFErq3hQZb6M4WehORN7s5y55V45_S79FcO0lkxO6-gI2iBwfTRWBSGJ_lXDDuM2YUPLXihXRc2ZKziLxEY2vkvKgxqWYG-mz1xy_f9UQCxuFMFul1Ql9PRkKvB6HQwA-1ZihkAHUhl9ZI8mAkCZ5rx8PbjaeHk6PVACchPgFqgid-sRvGmZgNV_tm3clg33tAWhGRow070tF4pK7OO_bwAjAsXJsj8na7tX8tfr0N9v9P_Cm5w9D3IMgzdUD2Vhdr_wzQ26p83rntTwl3PF0
  priority: 102
  providerName: Springer Nature
Title Transposable element expansion and low-level piRNA silencing in grasshoppers may cause genome gigantism
URI https://link.springer.com/article/10.1186/s12915-022-01441-w
https://www.proquest.com/docview/2737626612
https://www.proquest.com/docview/2730320853
https://pubmed.ncbi.nlm.nih.gov/PMC9615261
https://doaj.org/article/9f276ae354624e32a89018497d48cb42
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2ISQuiKcILJVBSBwgkDip7RwQaqtdLUgUVCiquFhO4nQjtUlpWnX775lxk6Kwu4hLqtSTOJnxeD7H8yDkpRGe0Vg1IAV76oYmFG7MQ98FYUueen4mBcYOfx7y83H4adKdHJCm3FHNwOrapR3WkxovZ28vf20_gMK_twov-bsKbJaPccboZADm3d0ckmO7X4SufOF-VwFGp91xBhDuuwKMYxNEc-09WobK5vO_Omtf9aT8azvVWqmzu-RODS9pbzce7pEDU9wnt3YFJ7cPyLTOZV5hwBQ1O9dxai5hSsCvZlQXKZ2VG3eGrkR0kY-GPVrlGJcEvdG8oNMlgO2LcrEA1EjneksTva4MxUyvc_jJpyCovJo_JOOz0--Dc7cuteAmvMtWbiLTIOYsYYnsxoExALKkFlKnOuVpGsVZykwWmyhmfpCJBEBNygCWC5lIL2OeDh6Ro6IszGNCAcNgOKsXZDHMDpHQADriTPMggx6k6TrEb_iqkjoPOZbDmCm7HpFc7WShQBbKykJtHPJ6f81il4Xjn9R9FNeeEjNo2z_K5VTVCqmijAmuTdANOQtNwLSEp5ZhJNJQJnHIHPICha0wR0aBTjhT4GelPn75oXoCMFHIROTfRPRt1CJ6VRNlJbxoouvAB2AX5t5qUZ60KEHTk3ZzM_BUoygK4CfYM0BZ8MTP9814JXrPFaZcWxovwGKsgUNEa8C2eNRuKfILm208AswLy2yHvGmG9p_Ob5bBk_9-6afkNkO1AzzA5Ak5Wi3X5hkAvVXcIYdiIjrkuH86_DqCswEfdOxHk47VaziO-j9_A0nnUcw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQXxFMYCiwIxAGs2uvHrg8IhUfV0DZIpa1yW9brdWopsUOcKORP8RuZ8SORqdpbT5G846w9szPzrXcehLwx3DEKuwYk4E9t3_jcjkPftUHYIkwcNxUcc4ePBuH-qf99GAy3yN82FwbDKlubWBnqpND4jXwX3CzoLXgT9mn628auUXi62rbQqJfFgVktYctWfux_Bfm-ZWzv28mXfbvpKmDrMGBzW4vEi0OmmRZB7BkDeEIoLlSikjBJojhNmEljE8XM9VKuwX8nDBAoF1o4KXOUB_97g9z08YgR9IcPNxu8gHOvTcwR4W4JvtTF_GcMfgDYYS87zq_qEXDRE1yMzvzviLbyfHv3yN0GstJevcbuky2TPyC36iaWq4dk1NRHLzEJi5o6HJ2aP2Bm8EscVXlCx8XSHmN4Ep1mx4MeLTPMdYLZaJbT0QwA_HkxnQISpRO1olotSkOxeuwEfrIRCD8rJ4_I6bUw-jHZzovcPCEUcBGmyDpeGoPFibgCIBOnKvRSmEGYwCJuy1epm9rm2GJjLKs9jghlLQsJspCVLOTSIu_X90zryh5XUn9Gca0psSp3daGYjWSj5DJKGQ-V8QI_ZL7xmBLw1MKPeOILHfvMIq9R2BLrbuQY2DMCfpay_-NM9jjgLJ_xyL2M6Odxh-hdQ5QW8KJaNckUwC6s59Wh3OlQgvXQ3eF24cnGepVyo2sWebUexjsxIi83xaKicTxs8OpZhHcWbIdH3ZE8O68qmEeAo2HrbpEP7dLeTH65DJ5e_awvye39k6NDedgfHDwjdxjqHYAMJnbI9ny2MM8BPc7jF5XKUvLrum3EP7zxgbU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxFUEBhgE4gGiJs7FzgNChVFtDAoaDPXNOLHTRWqT0rQq_Wv8Os7JpVWYtrc9VapP6vRcPyfnQsgLwx2jcGqAhnhq-8bndhz6rg3CFqF23FRwrB3-MgwPTvxPo2C0Q_62tTCYVtn6xMpR6yLBZ-Q9CLNgtxBNWC9t0iK-7Q_ezX7bOEEK37S24zRqFTky6xUc38q3h_sg65eMDT7--HBgNxMG7CQM2MJOhPbikCUsEUHsGQPYQigulFY61DqKU81MGpsoZq6X8gRiuWaARrlIhJMyR3nwu1fIVe75Po6N4KPtYS_g3GuLdETYKyGuulgLjYkQAEHsVScQVvMCzkaFs5ma_72uraLg4Ba52cBX2q_17TbZMfkdcq0eaLm-S8ZNr_QSC7KoqVPTqfkDLgefylGVazopVvYEU5XoLDse9mmZYd0T7EaznI7nAOZPi9kMUCmdqjVN1LI0FDvJTuEjG4MiZOX0Hjm5FEbfJ7t5kZsHhAJGwnJZx0tj8D4RVwBq4lSFXgo7CBNYxG35KpOmzzmO25jI6rwjQlnLQoIsZCULubLI6801s7rLx4XU71FcG0rs0F19UczHsjF4GaWMh8p4gR8y33hMCbhr4Udc-yKJfWaR5yhsiT04ctTmMfCzlIdff8o-B8zlMx655xF9P-4QvWqI0gL-aKKawgpgF_b26lDudSjBkyTd5VbxZOPJSrm1O4s82yzjlZidl5tiWdE4Hg579SzCOwrb4VF3Jc9Oq27mEWBqOMZb5E2r2tvNz5fBw4vv9Sm5Dt5Bfj4cHj0iNxiaHeANJvbI7mK-NI8BSC7iJ5XFUvLrsl3EP8Uqheg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transposable+element+expansion+and+low-level+piRNA+silencing+in+grasshoppers+may+cause+genome+gigantism&rft.jtitle=BMC+biology&rft.au=Liu%2C+Xuanzeng&rft.au=Majid%2C+Muhammad&rft.au=Yuan%2C+Hao&rft.au=Chang%2C+Huihui&rft.date=2022-10-28&rft.pub=BioMed+Central+Ltd&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12915-022-01441-w&rft.externalDocID=A724442791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon