Transposable element expansion and low-level piRNA silencing in grasshoppers may cause genome gigantism
Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imp...
Saved in:
Published in | BMC biology Vol. 20; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
28.10.2022
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1741-7007 1741-7007 |
DOI | 10.1186/s12915-022-01441-w |
Cover
Abstract | Background
Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (
Locusta migratoria manilensis
♀1C = 6.60 pg,
Angaracris rhodopa
♀1C = 16.36 pg) to ascertain the influence of piRNAs.
Results
We discovered that repetitive sequences accounted for 74.56% of the genome in
A. rhodopa,
more than 56.83% in
L. migratoria
, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct “landscapes” of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level.
Conclusions
Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes. |
---|---|
AbstractList | Abstract Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensis♀1C = 6.60 pg, Angaracris rhodopa♀1C = 16.36 pg) to ascertain the influence of piRNAs. Results We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct “landscapes” of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level. Conclusions Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes. Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensisâ1C = 6.60 pg, Angaracris rhodopaâ1C = 16.36 pg) to ascertain the influence of piRNAs. We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct "landscapes" of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level. Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes. Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensis♀1C = 6.60 pg, Angaracris rhodopa♀1C = 16.36 pg) to ascertain the influence of piRNAs. Results We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct “landscapes” of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level. Conclusions Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes. Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensisâ1C = 6.60 pg, Angaracris rhodopaâ1C = 16.36 pg) to ascertain the influence of piRNAs. Results We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct "landscapes" of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level. Conclusions Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes. Keywords: Genome size, Transposable elements, TE transcripts, piRNA silencing, Grasshopper Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae ( Locusta migratoria manilensis ♀1C = 6.60 pg, Angaracris rhodopa ♀1C = 16.36 pg) to ascertain the influence of piRNAs. Results We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria , and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct “landscapes” of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level. Conclusions Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes. Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensis♀1C = 6.60 pg, Angaracris rhodopa♀1C = 16.36 pg) to ascertain the influence of piRNAs.BACKGROUNDTransposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensis♀1C = 6.60 pg, Angaracris rhodopa♀1C = 16.36 pg) to ascertain the influence of piRNAs.We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct "landscapes" of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level.RESULTSWe discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct "landscapes" of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level.Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes.CONCLUSIONSOur study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes. |
ArticleNumber | 243 |
Audience | Academic |
Author | Zhao, Lina He, Xiaoting Majid, Muhammad Chang, Huihui Yuan, Hao Liu, Xuanzeng He, Lang Liu, Xiaojing Huang, Yuan Nie, Yimeng |
Author_xml | – sequence: 1 givenname: Xuanzeng surname: Liu fullname: Liu, Xuanzeng organization: College of Life Sciences, Shaanxi Normal University – sequence: 2 givenname: Muhammad surname: Majid fullname: Majid, Muhammad organization: College of Life Sciences, Shaanxi Normal University – sequence: 3 givenname: Hao surname: Yuan fullname: Yuan, Hao organization: School of Basic Medical Sciences, Xi’an Medical University – sequence: 4 givenname: Huihui surname: Chang fullname: Chang, Huihui organization: College of Life Science and Engineering, Henan University of Urban Construction – sequence: 5 givenname: Lina surname: Zhao fullname: Zhao, Lina organization: College of Life Sciences, Shaanxi Normal University – sequence: 6 givenname: Yimeng surname: Nie fullname: Nie, Yimeng organization: College of Life Sciences, Shaanxi Normal University – sequence: 7 givenname: Lang surname: He fullname: He, Lang organization: College of Life Sciences, Shaanxi Normal University – sequence: 8 givenname: Xiaojing surname: Liu fullname: Liu, Xiaojing organization: College of Life Sciences, Shaanxi Normal University – sequence: 9 givenname: Xiaoting surname: He fullname: He, Xiaoting organization: College of Life Sciences, Shaanxi Normal University – sequence: 10 givenname: Yuan orcidid: 0000-0001-7683-9193 surname: Huang fullname: Huang, Yuan email: yuanh@snnu.edu.cn organization: College of Life Sciences, Shaanxi Normal University |
BookMark | eNqNkl9rFDEUxQep2Hb1C_g04Is-TM2fmSTzIpRSdaFYqNXXkEnuTFMyyZjMdttvb7ZbrFukSB4Sbn7nXHJzDos9HzwUxVuMjjAW7GPCpMVNhQipEK5rXK1fFAeY5wNHiO_9dd4vDlO6Rog0nNNXxT5lFHGB0EExXEbl0xSS6hyU4GAEP5dwO-WqDb5U3pQurCsHN-DKyV58Oy6TdeC19UNpfTlEldJVmCaIqRzVXanVKkE5gA9j3uyg_GzT-Lp42SuX4M3Dvih-fD69PPlanZ1_WZ4cn1WaNWSutDC0Y0QTLZqOAtSECsWFMsowY9quNwT6DtqOYNpz3bbUEE5aLrRAPUGKLorl1tcEdS2naEcV72RQVt4XQhykirPVDmTbE84U0KZmpAZKlGgRFnXLTS10lzsvik9br2nVjWB0nkxUbsd098bbKzmEG9ky3BCGs8H7B4MYfq0gzXK0SYNzykNYJUk4RZQg0dCMvnuCXodV9HlUG4ozwhgmj9Sg8gOs70Puqzem8piTuq4Jbzdtj_5B5WVgtDpnqM8fuCv4sCPIzAy385B_Msnl94v_Z89_7rJky-oYUorQ_5kdRnITYbmNsMwRlvcRlussEk9E2s5qzmHMr7DueSndSlPu4weIj0N8RvUb5ckFJg |
CitedBy_id | crossref_primary_10_1016_j_ibmb_2024_104251 crossref_primary_10_1111_syen_12629 crossref_primary_10_1101_gr_277387_122 crossref_primary_10_1186_s12864_023_09499_8 crossref_primary_10_3390_biom14080915 crossref_primary_10_1016_j_gene_2024_149090 crossref_primary_10_1186_s12864_024_10596_5 crossref_primary_10_1038_s41586_024_07830_1 crossref_primary_10_1186_s12915_025_02155_5 crossref_primary_10_1371_journal_pone_0275551 crossref_primary_10_3390_genes14020255 crossref_primary_10_1186_s13100_024_00316_x crossref_primary_10_1093_g3journal_jkae115 crossref_primary_10_1016_j_ygeno_2024_110971 crossref_primary_10_1016_j_ympev_2024_108221 crossref_primary_10_1016_j_ygeno_2024_110896 crossref_primary_10_3389_fcell_2023_1124374 |
Cites_doi | 10.1093/gbe/evv050 10.1016/j.tibs.2015.12.008 10.1093/oxfordjournals.molbev.a003933 10.1186/s13100-018-0144-1 10.1017/S0016672300027695 10.1016/j.tplants.2016.06.003 10.7554/eLife.45954 10.1126/science.1222077 10.1038/nature25458 10.1186/s12862-020-1580-3 10.1016/j.molcel.2011.10.011 10.1126/science.1251343 10.1016/j.cub.2019.01.080 10.1139/G06-155 10.1146/annurev.ge.05.120171.001321 10.1093/gbe/evaa094 10.1126/science.1146484 10.1016/j.mrfmmm.2006.11.021 10.1093/gigascience/giac011 10.1186/s12915-020-00925-x 10.1016/j.tig.2010.08.007 10.1016/j.cois.2019.11.002 10.1016/j.cell.2009.01.045 10.1038/nature08501 10.1111/j.1365-2583.2010.00992.x 10.1186/s12915-021-01158-2 10.1093/gbe/evs103 10.1186/s12915-022-01302-6 10.1038/nprot.2007.310 10.3389/fphys.2016.00569 10.1038/nrg793 10.1002/ece3.3163 10.1126/science.1178534 10.1126/science.aaa1039 10.1016/j.cell.2009.07.014 10.1038/284601a0 10.1371/journal.pgen.1000733 10.1016/j.cell.2014.04.031 10.1093/molbev/mst081 10.1093/bioinformatics/btu170 10.1073/pnas.1616702114 10.1093/molbev/msq284 10.1186/gb-2009-10-1-r6 10.1038/ncomms10286 10.1093/hmg/ddm105 10.1023/A:1003957323876 10.1093/genetics/92.4.1127 10.1186/s13059-018-1577-z 10.1101/gr.095406.109 10.1093/genetics/112.4.947 10.1016/j.cell.2021.01.047 10.1038/nmeth.3176 10.12688/f1000research.25148.1 10.1038/nbt.1883 10.1242/dev.069187 10.1126/science.1089670 10.1093/nar/gkaa913 10.1111/mec.16311 10.1186/gb-2006-7-11-r112 10.14806/ej.17.1.200 10.1038/284604a0 10.1007/s00114-008-0395-7 10.1038/s41586-020-1966-9 10.1038/nrg2504 10.1016/j.cell.2009.04.027 10.1111/j.0962-1075.2004.00514.x 10.3389/fgene.2021.693541 10.1371/journal.pgen.1005620 10.1101/gad.209841.112 10.1073/pnas.1213283110 10.1146/annurev-genet-120417-031441 10.1101/gad.267252.115 10.1093/nar/gkaa1047 10.1016/j.tig.2017.09.002 10.1098/rstb.2014.0331 10.1093/gbe/evv005 10.1111/nyas.13295 10.1007/s10577-011-9248-x 10.1002/bies.201600125 10.1038/s41598-019-51888-1 10.1016/j.cell.2007.01.043 10.1371/journal.pgen.1005406 10.1111/1755-0998.13305 10.1186/s12915-021-01004-5 10.1016/j.tig.2010.10.003 10.1038/s41576-018-0073-3 10.1016/j.cell.2010.05.020 10.1101/gr.161554.113 10.1016/j.mrfmmm.2011.05.002 10.1016/0092-8674(93)90078-5 10.1093/molbev/msp042 10.3389/fphys.2020.567125 10.1016/j.cell.2012.10.040 10.1101/gr.5290206 10.1093/gbe/evy218 10.1159/000444429 10.1126/science.1140494 10.1016/j.molcel.2007.05.001 10.1093/nar/gkv1193 10.6084/m9.figshare.21256878 10.1242/dev.006486 10.1093/nar/gki323 10.1038/nature10811 10.1186/gb-2009-10-3-r25 10.1016/j.cub.2019.02.032 10.1093/molbev/msz079 10.1371/journal.pbio.0050310 10.1101/gad.245514.114 10.1093/molbev/msab336 10.1186/s12915-022-01249-8 10.1016/j.devcel.2018.10.011 10.1016/j.tig.2007.12.001 10.1079/BER2005361 10.1111/syen.12401 10.1002/cyto.a.10013 10.1073/pnas.0702207104 10.1017/S0016672300021455 10.1101/2022.06.02.494618 10.7554/eLife.63194 10.1093/genetics/112.2.359 10.2108/zs140166 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION IOV ISR 3V. 4U- 7QG 7QP 7QR 7SN 7SS 7TK 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC P64 PADUT PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12915-022-01441-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) University Readers Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Complete (ProQuest Database) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Proquest Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) University Readers Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1741-7007 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_9f276ae354624e32a89018497d48cb42 PMC9615261 A724442791 10_1186_s12915_022_01441_w |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31872217 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: GK202206021,GK202101003 funderid: http://dx.doi.org/10.13039/501100012226 – fundername: ; grantid: GK202206021,GK202101003 – fundername: ; grantid: 31872217 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ 8G5 AAFWJ AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR IOV ISE ISR ITC KQ8 LK8 M1P M2O M48 M7P M~E O5R O5S OK1 OVT P2P PADUT PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB AAYXX ALIPV CITATION PMFND 3V. 4U- 7QG 7QP 7QR 7SN 7SS 7TK 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c652t-c8d3b62c2c85b3ee4238a78adad6dd9bfd2efbe9b213f7c993d272978c80f20a3 |
IEDL.DBID | M48 |
ISSN | 1741-7007 |
IngestDate | Wed Aug 27 01:22:34 EDT 2025 Thu Aug 21 18:38:42 EDT 2025 Fri Sep 05 12:30:47 EDT 2025 Fri Jul 25 10:44:49 EDT 2025 Tue Jun 17 21:16:42 EDT 2025 Tue Jun 10 20:44:45 EDT 2025 Fri Jun 27 04:38:41 EDT 2025 Fri Jun 27 04:53:41 EDT 2025 Tue Jul 01 02:58:11 EDT 2025 Thu Apr 24 22:53:30 EDT 2025 Sat Sep 06 07:28:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Genome size TE transcripts piRNA silencing Grasshopper Transposable elements |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c652t-c8d3b62c2c85b3ee4238a78adad6dd9bfd2efbe9b213f7c993d272978c80f20a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7683-9193 |
OpenAccessLink | https://doi.org/10.1186/s12915-022-01441-w |
PMID | 36307800 |
PQID | 2737626612 |
PQPubID | 42637 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9f276ae354624e32a89018497d48cb42 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9615261 proquest_miscellaneous_2730320853 proquest_journals_2737626612 gale_infotracmisc_A724442791 gale_infotracacademiconefile_A724442791 gale_incontextgauss_ISR_A724442791 gale_incontextgauss_IOV_A724442791 crossref_primary_10_1186_s12915_022_01441_w crossref_citationtrail_10_1186_s12915_022_01441_w springer_journals_10_1186_s12915_022_01441_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-28 |
PublicationDateYYYYMMDD | 2022-10-28 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | BMC biology |
PublicationTitleAbbrev | BMC Biol |
PublicationYear | 2022 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | I Kalvari (1441_CR119) 2021; 49 D de Jong (1441_CR41) 2009; 26 AM Larracuente (1441_CR103) 2008; 24 DM Ozata (1441_CR94) 2019; 20 S Liu (1441_CR52) 2009; 5 B Czech (1441_CR46) 2018; 52 I Schubert (1441_CR16) 2016; 21 JP Blumenstiel (1441_CR32) 2011; 27 K He (1441_CR74) 2016; 7 B Charlesworth (1441_CR24) 1986; 112 G Sienski (1441_CR35) 2012; 151 J Yuan (1441_CR8) 2022; 20 ES Kelleher (1441_CR29) 2020; 37 X Wang (1441_CR66) 2014; 5 R Cornette (1441_CR75) 2015; 32 CH Langley (1441_CR25) 1988; 52 D Haig (1441_CR82) 2016; 38 F Shao (1441_CR56) 2019; 9 R Rahman (1441_CR71) 2015; 43 M Martin (1441_CR118) 2011; 17 M Ghildiyal (1441_CR42) 2009; 10 F Mohn (1441_CR36) 2015; 348 1441_CR80 J Dolezel (1441_CR1) 2003; 51 C Sun (1441_CR5) 2012; 4 S Koshikawa (1441_CR79) 2008; 95 J Doležel (1441_CR108) 2007; 2 E Lee (1441_CR88) 2012; 337 AL Zamparini (1441_CR63) 2011; 138 CD Malone (1441_CR93) 2009; 136 HH Kazazian Jr (1441_CR114) 2004; 303 B Charlesworth (1441_CR18) 1983; 42 J Brennecke (1441_CR33) 2007; 128 CM Bergman (1441_CR92) 2006; 7 XZ Liu (1441_CR128) 2022 AI Kalmykova (1441_CR37) 2005; 33 DJ Rees (1441_CR7) 2007; 50 B Buchfink (1441_CR113) 2015; 12 DJ Begun (1441_CR102) 2007; 5 AM Bolger (1441_CR110) 2014; 30 OM Palacios-Gimenez (1441_CR58) 2020; 18 F Mohn (1441_CR40) 2014; 157 1441_CR10 RC Iskow (1441_CR87) 2010; 141 WF Doolittle (1441_CR21) 1980; 284 D Chalopin (1441_CR55) 2015; 7 B Charlesworth (1441_CR50) 1986; 112 M Lynch (1441_CR28) 2007; 104 MG Kidwell (1441_CR81) 1979; 92 M Naville (1441_CR12) 2019; 29 JL Garcia-Perez (1441_CR85) 2007; 16 L Peters (1441_CR38) 2007; 26 J Mistry (1441_CR112) 2021; 49 JM Tubio (1441_CR89) 2014; 345 J Brown (1441_CR107) 2005; 95 B Langmead (1441_CR120) 2009; 10 Z Zhang (1441_CR62) 2011; 44 S Luo (1441_CR97) 2020; 20 K Alfsnes (1441_CR54) 2017; 7 MG Grabherr (1441_CR111) 2011; 29 AM Liu (1441_CR123) 2020; 45 R Kofler (1441_CR101) 2019; 36 DD Luan (1441_CR117) 1993; 72 Y Wang (1441_CR122) 2015; 5 ES Kelleher (1441_CR30) 2013; 30 LE Orgel (1441_CR19) 1980; 284 A Ardila-Garcia (1441_CR77) 2010; 19 N Izumi (1441_CR64) 2020; 578 Y Wei (1441_CR121) 2009; 10 A Kapusta (1441_CR11) 2017; 114 R Kofler (1441_CR70) 2015; 11 J Wen (1441_CR124) 2014; 24 J Castañeda (1441_CR98) 2011; 714 P Neumann (1441_CR115) 2019; 10 F Dufresne (1441_CR2) 2011; 19 SV Nuzhdin (1441_CR22) 1999; 107 A Suh (1441_CR90) 2019; 29 N Darricarrère (1441_CR44) 2013; 110 CA Thomas Jr (1441_CR76) 1971; 5 B Piegu (1441_CR13) 2006; 16 A Le Thomas (1441_CR47) 2014; 28 B Saint-Leandre (1441_CR84) 2020; 12 RT Todd (1441_CR106) 2019; 8 M Lynch (1441_CR27) 2003; 302 TF Mackay (1441_CR105) 2012; 482 PS Schnable (1441_CR51) 2009; 326 A Kapusta (1441_CR57) 2017; 1389 TA Elliott (1441_CR3) 2015; 370 1441_CR9 C Li (1441_CR60) 2009; 137 C Feschotte (1441_CR91) 2002; 3 Q Liu (1441_CR73) 2021; 19 S Moon (1441_CR23) 2018; 47 S Negm (1441_CR69) 2021; 21 SL Lim (1441_CR65) 2015; 11 C Goubert (1441_CR109) 2015; 7 LS Gunawardane (1441_CR34) 2007; 315 D Hedges (1441_CR26) 2007; 616 N Parisot (1441_CR17) 2021; 19 ES Kelleher (1441_CR100) 2018; 10 Y Cong (1441_CR72) 2019; 56 Q Guo (1441_CR14) 2022; 20 J Lu (1441_CR99) 2010; 20 I Said (1441_CR45) 2022; 39 K-A Senti (1441_CR59) 2015; 29 S Klawitter (1441_CR86) 2016; 7 Y-A Bae (1441_CR116) 2001; 18 X Huang (1441_CR48) 2017; 33 1441_CR53 1441_CR68 K Wang (1441_CR4) 2021; 184 A Canapa (1441_CR15) 2015; 147 RW Nowell (1441_CR20) 2021; 10 B Czech (1441_CR49) 2016; 41 C Klattenhoff (1441_CR61) 2009; 138 K Saito (1441_CR39) 2009; 461 S Nowoshilow (1441_CR6) 2018; 554 AA Aravin (1441_CR31) 2007; 318 1441_CR125 1441_CR126 J Johnston (1441_CR78) 2004; 13 C Klattenhoff (1441_CR96) 2008; 135 B Kolaczkowski (1441_CR104) 2011; 28 K-A Senti (1441_CR95) 2010; 26 1441_CR67 G Bourque (1441_CR83) 2018; 19 1441_CR127 A Le Thomas (1441_CR43) 2013; 27 |
References_xml | – volume: 7 start-page: 1192 issue: 4 year: 2015 ident: 1441_CR109 publication-title: Genome Biol Evol doi: 10.1093/gbe/evv050 – volume: 41 start-page: 324 issue: 4 year: 2016 ident: 1441_CR49 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2015.12.008 – volume: 18 start-page: 1474 issue: 8 year: 2001 ident: 1441_CR116 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003933 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 1441_CR115 publication-title: Mob DNA doi: 10.1186/s13100-018-0144-1 – volume: 52 start-page: 223 issue: 3 year: 1988 ident: 1441_CR25 publication-title: Genet Res (Camb) doi: 10.1017/S0016672300027695 – volume: 21 start-page: 749 issue: 9 year: 2016 ident: 1441_CR16 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2016.06.003 – volume: 8 year: 2019 ident: 1441_CR106 publication-title: Elife. doi: 10.7554/eLife.45954 – volume: 337 start-page: 967 issue: 6097 year: 2012 ident: 1441_CR88 publication-title: Science. doi: 10.1126/science.1222077 – volume: 554 start-page: 50 issue: 7690 year: 2018 ident: 1441_CR6 publication-title: Nature. doi: 10.1038/nature25458 – volume: 20 start-page: 1 issue: 1 year: 2020 ident: 1441_CR97 publication-title: BMC Evol Biol doi: 10.1186/s12862-020-1580-3 – volume: 44 start-page: 572 issue: 4 year: 2011 ident: 1441_CR62 publication-title: Mol Cell doi: 10.1016/j.molcel.2011.10.011 – volume: 345 start-page: 1251343 issue: 6196 year: 2014 ident: 1441_CR89 publication-title: Science. doi: 10.1126/science.1251343 – volume: 29 start-page: 1161 issue: 7 year: 2019 ident: 1441_CR12 publication-title: Curr Biol doi: 10.1016/j.cub.2019.01.080 – volume: 50 start-page: 151 issue: 2 year: 2007 ident: 1441_CR7 publication-title: Genome. doi: 10.1139/G06-155 – volume: 5 start-page: 237 issue: 1 year: 1971 ident: 1441_CR76 publication-title: Annu Rev Genet doi: 10.1146/annurev.ge.05.120171.001321 – volume: 12 start-page: 931 issue: 6 year: 2020 ident: 1441_CR84 publication-title: Genome Biol Evol doi: 10.1093/gbe/evaa094 – volume: 318 start-page: 761 issue: 5851 year: 2007 ident: 1441_CR31 publication-title: Science. doi: 10.1126/science.1146484 – volume: 616 start-page: 46 issue: 1-2 year: 2007 ident: 1441_CR26 publication-title: Mutat Res doi: 10.1016/j.mrfmmm.2006.11.021 – ident: 1441_CR80 doi: 10.1093/gigascience/giac011 – volume: 18 start-page: 1 issue: 1 year: 2020 ident: 1441_CR58 publication-title: BMC Biol doi: 10.1186/s12915-020-00925-x – volume: 26 start-page: 499 issue: 12 year: 2010 ident: 1441_CR95 publication-title: Trends Genet doi: 10.1016/j.tig.2010.08.007 – volume: 37 start-page: 49 year: 2020 ident: 1441_CR29 publication-title: Curr Opin Insect Sci doi: 10.1016/j.cois.2019.11.002 – volume: 136 start-page: 656 issue: 4 year: 2009 ident: 1441_CR93 publication-title: Cell. doi: 10.1016/j.cell.2009.01.045 – volume: 461 start-page: 1296 issue: 7268 year: 2009 ident: 1441_CR39 publication-title: Nature. doi: 10.1038/nature08501 – volume: 19 start-page: 337 issue: 3 year: 2010 ident: 1441_CR77 publication-title: Insect Mol Biol doi: 10.1111/j.1365-2583.2010.00992.x – volume: 19 start-page: 1 issue: 1 year: 2021 ident: 1441_CR17 publication-title: BMC Biol doi: 10.1186/s12915-021-01158-2 – volume: 4 start-page: 1340 issue: 12 year: 2012 ident: 1441_CR5 publication-title: Genome Biol Evol doi: 10.1093/gbe/evs103 – volume: 20 start-page: 1 issue: 1 year: 2022 ident: 1441_CR8 publication-title: BMC Biol doi: 10.1186/s12915-022-01302-6 – volume: 2 start-page: 2233 issue: 9 year: 2007 ident: 1441_CR108 publication-title: Nat Protoc doi: 10.1038/nprot.2007.310 – volume: 7 start-page: 569 year: 2016 ident: 1441_CR74 publication-title: Front Physiol doi: 10.3389/fphys.2016.00569 – volume: 3 start-page: 329 issue: 5 year: 2002 ident: 1441_CR91 publication-title: Nat Rev Genet doi: 10.1038/nrg793 – volume: 7 start-page: 5939 issue: 15 year: 2017 ident: 1441_CR54 publication-title: Ecol Evol doi: 10.1002/ece3.3163 – volume: 326 start-page: 1112 issue: 5956 year: 2009 ident: 1441_CR51 publication-title: Science. doi: 10.1126/science.1178534 – volume: 348 start-page: 812 issue: 6236 year: 2015 ident: 1441_CR36 publication-title: Science. doi: 10.1126/science.aaa1039 – volume: 138 start-page: 1137 issue: 6 year: 2009 ident: 1441_CR61 publication-title: Cell. doi: 10.1016/j.cell.2009.07.014 – volume: 284 start-page: 601 issue: 5757 year: 1980 ident: 1441_CR21 publication-title: Nature. doi: 10.1038/284601a0 – volume: 5 issue: 11 year: 2009 ident: 1441_CR52 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000733 – volume: 157 start-page: 1364 issue: 6 year: 2014 ident: 1441_CR40 publication-title: Cell. doi: 10.1016/j.cell.2014.04.031 – volume: 30 start-page: 1816 issue: 8 year: 2013 ident: 1441_CR30 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst081 – volume: 30 start-page: 2114 issue: 15 year: 2014 ident: 1441_CR110 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu170 – volume: 114 start-page: E1460 issue: 8 year: 2017 ident: 1441_CR11 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1616702114 – volume: 28 start-page: 1033 issue: 2 year: 2011 ident: 1441_CR104 publication-title: Mol Biol Evol doi: 10.1093/molbev/msq284 – volume: 10 start-page: 1 issue: 1 year: 2009 ident: 1441_CR121 publication-title: Genome Biol doi: 10.1186/gb-2009-10-1-r6 – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 1441_CR122 publication-title: Sci Rep – volume: 7 start-page: 1 issue: 1 year: 2016 ident: 1441_CR86 publication-title: Nat Commun doi: 10.1038/ncomms10286 – volume: 16 start-page: 1569 issue: 13 year: 2007 ident: 1441_CR85 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddm105 – volume: 107 start-page: 129 issue: 1-3 year: 1999 ident: 1441_CR22 publication-title: Genetica. doi: 10.1023/A:1003957323876 – volume: 92 start-page: 1127 issue: 4 year: 1979 ident: 1441_CR81 publication-title: Genetics. doi: 10.1093/genetics/92.4.1127 – volume: 19 start-page: 1 issue: 1 year: 2018 ident: 1441_CR83 publication-title: Genome Biol doi: 10.1186/s13059-018-1577-z – volume: 20 start-page: 212 issue: 2 year: 2010 ident: 1441_CR99 publication-title: Genome Res doi: 10.1101/gr.095406.109 – volume: 112 start-page: 947 issue: 4 year: 1986 ident: 1441_CR24 publication-title: Genetics. doi: 10.1093/genetics/112.4.947 – volume: 184 start-page: 1362 issue: 5 year: 2021 ident: 1441_CR4 publication-title: Cell. doi: 10.1016/j.cell.2021.01.047 – volume: 12 start-page: 59 issue: 1 year: 2015 ident: 1441_CR113 publication-title: Nat Methods doi: 10.1038/nmeth.3176 – ident: 1441_CR67 doi: 10.12688/f1000research.25148.1 – volume: 29 start-page: 644 issue: 7 year: 2011 ident: 1441_CR111 publication-title: Nat Biotechnol doi: 10.1038/nbt.1883 – volume: 138 start-page: 4039 issue: 18 year: 2011 ident: 1441_CR63 publication-title: Development. doi: 10.1242/dev.069187 – volume: 303 start-page: 1626 issue: 5664 year: 2004 ident: 1441_CR114 publication-title: Science. doi: 10.1126/science.1089670 – ident: 1441_CR125 – volume: 49 start-page: D412 issue: D1 year: 2021 ident: 1441_CR112 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa913 – ident: 1441_CR53 doi: 10.1111/mec.16311 – volume: 7 start-page: 1 issue: 11 year: 2006 ident: 1441_CR92 publication-title: Genome Biol doi: 10.1186/gb-2006-7-11-r112 – volume: 17 start-page: 10 issue: 1 year: 2011 ident: 1441_CR118 publication-title: EMBnet J doi: 10.14806/ej.17.1.200 – volume: 284 start-page: 604 issue: 5757 year: 1980 ident: 1441_CR19 publication-title: Nature. doi: 10.1038/284604a0 – volume: 95 start-page: 859 issue: 9 year: 2008 ident: 1441_CR79 publication-title: Naturwissenschaften. doi: 10.1007/s00114-008-0395-7 – volume: 578 start-page: 311 issue: 7794 year: 2020 ident: 1441_CR64 publication-title: Nature. doi: 10.1038/s41586-020-1966-9 – volume: 10 start-page: 94 issue: 2 year: 2009 ident: 1441_CR42 publication-title: Nat Rev Genet doi: 10.1038/nrg2504 – volume: 137 start-page: 509 issue: 3 year: 2009 ident: 1441_CR60 publication-title: Cell. doi: 10.1016/j.cell.2009.04.027 – volume: 13 start-page: 581 issue: 6 year: 2004 ident: 1441_CR78 publication-title: Insect Mol Biol doi: 10.1111/j.0962-1075.2004.00514.x – ident: 1441_CR10 doi: 10.3389/fgene.2021.693541 – volume: 11 issue: 10 year: 2015 ident: 1441_CR65 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005620 – volume: 27 start-page: 390 issue: 4 year: 2013 ident: 1441_CR43 publication-title: Genes Dev doi: 10.1101/gad.209841.112 – volume: 110 start-page: 1297 issue: 4 year: 2013 ident: 1441_CR44 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1213283110 – volume: 52 start-page: 131 year: 2018 ident: 1441_CR46 publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-120417-031441 – volume: 29 start-page: 1747 issue: 16 year: 2015 ident: 1441_CR59 publication-title: Genes Dev doi: 10.1101/gad.267252.115 – volume: 49 start-page: D192 issue: D1 year: 2021 ident: 1441_CR119 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa1047 – volume: 33 start-page: 882 issue: 11 year: 2017 ident: 1441_CR48 publication-title: Trends Genet doi: 10.1016/j.tig.2017.09.002 – volume: 370 start-page: 20140331 issue: 1678 year: 2015 ident: 1441_CR3 publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2014.0331 – volume: 7 start-page: 567 issue: 2 year: 2015 ident: 1441_CR55 publication-title: Genome Biol Evol doi: 10.1093/gbe/evv005 – volume: 1389 start-page: 164 issue: 1 year: 2017 ident: 1441_CR57 publication-title: Ann N Y Acad Sci doi: 10.1111/nyas.13295 – volume: 19 start-page: 925 issue: 7 year: 2011 ident: 1441_CR2 publication-title: Chromosome Res doi: 10.1007/s10577-011-9248-x – volume: 38 start-page: 1158 issue: 11 year: 2016 ident: 1441_CR82 publication-title: Bioessays. doi: 10.1002/bies.201600125 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 1441_CR56 publication-title: Sci Rep doi: 10.1038/s41598-019-51888-1 – volume: 128 start-page: 1089 issue: 6 year: 2007 ident: 1441_CR33 publication-title: Cell. doi: 10.1016/j.cell.2007.01.043 – volume: 5 start-page: 1 issue: 1 year: 2014 ident: 1441_CR66 publication-title: Nat Commun – volume: 11 issue: 7 year: 2015 ident: 1441_CR70 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005406 – volume: 21 start-page: 969 issue: 3 year: 2021 ident: 1441_CR69 publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.13305 – volume: 19 start-page: 1 issue: 1 year: 2021 ident: 1441_CR73 publication-title: BMC Biol doi: 10.1186/s12915-021-01004-5 – volume: 27 start-page: 23 issue: 1 year: 2011 ident: 1441_CR32 publication-title: Trends Genet doi: 10.1016/j.tig.2010.10.003 – volume: 20 start-page: 89 issue: 2 year: 2019 ident: 1441_CR94 publication-title: Nat Rev Genet doi: 10.1038/s41576-018-0073-3 – volume: 141 start-page: 1253 issue: 7 year: 2010 ident: 1441_CR87 publication-title: Cell. doi: 10.1016/j.cell.2010.05.020 – ident: 1441_CR127 – volume: 24 start-page: 1236 issue: 7 year: 2014 ident: 1441_CR124 publication-title: Genome Res doi: 10.1101/gr.161554.113 – volume: 714 start-page: 95 issue: 1-2 year: 2011 ident: 1441_CR98 publication-title: Mutat Res doi: 10.1016/j.mrfmmm.2011.05.002 – volume: 72 start-page: 595 issue: 4 year: 1993 ident: 1441_CR117 publication-title: Cell. doi: 10.1016/0092-8674(93)90078-5 – volume: 26 start-page: 1333 issue: 6 year: 2009 ident: 1441_CR41 publication-title: Mol Biol Evol doi: 10.1093/molbev/msp042 – ident: 1441_CR9 doi: 10.3389/fphys.2020.567125 – volume: 151 start-page: 964 issue: 5 year: 2012 ident: 1441_CR35 publication-title: Cell. doi: 10.1016/j.cell.2012.10.040 – volume: 16 start-page: 1262 issue: 10 year: 2006 ident: 1441_CR13 publication-title: Genome Res doi: 10.1101/gr.5290206 – volume: 10 start-page: 3038 issue: 11 year: 2018 ident: 1441_CR100 publication-title: Genome Biol Evol doi: 10.1093/gbe/evy218 – volume: 147 start-page: 217 issue: 4 year: 2015 ident: 1441_CR15 publication-title: Cytogenet Genome Res doi: 10.1159/000444429 – volume: 315 start-page: 1587 issue: 5818 year: 2007 ident: 1441_CR34 publication-title: Science. doi: 10.1126/science.1140494 – volume: 56 start-page: 1216 issue: 6 year: 2019 ident: 1441_CR72 publication-title: Ying Yong Kun Chong Xue Bao – volume: 26 start-page: 611 issue: 5 year: 2007 ident: 1441_CR38 publication-title: Mol Cell doi: 10.1016/j.molcel.2007.05.001 – volume: 43 start-page: 10655 issue: 22 year: 2015 ident: 1441_CR71 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1193 – volume-title: Transposon consensus sequence, transcriptome assembly, and annotation information of Locusta migratoria manilensis and Angaracris rhodopa. figshare year: 2022 ident: 1441_CR128 doi: 10.6084/m9.figshare.21256878 – volume: 135 start-page: 3 issue: 1 year: 2008 ident: 1441_CR96 publication-title: Development. doi: 10.1242/dev.006486 – volume: 33 start-page: 2052 issue: 6 year: 2005 ident: 1441_CR37 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki323 – volume: 482 start-page: 173 issue: 7384 year: 2012 ident: 1441_CR105 publication-title: Nature. doi: 10.1038/nature10811 – volume: 10 start-page: 1 issue: 3 year: 2009 ident: 1441_CR120 publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 29 start-page: R241 issue: 7 year: 2019 ident: 1441_CR90 publication-title: Curr Biol doi: 10.1016/j.cub.2019.02.032 – volume: 36 start-page: 1457 issue: 7 year: 2019 ident: 1441_CR101 publication-title: Mol Biol Evol doi: 10.1093/molbev/msz079 – ident: 1441_CR126 – volume: 5 issue: 11 year: 2007 ident: 1441_CR102 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050310 – volume: 28 start-page: 1667 issue: 15 year: 2014 ident: 1441_CR47 publication-title: Genes Dev doi: 10.1101/gad.245514.114 – volume: 39 start-page: msab336 issue: 1 year: 2022 ident: 1441_CR45 publication-title: Mol Biol Evol doi: 10.1093/molbev/msab336 – volume: 20 start-page: 1 issue: 1 year: 2022 ident: 1441_CR14 publication-title: BMC Biol doi: 10.1186/s12915-022-01249-8 – volume: 47 start-page: 660 issue: 5 year: 2018 ident: 1441_CR23 publication-title: Dev Cell doi: 10.1016/j.devcel.2018.10.011 – volume: 302 start-page: 1401 issue: 5649 year: 2003 ident: 1441_CR27 publication-title: Cience – volume: 24 start-page: 114 issue: 3 year: 2008 ident: 1441_CR103 publication-title: Trends Genet doi: 10.1016/j.tig.2007.12.001 – volume: 95 start-page: 309 issue: 4 year: 2005 ident: 1441_CR107 publication-title: Bull Entomol Res doi: 10.1079/BER2005361 – volume: 45 start-page: 365 issue: 2 year: 2020 ident: 1441_CR123 publication-title: Syst Entomol doi: 10.1111/syen.12401 – volume: 51 start-page: 127 year: 2003 ident: 1441_CR1 publication-title: Cytometry A doi: 10.1002/cyto.a.10013 – volume: 104 start-page: 8597 issue: suppl 1 year: 2007 ident: 1441_CR28 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0702207104 – volume: 42 start-page: 1 issue: 1 year: 1983 ident: 1441_CR18 publication-title: Genet Res (Camb) doi: 10.1017/S0016672300021455 – ident: 1441_CR68 doi: 10.1101/2022.06.02.494618 – volume: 10 year: 2021 ident: 1441_CR20 publication-title: Elife. doi: 10.7554/eLife.63194 – volume: 112 start-page: 359 issue: 2 year: 1986 ident: 1441_CR50 publication-title: Genetics. doi: 10.1093/genetics/112.2.359 – volume: 32 start-page: 248 issue: 3 year: 2015 ident: 1441_CR75 publication-title: Zoolog Sci doi: 10.2108/zs140166 |
SSID | ssj0025773 |
Score | 2.4736934 |
Snippet | Background
Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the... Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host... Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the... Abstract Background Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously... |
SourceID | doaj pubmedcentral proquest gale crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Abundance Analysis Biomedical and Life Sciences Comparative analysis Copy number Divergence Evolutionary genetics Evolutionary Genomics Genome size Genomes Gigantism Grasshopper Grasshoppers Life Sciences Methylase Parasites piRNA silencing Research Article Ribonucleic acid RNA RNA sequencing RNA-mediated interference TE transcripts Transposable elements Transposition Transposons |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgifmJslVUEHzQ02U12N4-nWKpghWqlb8t-5Rq4S47mjrP_vTP5OI2l-uJTIDthczOzO7_NzfyGkFdBJsFg1wAP8TTOQiZjK7I0BmMr4ZO0VBJrhz-fiOOz7NN5fv5bqy_MCevpgXvFHRYlk8IEnmeCZYEzoyCCqayQPlPOZt3umxTJeJgajlq5lHwskVHisIWolmIlMqYhAACIt5Mw1LH1X9-Tr-dJ_vFnaReDju6RuwN4pLP-pe-TW6F-QG737SSvHpL5wFTeYjkUDX1iOA0_YMHjNzFqak8XzTZeYKIQXVWnJzPaVlh1BLPRqqbzS4DSF81qBZiQLs0VdWbTBoo8rku4VHMwQ9UuH5Gzow_f3h_HQyOF2ImcrWOnPLeCOeZUbnkIAKGUkcp444X3hS09C6UNhWUpL6UDyOIZgG6pnEpKlhj-mOzVTR2eEAoIBYtVE15aWPuFNAApbGkEL2EGFfKIpKNetRtYxrHZxUJ3pw0ldG8LDbbQnS30NiJvds-seo6Nv0q_Q3PtJJEfu7sBXqMHr9H_8pqIvERja2TAqDHFZg76bPXHL9_1TALiyZgs0puEvp5OhF4PQmUDP9SZoawB1IXMWhPJg4kkrGM3HR4dTw_7SKsBXEK0AgwFb_xiN4xPYm5cHZpNJ5NwbLXKIyInDjvR0XSkri46LvECEC0coiPydnTtX5PfbIOn_8MG--QOwxUJQICpA7K3vtyEZ4Dw1vZ5t5h_AsNESkY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZGJyReED9FYCCDkHiAaImT2M4DQh3aNJAoqDC0N8uxnSxSm5SmVdl_z12adArT9lSpvsiJz3f3Obn7jpC3TgROY9cAC_HUj10s_IzHoQ_KltwGYS4F1g5_m_DTs_jreXK-RyZ9LQymVfY-sXXUtjb4jvwQwizYLUQT9mnxx8euUfh1tW-hobvWCvZjSzF2h-yDS06CEdk_Op78mO6OYIkQUV86I_lhA9EuxAplTE8AYOBvBuGpZfG_7quv50_-9xG1jU0nD8j9DlTS8XYXPCR7rnpE7m7bTF4-JkXHYN5gmRR124Rx6v6CI8B3ZVRXls7qjT_DBCK6KKeTMW1KrEaC2WhZ0WIJEPuiXiwAK9K5vqRGrxtHkd91Dj9lAeopm_kTcnZy_Ovzqd81WPANT9jKN9JGGWeGGZlkkXMAraQWUlttubVpllvm8sylGQujXBiAMpYBGBfSyCBngY6eklFVV-4ZoYBcsIg1iPIMfEIqNECNLNc8ymEG6RKPhP26KtOxj2MTjJlqTyGSq60uFOhCtbpQG4-8312z2HJv3Cp9hOraSSJvdvtHvSxUZ4YqzZng2kVJzFnsIqYl3LWMU2FjabKYeeQNKlshM0aFqTcFrGejvnz_rcYCkFDMRBreJPRzOhB61wnlNTyo0V25AywXMm4NJA8GkmDfZjjcbzzV-ZdGXVmDR17vhvFKzJmrXL1uZYIIW7BGHhGDDTtYo-FIVV60HOMpIF04XHvkQ7-1rya_WQfPb7_XF-QeQ1uD0M_kARmtlmv3EjDdKnvVGeo_AVNJnw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCIkXxKfIGMggJB4gInEc23ksFdNAYkiDob1Zjj-6SG1SLa3K_nvukrQQxpB4qlSf5fTO5_u5ufsdIa-8TLzBrgEO4mnMPZdxKXgag7GVcEkalMTa4c_H4uiUfzrLzwaaHKyF-f39farEuxbiUYo1xJhAAKE73twkt3I4eHE3T8V0d7nKpcy2RTF_nTcKPB0__9VT-Gpm5B-vR7uoc3iP3B3gIp309r1Pbvj6AbndN5C8fEhmAzd5iwVQ1Pep4NT_ABfHf8GoqR2dN5t4jqlBdFmdHE9oW2GdEaxGq5rOLgA8nzfLJaBAujCX1Jp16ykyty7go5qB4qt28YicHn74Nj2Kh9YJsRU5W8VWuawUzDKr8jLzHkCTMlIZZ5xwriiDYz6UvihZmgVpAaQ4BjBbKquSwBKTPSZ7dVP7J4QCJsHy1CQLJXh7IQ2AiDIYkQVYQfk8IulWr9oOvOLY3mKuu_uFErq3hQZb6M4WehORN7s5y55V45_S79FcO0lkxO6-gI2iBwfTRWBSGJ_lXDDuM2YUPLXihXRc2ZKziLxEY2vkvKgxqWYG-mz1xy_f9UQCxuFMFul1Ql9PRkKvB6HQwA-1ZihkAHUhl9ZI8mAkCZ5rx8PbjaeHk6PVACchPgFqgid-sRvGmZgNV_tm3clg33tAWhGRow070tF4pK7OO_bwAjAsXJsj8na7tX8tfr0N9v9P_Cm5w9D3IMgzdUD2Vhdr_wzQ26p83rntTwl3PF0 priority: 102 providerName: Springer Nature |
Title | Transposable element expansion and low-level piRNA silencing in grasshoppers may cause genome gigantism |
URI | https://link.springer.com/article/10.1186/s12915-022-01441-w https://www.proquest.com/docview/2737626612 https://www.proquest.com/docview/2730320853 https://pubmed.ncbi.nlm.nih.gov/PMC9615261 https://doaj.org/article/9f276ae354624e32a89018497d48cb42 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2ISQuiKcILJVBSBwgkDip7RwQaqtdLUgUVCiquFhO4nQjtUlpWnX775lxk6Kwu4hLqtSTOJnxeD7H8yDkpRGe0Vg1IAV76oYmFG7MQ98FYUueen4mBcYOfx7y83H4adKdHJCm3FHNwOrapR3WkxovZ28vf20_gMK_twov-bsKbJaPccboZADm3d0ckmO7X4SufOF-VwFGp91xBhDuuwKMYxNEc-09WobK5vO_Omtf9aT8azvVWqmzu-RODS9pbzce7pEDU9wnt3YFJ7cPyLTOZV5hwBQ1O9dxai5hSsCvZlQXKZ2VG3eGrkR0kY-GPVrlGJcEvdG8oNMlgO2LcrEA1EjneksTva4MxUyvc_jJpyCovJo_JOOz0--Dc7cuteAmvMtWbiLTIOYsYYnsxoExALKkFlKnOuVpGsVZykwWmyhmfpCJBEBNygCWC5lIL2OeDh6Ro6IszGNCAcNgOKsXZDHMDpHQADriTPMggx6k6TrEb_iqkjoPOZbDmCm7HpFc7WShQBbKykJtHPJ6f81il4Xjn9R9FNeeEjNo2z_K5VTVCqmijAmuTdANOQtNwLSEp5ZhJNJQJnHIHPICha0wR0aBTjhT4GelPn75oXoCMFHIROTfRPRt1CJ6VRNlJbxoouvAB2AX5t5qUZ60KEHTk3ZzM_BUoygK4CfYM0BZ8MTP9814JXrPFaZcWxovwGKsgUNEa8C2eNRuKfILm208AswLy2yHvGmG9p_Ob5bBk_9-6afkNkO1AzzA5Ak5Wi3X5hkAvVXcIYdiIjrkuH86_DqCswEfdOxHk47VaziO-j9_A0nnUcw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQXxFMYCiwIxAGs2uvHrg8IhUfV0DZIpa1yW9brdWopsUOcKORP8RuZ8SORqdpbT5G846w9szPzrXcehLwx3DEKuwYk4E9t3_jcjkPftUHYIkwcNxUcc4ePBuH-qf99GAy3yN82FwbDKlubWBnqpND4jXwX3CzoLXgT9mn628auUXi62rbQqJfFgVktYctWfux_Bfm-ZWzv28mXfbvpKmDrMGBzW4vEi0OmmRZB7BkDeEIoLlSikjBJojhNmEljE8XM9VKuwX8nDBAoF1o4KXOUB_97g9z08YgR9IcPNxu8gHOvTcwR4W4JvtTF_GcMfgDYYS87zq_qEXDRE1yMzvzviLbyfHv3yN0GstJevcbuky2TPyC36iaWq4dk1NRHLzEJi5o6HJ2aP2Bm8EscVXlCx8XSHmN4Ep1mx4MeLTPMdYLZaJbT0QwA_HkxnQISpRO1olotSkOxeuwEfrIRCD8rJ4_I6bUw-jHZzovcPCEUcBGmyDpeGoPFibgCIBOnKvRSmEGYwCJuy1epm9rm2GJjLKs9jghlLQsJspCVLOTSIu_X90zryh5XUn9Gca0psSp3daGYjWSj5DJKGQ-V8QI_ZL7xmBLw1MKPeOILHfvMIq9R2BLrbuQY2DMCfpay_-NM9jjgLJ_xyL2M6Odxh-hdQ5QW8KJaNckUwC6s59Wh3OlQgvXQ3eF24cnGepVyo2sWebUexjsxIi83xaKicTxs8OpZhHcWbIdH3ZE8O68qmEeAo2HrbpEP7dLeTH65DJ5e_awvye39k6NDedgfHDwjdxjqHYAMJnbI9ny2MM8BPc7jF5XKUvLrum3EP7zxgbU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxFUEBhgE4gGiJs7FzgNChVFtDAoaDPXNOLHTRWqT0rQq_Wv8Os7JpVWYtrc9VapP6vRcPyfnQsgLwx2jcGqAhnhq-8bndhz6rg3CFqF23FRwrB3-MgwPTvxPo2C0Q_62tTCYVtn6xMpR6yLBZ-Q9CLNgtxBNWC9t0iK-7Q_ezX7bOEEK37S24zRqFTky6xUc38q3h_sg65eMDT7--HBgNxMG7CQM2MJOhPbikCUsEUHsGQPYQigulFY61DqKU81MGpsoZq6X8gRiuWaARrlIhJMyR3nwu1fIVe75Po6N4KPtYS_g3GuLdETYKyGuulgLjYkQAEHsVScQVvMCzkaFs5ma_72uraLg4Ba52cBX2q_17TbZMfkdcq0eaLm-S8ZNr_QSC7KoqVPTqfkDLgefylGVazopVvYEU5XoLDse9mmZYd0T7EaznI7nAOZPi9kMUCmdqjVN1LI0FDvJTuEjG4MiZOX0Hjm5FEbfJ7t5kZsHhAJGwnJZx0tj8D4RVwBq4lSFXgo7CBNYxG35KpOmzzmO25jI6rwjQlnLQoIsZCULubLI6801s7rLx4XU71FcG0rs0F19UczHsjF4GaWMh8p4gR8y33hMCbhr4Udc-yKJfWaR5yhsiT04ctTmMfCzlIdff8o-B8zlMx655xF9P-4QvWqI0gL-aKKawgpgF_b26lDudSjBkyTd5VbxZOPJSrm1O4s82yzjlZidl5tiWdE4Hg579SzCOwrb4VF3Jc9Oq27mEWBqOMZb5E2r2tvNz5fBw4vv9Sm5Dt5Bfj4cHj0iNxiaHeANJvbI7mK-NI8BSC7iJ5XFUvLrsl3EP8Uqheg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transposable+element+expansion+and+low-level+piRNA+silencing+in+grasshoppers+may+cause+genome+gigantism&rft.jtitle=BMC+biology&rft.au=Liu%2C+Xuanzeng&rft.au=Majid%2C+Muhammad&rft.au=Yuan%2C+Hao&rft.au=Chang%2C+Huihui&rft.date=2022-10-28&rft.pub=BioMed+Central+Ltd&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12915-022-01441-w&rft.externalDocID=A724442791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon |