Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis

The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the di...

Full description

Saved in:
Bibliographic Details
Published inThe Lancet infectious diseases Vol. 15; no. 2; pp. 204 - 211
Main Authors Merler, Stefano, Ajelli, Marco, Fumanelli, Laura, Gomes, Marcelo F C, Piontti, Ana Pastore y, Rossi, Luca, Chao, Dennis L, Longini, Ira M, Halloran, M Elizabeth, Vespignani, Alessandro
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.02.2015
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1473-3099
1474-4457
1474-4457
DOI10.1016/S1473-3099(14)71074-6

Cover

Abstract The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions. We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits. Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4–76·4) were acquired in hospitals, 30·7% (14·1–46·4) in households, and 8·6% (3·2–11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits. The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates. US Defense Threat Reduction Agency, US National Institutes of Health.
AbstractList The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions. We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits. Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4–76·4) were acquired in hospitals, 30·7% (14·1–46·4) in households, and 8·6% (3·2–11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits. The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates. US Defense Threat Reduction Agency, US National Institutes of Health.
The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions.BACKGROUNDThe 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions.We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits.METHODSWe modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits.Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4-76·4) were acquired in hospitals, 30·7% (14·1-46·4) in households, and 8·6% (3·2-11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits.FINDINGSUp to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4-76·4) were acquired in hospitals, 30·7% (14·1-46·4) in households, and 8·6% (3·2-11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits.The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates.INTERPRETATIONThe model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates.US Defense Threat Reduction Agency, US National Institutes of Health.FUNDINGUS Defense Threat Reduction Agency, US National Institutes of Health.
Background The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions. Methods We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits. Findings Up to Aug 16, 2014, we estimated that 38.3% of infections (95% CI 17.4-76.4) were acquired in hospitals, 30.7% (14.1-46.4) in households, and 8.6% (3.2-11.8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits. Interpretation The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates. Funding US Defense Threat Reduction Agency, US National Institutes of Health.
Summary Background The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions. Methods We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits. Findings Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4–76·4) were acquired in hospitals, 30·7% (14·1–46·4) in households, and 8·6% (3·2–11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits. Interpretation The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates. Funding US Defense Threat Reduction Agency, US National Institutes of Health.
The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions. Methods We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits. Findings Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4-76·4) were acquired in hospitals, 30·7% (14·1-46·4) in households, and 8·6% (3·2-11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits. Interpretation The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates. Funding US Defense Threat Reduction Agency, US National Institutes of Health.
Author Ajelli, Marco
Fumanelli, Laura
Longini, Ira M
Halloran, M Elizabeth
Merler, Stefano
Chao, Dennis L
Gomes, Marcelo F C
Piontti, Ana Pastore y
Vespignani, Alessandro
Rossi, Luca
Author_xml – sequence: 1
  givenname: Stefano
  surname: Merler
  fullname: Merler, Stefano
  organization: Bruno Kessler Foundation, Trento, Italy
– sequence: 2
  givenname: Marco
  surname: Ajelli
  fullname: Ajelli, Marco
  organization: Bruno Kessler Foundation, Trento, Italy
– sequence: 3
  givenname: Laura
  surname: Fumanelli
  fullname: Fumanelli, Laura
  organization: Bruno Kessler Foundation, Trento, Italy
– sequence: 4
  givenname: Marcelo F C
  surname: Gomes
  fullname: Gomes, Marcelo F C
  organization: Laboratory for the Modeling of Biological and Socio-Technical Systems, Northeastern University, Boston, MA, USA
– sequence: 5
  givenname: Ana Pastore y
  surname: Piontti
  fullname: Piontti, Ana Pastore y
  organization: Laboratory for the Modeling of Biological and Socio-Technical Systems, Northeastern University, Boston, MA, USA
– sequence: 6
  givenname: Luca
  surname: Rossi
  fullname: Rossi, Luca
  organization: Institute for Scientific Interchange, Torino, Italy
– sequence: 7
  givenname: Dennis L
  surname: Chao
  fullname: Chao, Dennis L
  organization: Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
– sequence: 8
  givenname: Ira M
  surname: Longini
  fullname: Longini, Ira M
  organization: Department of Biostatistics, College of Public Health, Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
– sequence: 9
  givenname: M Elizabeth
  surname: Halloran
  fullname: Halloran, M Elizabeth
  organization: Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
– sequence: 10
  givenname: Alessandro
  surname: Vespignani
  fullname: Vespignani, Alessandro
  email: a.vespignani@neu.edu
  organization: Laboratory for the Modeling of Biological and Socio-Technical Systems, Northeastern University, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25575618$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1TAQhiNURC_wCCBLbMoiYCd2nIAAoapcpCOxKKwtx55Qt4kdbOdI55V4SuyTVkiVULuaaPz_30xm5rg4sM5CUTwn-DXBpHlzQSivyxp33SmhrzjBnJbNo-IopWlJKeMH--9Vclgch3CFMUk6-qQ4rBjjrCHtUfHnYpbRuAjT7LwcUZg9SI3cgOIloAoTitwS-5S8zsnz3o0SbY1fAtImgAyAjEUb04M3Ekmr9z4YBlDRbMFCCNmXmi_nS-knqWCJRqVKxkbwSZGq2_AWSaTcNC8xd2PT8-Q0jKOxvxJUjrtgwtPi8SDHAM9u4knx8_P5j7Ov5eb7l29nnzalalgVy57LivUt1bTtW82YhhQkH_CAG8YGwKoeNGjSsa7u65SsFeddmmlHKBlUW58Upyt39u73AiGKyQSVmpEW3BIEaRrSdVXXkIdIcd22XYuT9OUd6ZVbfPq1rKINJRUnGfjiRrX0E2gxezNJvxO3C0uCd6tAeReCh0Eos84semlGQbDI5yH25yHy7gWhYn8eokludsd9W-A-38fVB2nuWwNeBGXAKtDGp0UL7cy9hA93CCotNx_CNewg_JuFCJXAKyQzUsyEDHj_f8ADGvgLYhH7rA
CODEN LANCAO
CitedBy_id crossref_primary_10_1142_S179304801950005X
crossref_primary_10_1016_j_jtbi_2020_110536
crossref_primary_10_1016_j_epidem_2016_11_002
crossref_primary_10_1016_j_chaos_2021_111039
crossref_primary_10_1108_JHLSCM_09_2020_0077
crossref_primary_10_1016_j_epidem_2017_03_001
crossref_primary_10_1371_journal_pcbi_1012682
crossref_primary_10_1016_j_jtbi_2017_01_041
crossref_primary_10_1007_s11538_023_01203_x
crossref_primary_10_1038_srep16571
crossref_primary_10_1186_s41118_021_00143_5
crossref_primary_10_1371_journal_pntd_0004867
crossref_primary_10_7554_eLife_09186
crossref_primary_10_3923_ajsr_2016_88_105
crossref_primary_10_1016_j_epidem_2016_01_002
crossref_primary_10_1186_s12879_017_2699_8
crossref_primary_10_1016_j_jhevol_2017_02_009
crossref_primary_10_1089_hs_2019_0101
crossref_primary_10_1038_srep13857
crossref_primary_10_1007_s12650_024_00990_2
crossref_primary_10_1371_journal_pcbi_1006161
crossref_primary_10_1007_s12210_022_01071_y
crossref_primary_10_1098_rsif_2015_0536
crossref_primary_10_1016_j_health_2023_100230
crossref_primary_10_1093_comnet_cnx056
crossref_primary_10_1016_j_healthplace_2021_102688
crossref_primary_10_3390_math11061450
crossref_primary_10_1002_adhm_201600750
crossref_primary_10_1056_NEJMsr1513109
crossref_primary_10_1098_rstb_2016_0302
crossref_primary_10_1186_s12916_015_0477_2
crossref_primary_10_1016_j_jtbi_2016_08_016
crossref_primary_10_1038_srep29262
crossref_primary_10_1371_journal_pntd_0008539
crossref_primary_10_1142_S021812741630024X
crossref_primary_10_1136_bmjgh_2021_007822
crossref_primary_10_3389_fams_2017_00006
crossref_primary_10_1371_journal_pntd_0005093
crossref_primary_10_1038_s41598_018_19706_2
crossref_primary_10_4269_ajtmh_20_0155
crossref_primary_10_1007_s11538_017_0284_3
crossref_primary_10_1098_rsif_2020_0340
crossref_primary_10_1093_epirev_mxz013
crossref_primary_10_1016_j_copbio_2016_04_002
crossref_primary_10_1016_j_chaos_2020_109965
crossref_primary_10_1016_j_physa_2017_09_050
crossref_primary_10_1136_bmjopen_2021_055206
crossref_primary_10_1371_journal_pcbi_1009690
crossref_primary_10_3390_su14159750
crossref_primary_10_1016_j_epidem_2023_100666
crossref_primary_10_1186_s12967_017_1224_6
crossref_primary_10_1371_journal_pntd_0005087
crossref_primary_10_1038_s41598_019_41192_3
crossref_primary_10_1186_s12879_016_1675_z
crossref_primary_10_1016_j_jbi_2023_104422
crossref_primary_10_1080_01605682_2017_1392404
crossref_primary_10_1093_heapol_czw113
crossref_primary_10_1186_s12859_018_2439_0
crossref_primary_10_1016_j_sste_2022_100505
crossref_primary_10_1080_00031305_2021_1900914
crossref_primary_10_1016_j_tmaid_2023_102685
crossref_primary_10_1109_MC_2022_3190786
crossref_primary_10_1016_j_physa_2019_123709
crossref_primary_10_1214_21_AIHP1149
crossref_primary_10_3390_math12142208
crossref_primary_10_1080_21505594_2015_1076613
crossref_primary_10_2105_AJPH_2017_303873
crossref_primary_10_1142_S0218339017500176
crossref_primary_10_3390_physics4020034
crossref_primary_10_1186_s12916_022_02232_4
crossref_primary_10_1038_s41746_021_00422_7
crossref_primary_10_1371_journal_pone_0254044
crossref_primary_10_1016_j_epidem_2017_08_002
crossref_primary_10_7717_peerj_4526
crossref_primary_10_1186_s12916_015_0524_z
crossref_primary_10_3390_computation10020031
crossref_primary_10_1016_j_ecolmodel_2024_110697
crossref_primary_10_1038_s41598_021_92000_w
crossref_primary_10_1007_s00285_016_1064_7
crossref_primary_10_1371_journal_pntd_0006161
crossref_primary_10_3390_land10040438
crossref_primary_10_1186_s12916_016_0678_3
crossref_primary_10_1016_j_sciaf_2021_e00844
crossref_primary_10_1038_srep34598
crossref_primary_10_1038_srep12172
crossref_primary_10_1007_s13253_023_00551_4
crossref_primary_10_1007_s41745_021_00254_0
crossref_primary_10_1016_j_plrev_2016_07_005
crossref_primary_10_1371_journal_pone_0286558
crossref_primary_10_1371_journal_pone_0206418
crossref_primary_10_1371_journal_pntd_0007814
crossref_primary_10_1016_j_idm_2016_07_004
crossref_primary_10_1007_s40435_019_00525_w
crossref_primary_10_1016_j_epidem_2020_100399
crossref_primary_10_1073_pnas_1508814112
crossref_primary_10_1016_j_jtbi_2017_03_024
crossref_primary_10_1007_s11920_016_0741_y
crossref_primary_10_1016_j_epidem_2017_02_010
crossref_primary_10_1186_s40249_018_0478_4
crossref_primary_10_1016_j_epidem_2017_02_012
crossref_primary_10_1098_rsif_2020_0498
crossref_primary_10_1007_s10708_015_9688_5
crossref_primary_10_1080_24725579_2022_2115171
crossref_primary_10_1016_S1473_3099_23_00515_7
crossref_primary_10_1371_journal_pone_0315429
crossref_primary_10_1371_journal_pone_0210638
crossref_primary_10_3390_architecture4040049
crossref_primary_10_1371_journal_pntd_0004498
crossref_primary_10_1017_asr_2019_38
crossref_primary_10_1016_j_socscimed_2015_10_063
crossref_primary_10_1177_1740774515621059
crossref_primary_10_1371_journal_pone_0140651
crossref_primary_10_1016_j_plrev_2016_10_006
crossref_primary_10_1016_j_plrev_2016_10_008
crossref_primary_10_7189_jogh_09_010404
crossref_primary_10_1371_journal_pone_0208775
crossref_primary_10_1098_rsif_2024_0363
crossref_primary_10_1080_17513758_2018_1515993
crossref_primary_10_1098_rstb_2019_0038
crossref_primary_10_1098_rsif_2024_0765
crossref_primary_10_26453_otjhs_773674
crossref_primary_10_1371_journal_pcbi_1006785
crossref_primary_10_1371_journal_pcbi_1005210
crossref_primary_10_1371_journal_pcbi_1009652
crossref_primary_10_1371_journal_pone_0264425
crossref_primary_10_1016_j_jtbi_2015_08_004
crossref_primary_10_1371_journal_pone_0147172
crossref_primary_10_1371_journal_pone_0202832
crossref_primary_10_17537_2020_15_338
crossref_primary_10_1016_j_tpb_2019_07_014
crossref_primary_10_1103_PhysRevE_94_022409
crossref_primary_10_1038_srep15818
crossref_primary_10_1016_j_plrev_2016_08_005
crossref_primary_10_1073_pnas_1518587113
crossref_primary_10_1093_oep_gpad001
crossref_primary_10_1038_s42005_024_01648_z
crossref_primary_10_12973_ejmste_80305
crossref_primary_10_1186_s12916_017_0811_y
crossref_primary_10_1016_j_apgeog_2019_102103
crossref_primary_10_1109_ACCESS_2021_3114226
crossref_primary_10_1016_j_physrep_2023_03_005
crossref_primary_10_1093_ofid_ofac593
crossref_primary_10_1016_j_jtbi_2017_05_034
crossref_primary_10_1016_S0140_6736_18_31443_0
crossref_primary_10_1016_j_jtbi_2016_03_024
crossref_primary_10_1016_j_epidem_2017_09_001
crossref_primary_10_1371_journal_pone_0250435
crossref_primary_10_1186_s41256_016_0005_8
crossref_primary_10_1038_s42005_021_00631_2
crossref_primary_10_7717_peerj_4440
crossref_primary_10_1016_S1473_3099_14_71086_2
crossref_primary_10_1103_PhysRevLett_117_228302
crossref_primary_10_1371_journal_pntd_0003706
crossref_primary_10_23946_2500_0764_2024_9_3_109_119
crossref_primary_10_1287_msom_2017_0681
crossref_primary_10_1098_rstb_2016_0164
crossref_primary_10_1371_journal_pcbi_1009360
crossref_primary_10_1017_S095026881800119X
crossref_primary_10_1038_s41598_024_63795_1
crossref_primary_10_1186_s12889_019_6968_x
crossref_primary_10_1186_s12889_023_15559_1
crossref_primary_10_1017_S0950268817000164
crossref_primary_10_1038_s41598_019_52501_1
crossref_primary_10_1111_poms_13709
crossref_primary_10_1136_bmjgh_2020_002732
crossref_primary_10_1186_s12889_015_2285_1
Cites_doi 10.1371/currents.outbreaks.9e4c4294ec8ce1adad283172b16bc908
10.1126/science.1115717
10.1056/NEJMoa1411100
10.1073/pnas.0706849105
10.1016/S1473-3099(14)70995-8
10.2807/1560-7917.ES2014.19.36.20894
10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
10.1186/s12916-014-0196-0
10.1017/S0950268806007217
10.1086/514306
10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571
10.1186/1741-7015-11-252
10.1126/science.1260612
10.1086/514284
10.1371/journal.pcbi.1002205
10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
10.2807/1560-7917.ES2014.19.42.20936
10.1371/journal.pcbi.1000656
10.1111/j.1553-2712.2006.tb01641.x
10.1038/nature04017
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Feb 2015
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Feb 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0TZ
3V.
7QL
7RV
7U9
7X7
7XB
88E
8AO
8C1
8C2
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
BENPR
C1K
CCPQU
FYUFA
GHDGH
H94
K9.
KB0
M0S
M1P
M7N
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7T2
7X8
DOI 10.1016/S1473-3099(14)71074-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Pharma and Biotech Premium PRO
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nursing & Allied Health Database
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Lancet Titles
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Health and Safety Science Abstracts (Full archive)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Pharma and Biotech Premium PRO
ProQuest One Academic Middle East (New)
Lancet Titles
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Health & Safety Science Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AIDS and Cancer Research Abstracts


Pharma and Biotech Premium PRO
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1474-4457
EndPage 211
ExternalDocumentID 3561755991
25575618
10_1016_S1473_3099_14_71074_6
S1473309914710746
1_s2_0_S1473309914710746
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Liberia
Africa
GeographicLocations_xml – name: Liberia
– name: Africa
GrantInformation US Defense Threat Reduction Agency, US National Institutes of Health.
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: U54-GM111274
– fundername: NIGMS NIH HHS
  grantid: U54 GM111274
GroupedDBID ---
--K
--M
-RU
..I
.1-
.FO
0R~
123
1B1
1P~
1~5
29L
4.4
457
4G.
53G
5VS
6PF
7-5
71M
7RV
7X7
88E
8AO
8C1
8C2
8FI
8FJ
AAAJQ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAQFI
AAQQT
AAQXK
AARKO
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADMUD
ADNMO
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AHMBA
AIGII
AIIUN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BENPR
BKEYQ
BKOJK
BNPGV
BPHCQ
BVXVI
CCPQU
CJTIS
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
HF~
HMCUK
HVGLF
HZ~
IHE
J1W
KOM
M1P
M41
MO0
N9A
NAPCQ
O-L
O9-
OD-
OO.
OZT
P-8
P-9
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
R2-
ROL
RPZ
SDG
SEL
SES
SPCBC
SSH
SSI
SSZ
T5K
TLN
UKHRP
UV1
WOW
XBR
Z5R
3V.
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
RIG
SDF
ABLVK
ABYKQ
AJBFU
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0TZ
7QL
7U9
7XB
8FK
C1K
H94
K9.
M7N
PKEHL
PQEST
PQUKI
7T2
7X8
ID FETCH-LOGICAL-c652t-b7a25b84d48b8d55deb8da7f0f0655fe0c3fded19593b3f063c7791019141fc83
IEDL.DBID 8C1
ISSN 1473-3099
1474-4457
IngestDate Thu Sep 04 17:05:56 EDT 2025
Thu Sep 04 16:59:40 EDT 2025
Sat Jul 26 00:56:26 EDT 2025
Mon Jul 21 05:48:13 EDT 2025
Tue Jul 01 01:42:46 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Fri Feb 23 02:26:59 EST 2024
Sun Feb 23 10:19:07 EST 2025
Tue Aug 26 17:35:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c652t-b7a25b84d48b8d55deb8da7f0f0655fe0c3fded19593b3f063c7791019141fc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1016/S1473-3099(14)71074-6
PMID 25575618
PQID 1646412711
PQPubID 44001
PageCount 8
ParticipantIDs proquest_miscellaneous_1661992961
proquest_miscellaneous_1660388980
proquest_journals_1646412711
pubmed_primary_25575618
crossref_citationtrail_10_1016_S1473_3099_14_71074_6
crossref_primary_10_1016_S1473_3099_14_71074_6
elsevier_sciencedirect_doi_10_1016_S1473_3099_14_71074_6
elsevier_clinicalkeyesjournals_1_s2_0_S1473309914710746
elsevier_clinicalkey_doi_10_1016_S1473_3099_14_71074_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: London
PublicationTitle The Lancet infectious diseases
PublicationTitleAlternate Lancet Infect Dis
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Halloran, Ferguson, Eubank (bib5) 2008; 105
Nishiura, Chowell (bib17) 2014; 19
Kaji, Koenig, Bey (bib23) 2006; 13
Longini, Nizam, Xu (bib3) 2005; 309
Dowell, Mukunu, Ksiazek, Khan, Rollin, Peters (bib22) 1999; 179
Chao, Halloran, Obenchain, Longini (bib6) 2010; 6
Meltzer, Atkins, Santibanez (bib13) 2014; 63
Fisman, Khoo, Tuite (bib19) 2014
Khan, Tshioko, Heymann (bib16) 1999; 179
Poletto, Gomes, Pastore y Piontti (bib11) 2014; 19
Ferguson, Cummings, Cauchemez (bib4) 2005; 437
Althaus (bib20) 2014
Merler, Ajelli, Pugliese, Ferguson (bib7) 2011; 7
Chowell, Nishiura (bib21) 2014; 12
Pandey, Atkins, Medlock (bib10) 2014; 346
Merler, Ajelli, Fumanelli, Vespignani (bib8) 2013; 11
bib1
Gomes, Pastore y Piontti, Rossi (bib12) 2014
bib2
Legrand, Grais, Boelle, Valleron, Flahault (bib14) 2007; 135
Towers, Patterson-Lomba, Castillo-Chavez (bib18) 2014
(bib15) 2014; 371
Lewnard, Ndeffo Mbah, Alfaro-Murillo (bib9) 2014; 14
Longini (10.1016/S1473-3099(14)71074-6_bib3) 2005; 309
Merler (10.1016/S1473-3099(14)71074-6_bib7) 2011; 7
Nishiura (10.1016/S1473-3099(14)71074-6_bib17) 2014; 19
Legrand (10.1016/S1473-3099(14)71074-6_bib14) 2007; 135
Fisman (10.1016/S1473-3099(14)71074-6_bib19) 2014
Kaji (10.1016/S1473-3099(14)71074-6_bib23) 2006; 13
Chao (10.1016/S1473-3099(14)71074-6_bib6) 2010; 6
Dowell (10.1016/S1473-3099(14)71074-6_bib22) 1999; 179
Poletto (10.1016/S1473-3099(14)71074-6_bib11) 2014; 19
Merler (10.1016/S1473-3099(14)71074-6_bib8) 2013; 11
Chowell (10.1016/S1473-3099(14)71074-6_bib21) 2014; 12
(10.1016/S1473-3099(14)71074-6_bib15) 2014; 371
Khan (10.1016/S1473-3099(14)71074-6_bib16) 1999; 179
Towers (10.1016/S1473-3099(14)71074-6_bib18) 2014
Meltzer (10.1016/S1473-3099(14)71074-6_bib13) 2014; 63
Althaus (10.1016/S1473-3099(14)71074-6_bib20) 2014
Halloran (10.1016/S1473-3099(14)71074-6_bib5) 2008; 105
Gomes (10.1016/S1473-3099(14)71074-6_bib12) 2014
Pandey (10.1016/S1473-3099(14)71074-6_bib10) 2014; 346
Ferguson (10.1016/S1473-3099(14)71074-6_bib4) 2005; 437
Lewnard (10.1016/S1473-3099(14)71074-6_bib9) 2014; 14
25642364 - PLoS Curr. 2014 Sep 02;6:null
25358040 - Euro Surveill. 2014;19(42). pii: 20936
9988169 - J Infect Dis. 1999 Feb;179 Suppl 1:S87-91
25414312 - Science. 2014 Nov 21;346(6212):991-5
25254986 - MMWR Surveill Summ. 2014 Sep 26;63 Suppl 3:1-14
16079251 - Science. 2005 Aug 12;309(5737):1083-7
25642360 - PLoS Curr. 2014 Sep 02;6:null
16999875 - Epidemiol Infect. 2007 May;135(4):610-21
25642358 - PLoS Curr. 2014 Sep 08;6:null
20126529 - PLoS Comput Biol. 2010 Jan;6(1):e1000656
18332436 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4639-44
25575619 - Lancet Infect Dis. 2015 Feb;15(2):139-41
25455986 - Lancet Infect Dis. 2014 Dec;14(12):1189-95
25232919 - Euro Surveill. 2014;19(36). pii: 20894
25300956 - BMC Med. 2014;12:196
21980281 - PLoS Comput Biol. 2011 Sep;7(9):e1002205
16079797 - Nature. 2005 Sep 8;437(7056):209-14
25244186 - N Engl J Med. 2014 Oct 16;371(16):1481-95
25642357 - PLoS Curr. 2014 Sep 18;6:null
16968688 - Acad Emerg Med. 2006 Nov;13(11):1157-9
24283203 - BMC Med. 2013;11:252
9988168 - J Infect Dis. 1999 Feb;179 Suppl 1:S76-86
References_xml – year: 2014
  ident: bib19
  article-title: Early epidemic dynamics of the west African 2014 Ebola outbreak: estimates derived with a simple two-parameter model
  publication-title: PLoS Curr
– volume: 135
  start-page: 610
  year: 2007
  end-page: 621
  ident: bib14
  article-title: Understanding the dynamics of Ebola epidemics
  publication-title: Epidemiol Infect
– volume: 6
  start-page: e1000656
  year: 2010
  ident: bib6
  article-title: FluTE: a publicly available stochastic influenza epidemic simulation model
  publication-title: PLoS Comput Biol
– volume: 63
  start-page: 1
  year: 2014
  end-page: 14
  ident: bib13
  article-title: Estimating the future number of cases in the Ebola epidemic—Liberia and Sierra Leone, 2014–2015
  publication-title: MMWR Morb Mortal Wkly Rep
– year: 2014
  ident: bib20
  article-title: Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in west Africa
  publication-title: PLOS Curr
– volume: 19
  year: 2014
  ident: bib17
  article-title: Early transmission dynamics of Ebola virus disease (EVD), west Africa, March to August 2014
  publication-title: Euro Surveill
– volume: 13
  start-page: 1157
  year: 2006
  end-page: 1159
  ident: bib23
  article-title: Surge capacity for healthcare systems: a conceptual framework
  publication-title: Acad Emerg Med
– ident: bib1
  article-title: Situation Reports on the Ebola Virus Outbreak in Liberia
– ident: bib2
  article-title: Situation reports: Ebola response roadmap
– volume: 12
  start-page: 196
  year: 2014
  ident: bib21
  article-title: Transmission dynamics and control of Ebola virus disease (EVD): a review
  publication-title: BMC Med
– year: 2014
  ident: bib12
  article-title: Assessing the international spreading risk associated with the 2014 west African Ebola outbreak
  publication-title: PLoS Curr
– volume: 437
  start-page: 209
  year: 2005
  end-page: 214
  ident: bib4
  article-title: Strategies for containing an emerging influenza pandemic in southeast Asia
  publication-title: Nature
– volume: 179
  start-page: S76
  year: 1999
  end-page: S86
  ident: bib16
  article-title: The reemergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995
  publication-title: J Infect Dis
– volume: 7
  start-page: e1002205
  year: 2011
  ident: bib7
  article-title: Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in Europe: implications for real-time modelling
  publication-title: PLoS Comput Biol
– volume: 371
  start-page: 1481
  year: 2014
  end-page: 1495
  ident: bib15
  article-title: Ebola virus disease in west Africa—the first 9 months of the epidemic and forward projections
  publication-title: N Eng J Med
– volume: 11
  start-page: 252
  year: 2013
  ident: bib8
  article-title: Containing the accidental laboratory escape of potential pandemic influenza viruses
  publication-title: BMC Med
– volume: 346
  start-page: 991
  year: 2014
  end-page: 995
  ident: bib10
  article-title: Strategies for containing Ebola in west Africa
  publication-title: Science
– volume: 19
  year: 2014
  ident: bib11
  article-title: Assessing the impact of travel restrictions on international spread of the 2014 west African Ebola epidemic
  publication-title: Euro Surveill
– volume: 179
  start-page: S87
  year: 1999
  end-page: S91
  ident: bib22
  article-title: Transmission of Ebola hemorrhagic fever: a study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995
  publication-title: J Infect Dis
– volume: 309
  start-page: 1083
  year: 2005
  end-page: 1087
  ident: bib3
  article-title: Containing pandemic influenza at the source
  publication-title: Science
– volume: 105
  start-page: 4639
  year: 2008
  end-page: 4644
  ident: bib5
  article-title: Modeling targeted layered containment of an influenza pandemic in the United States
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 1189
  year: 2014
  end-page: 1195
  ident: bib9
  article-title: Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis
  publication-title: Lancet Infect Dis
– year: 2014
  ident: bib18
  article-title: Temporal variations in the effective reproduction number of the 2014 west Africa Ebola outbreak
  publication-title: PLoS Curr
– year: 2014
  ident: 10.1016/S1473-3099(14)71074-6_bib18
  article-title: Temporal variations in the effective reproduction number of the 2014 west Africa Ebola outbreak
  publication-title: PLoS Curr
  doi: 10.1371/currents.outbreaks.9e4c4294ec8ce1adad283172b16bc908
– volume: 309
  start-page: 1083
  year: 2005
  ident: 10.1016/S1473-3099(14)71074-6_bib3
  article-title: Containing pandemic influenza at the source
  publication-title: Science
  doi: 10.1126/science.1115717
– volume: 371
  start-page: 1481
  year: 2014
  ident: 10.1016/S1473-3099(14)71074-6_bib15
  article-title: Ebola virus disease in west Africa—the first 9 months of the epidemic and forward projections
  publication-title: N Eng J Med
  doi: 10.1056/NEJMoa1411100
– volume: 105
  start-page: 4639
  year: 2008
  ident: 10.1016/S1473-3099(14)71074-6_bib5
  article-title: Modeling targeted layered containment of an influenza pandemic in the United States
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0706849105
– volume: 63
  start-page: 1
  year: 2014
  ident: 10.1016/S1473-3099(14)71074-6_bib13
  article-title: Estimating the future number of cases in the Ebola epidemic—Liberia and Sierra Leone, 2014–2015
  publication-title: MMWR Morb Mortal Wkly Rep
– volume: 14
  start-page: 1189
  year: 2014
  ident: 10.1016/S1473-3099(14)71074-6_bib9
  article-title: Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(14)70995-8
– volume: 19
  year: 2014
  ident: 10.1016/S1473-3099(14)71074-6_bib17
  article-title: Early transmission dynamics of Ebola virus disease (EVD), west Africa, March to August 2014
  publication-title: Euro Surveill
  doi: 10.2807/1560-7917.ES2014.19.36.20894
– year: 2014
  ident: 10.1016/S1473-3099(14)71074-6_bib12
  article-title: Assessing the international spreading risk associated with the 2014 west African Ebola outbreak
  publication-title: PLoS Curr
  doi: 10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
– volume: 12
  start-page: 196
  year: 2014
  ident: 10.1016/S1473-3099(14)71074-6_bib21
  article-title: Transmission dynamics and control of Ebola virus disease (EVD): a review
  publication-title: BMC Med
  doi: 10.1186/s12916-014-0196-0
– volume: 135
  start-page: 610
  year: 2007
  ident: 10.1016/S1473-3099(14)71074-6_bib14
  article-title: Understanding the dynamics of Ebola epidemics
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268806007217
– volume: 179
  start-page: S76
  year: 1999
  ident: 10.1016/S1473-3099(14)71074-6_bib16
  article-title: The reemergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995
  publication-title: J Infect Dis
  doi: 10.1086/514306
– year: 2014
  ident: 10.1016/S1473-3099(14)71074-6_bib19
  article-title: Early epidemic dynamics of the west African 2014 Ebola outbreak: estimates derived with a simple two-parameter model
  publication-title: PLoS Curr
  doi: 10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571
– volume: 11
  start-page: 252
  year: 2013
  ident: 10.1016/S1473-3099(14)71074-6_bib8
  article-title: Containing the accidental laboratory escape of potential pandemic influenza viruses
  publication-title: BMC Med
  doi: 10.1186/1741-7015-11-252
– volume: 346
  start-page: 991
  year: 2014
  ident: 10.1016/S1473-3099(14)71074-6_bib10
  article-title: Strategies for containing Ebola in west Africa
  publication-title: Science
  doi: 10.1126/science.1260612
– volume: 179
  start-page: S87
  year: 1999
  ident: 10.1016/S1473-3099(14)71074-6_bib22
  article-title: Transmission of Ebola hemorrhagic fever: a study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995
  publication-title: J Infect Dis
  doi: 10.1086/514284
– volume: 7
  start-page: e1002205
  year: 2011
  ident: 10.1016/S1473-3099(14)71074-6_bib7
  article-title: Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in Europe: implications for real-time modelling
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002205
– year: 2014
  ident: 10.1016/S1473-3099(14)71074-6_bib20
  article-title: Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in west Africa
  publication-title: PLOS Curr
  doi: 10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
– volume: 19
  year: 2014
  ident: 10.1016/S1473-3099(14)71074-6_bib11
  article-title: Assessing the impact of travel restrictions on international spread of the 2014 west African Ebola epidemic
  publication-title: Euro Surveill
  doi: 10.2807/1560-7917.ES2014.19.42.20936
– volume: 6
  start-page: e1000656
  year: 2010
  ident: 10.1016/S1473-3099(14)71074-6_bib6
  article-title: FluTE: a publicly available stochastic influenza epidemic simulation model
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000656
– volume: 13
  start-page: 1157
  year: 2006
  ident: 10.1016/S1473-3099(14)71074-6_bib23
  article-title: Surge capacity for healthcare systems: a conceptual framework
  publication-title: Acad Emerg Med
  doi: 10.1111/j.1553-2712.2006.tb01641.x
– volume: 437
  start-page: 209
  year: 2005
  ident: 10.1016/S1473-3099(14)71074-6_bib4
  article-title: Strategies for containing an emerging influenza pandemic in southeast Asia
  publication-title: Nature
  doi: 10.1038/nature04017
– reference: 9988168 - J Infect Dis. 1999 Feb;179 Suppl 1:S76-86
– reference: 25642357 - PLoS Curr. 2014 Sep 18;6:null
– reference: 25232919 - Euro Surveill. 2014;19(36). pii: 20894
– reference: 16968688 - Acad Emerg Med. 2006 Nov;13(11):1157-9
– reference: 25455986 - Lancet Infect Dis. 2014 Dec;14(12):1189-95
– reference: 18332436 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4639-44
– reference: 25642358 - PLoS Curr. 2014 Sep 08;6:null
– reference: 25244186 - N Engl J Med. 2014 Oct 16;371(16):1481-95
– reference: 16079797 - Nature. 2005 Sep 8;437(7056):209-14
– reference: 20126529 - PLoS Comput Biol. 2010 Jan;6(1):e1000656
– reference: 25414312 - Science. 2014 Nov 21;346(6212):991-5
– reference: 25300956 - BMC Med. 2014;12:196
– reference: 21980281 - PLoS Comput Biol. 2011 Sep;7(9):e1002205
– reference: 16999875 - Epidemiol Infect. 2007 May;135(4):610-21
– reference: 25575619 - Lancet Infect Dis. 2015 Feb;15(2):139-41
– reference: 25642360 - PLoS Curr. 2014 Sep 02;6:null
– reference: 25642364 - PLoS Curr. 2014 Sep 02;6:null
– reference: 9988169 - J Infect Dis. 1999 Feb;179 Suppl 1:S87-91
– reference: 25254986 - MMWR Surveill Summ. 2014 Sep 26;63 Suppl 3:1-14
– reference: 16079251 - Science. 2005 Aug 12;309(5737):1083-7
– reference: 24283203 - BMC Med. 2013;11:252
– reference: 25358040 - Euro Surveill. 2014;19(42). pii: 20936
SSID ssj0017104
Score 2.570593
Snippet The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that...
Summary Background The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus...
Background The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 204
SubjectTerms Communicable Disease Control - methods
Disease Outbreaks
Disease transmission
Disease Transmission, Infectious - prevention & control
Ebola virus
Epidemics
Fatalities
Funerals
Health risks
Hemorrhagic Fever, Ebola - epidemiology
Hemorrhagic Fever, Ebola - prevention & control
Hemorrhagic Fever, Ebola - transmission
Hospitals
Households
Humans
Infections
Infectious Disease
Infectious diseases
Liberia - epidemiology
Markov chains
Models, Statistical
Population
Population density
Spatio-Temporal Analysis
Title Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1473309914710746
https://www.clinicalkey.es/playcontent/1-s2.0-S1473309914710746
https://dx.doi.org/10.1016/S1473-3099(14)71074-6
https://www.ncbi.nlm.nih.gov/pubmed/25575618
https://www.proquest.com/docview/1646412711
https://www.proquest.com/docview/1660388980
https://www.proquest.com/docview/1661992961
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoKyEkhKC8FsrKSBzgYBo7TuzlgqDaqkJqhSiV9mb5EYsVVbI0u_wofiXjR9IeaMspkjdfEu3YM59nxjMIveGMUe-pIyUrPOG2ksQU1hCpG0E9mCwZI6bHJ_XRGf-yqBbZ4dbntMpBJ0ZF7TobfOT7oQ4Wp0xQ-nH1i4SuUSG6mltobKEdCjo4LEx5MKZ4ULCeMarMRUlKoEKXJ3j2T8fBt5S_EzEtsb7ONl3HPaMNOnyIHmTyiD8laT9Cd5p2F909zuHxXXQ_OeFwOlv0GP05jfnSufzUOe5XQBEd7jwG2ofBKHPcbdawKdY_w-DcwD4X_15ebHqcAzd42eKYVLLUWLcu4lIKSNaSAdd2LVn9uOobx8srqZT9B6yxjd0jsucRx_474SA8PDQVRXmCzg7n3w-OSG7OQGxdsTUxQrPKSO64NNJVlWvgooUvPJCayjeFLb1rXKhdU5oSBksrBHCTUE-OeivLp2gbPq95jrAFKXhGnWEzD-xMm0Iw0MNSO2Mb76oJ4oNYlM2Vy0MDjXM1pqgFaaogTdjKqChNVU_Q-xG2SqU7bgPUg8zVcC4VNKkC43IbUPwL2PRZH_SKqp6pIqEDGK4BCkg5IjPlSVTmf166N0xLdfmecZVM0OvxZ9AYIQyk26bbhHvqUAJoJosb7wl5ybManvMsTfnxP4RNqADWLV_c_AEv0T2Yx1XKcN9D2-uLTfMKCNzaTNGWWIhpXKtTtPN5fvL1218jCEFZ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkQAJISivhQJGAgkOprHjxF4khFBptaXdXtpKvbnxS6yoskuzC-IvceA3MraTtAfacukpkpPPiTL2zGfPeAahV5wx6j21JGeZJ9wUkujMaCIrJ6gHkyWjx3S8W44O-JfD4nAJ_enOwoSwyk4nRkVtpybska-FPFicMkHpx9l3EqpGBe9qV0IjDYtt9-snLNmaD1ufQb6vGdvc2F8fkbaqADFlweZEi4oVWnLLpZa2KKyDSyV85sEaF95lJvfW2ZB0Jdc5NOZGCDCqIREa9Ubm0O81dJ3neRlmkVzvQ0ooWOvoxeYiJzlQr9MTQ2t7feMbyt-KGAZZnmcLz-O60eZt3kV3WrKKP6XRdQ8tuXoF3Ri37vgVdDtt-uF0luk--r0X47PbdFfHuJkBJbV46jHQTAwkgOPpYg6L8OpbaNzQsK7GPyYniwa3jiI8qXEMYplUuKptxKWQk1YrB1w9rcns69m9eDw5E7rZvMcVNrFaRbvTiWO9n3DwHjpNSVgeoIMrEdtDtAyf5x4jbEAKnlGr2dADG6x0JhjofVlZbZy3xQDxTizKtJnSQ8GOY9WHxAVpqiBNWDqpKE1VDtC7HjZLqUIuA5SdzFV3DhY0twJjdhlQ_Avomlb_NIqqhqksoQMYrgEKSNkjW4qVqNP_vHS1G5bq9D39rBygl_1t0FDB7VTVbroIz5Qh5dBQZhc-E-KghyX08ygN-f4fwqJXAMuXTy7-gBfo5mh_vKN2tna3n6JbMKaLFF2_ipbnJwv3DMjjXD-PMxajo6tWEX8BiNV8DQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7qFoogovW2WnUEBX1IN5lMMrNCEbVbWmuXYi30bZwrLpbs2uwq_iV_ir_KM5NJ2gfb-tKnwCTfZMiZnMucG0LPKSGZc5lJcpK6hOqCJyrVKuHSssyByOLBY7o3LrcP6Yej4mgJ_WlzYXxYZcsTA6M2U-3PyAe-DhbNCMuygYthEfubW29m3xPfQcp7Wtt2GjK2WTAbodxYTPLYtb9-gjlXb-xsAu1fELI1-vx-O4kdBxJdFmSeKCZJoTg1lCtuisJYuEjmUgeSunA21bkz1viCLLnKYTDXjIHA9UXSMqd5DvNeQ8sMpCTtoeV3o_H-p86nAbI8-Lgpy5McFLPTfKLBQTf4MqOvWAiSLM-TlOdpwkEibt1CN6Mqi982e-82WrLVKlrZi876VXSjORLETabTHfT7IERvx2JYx7iegcJq8NRhUEIxqAgUTxdzMNHlNz84UmB14x-Tk0WNoxsJTyocQlwmEsvKBFwTkBJ5tsdV0yqZfT17Uo8nZwI769dYYh16WcRzUBy6Afm0fJi0KdFyFx1eCeHuoR4szz5AWAMVHMmMIkMHuqJUKSMgFbg0Sltnij6iLVmEjnXUfTuPY9EFzHlqCk9NMKxEoKYo-2i9g82aQiKXAcqW5qLNkgW-LkDUXQZk_wLaOnKnWmSiJiJt0B4MVw8FJO-QUQFrFKv_eelauy3F6Xu6f7aPnnW3gX95p5Ss7HThnyl9QaIhTy98xkdJD0uY536z5btvCCYxAxuAP7x4AU_RCrAL8XFnvPsIXYctXTSh92uoNz9Z2MegWc7Vk_jLYvTlqrnEX_QrhwU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+spread+of+the+2014+outbreak+of+Ebola+virus+disease+in+Liberia+and+the+effectiveness+of+non-pharmaceutical+interventions%3A+a+computational+modelling+analysis&rft.jtitle=The+Lancet+infectious+diseases&rft.au=Merler%2C+Stefano&rft.au=Ajelli%2C+Marco&rft.au=Fumanelli%2C+Laura&rft.au=Gomes%2C+Marcelo+F+C&rft.date=2015-02-01&rft.issn=1473-3099&rft.volume=15&rft.issue=2&rft.spage=204&rft.epage=211&rft_id=info:doi/10.1016%2FS1473-3099%2814%2971074-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F14733099%2FS1473309915X70782%2Fcov150h.gif