Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis
The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the di...
Saved in:
Published in | The Lancet infectious diseases Vol. 15; no. 2; pp. 204 - 211 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.02.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1473-3099 1474-4457 1474-4457 |
DOI | 10.1016/S1473-3099(14)71074-6 |
Cover
Abstract | The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions.
We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits.
Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4–76·4) were acquired in hospitals, 30·7% (14·1–46·4) in households, and 8·6% (3·2–11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits.
The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates.
US Defense Threat Reduction Agency, US National Institutes of Health. |
---|---|
AbstractList | The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions.
We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits.
Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4–76·4) were acquired in hospitals, 30·7% (14·1–46·4) in households, and 8·6% (3·2–11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits.
The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates.
US Defense Threat Reduction Agency, US National Institutes of Health. The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions.BACKGROUNDThe 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions.We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits.METHODSWe modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits.Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4-76·4) were acquired in hospitals, 30·7% (14·1-46·4) in households, and 8·6% (3·2-11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits.FINDINGSUp to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4-76·4) were acquired in hospitals, 30·7% (14·1-46·4) in households, and 8·6% (3·2-11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits.The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates.INTERPRETATIONThe model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates.US Defense Threat Reduction Agency, US National Institutes of Health.FUNDINGUS Defense Threat Reduction Agency, US National Institutes of Health. Background The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions. Methods We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits. Findings Up to Aug 16, 2014, we estimated that 38.3% of infections (95% CI 17.4-76.4) were acquired in hospitals, 30.7% (14.1-46.4) in households, and 8.6% (3.2-11.8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits. Interpretation The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates. Funding US Defense Threat Reduction Agency, US National Institutes of Health. Summary Background The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions. Methods We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits. Findings Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4–76·4) were acquired in hospitals, 30·7% (14·1–46·4) in households, and 8·6% (3·2–11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits. Interpretation The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates. Funding US Defense Threat Reduction Agency, US National Institutes of Health. The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-pharmaceutical control interventions. Methods We modelled the movements of individuals, including patients not infected with Ebola virus, seeking assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned households (size based on Demographic Health Survey data) that were geographically placed to match population density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and investigate the effectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, and household protection kits. Findings Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4-76·4) were acquired in hospitals, 30·7% (14·1-46·4) in households, and 8·6% (3·2-11·8) while participating in funerals. We noted that the movement and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected was a sufficient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to drastically decreased hospital transmission), safe burials, and distribution of household protection kits. Interpretation The model allows assessment of intervention options and the understanding of their role in the decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty in model estimates. Funding US Defense Threat Reduction Agency, US National Institutes of Health. |
Author | Ajelli, Marco Fumanelli, Laura Longini, Ira M Halloran, M Elizabeth Merler, Stefano Chao, Dennis L Gomes, Marcelo F C Piontti, Ana Pastore y Vespignani, Alessandro Rossi, Luca |
Author_xml | – sequence: 1 givenname: Stefano surname: Merler fullname: Merler, Stefano organization: Bruno Kessler Foundation, Trento, Italy – sequence: 2 givenname: Marco surname: Ajelli fullname: Ajelli, Marco organization: Bruno Kessler Foundation, Trento, Italy – sequence: 3 givenname: Laura surname: Fumanelli fullname: Fumanelli, Laura organization: Bruno Kessler Foundation, Trento, Italy – sequence: 4 givenname: Marcelo F C surname: Gomes fullname: Gomes, Marcelo F C organization: Laboratory for the Modeling of Biological and Socio-Technical Systems, Northeastern University, Boston, MA, USA – sequence: 5 givenname: Ana Pastore y surname: Piontti fullname: Piontti, Ana Pastore y organization: Laboratory for the Modeling of Biological and Socio-Technical Systems, Northeastern University, Boston, MA, USA – sequence: 6 givenname: Luca surname: Rossi fullname: Rossi, Luca organization: Institute for Scientific Interchange, Torino, Italy – sequence: 7 givenname: Dennis L surname: Chao fullname: Chao, Dennis L organization: Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA – sequence: 8 givenname: Ira M surname: Longini fullname: Longini, Ira M organization: Department of Biostatistics, College of Public Health, Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA – sequence: 9 givenname: M Elizabeth surname: Halloran fullname: Halloran, M Elizabeth organization: Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA – sequence: 10 givenname: Alessandro surname: Vespignani fullname: Vespignani, Alessandro email: a.vespignani@neu.edu organization: Laboratory for the Modeling of Biological and Socio-Technical Systems, Northeastern University, Boston, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25575618$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1TAQhiNURC_wCCBLbMoiYCd2nIAAoapcpCOxKKwtx55Qt4kdbOdI55V4SuyTVkiVULuaaPz_30xm5rg4sM5CUTwn-DXBpHlzQSivyxp33SmhrzjBnJbNo-IopWlJKeMH--9Vclgch3CFMUk6-qQ4rBjjrCHtUfHnYpbRuAjT7LwcUZg9SI3cgOIloAoTitwS-5S8zsnz3o0SbY1fAtImgAyAjEUb04M3Ekmr9z4YBlDRbMFCCNmXmi_nS-knqWCJRqVKxkbwSZGq2_AWSaTcNC8xd2PT8-Q0jKOxvxJUjrtgwtPi8SDHAM9u4knx8_P5j7Ov5eb7l29nnzalalgVy57LivUt1bTtW82YhhQkH_CAG8YGwKoeNGjSsa7u65SsFeddmmlHKBlUW58Upyt39u73AiGKyQSVmpEW3BIEaRrSdVXXkIdIcd22XYuT9OUd6ZVbfPq1rKINJRUnGfjiRrX0E2gxezNJvxO3C0uCd6tAeReCh0Eos84semlGQbDI5yH25yHy7gWhYn8eokludsd9W-A-38fVB2nuWwNeBGXAKtDGp0UL7cy9hA93CCotNx_CNewg_JuFCJXAKyQzUsyEDHj_f8ADGvgLYhH7rA |
CODEN | LANCAO |
CitedBy_id | crossref_primary_10_1142_S179304801950005X crossref_primary_10_1016_j_jtbi_2020_110536 crossref_primary_10_1016_j_epidem_2016_11_002 crossref_primary_10_1016_j_chaos_2021_111039 crossref_primary_10_1108_JHLSCM_09_2020_0077 crossref_primary_10_1016_j_epidem_2017_03_001 crossref_primary_10_1371_journal_pcbi_1012682 crossref_primary_10_1016_j_jtbi_2017_01_041 crossref_primary_10_1007_s11538_023_01203_x crossref_primary_10_1038_srep16571 crossref_primary_10_1186_s41118_021_00143_5 crossref_primary_10_1371_journal_pntd_0004867 crossref_primary_10_7554_eLife_09186 crossref_primary_10_3923_ajsr_2016_88_105 crossref_primary_10_1016_j_epidem_2016_01_002 crossref_primary_10_1186_s12879_017_2699_8 crossref_primary_10_1016_j_jhevol_2017_02_009 crossref_primary_10_1089_hs_2019_0101 crossref_primary_10_1038_srep13857 crossref_primary_10_1007_s12650_024_00990_2 crossref_primary_10_1371_journal_pcbi_1006161 crossref_primary_10_1007_s12210_022_01071_y crossref_primary_10_1098_rsif_2015_0536 crossref_primary_10_1016_j_health_2023_100230 crossref_primary_10_1093_comnet_cnx056 crossref_primary_10_1016_j_healthplace_2021_102688 crossref_primary_10_3390_math11061450 crossref_primary_10_1002_adhm_201600750 crossref_primary_10_1056_NEJMsr1513109 crossref_primary_10_1098_rstb_2016_0302 crossref_primary_10_1186_s12916_015_0477_2 crossref_primary_10_1016_j_jtbi_2016_08_016 crossref_primary_10_1038_srep29262 crossref_primary_10_1371_journal_pntd_0008539 crossref_primary_10_1142_S021812741630024X crossref_primary_10_1136_bmjgh_2021_007822 crossref_primary_10_3389_fams_2017_00006 crossref_primary_10_1371_journal_pntd_0005093 crossref_primary_10_1038_s41598_018_19706_2 crossref_primary_10_4269_ajtmh_20_0155 crossref_primary_10_1007_s11538_017_0284_3 crossref_primary_10_1098_rsif_2020_0340 crossref_primary_10_1093_epirev_mxz013 crossref_primary_10_1016_j_copbio_2016_04_002 crossref_primary_10_1016_j_chaos_2020_109965 crossref_primary_10_1016_j_physa_2017_09_050 crossref_primary_10_1136_bmjopen_2021_055206 crossref_primary_10_1371_journal_pcbi_1009690 crossref_primary_10_3390_su14159750 crossref_primary_10_1016_j_epidem_2023_100666 crossref_primary_10_1186_s12967_017_1224_6 crossref_primary_10_1371_journal_pntd_0005087 crossref_primary_10_1038_s41598_019_41192_3 crossref_primary_10_1186_s12879_016_1675_z crossref_primary_10_1016_j_jbi_2023_104422 crossref_primary_10_1080_01605682_2017_1392404 crossref_primary_10_1093_heapol_czw113 crossref_primary_10_1186_s12859_018_2439_0 crossref_primary_10_1016_j_sste_2022_100505 crossref_primary_10_1080_00031305_2021_1900914 crossref_primary_10_1016_j_tmaid_2023_102685 crossref_primary_10_1109_MC_2022_3190786 crossref_primary_10_1016_j_physa_2019_123709 crossref_primary_10_1214_21_AIHP1149 crossref_primary_10_3390_math12142208 crossref_primary_10_1080_21505594_2015_1076613 crossref_primary_10_2105_AJPH_2017_303873 crossref_primary_10_1142_S0218339017500176 crossref_primary_10_3390_physics4020034 crossref_primary_10_1186_s12916_022_02232_4 crossref_primary_10_1038_s41746_021_00422_7 crossref_primary_10_1371_journal_pone_0254044 crossref_primary_10_1016_j_epidem_2017_08_002 crossref_primary_10_7717_peerj_4526 crossref_primary_10_1186_s12916_015_0524_z crossref_primary_10_3390_computation10020031 crossref_primary_10_1016_j_ecolmodel_2024_110697 crossref_primary_10_1038_s41598_021_92000_w crossref_primary_10_1007_s00285_016_1064_7 crossref_primary_10_1371_journal_pntd_0006161 crossref_primary_10_3390_land10040438 crossref_primary_10_1186_s12916_016_0678_3 crossref_primary_10_1016_j_sciaf_2021_e00844 crossref_primary_10_1038_srep34598 crossref_primary_10_1038_srep12172 crossref_primary_10_1007_s13253_023_00551_4 crossref_primary_10_1007_s41745_021_00254_0 crossref_primary_10_1016_j_plrev_2016_07_005 crossref_primary_10_1371_journal_pone_0286558 crossref_primary_10_1371_journal_pone_0206418 crossref_primary_10_1371_journal_pntd_0007814 crossref_primary_10_1016_j_idm_2016_07_004 crossref_primary_10_1007_s40435_019_00525_w crossref_primary_10_1016_j_epidem_2020_100399 crossref_primary_10_1073_pnas_1508814112 crossref_primary_10_1016_j_jtbi_2017_03_024 crossref_primary_10_1007_s11920_016_0741_y crossref_primary_10_1016_j_epidem_2017_02_010 crossref_primary_10_1186_s40249_018_0478_4 crossref_primary_10_1016_j_epidem_2017_02_012 crossref_primary_10_1098_rsif_2020_0498 crossref_primary_10_1007_s10708_015_9688_5 crossref_primary_10_1080_24725579_2022_2115171 crossref_primary_10_1016_S1473_3099_23_00515_7 crossref_primary_10_1371_journal_pone_0315429 crossref_primary_10_1371_journal_pone_0210638 crossref_primary_10_3390_architecture4040049 crossref_primary_10_1371_journal_pntd_0004498 crossref_primary_10_1017_asr_2019_38 crossref_primary_10_1016_j_socscimed_2015_10_063 crossref_primary_10_1177_1740774515621059 crossref_primary_10_1371_journal_pone_0140651 crossref_primary_10_1016_j_plrev_2016_10_006 crossref_primary_10_1016_j_plrev_2016_10_008 crossref_primary_10_7189_jogh_09_010404 crossref_primary_10_1371_journal_pone_0208775 crossref_primary_10_1098_rsif_2024_0363 crossref_primary_10_1080_17513758_2018_1515993 crossref_primary_10_1098_rstb_2019_0038 crossref_primary_10_1098_rsif_2024_0765 crossref_primary_10_26453_otjhs_773674 crossref_primary_10_1371_journal_pcbi_1006785 crossref_primary_10_1371_journal_pcbi_1005210 crossref_primary_10_1371_journal_pcbi_1009652 crossref_primary_10_1371_journal_pone_0264425 crossref_primary_10_1016_j_jtbi_2015_08_004 crossref_primary_10_1371_journal_pone_0147172 crossref_primary_10_1371_journal_pone_0202832 crossref_primary_10_17537_2020_15_338 crossref_primary_10_1016_j_tpb_2019_07_014 crossref_primary_10_1103_PhysRevE_94_022409 crossref_primary_10_1038_srep15818 crossref_primary_10_1016_j_plrev_2016_08_005 crossref_primary_10_1073_pnas_1518587113 crossref_primary_10_1093_oep_gpad001 crossref_primary_10_1038_s42005_024_01648_z crossref_primary_10_12973_ejmste_80305 crossref_primary_10_1186_s12916_017_0811_y crossref_primary_10_1016_j_apgeog_2019_102103 crossref_primary_10_1109_ACCESS_2021_3114226 crossref_primary_10_1016_j_physrep_2023_03_005 crossref_primary_10_1093_ofid_ofac593 crossref_primary_10_1016_j_jtbi_2017_05_034 crossref_primary_10_1016_S0140_6736_18_31443_0 crossref_primary_10_1016_j_jtbi_2016_03_024 crossref_primary_10_1016_j_epidem_2017_09_001 crossref_primary_10_1371_journal_pone_0250435 crossref_primary_10_1186_s41256_016_0005_8 crossref_primary_10_1038_s42005_021_00631_2 crossref_primary_10_7717_peerj_4440 crossref_primary_10_1016_S1473_3099_14_71086_2 crossref_primary_10_1103_PhysRevLett_117_228302 crossref_primary_10_1371_journal_pntd_0003706 crossref_primary_10_23946_2500_0764_2024_9_3_109_119 crossref_primary_10_1287_msom_2017_0681 crossref_primary_10_1098_rstb_2016_0164 crossref_primary_10_1371_journal_pcbi_1009360 crossref_primary_10_1017_S095026881800119X crossref_primary_10_1038_s41598_024_63795_1 crossref_primary_10_1186_s12889_019_6968_x crossref_primary_10_1186_s12889_023_15559_1 crossref_primary_10_1017_S0950268817000164 crossref_primary_10_1038_s41598_019_52501_1 crossref_primary_10_1111_poms_13709 crossref_primary_10_1136_bmjgh_2020_002732 crossref_primary_10_1186_s12889_015_2285_1 |
Cites_doi | 10.1371/currents.outbreaks.9e4c4294ec8ce1adad283172b16bc908 10.1126/science.1115717 10.1056/NEJMoa1411100 10.1073/pnas.0706849105 10.1016/S1473-3099(14)70995-8 10.2807/1560-7917.ES2014.19.36.20894 10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5 10.1186/s12916-014-0196-0 10.1017/S0950268806007217 10.1086/514306 10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571 10.1186/1741-7015-11-252 10.1126/science.1260612 10.1086/514284 10.1371/journal.pcbi.1002205 10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288 10.2807/1560-7917.ES2014.19.42.20936 10.1371/journal.pcbi.1000656 10.1111/j.1553-2712.2006.tb01641.x 10.1038/nature04017 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Feb 2015 |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Feb 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 0TZ 3V. 7QL 7RV 7U9 7X7 7XB 88E 8AO 8C1 8C2 8FI 8FJ 8FK ABUWG AEUYN AFKRA BENPR C1K CCPQU FYUFA GHDGH H94 K9. KB0 M0S M1P M7N NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7T2 7X8 |
DOI | 10.1016/S1473-3099(14)71074-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Pharma and Biotech Premium PRO ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nursing & Allied Health Database Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Lancet Titles Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Environmental Sciences and Pollution Management ProQuest One Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Health and Safety Science Abstracts (Full archive) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Pharma and Biotech Premium PRO ProQuest One Academic Middle East (New) Lancet Titles ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Health & Safety Science Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts Pharma and Biotech Premium PRO |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1474-4457 |
EndPage | 211 |
ExternalDocumentID | 3561755991 25575618 10_1016_S1473_3099_14_71074_6 S1473309914710746 1_s2_0_S1473309914710746 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Liberia Africa |
GeographicLocations_xml | – name: Liberia – name: Africa |
GrantInformation | US Defense Threat Reduction Agency, US National Institutes of Health. |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: U54-GM111274 – fundername: NIGMS NIH HHS grantid: U54 GM111274 |
GroupedDBID | --- --K --M -RU ..I .1- .FO 0R~ 123 1B1 1P~ 1~5 29L 4.4 457 4G. 53G 5VS 6PF 7-5 71M 7RV 7X7 88E 8AO 8C1 8C2 8FI 8FJ AAAJQ AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAQFI AAQQT AAQXK AARKO AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABJNI ABMAC ABMZM ABUWG ABWVN ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADMUD ADNMO AEIPS AEKER AENEX AEUPX AEUYN AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AHMBA AIGII AIIUN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BENPR BKEYQ BKOJK BNPGV BPHCQ BVXVI CCPQU CJTIS CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-Q GBLVA HF~ HMCUK HVGLF HZ~ IHE J1W KOM M1P M41 MO0 N9A NAPCQ O-L O9- OD- OO. OZT P-8 P-9 P2P PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO R2- ROL RPZ SDG SEL SES SPCBC SSH SSI SSZ T5K TLN UKHRP UV1 WOW XBR Z5R 3V. AACTN AAYOK AFCTW AFKWA AJOXV ALIPV AMFUW RIG SDF ABLVK ABYKQ AJBFU ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 0TZ 7QL 7U9 7XB 8FK C1K H94 K9. M7N PKEHL PQEST PQUKI 7T2 7X8 |
ID | FETCH-LOGICAL-c652t-b7a25b84d48b8d55deb8da7f0f0655fe0c3fded19593b3f063c7791019141fc83 |
IEDL.DBID | 8C1 |
ISSN | 1473-3099 1474-4457 |
IngestDate | Thu Sep 04 17:05:56 EDT 2025 Thu Sep 04 16:59:40 EDT 2025 Sat Jul 26 00:56:26 EDT 2025 Mon Jul 21 05:48:13 EDT 2025 Tue Jul 01 01:42:46 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Fri Feb 23 02:26:59 EST 2024 Sun Feb 23 10:19:07 EST 2025 Tue Aug 26 17:35:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c652t-b7a25b84d48b8d55deb8da7f0f0655fe0c3fded19593b3f063c7791019141fc83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/S1473-3099(14)71074-6 |
PMID | 25575618 |
PQID | 1646412711 |
PQPubID | 44001 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1661992961 proquest_miscellaneous_1660388980 proquest_journals_1646412711 pubmed_primary_25575618 crossref_citationtrail_10_1016_S1473_3099_14_71074_6 crossref_primary_10_1016_S1473_3099_14_71074_6 elsevier_sciencedirect_doi_10_1016_S1473_3099_14_71074_6 elsevier_clinicalkeyesjournals_1_s2_0_S1473309914710746 elsevier_clinicalkey_doi_10_1016_S1473_3099_14_71074_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: London |
PublicationTitle | The Lancet infectious diseases |
PublicationTitleAlternate | Lancet Infect Dis |
PublicationYear | 2015 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Halloran, Ferguson, Eubank (bib5) 2008; 105 Nishiura, Chowell (bib17) 2014; 19 Kaji, Koenig, Bey (bib23) 2006; 13 Longini, Nizam, Xu (bib3) 2005; 309 Dowell, Mukunu, Ksiazek, Khan, Rollin, Peters (bib22) 1999; 179 Chao, Halloran, Obenchain, Longini (bib6) 2010; 6 Meltzer, Atkins, Santibanez (bib13) 2014; 63 Fisman, Khoo, Tuite (bib19) 2014 Khan, Tshioko, Heymann (bib16) 1999; 179 Poletto, Gomes, Pastore y Piontti (bib11) 2014; 19 Ferguson, Cummings, Cauchemez (bib4) 2005; 437 Althaus (bib20) 2014 Merler, Ajelli, Pugliese, Ferguson (bib7) 2011; 7 Chowell, Nishiura (bib21) 2014; 12 Pandey, Atkins, Medlock (bib10) 2014; 346 Merler, Ajelli, Fumanelli, Vespignani (bib8) 2013; 11 bib1 Gomes, Pastore y Piontti, Rossi (bib12) 2014 bib2 Legrand, Grais, Boelle, Valleron, Flahault (bib14) 2007; 135 Towers, Patterson-Lomba, Castillo-Chavez (bib18) 2014 (bib15) 2014; 371 Lewnard, Ndeffo Mbah, Alfaro-Murillo (bib9) 2014; 14 Longini (10.1016/S1473-3099(14)71074-6_bib3) 2005; 309 Merler (10.1016/S1473-3099(14)71074-6_bib7) 2011; 7 Nishiura (10.1016/S1473-3099(14)71074-6_bib17) 2014; 19 Legrand (10.1016/S1473-3099(14)71074-6_bib14) 2007; 135 Fisman (10.1016/S1473-3099(14)71074-6_bib19) 2014 Kaji (10.1016/S1473-3099(14)71074-6_bib23) 2006; 13 Chao (10.1016/S1473-3099(14)71074-6_bib6) 2010; 6 Dowell (10.1016/S1473-3099(14)71074-6_bib22) 1999; 179 Poletto (10.1016/S1473-3099(14)71074-6_bib11) 2014; 19 Merler (10.1016/S1473-3099(14)71074-6_bib8) 2013; 11 Chowell (10.1016/S1473-3099(14)71074-6_bib21) 2014; 12 (10.1016/S1473-3099(14)71074-6_bib15) 2014; 371 Khan (10.1016/S1473-3099(14)71074-6_bib16) 1999; 179 Towers (10.1016/S1473-3099(14)71074-6_bib18) 2014 Meltzer (10.1016/S1473-3099(14)71074-6_bib13) 2014; 63 Althaus (10.1016/S1473-3099(14)71074-6_bib20) 2014 Halloran (10.1016/S1473-3099(14)71074-6_bib5) 2008; 105 Gomes (10.1016/S1473-3099(14)71074-6_bib12) 2014 Pandey (10.1016/S1473-3099(14)71074-6_bib10) 2014; 346 Ferguson (10.1016/S1473-3099(14)71074-6_bib4) 2005; 437 Lewnard (10.1016/S1473-3099(14)71074-6_bib9) 2014; 14 25642364 - PLoS Curr. 2014 Sep 02;6:null 25358040 - Euro Surveill. 2014;19(42). pii: 20936 9988169 - J Infect Dis. 1999 Feb;179 Suppl 1:S87-91 25414312 - Science. 2014 Nov 21;346(6212):991-5 25254986 - MMWR Surveill Summ. 2014 Sep 26;63 Suppl 3:1-14 16079251 - Science. 2005 Aug 12;309(5737):1083-7 25642360 - PLoS Curr. 2014 Sep 02;6:null 16999875 - Epidemiol Infect. 2007 May;135(4):610-21 25642358 - PLoS Curr. 2014 Sep 08;6:null 20126529 - PLoS Comput Biol. 2010 Jan;6(1):e1000656 18332436 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4639-44 25575619 - Lancet Infect Dis. 2015 Feb;15(2):139-41 25455986 - Lancet Infect Dis. 2014 Dec;14(12):1189-95 25232919 - Euro Surveill. 2014;19(36). pii: 20894 25300956 - BMC Med. 2014;12:196 21980281 - PLoS Comput Biol. 2011 Sep;7(9):e1002205 16079797 - Nature. 2005 Sep 8;437(7056):209-14 25244186 - N Engl J Med. 2014 Oct 16;371(16):1481-95 25642357 - PLoS Curr. 2014 Sep 18;6:null 16968688 - Acad Emerg Med. 2006 Nov;13(11):1157-9 24283203 - BMC Med. 2013;11:252 9988168 - J Infect Dis. 1999 Feb;179 Suppl 1:S76-86 |
References_xml | – year: 2014 ident: bib19 article-title: Early epidemic dynamics of the west African 2014 Ebola outbreak: estimates derived with a simple two-parameter model publication-title: PLoS Curr – volume: 135 start-page: 610 year: 2007 end-page: 621 ident: bib14 article-title: Understanding the dynamics of Ebola epidemics publication-title: Epidemiol Infect – volume: 6 start-page: e1000656 year: 2010 ident: bib6 article-title: FluTE: a publicly available stochastic influenza epidemic simulation model publication-title: PLoS Comput Biol – volume: 63 start-page: 1 year: 2014 end-page: 14 ident: bib13 article-title: Estimating the future number of cases in the Ebola epidemic—Liberia and Sierra Leone, 2014–2015 publication-title: MMWR Morb Mortal Wkly Rep – year: 2014 ident: bib20 article-title: Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in west Africa publication-title: PLOS Curr – volume: 19 year: 2014 ident: bib17 article-title: Early transmission dynamics of Ebola virus disease (EVD), west Africa, March to August 2014 publication-title: Euro Surveill – volume: 13 start-page: 1157 year: 2006 end-page: 1159 ident: bib23 article-title: Surge capacity for healthcare systems: a conceptual framework publication-title: Acad Emerg Med – ident: bib1 article-title: Situation Reports on the Ebola Virus Outbreak in Liberia – ident: bib2 article-title: Situation reports: Ebola response roadmap – volume: 12 start-page: 196 year: 2014 ident: bib21 article-title: Transmission dynamics and control of Ebola virus disease (EVD): a review publication-title: BMC Med – year: 2014 ident: bib12 article-title: Assessing the international spreading risk associated with the 2014 west African Ebola outbreak publication-title: PLoS Curr – volume: 437 start-page: 209 year: 2005 end-page: 214 ident: bib4 article-title: Strategies for containing an emerging influenza pandemic in southeast Asia publication-title: Nature – volume: 179 start-page: S76 year: 1999 end-page: S86 ident: bib16 article-title: The reemergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995 publication-title: J Infect Dis – volume: 7 start-page: e1002205 year: 2011 ident: bib7 article-title: Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in Europe: implications for real-time modelling publication-title: PLoS Comput Biol – volume: 371 start-page: 1481 year: 2014 end-page: 1495 ident: bib15 article-title: Ebola virus disease in west Africa—the first 9 months of the epidemic and forward projections publication-title: N Eng J Med – volume: 11 start-page: 252 year: 2013 ident: bib8 article-title: Containing the accidental laboratory escape of potential pandemic influenza viruses publication-title: BMC Med – volume: 346 start-page: 991 year: 2014 end-page: 995 ident: bib10 article-title: Strategies for containing Ebola in west Africa publication-title: Science – volume: 19 year: 2014 ident: bib11 article-title: Assessing the impact of travel restrictions on international spread of the 2014 west African Ebola epidemic publication-title: Euro Surveill – volume: 179 start-page: S87 year: 1999 end-page: S91 ident: bib22 article-title: Transmission of Ebola hemorrhagic fever: a study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995 publication-title: J Infect Dis – volume: 309 start-page: 1083 year: 2005 end-page: 1087 ident: bib3 article-title: Containing pandemic influenza at the source publication-title: Science – volume: 105 start-page: 4639 year: 2008 end-page: 4644 ident: bib5 article-title: Modeling targeted layered containment of an influenza pandemic in the United States publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: 1189 year: 2014 end-page: 1195 ident: bib9 article-title: Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis publication-title: Lancet Infect Dis – year: 2014 ident: bib18 article-title: Temporal variations in the effective reproduction number of the 2014 west Africa Ebola outbreak publication-title: PLoS Curr – year: 2014 ident: 10.1016/S1473-3099(14)71074-6_bib18 article-title: Temporal variations in the effective reproduction number of the 2014 west Africa Ebola outbreak publication-title: PLoS Curr doi: 10.1371/currents.outbreaks.9e4c4294ec8ce1adad283172b16bc908 – volume: 309 start-page: 1083 year: 2005 ident: 10.1016/S1473-3099(14)71074-6_bib3 article-title: Containing pandemic influenza at the source publication-title: Science doi: 10.1126/science.1115717 – volume: 371 start-page: 1481 year: 2014 ident: 10.1016/S1473-3099(14)71074-6_bib15 article-title: Ebola virus disease in west Africa—the first 9 months of the epidemic and forward projections publication-title: N Eng J Med doi: 10.1056/NEJMoa1411100 – volume: 105 start-page: 4639 year: 2008 ident: 10.1016/S1473-3099(14)71074-6_bib5 article-title: Modeling targeted layered containment of an influenza pandemic in the United States publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0706849105 – volume: 63 start-page: 1 year: 2014 ident: 10.1016/S1473-3099(14)71074-6_bib13 article-title: Estimating the future number of cases in the Ebola epidemic—Liberia and Sierra Leone, 2014–2015 publication-title: MMWR Morb Mortal Wkly Rep – volume: 14 start-page: 1189 year: 2014 ident: 10.1016/S1473-3099(14)71074-6_bib9 article-title: Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(14)70995-8 – volume: 19 year: 2014 ident: 10.1016/S1473-3099(14)71074-6_bib17 article-title: Early transmission dynamics of Ebola virus disease (EVD), west Africa, March to August 2014 publication-title: Euro Surveill doi: 10.2807/1560-7917.ES2014.19.36.20894 – year: 2014 ident: 10.1016/S1473-3099(14)71074-6_bib12 article-title: Assessing the international spreading risk associated with the 2014 west African Ebola outbreak publication-title: PLoS Curr doi: 10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5 – volume: 12 start-page: 196 year: 2014 ident: 10.1016/S1473-3099(14)71074-6_bib21 article-title: Transmission dynamics and control of Ebola virus disease (EVD): a review publication-title: BMC Med doi: 10.1186/s12916-014-0196-0 – volume: 135 start-page: 610 year: 2007 ident: 10.1016/S1473-3099(14)71074-6_bib14 article-title: Understanding the dynamics of Ebola epidemics publication-title: Epidemiol Infect doi: 10.1017/S0950268806007217 – volume: 179 start-page: S76 year: 1999 ident: 10.1016/S1473-3099(14)71074-6_bib16 article-title: The reemergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995 publication-title: J Infect Dis doi: 10.1086/514306 – year: 2014 ident: 10.1016/S1473-3099(14)71074-6_bib19 article-title: Early epidemic dynamics of the west African 2014 Ebola outbreak: estimates derived with a simple two-parameter model publication-title: PLoS Curr doi: 10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571 – volume: 11 start-page: 252 year: 2013 ident: 10.1016/S1473-3099(14)71074-6_bib8 article-title: Containing the accidental laboratory escape of potential pandemic influenza viruses publication-title: BMC Med doi: 10.1186/1741-7015-11-252 – volume: 346 start-page: 991 year: 2014 ident: 10.1016/S1473-3099(14)71074-6_bib10 article-title: Strategies for containing Ebola in west Africa publication-title: Science doi: 10.1126/science.1260612 – volume: 179 start-page: S87 year: 1999 ident: 10.1016/S1473-3099(14)71074-6_bib22 article-title: Transmission of Ebola hemorrhagic fever: a study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995 publication-title: J Infect Dis doi: 10.1086/514284 – volume: 7 start-page: e1002205 year: 2011 ident: 10.1016/S1473-3099(14)71074-6_bib7 article-title: Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in Europe: implications for real-time modelling publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002205 – year: 2014 ident: 10.1016/S1473-3099(14)71074-6_bib20 article-title: Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in west Africa publication-title: PLOS Curr doi: 10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288 – volume: 19 year: 2014 ident: 10.1016/S1473-3099(14)71074-6_bib11 article-title: Assessing the impact of travel restrictions on international spread of the 2014 west African Ebola epidemic publication-title: Euro Surveill doi: 10.2807/1560-7917.ES2014.19.42.20936 – volume: 6 start-page: e1000656 year: 2010 ident: 10.1016/S1473-3099(14)71074-6_bib6 article-title: FluTE: a publicly available stochastic influenza epidemic simulation model publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000656 – volume: 13 start-page: 1157 year: 2006 ident: 10.1016/S1473-3099(14)71074-6_bib23 article-title: Surge capacity for healthcare systems: a conceptual framework publication-title: Acad Emerg Med doi: 10.1111/j.1553-2712.2006.tb01641.x – volume: 437 start-page: 209 year: 2005 ident: 10.1016/S1473-3099(14)71074-6_bib4 article-title: Strategies for containing an emerging influenza pandemic in southeast Asia publication-title: Nature doi: 10.1038/nature04017 – reference: 9988168 - J Infect Dis. 1999 Feb;179 Suppl 1:S76-86 – reference: 25642357 - PLoS Curr. 2014 Sep 18;6:null – reference: 25232919 - Euro Surveill. 2014;19(36). pii: 20894 – reference: 16968688 - Acad Emerg Med. 2006 Nov;13(11):1157-9 – reference: 25455986 - Lancet Infect Dis. 2014 Dec;14(12):1189-95 – reference: 18332436 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4639-44 – reference: 25642358 - PLoS Curr. 2014 Sep 08;6:null – reference: 25244186 - N Engl J Med. 2014 Oct 16;371(16):1481-95 – reference: 16079797 - Nature. 2005 Sep 8;437(7056):209-14 – reference: 20126529 - PLoS Comput Biol. 2010 Jan;6(1):e1000656 – reference: 25414312 - Science. 2014 Nov 21;346(6212):991-5 – reference: 25300956 - BMC Med. 2014;12:196 – reference: 21980281 - PLoS Comput Biol. 2011 Sep;7(9):e1002205 – reference: 16999875 - Epidemiol Infect. 2007 May;135(4):610-21 – reference: 25575619 - Lancet Infect Dis. 2015 Feb;15(2):139-41 – reference: 25642360 - PLoS Curr. 2014 Sep 02;6:null – reference: 25642364 - PLoS Curr. 2014 Sep 02;6:null – reference: 9988169 - J Infect Dis. 1999 Feb;179 Suppl 1:S87-91 – reference: 25254986 - MMWR Surveill Summ. 2014 Sep 26;63 Suppl 3:1-14 – reference: 16079251 - Science. 2005 Aug 12;309(5737):1083-7 – reference: 24283203 - BMC Med. 2013;11:252 – reference: 25358040 - Euro Surveill. 2014;19(42). pii: 20936 |
SSID | ssj0017104 |
Score | 2.570593 |
Snippet | The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus transmission that... Summary Background The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus... Background The 2014 epidemic of Ebola virus disease in parts of west Africa defines an unprecedented health threat. We developed a model of Ebola virus... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 204 |
SubjectTerms | Communicable Disease Control - methods Disease Outbreaks Disease transmission Disease Transmission, Infectious - prevention & control Ebola virus Epidemics Fatalities Funerals Health risks Hemorrhagic Fever, Ebola - epidemiology Hemorrhagic Fever, Ebola - prevention & control Hemorrhagic Fever, Ebola - transmission Hospitals Households Humans Infections Infectious Disease Infectious diseases Liberia - epidemiology Markov chains Models, Statistical Population Population density Spatio-Temporal Analysis |
Title | Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1473309914710746 https://www.clinicalkey.es/playcontent/1-s2.0-S1473309914710746 https://dx.doi.org/10.1016/S1473-3099(14)71074-6 https://www.ncbi.nlm.nih.gov/pubmed/25575618 https://www.proquest.com/docview/1646412711 https://www.proquest.com/docview/1660388980 https://www.proquest.com/docview/1661992961 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoKyEkhKC8FsrKSBzgYBo7TuzlgqDaqkJqhSiV9mb5EYsVVbI0u_wofiXjR9IeaMspkjdfEu3YM59nxjMIveGMUe-pIyUrPOG2ksQU1hCpG0E9mCwZI6bHJ_XRGf-yqBbZ4dbntMpBJ0ZF7TobfOT7oQ4Wp0xQ-nH1i4SuUSG6mltobKEdCjo4LEx5MKZ4ULCeMarMRUlKoEKXJ3j2T8fBt5S_EzEtsb7ONl3HPaMNOnyIHmTyiD8laT9Cd5p2F909zuHxXXQ_OeFwOlv0GP05jfnSufzUOe5XQBEd7jwG2ofBKHPcbdawKdY_w-DcwD4X_15ebHqcAzd42eKYVLLUWLcu4lIKSNaSAdd2LVn9uOobx8srqZT9B6yxjd0jsucRx_474SA8PDQVRXmCzg7n3w-OSG7OQGxdsTUxQrPKSO64NNJVlWvgooUvPJCayjeFLb1rXKhdU5oSBksrBHCTUE-OeivLp2gbPq95jrAFKXhGnWEzD-xMm0Iw0MNSO2Mb76oJ4oNYlM2Vy0MDjXM1pqgFaaogTdjKqChNVU_Q-xG2SqU7bgPUg8zVcC4VNKkC43IbUPwL2PRZH_SKqp6pIqEDGK4BCkg5IjPlSVTmf166N0xLdfmecZVM0OvxZ9AYIQyk26bbhHvqUAJoJosb7wl5ybManvMsTfnxP4RNqADWLV_c_AEv0T2Yx1XKcN9D2-uLTfMKCNzaTNGWWIhpXKtTtPN5fvL1218jCEFZ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkQAJISivhQJGAgkOprHjxF4khFBptaXdXtpKvbnxS6yoskuzC-IvceA3MraTtAfacukpkpPPiTL2zGfPeAahV5wx6j21JGeZJ9wUkujMaCIrJ6gHkyWjx3S8W44O-JfD4nAJ_enOwoSwyk4nRkVtpybska-FPFicMkHpx9l3EqpGBe9qV0IjDYtt9-snLNmaD1ufQb6vGdvc2F8fkbaqADFlweZEi4oVWnLLpZa2KKyDSyV85sEaF95lJvfW2ZB0Jdc5NOZGCDCqIREa9Ubm0O81dJ3neRlmkVzvQ0ooWOvoxeYiJzlQr9MTQ2t7feMbyt-KGAZZnmcLz-O60eZt3kV3WrKKP6XRdQ8tuXoF3Ri37vgVdDtt-uF0luk--r0X47PbdFfHuJkBJbV46jHQTAwkgOPpYg6L8OpbaNzQsK7GPyYniwa3jiI8qXEMYplUuKptxKWQk1YrB1w9rcns69m9eDw5E7rZvMcVNrFaRbvTiWO9n3DwHjpNSVgeoIMrEdtDtAyf5x4jbEAKnlGr2dADG6x0JhjofVlZbZy3xQDxTizKtJnSQ8GOY9WHxAVpqiBNWDqpKE1VDtC7HjZLqUIuA5SdzFV3DhY0twJjdhlQ_Avomlb_NIqqhqksoQMYrgEKSNkjW4qVqNP_vHS1G5bq9D39rBygl_1t0FDB7VTVbroIz5Qh5dBQZhc-E-KghyX08ygN-f4fwqJXAMuXTy7-gBfo5mh_vKN2tna3n6JbMKaLFF2_ipbnJwv3DMjjXD-PMxajo6tWEX8BiNV8DQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7qFoogovW2WnUEBX1IN5lMMrNCEbVbWmuXYi30bZwrLpbs2uwq_iV_ir_KM5NJ2gfb-tKnwCTfZMiZnMucG0LPKSGZc5lJcpK6hOqCJyrVKuHSssyByOLBY7o3LrcP6Yej4mgJ_WlzYXxYZcsTA6M2U-3PyAe-DhbNCMuygYthEfubW29m3xPfQcp7Wtt2GjK2WTAbodxYTPLYtb9-gjlXb-xsAu1fELI1-vx-O4kdBxJdFmSeKCZJoTg1lCtuisJYuEjmUgeSunA21bkz1viCLLnKYTDXjIHA9UXSMqd5DvNeQ8sMpCTtoeV3o_H-p86nAbI8-Lgpy5McFLPTfKLBQTf4MqOvWAiSLM-TlOdpwkEibt1CN6Mqi982e-82WrLVKlrZi876VXSjORLETabTHfT7IERvx2JYx7iegcJq8NRhUEIxqAgUTxdzMNHlNz84UmB14x-Tk0WNoxsJTyocQlwmEsvKBFwTkBJ5tsdV0yqZfT17Uo8nZwI769dYYh16WcRzUBy6Afm0fJi0KdFyFx1eCeHuoR4szz5AWAMVHMmMIkMHuqJUKSMgFbg0Sltnij6iLVmEjnXUfTuPY9EFzHlqCk9NMKxEoKYo-2i9g82aQiKXAcqW5qLNkgW-LkDUXQZk_wLaOnKnWmSiJiJt0B4MVw8FJO-QUQFrFKv_eelauy3F6Xu6f7aPnnW3gX95p5Ss7HThnyl9QaIhTy98xkdJD0uY536z5btvCCYxAxuAP7x4AU_RCrAL8XFnvPsIXYctXTSh92uoNz9Z2MegWc7Vk_jLYvTlqrnEX_QrhwU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+spread+of+the+2014+outbreak+of+Ebola+virus+disease+in+Liberia+and+the+effectiveness+of+non-pharmaceutical+interventions%3A+a+computational+modelling+analysis&rft.jtitle=The+Lancet+infectious+diseases&rft.au=Merler%2C+Stefano&rft.au=Ajelli%2C+Marco&rft.au=Fumanelli%2C+Laura&rft.au=Gomes%2C+Marcelo+F+C&rft.date=2015-02-01&rft.issn=1473-3099&rft.volume=15&rft.issue=2&rft.spage=204&rft.epage=211&rft_id=info:doi/10.1016%2FS1473-3099%2814%2971074-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F14733099%2FS1473309915X70782%2Fcov150h.gif |