Based Upon Repeat Pattern (BURP): an algorithm to characterize the long-term evolution of Staphylococcus aureus populations based on spa polymorphisms

For typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory method for outbreak investigations. Recently, it was hypothesized that this region also reflects long-term epidemiology. However, no automated and objective algor...

Full description

Saved in:
Bibliographic Details
Published inBMC microbiology Vol. 7; no. 1; p. 98
Main Authors Mellmann, Alexander, Weniger, Thomas, Berssenbrügge, Christoph, Rothgänger, Jörg, Sammeth, Michael, Stoye, Jens, Harmsen, Dag
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 29.10.2007
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1471-2180
1471-2180
DOI10.1186/1471-2180-7-98

Cover

Abstract For typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory method for outbreak investigations. Recently, it was hypothesized that this region also reflects long-term epidemiology. However, no automated and objective algorithm existed to cluster different repeat regions. In this study, the Based Upon Repeat Pattern (BURP) implementation that is a heuristic variant of the newly described EDSI algorithm was investigated to infer the clonal relatedness of different spa types. For calibration of BURP parameters, 400 representative S. aureus strains with different spa types were characterized by MLST and clustered using eBURST as "gold standard" for their phylogeny. Typing concordance analysis between eBURST and BURP clustering (spa-CC) were performed using all possible BURP parameters to determine their optimal combination. BURP was subsequently evaluated with a strain collection reflecting the breadth of diversity of S. aureus (JCM 2002; 40:4544). In total, the 400 strains exhibited 122 different MLST types. eBURST grouped them into 23 clonal complexes (CC; 354 isolates) and 33 singletons (46 isolates). BURP clustering of spa types using all possible parameter combinations and subsequent comparison with eBURST CCs resulted in concordances ranging from 8.2 to 96.2%. However, 96.2% concordance was reached only if spa types shorter than 8 repeats were excluded, which resulted in 37% excluded spa types. Therefore, the optimal combination of the BURP parameters was "exclude spa types shorter than 5 repeats" and "cluster spa types into spa-CC if cost distances are less than 4" exhibiting 95.3% concordance to eBURST. This algorithm identified 24 spa-CCs, 40 singletons, and excluded only 7.8% spa types. Analyzing the natural population with these parameters, the comparison of whole-genome micro-array groupings (at the level of 0.31 Pearson correlation index) and spa-CCs gave a concordance of 87.1%; BURP spa-CCs vs. manually grouped spa types resulted in 95.7% concordance. BURP is the first automated and objective tool to infer clonal relatedness from spa repeat regions. It is able to extract an evolutionary signal rather congruent to MLST and micro-array data.
AbstractList Background For typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory method for outbreak investigations. Recently, it was hypothesized that this region also reflects long-term epidemiology. However, no automated and objective algorithm existed to cluster different repeat regions. In this study, the Based Upon Repeat Pattern (BURP) implementation that is a heuristic variant of the newly described EDSI algorithm was investigated to infer the clonal relatedness of different spa types. For calibration of BURP parameters, 400 representative S. aureus strains with different spa types were characterized by MLST and clustered using eBURST as "gold standard" for their phylogeny. Typing concordance analysis between eBURST and BURP clustering (spa-CC) were performed using all possible BURP parameters to determine their optimal combination. BURP was subsequently evaluated with a strain collection reflecting the breadth of diversity of S. aureus (JCM 2002; 40:4544). Results In total, the 400 strains exhibited 122 different MLST types. eBURST grouped them into 23 clonal complexes (CC; 354 isolates) and 33 singletons (46 isolates). BURP clustering of spa types using all possible parameter combinations and subsequent comparison with eBURST CCs resulted in concordances ranging from 8.2 to 96.2%. However, 96.2% concordance was reached only if spa types shorter than 8 repeats were excluded, which resulted in 37% excluded spa types. Therefore, the optimal combination of the BURP parameters was "exclude spa types shorter than 5 repeats" and "cluster spa types into spa-CC if cost distances are less than 4" exhibiting 95.3% concordance to eBURST. This algorithm identified 24 spa-CCs, 40 singletons, and excluded only 7.8% spa types. Analyzing the natural population with these parameters, the comparison of whole-genome micro-array groupings (at the level of 0.31 Pearson correlation index) and spa-CCs gave a concordance of 87.1%; BURP spa-CCs vs. manually grouped spa types resulted in 95.7% concordance. Conclusion BURP is the first automated and objective tool to infer clonal relatedness from spa repeat regions. It is able to extract an evolutionary signal rather congruent to MLST and micro-array data.
For typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory method for outbreak investigations. Recently, it was hypothesized that this region also reflects long-term epidemiology. However, no automated and objective algorithm existed to cluster different repeat regions. In this study, the Based Upon Repeat Pattern (BURP) implementation that is a heuristic variant of the newly described EDSI algorithm was investigated to infer the clonal relatedness of different spa types. For calibration of BURP parameters, 400 representative S. aureus strains with different spa types were characterized by MLST and clustered using eBURST as "gold standard" for their phylogeny. Typing concordance analysis between eBURST and BURP clustering (spa-CC) were performed using all possible BURP parameters to determine their optimal combination. BURP was subsequently evaluated with a strain collection reflecting the breadth of diversity of S. aureus (JCM 2002; 40:4544).BACKGROUNDFor typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory method for outbreak investigations. Recently, it was hypothesized that this region also reflects long-term epidemiology. However, no automated and objective algorithm existed to cluster different repeat regions. In this study, the Based Upon Repeat Pattern (BURP) implementation that is a heuristic variant of the newly described EDSI algorithm was investigated to infer the clonal relatedness of different spa types. For calibration of BURP parameters, 400 representative S. aureus strains with different spa types were characterized by MLST and clustered using eBURST as "gold standard" for their phylogeny. Typing concordance analysis between eBURST and BURP clustering (spa-CC) were performed using all possible BURP parameters to determine their optimal combination. BURP was subsequently evaluated with a strain collection reflecting the breadth of diversity of S. aureus (JCM 2002; 40:4544).In total, the 400 strains exhibited 122 different MLST types. eBURST grouped them into 23 clonal complexes (CC; 354 isolates) and 33 singletons (46 isolates). BURP clustering of spa types using all possible parameter combinations and subsequent comparison with eBURST CCs resulted in concordances ranging from 8.2 to 96.2%. However, 96.2% concordance was reached only if spa types shorter than 8 repeats were excluded, which resulted in 37% excluded spa types. Therefore, the optimal combination of the BURP parameters was "exclude spa types shorter than 5 repeats" and "cluster spa types into spa-CC if cost distances are less than 4" exhibiting 95.3% concordance to eBURST. This algorithm identified 24 spa-CCs, 40 singletons, and excluded only 7.8% spa types. Analyzing the natural population with these parameters, the comparison of whole-genome micro-array groupings (at the level of 0.31 Pearson correlation index) and spa-CCs gave a concordance of 87.1%; BURP spa-CCs vs. manually grouped spa types resulted in 95.7% concordance.RESULTSIn total, the 400 strains exhibited 122 different MLST types. eBURST grouped them into 23 clonal complexes (CC; 354 isolates) and 33 singletons (46 isolates). BURP clustering of spa types using all possible parameter combinations and subsequent comparison with eBURST CCs resulted in concordances ranging from 8.2 to 96.2%. However, 96.2% concordance was reached only if spa types shorter than 8 repeats were excluded, which resulted in 37% excluded spa types. Therefore, the optimal combination of the BURP parameters was "exclude spa types shorter than 5 repeats" and "cluster spa types into spa-CC if cost distances are less than 4" exhibiting 95.3% concordance to eBURST. This algorithm identified 24 spa-CCs, 40 singletons, and excluded only 7.8% spa types. Analyzing the natural population with these parameters, the comparison of whole-genome micro-array groupings (at the level of 0.31 Pearson correlation index) and spa-CCs gave a concordance of 87.1%; BURP spa-CCs vs. manually grouped spa types resulted in 95.7% concordance.BURP is the first automated and objective tool to infer clonal relatedness from spa repeat regions. It is able to extract an evolutionary signal rather congruent to MLST and micro-array data.CONCLUSIONBURP is the first automated and objective tool to infer clonal relatedness from spa repeat regions. It is able to extract an evolutionary signal rather congruent to MLST and micro-array data.
For typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory method for outbreak investigations. Recently, it was hypothesized that this region also reflects long-term epidemiology. However, no automated and objective algorithm existed to cluster different repeat regions. In this study, the Based Upon Repeat Pattern (BURP) implementation that is a heuristic variant of the newly described EDSI algorithm was investigated to infer the clonal relatedness of different spa types. For calibration of BURP parameters, 400 representative S. aureus strains with different spa types were characterized by MLST and clustered using eBURST as "gold standard" for their phylogeny. Typing concordance analysis between eBURST and BURP clustering (spa-CC) were performed using all possible BURP parameters to determine their optimal combination. BURP was subsequently evaluated with a strain collection reflecting the breadth of diversity of S. aureus (JCM 2002; 40:4544). In total, the 400 strains exhibited 122 different MLST types. eBURST grouped them into 23 clonal complexes (CC; 354 isolates) and 33 singletons (46 isolates). BURP clustering of spa types using all possible parameter combinations and subsequent comparison with eBURST CCs resulted in concordances ranging from 8.2 to 96.2%. However, 96.2% concordance was reached only if spa types shorter than 8 repeats were excluded, which resulted in 37% excluded spa types. Therefore, the optimal combination of the BURP parameters was "exclude spa types shorter than 5 repeats" and "cluster spa types into spa-CC if cost distances are less than 4" exhibiting 95.3% concordance to eBURST. This algorithm identified 24 spa-CCs, 40 singletons, and excluded only 7.8% spa types. Analyzing the natural population with these parameters, the comparison of whole-genome micro-array groupings (at the level of 0.31 Pearson correlation index) and spa-CCs gave a concordance of 87.1%; BURP spa-CCs vs. manually grouped spa types resulted in 95.7% concordance. BURP is the first automated and objective tool to infer clonal relatedness from spa repeat regions. It is able to extract an evolutionary signal rather congruent to MLST and micro-array data.
Abstract Background For typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory method for outbreak investigations. Recently, it was hypothesized that this region also reflects long-term epidemiology. However, no automated and objective algorithm existed to cluster different repeat regions. In this study, the Based Upon Repeat Pattern (BURP) implementation that is a heuristic variant of the newly described EDSI algorithm was investigated to infer the clonal relatedness of different spa types. For calibration of BURP parameters, 400 representative S. aureus strains with different spa types were characterized by MLST and clustered using eBURST as "gold standard" for their phylogeny. Typing concordance analysis between eBURST and BURP clustering (spa-CC) were performed using all possible BURP parameters to determine their optimal combination. BURP was subsequently evaluated with a strain collection reflecting the breadth of diversity of S. aureus (JCM 2002; 40:4544). Results In total, the 400 strains exhibited 122 different MLST types. eBURST grouped them into 23 clonal complexes (CC; 354 isolates) and 33 singletons (46 isolates). BURP clustering of spa types using all possible parameter combinations and subsequent comparison with eBURST CCs resulted in concordances ranging from 8.2 to 96.2%. However, 96.2% concordance was reached only if spa types shorter than 8 repeats were excluded, which resulted in 37% excluded spa types. Therefore, the optimal combination of the BURP parameters was "exclude spa types shorter than 5 repeats" and "cluster spa types into spa-CC if cost distances are less than 4" exhibiting 95.3% concordance to eBURST. This algorithm identified 24 spa-CCs, 40 singletons, and excluded only 7.8% spa types. Analyzing the natural population with these parameters, the comparison of whole-genome micro-array groupings (at the level of 0.31 Pearson correlation index) and spa-CCs gave a concordance of 87.1%; BURP spa-CCs vs. manually grouped spa types resulted in 95.7% concordance. Conclusion BURP is the first automated and objective tool to infer clonal relatedness from spa repeat regions. It is able to extract an evolutionary signal rather congruent to MLST and micro-array data.
ArticleNumber 98
Audience Academic
Author Weniger, Thomas
Berssenbrügge, Christoph
Sammeth, Michael
Stoye, Jens
Rothgänger, Jörg
Harmsen, Dag
Mellmann, Alexander
AuthorAffiliation 1 Institute for Hygiene, University Hospital Münster, Münster, Germany
2 Department of Periodontology, University Hospital Münster, Münster, Germany
5 Faculty of Technology, University Bielefeld, Bielefeld, Germany
3 Ridom GmbH, Würzburg, Germany
4 Center for Genomic Regulation, Barcelona, Spain
AuthorAffiliation_xml – name: 2 Department of Periodontology, University Hospital Münster, Münster, Germany
– name: 1 Institute for Hygiene, University Hospital Münster, Münster, Germany
– name: 4 Center for Genomic Regulation, Barcelona, Spain
– name: 3 Ridom GmbH, Würzburg, Germany
– name: 5 Faculty of Technology, University Bielefeld, Bielefeld, Germany
Author_xml – sequence: 1
  givenname: Alexander
  surname: Mellmann
  fullname: Mellmann, Alexander
– sequence: 2
  givenname: Thomas
  surname: Weniger
  fullname: Weniger, Thomas
– sequence: 3
  givenname: Christoph
  surname: Berssenbrügge
  fullname: Berssenbrügge, Christoph
– sequence: 4
  givenname: Jörg
  surname: Rothgänger
  fullname: Rothgänger, Jörg
– sequence: 5
  givenname: Michael
  surname: Sammeth
  fullname: Sammeth, Michael
– sequence: 6
  givenname: Jens
  surname: Stoye
  fullname: Stoye, Jens
– sequence: 7
  givenname: Dag
  surname: Harmsen
  fullname: Harmsen, Dag
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17967176$$D View this record in MEDLINE/PubMed
BookMark eNqFkktr3DAQx01JaR7ttcciKJTm4ETyS3IPhST0EQg0bJqzmJXHuwqy5Uhy2u0H6eet9kGSLS3BB1mj3_8_0szsJzu97TFJXjN6xJiojlnBWZoxQVOe1uJZsncf2Hn0v5vse39DKeMi5y-SXcbrijNe7SW_T8FjQ64H25MJDgiBXEII6Hry_vR6cnn4gUBPwMys02HekWCJmoMDFRH9C0mYIzG2n6Vx3xG8s2YMOnrZllwFGOYLY5VVavQERodxGewwGlgynkxXuSPtB4gHZtFZN8y17_zL5HkLxuOrzXqQXH_-9P3sa3rx7cv52clFqqoyC2mmOFBVCaaaac5ZmYm6bvO2pVOEopk2NUWoFQrGVFk3kAsUFc2oKNsyzxqG-UFyvvZtLNzIwekO3EJa0HIVsG4mwQWtDMpmKliJVVk2tCl4XYqiZgiCqpzWRcV59Dpee439AIsfYMy9IaNy2S25bIhcNkRyWYuo-LhWDOO0w0ZhHxyYrWtsn_R6Lmf2LloUghbLlO82Bs7ejuiD7LRXaAz0aEcvq5ryosiqJ8GM5mVViCyCb9fgDOKbdd_amFgtYXnCeFbFV4gyUkf_oOLXYKdVnNBWx_iW4HBLEJmAP8MMRu_l-dVkm33zuCoPRdwM7UN25az3Dtun61z8JVA6rGYwXlub_8n-AHjVDhs
CitedBy_id crossref_primary_10_1007_s10096_008_0585_4
crossref_primary_10_1128_JCM_00923_12
crossref_primary_10_1016_j_meegid_2016_11_022
crossref_primary_10_1016_j_vetmic_2015_08_018
crossref_primary_10_1016_j_ijmm_2021_151524
crossref_primary_10_1038_s41598_017_07713_8
crossref_primary_10_1093_cid_civ234
crossref_primary_10_1128_JCM_00941_09
crossref_primary_10_1371_journal_pone_0062020
crossref_primary_10_1128_JCM_01579_08
crossref_primary_10_1007_s00284_016_1033_9
crossref_primary_10_1136_vr_100570
crossref_primary_10_1007_s10096_017_3014_8
crossref_primary_10_1007_s13213_019_01484_5
crossref_primary_10_1007_s10096_011_1339_2
crossref_primary_10_1038_mi_2014_73
crossref_primary_10_1016_j_cmi_2018_09_023
crossref_primary_10_1016_j_jinf_2016_05_011
crossref_primary_10_1016_j_scitotenv_2017_05_080
crossref_primary_10_1016_j_vetmic_2012_12_006
crossref_primary_10_1186_s12866_016_0733_4
crossref_primary_10_3389_fmicb_2017_00730
crossref_primary_10_1002_ajp_22067
crossref_primary_10_1089_mdr_2011_0239
crossref_primary_10_1016_j_ijmm_2013_12_003
crossref_primary_10_1007_s10096_013_1972_z
crossref_primary_10_1016_j_nmni_2016_03_008
crossref_primary_10_1007_s10096_017_3154_x
crossref_primary_10_1016_j_ajic_2019_05_021
crossref_primary_10_1093_cid_civ242
crossref_primary_10_1016_j_ijid_2014_02_018
crossref_primary_10_1089_fpd_2011_0987
crossref_primary_10_3390_toxins12050279
crossref_primary_10_1093_gbe_evs094
crossref_primary_10_1128_AAC_02653_13
crossref_primary_10_1371_journal_pone_0107937
crossref_primary_10_1089_mdr_2013_0136
crossref_primary_10_1371_journal_pone_0055040
crossref_primary_10_1080_00365540802375588
crossref_primary_10_1128_spectrum_04598_22
crossref_primary_10_1186_1471_2180_14_63
crossref_primary_10_1007_s10096_011_1158_5
crossref_primary_10_1016_j_diagmicrobio_2009_12_006
crossref_primary_10_1016_j_ajic_2011_11_017
crossref_primary_10_1186_1471_2334_12_343
crossref_primary_10_1002_2017GH000106
crossref_primary_10_1556_1886_2018_00002
crossref_primary_10_3389_fimmu_2023_1229562
crossref_primary_10_1016_j_diagmicrobio_2009_07_024
crossref_primary_10_7717_peerj_176
crossref_primary_10_1038_s41598_017_05559_8
crossref_primary_10_1089_mdr_2017_0124
crossref_primary_10_4045_tidsskr_12_0935
crossref_primary_10_1371_journal_pone_0034768
crossref_primary_10_1371_journal_pone_0247013
crossref_primary_10_1093_cid_cir858
crossref_primary_10_1016_j_jiph_2016_01_003
crossref_primary_10_1099_jmm_0_036889_0
crossref_primary_10_2903_j_efsa_2009_993
crossref_primary_10_1016_j_ijantimicag_2018_10_026
crossref_primary_10_3390_antibiotics14030243
crossref_primary_10_1128_JCM_01979_14
crossref_primary_10_3390_microorganisms11020393
crossref_primary_10_1128_JCM_05336_11
crossref_primary_10_1128_JCM_01352_12
crossref_primary_10_1186_s12879_016_2048_3
crossref_primary_10_1128_AEM_01165_12
crossref_primary_10_1371_journal_pone_0149396
crossref_primary_10_1186_s12866_018_1308_3
crossref_primary_10_3390_pathogens10091177
crossref_primary_10_1016_j_envres_2022_114642
crossref_primary_10_1128_JCM_00624_11
crossref_primary_10_1128_JCM_05290_11
crossref_primary_10_1016_j_ajic_2015_01_022
crossref_primary_10_1093_jac_dkt327
crossref_primary_10_3109_02713683_2010_534229
crossref_primary_10_1017_S0950268813002872
crossref_primary_10_1128_AAC_01139_12
crossref_primary_10_1016_j_cmi_2015_01_016
crossref_primary_10_12687_phleb2350_2_2017
crossref_primary_10_1128_JCM_00808_08
crossref_primary_10_1016_j_ijmm_2016_08_005
crossref_primary_10_3390_microorganisms11071785
crossref_primary_10_1128_AEM_01721_09
crossref_primary_10_1016_j_diagmicrobio_2013_10_010
crossref_primary_10_1016_j_fm_2017_01_015
crossref_primary_10_1017_S0950268818001644
crossref_primary_10_1128_JCM_01708_13
crossref_primary_10_1007_s00284_010_9635_0
crossref_primary_10_1016_j_jinf_2016_08_016
crossref_primary_10_1128_AEM_01369_17
crossref_primary_10_1093_jac_dks500
crossref_primary_10_1128_AAC_00447_08
crossref_primary_10_1007_s10096_015_2420_z
crossref_primary_10_1111_1469_0691_12406
crossref_primary_10_3390_microorganisms12061171
crossref_primary_10_3390_foods11172574
crossref_primary_10_1007_s10096_013_1872_2
crossref_primary_10_1371_journal_pone_0051172
crossref_primary_10_1186_s13756_015_0048_5
crossref_primary_10_1017_S0950268812002634
crossref_primary_10_1111_jam_15096
crossref_primary_10_1128_JCM_03254_13
crossref_primary_10_3390_antibiotics12091397
crossref_primary_10_1371_journal_pone_0054425
crossref_primary_10_3382_ps_2014_04321
crossref_primary_10_3389_fmicb_2016_01273
crossref_primary_10_1093_jac_dku232
crossref_primary_10_1155_2015_141475
crossref_primary_10_3389_fmicb_2020_00230
crossref_primary_10_1371_journal_pone_0137531
crossref_primary_10_1111_j_1469_0691_2009_03097_x
crossref_primary_10_3390_microbiolres12010005
crossref_primary_10_1128_AAC_00871_08
crossref_primary_10_1016_j_jevs_2024_105031
crossref_primary_10_1111_1469_0691_12417
crossref_primary_10_1186_s12879_021_06044_4
crossref_primary_10_1086_677834
crossref_primary_10_1007_s10096_013_2013_7
crossref_primary_10_1016_j_diagmicrobio_2009_07_007
crossref_primary_10_1128_JCM_00312_16
crossref_primary_10_1038_s41598_024_67388_w
crossref_primary_10_3390_antibiotics11101372
crossref_primary_10_1038_srep08188
crossref_primary_10_1007_s10096_011_1387_7
crossref_primary_10_4236_ojmm_2020_104018
crossref_primary_10_1186_s40779_015_0046_1
crossref_primary_10_1016_j_jcf_2021_05_015
crossref_primary_10_1128_CMR_00020_18
crossref_primary_10_1093_jac_dkn430
crossref_primary_10_3389_fmicb_2016_02019
crossref_primary_10_1371_journal_pone_0062117
crossref_primary_10_1099_mic_0_030304_0
crossref_primary_10_1371_journal_pone_0232913
crossref_primary_10_1128_JCM_01129_14
crossref_primary_10_1371_journal_pone_0005082
crossref_primary_10_1016_j_jinf_2013_12_013
crossref_primary_10_1016_j_vetmic_2014_10_009
crossref_primary_10_1007_s10096_018_3210_1
crossref_primary_10_1111_j_1469_0691_2010_03367_x
crossref_primary_10_1186_s12879_023_08380_z
crossref_primary_10_3390_antibiotics8040202
crossref_primary_10_1128_JCM_00071_08
crossref_primary_10_1089_mdr_2008_0845
crossref_primary_10_1128_AAC_02949_15
crossref_primary_10_1186_s12879_016_1733_6
crossref_primary_10_1016_j_ijmm_2009_11_002
crossref_primary_10_1186_s40001_022_00939_x
crossref_primary_10_1371_journal_pone_0170745
crossref_primary_10_1017_S0950268809991580
crossref_primary_10_1007_s10156_012_0506_4
crossref_primary_10_1002_mbo3_1235
crossref_primary_10_1016_j_cmi_2015_02_013
crossref_primary_10_1093_jac_dku174
crossref_primary_10_1128_JCM_06711_11
crossref_primary_10_1556_030_65_2018_052
crossref_primary_10_1016_j_cimid_2018_11_014
crossref_primary_10_1186_s12866_016_0757_9
crossref_primary_10_1155_2019_5739247
crossref_primary_10_1017_S0950268813002033
crossref_primary_10_1111_j_1758_2229_2011_00316_x
crossref_primary_10_3109_00365548_2010_492398
crossref_primary_10_1093_infdis_jis552
crossref_primary_10_1111_1469_0691_12519
crossref_primary_10_1128_JCM_01599_07
crossref_primary_10_1016_j_cmi_2014_11_005
crossref_primary_10_1128_AEM_00238_11
crossref_primary_10_1016_j_jhin_2008_12_001
crossref_primary_10_1016_j_meegid_2008_07_007
crossref_primary_10_1371_journal_pone_0297333
crossref_primary_10_1007_s10096_013_1917_6
crossref_primary_10_3390_jcm10071371
Cites_doi 10.1128/JCM.42.2.792-799.2004
10.1128/JCM.44.2.619-621.2006
10.1128/JCM.00420-06
10.1016/j.ajic.2003.09.002
10.1007/PL00006379
10.1109/TCBB.2006.46
10.1128/JCM.01866-06
10.1128/JB.186.5.1518-1530.2004
10.1128/JCM.41.12.5442-5448.2003
10.1093/nar/22.22.4673
10.1128/JB.185.11.3307-3316.2003
10.1128/JCM.38.3.1008-1015.2000
10.1128/JCM.37.11.3556-3563.1999
10.1128/AAC.47.12.3926-3934.2003
10.1128/MMBR.62.2.275-293.1998
10.1371/journal.pmed.0030033
10.1128/JCM.43.1.502-505.2005
ContentType Journal Article
Copyright COPYRIGHT 2007 BioMed Central Ltd.
Copyright © 2007 Mellmann et al; licensee BioMed Central Ltd. 2007 Mellmann et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2007 BioMed Central Ltd.
– notice: Copyright © 2007 Mellmann et al; licensee BioMed Central Ltd. 2007 Mellmann et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7QL
C1K
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2180-7-98
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Bacteriology Abstracts (Microbiology B)
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2180
EndPage 98
ExternalDocumentID oai_doaj_org_article_db815e655d0d47958491ea80c3094677
10.1186/1471-2180-7-98
PMC2148047
A172618685
17967176
10_1186_1471_2180_7_98
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
A8Z
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESTFP
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XSB
~02
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
7X8
5PM
7X7
88E
8FE
8FH
8FI
8FJ
ABUWG
ADTOC
AEUYN
AFKRA
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
FYUFA
HCIFZ
HMCUK
LK5
LK8
M1P
M7P
M7R
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PROAC
PSQYO
UKHRP
UNPAY
ID FETCH-LOGICAL-c652t-2c7a0c681cdb37152899f3ff0bea4dbd90ea9ce811c59da38e8602085f532d1e3
IEDL.DBID UNPAY
ISSN 1471-2180
IngestDate Fri Oct 03 12:53:28 EDT 2025
Sun Oct 26 04:07:41 EDT 2025
Tue Sep 30 16:58:55 EDT 2025
Wed Oct 01 08:26:05 EDT 2025
Tue Oct 07 08:09:14 EDT 2025
Mon Oct 20 23:13:08 EDT 2025
Mon Oct 20 17:20:30 EDT 2025
Thu Oct 16 15:58:08 EDT 2025
Mon Jul 21 05:55:29 EDT 2025
Thu Apr 24 23:12:49 EDT 2025
Wed Oct 01 05:10:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c652t-2c7a0c681cdb37152899f3ff0bea4dbd90ea9ce811c59da38e8602085f532d1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcmicrobiol.biomedcentral.com/counter/pdf/10.1186/1471-2180-7-98
PMID 17967176
PQID 20356482
PQPubID 23462
ParticipantIDs doaj_primary_oai_doaj_org_article_db815e655d0d47958491ea80c3094677
unpaywall_primary_10_1186_1471_2180_7_98
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2148047
proquest_miscellaneous_69074426
proquest_miscellaneous_20356482
gale_infotracmisc_A172618685
gale_infotracacademiconefile_A172618685
gale_incontextgauss_ISR_A172618685
pubmed_primary_17967176
crossref_primary_10_1186_1471_2180_7_98
crossref_citationtrail_10_1186_1471_2180_7_98
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-10-29
PublicationDateYYYYMMDD 2007-10-29
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-29
  day: 29
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC microbiology
PublicationTitleAlternate BMC Microbiol
PublicationYear 2007
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References JD Thompson (415_CR12) 1994; 22
M Hallin (415_CR15) 2007; 45
A van Belkum (415_CR13) 1998; 62
MC Enright (415_CR8) 2000; 38
National Nosocomial Infections Surveillance (NNIS) (415_CR1) 2003; 31
B Strommenger (415_CR16) 2006; 44
BC Kahl (415_CR14) 2005; 43
DA Robinson (415_CR18) 2003; 47
EJ Feil (415_CR9) 2004; 186
A Mellmann (415_CR17) 2006; 3
B Shopsin (415_CR5) 1999; 37
EJ Feil (415_CR2) 2003; 185
DA Robinson (415_CR11) 1998; 47
415_CR7
M Sammeth (415_CR6) 2006; 3
M Aires-de-Sousa (415_CR4) 2006; 44
D Harmsen (415_CR10) 2003; 41
L Koreen (415_CR3) 2004; 42
14647111 - Am J Infect Control. 2003 Dec;31(8):481-98
14973027 - J Bacteriol. 2004 Mar;186(5):1518-30
16825376 - J Clin Microbiol. 2006 Jul;44(7):2533-40
17093021 - J Clin Microbiol. 2007 Jan;45(1):127-33
9694671 - J Mol Evol. 1998 Aug;47(2):222-9
15635028 - J Clin Microbiol. 2005 Jan;43(1):502-5
14638503 - Antimicrob Agents Chemother. 2003 Dec;47(12):3926-34
14662923 - J Clin Microbiol. 2003 Dec;41(12):5442-8
10523551 - J Clin Microbiol. 1999 Nov;37(11):3556-63
9618442 - Microbiol Mol Biol Rev. 1998 Jun;62(2):275-93
16455927 - J Clin Microbiol. 2006 Feb;44(2):619-21
16396609 - PLoS Med. 2006 Mar;3(3):e33
17085848 - IEEE/ACM Trans Comput Biol Bioinform. 2006 Oct-Dec;3(4):395-407
14766855 - J Clin Microbiol. 2004 Feb;42(2):792-9
10698988 - J Clin Microbiol. 2000 Mar;38(3):1008-15
7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
12754228 - J Bacteriol. 2003 Jun;185(11):3307-16
References_xml – volume: 42
  start-page: 792
  year: 2004
  ident: 415_CR3
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.42.2.792-799.2004
– volume: 44
  start-page: 619
  year: 2006
  ident: 415_CR4
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.44.2.619-621.2006
– volume: 44
  start-page: 2533
  year: 2006
  ident: 415_CR16
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.00420-06
– volume: 31
  start-page: 481
  year: 2003
  ident: 415_CR1
  publication-title: Am J Infect Control
  doi: 10.1016/j.ajic.2003.09.002
– volume: 47
  start-page: 222
  year: 1998
  ident: 415_CR11
  publication-title: J Mol Evol
  doi: 10.1007/PL00006379
– volume: 3
  start-page: 395
  year: 2006
  ident: 415_CR6
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2006.46
– volume: 45
  start-page: 127
  year: 2007
  ident: 415_CR15
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01866-06
– volume: 186
  start-page: 1518
  year: 2004
  ident: 415_CR9
  publication-title: J Bacteriol
  doi: 10.1128/JB.186.5.1518-1530.2004
– volume: 41
  start-page: 5442
  year: 2003
  ident: 415_CR10
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.41.12.5442-5448.2003
– volume: 22
  start-page: 4673
  year: 1994
  ident: 415_CR12
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/22.22.4673
– volume: 185
  start-page: 3307
  year: 2003
  ident: 415_CR2
  publication-title: J Bacteriol
  doi: 10.1128/JB.185.11.3307-3316.2003
– volume: 38
  start-page: 1008
  year: 2000
  ident: 415_CR8
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.38.3.1008-1015.2000
– volume: 37
  start-page: 3556
  year: 1999
  ident: 415_CR5
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.37.11.3556-3563.1999
– volume: 47
  start-page: 3926
  year: 2003
  ident: 415_CR18
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.47.12.3926-3934.2003
– volume: 62
  start-page: 275
  year: 1998
  ident: 415_CR13
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.62.2.275-293.1998
– volume: 3
  start-page: e33
  year: 2006
  ident: 415_CR17
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0030033
– volume: 43
  start-page: 502
  year: 2005
  ident: 415_CR14
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.43.1.502-505.2005
– ident: 415_CR7
– reference: 14662923 - J Clin Microbiol. 2003 Dec;41(12):5442-8
– reference: 16396609 - PLoS Med. 2006 Mar;3(3):e33
– reference: 9618442 - Microbiol Mol Biol Rev. 1998 Jun;62(2):275-93
– reference: 10523551 - J Clin Microbiol. 1999 Nov;37(11):3556-63
– reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
– reference: 16455927 - J Clin Microbiol. 2006 Feb;44(2):619-21
– reference: 14766855 - J Clin Microbiol. 2004 Feb;42(2):792-9
– reference: 16825376 - J Clin Microbiol. 2006 Jul;44(7):2533-40
– reference: 17093021 - J Clin Microbiol. 2007 Jan;45(1):127-33
– reference: 14973027 - J Bacteriol. 2004 Mar;186(5):1518-30
– reference: 14647111 - Am J Infect Control. 2003 Dec;31(8):481-98
– reference: 10698988 - J Clin Microbiol. 2000 Mar;38(3):1008-15
– reference: 14638503 - Antimicrob Agents Chemother. 2003 Dec;47(12):3926-34
– reference: 15635028 - J Clin Microbiol. 2005 Jan;43(1):502-5
– reference: 12754228 - J Bacteriol. 2003 Jun;185(11):3307-16
– reference: 9694671 - J Mol Evol. 1998 Aug;47(2):222-9
– reference: 17085848 - IEEE/ACM Trans Comput Biol Bioinform. 2006 Oct-Dec;3(4):395-407
SSID ssj0017837
Score 2.3050232
Snippet For typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory method for outbreak...
Background For typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory method for...
Abstract Background For typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 98
SubjectTerms Algorithms
Antigens, Bacterial - genetics
Bacterial Typing Techniques
DNA, Bacterial - genetics
Genetic algorithms
Genetic aspects
Genetic polymorphisms
Identification and classification
Methods
Molecular Epidemiology
Polymorphism, Genetic
Repetitive Sequences, Nucleic Acid
Staphylococcus aureus
Staphylococcus aureus - classification
Staphylococcus aureus - genetics
Staphylococcus aureus - isolation & purification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (ODIN)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQJAQviN90DLAQEuPBmp3Eic3bipgGD2gaVNqb5dhOVylNqqYBlT-Ev5ezk4YFNO2Fp0q5U5vcXe6-Sy_fIfTGk5LlRVwQ7rQgidUxEVHGSMGFiaizfsexn7b4kp7Oks8X_OLKqi8_E9bRA3eGO7K5YNylnFtqk0xCvZQMvpaamPrt8OE9cirkrpnq_z_IRGDLZJB6CRQx2tM1MpEeDcdIRqQYlaPA2v9vbr5SnP4enLzTViu9_aHL8kpVOrmP7vVwEh93l_EA3XLVQ3S7WzC5fYR-TaFIWTxb1RUGqA15F58FQs0KH05n52fv3mNdYV3O6_Vic7nEmxqbgcH5p8OADnFZV3PiEzh23_s4xXWBAaWCh6AU1sa0Ddbt2sHHatgH1uA8_DZoQ9ICQbld1uDURbNsHqPZycdvH05Jv4mBmJRHGxKZTFOTCmZsHmdQ8qFLAwcXNHc6sbmV1GlpnGDMcAn-Fs6vtgI0V_A4sszFT9BeVVfuGcKe8c_KKOc5-DOhBrzJWC55bAGb2IhNENk5RJmeptxvyyhVaFdEqrwDlXegypQUE_R20F91BB3Xak69fwctT6wdDkC4qT7c1E3hNkGvfXQoT51R-dmcuW6bRn36eq6OAQuG7QMczqlXKmo4d6P7Vx3AAp5ta6R5MNKEe9uMxK92Qai8yA_EVa5uGxXRmKeJiK7XCI89AH9N0NMuaP-YJ5MpdPEgyUbhPLLMWFItLgP1eATdM03ACodD4N9g9f3_YfXn6G54pg6YIZIHaG-zbt0LAIOb_GW4738DNP5YeA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgCMEL4k5hgIWQGA-G3JzYSAitiGkggaZBpb1Zju10ldK4JA1Qfgi_l2M3SxfGxAtPlepT1TrX76Sn30HoqSMly4u4INRIRhItY8KiLCQFZSoKjHY7jt20xad0f5J8OKJHm_mnToHNX1s7t09qUpcvfnxdvYGAf-0DnqUvQ0iwBEpVQDLC2UV0CaoUd2scPiabXxQy5vkze9mOwPHs5wcFyvP4n83Wp8rVn6OUV9pqIVffZVmeqlN719G1DmDi3bVH3EAXTHUTXV6vnFzdQr_GULY0nixshQF8QybGB55is8I748nhwfNXWFZYllNbz5bHc7y0WPWczj8NBryIS1tNiUvp2HzrPBfbAgNuBZtBcbRKtQ2WbW3gZdFvCGtw7r8bpCGNwUG5mlsw86yZN7fRZO_dl7f7pNvNQFRKoyWJVCYDlbJQ6TzOAARA3wYmL4LcyETnmgdGcmVYGCrKwQOYccuuAN8VNI50aOI7aKuylbmHsOMA1DzKaR7oJAkUD00Y5pzGGtCKjsIRIicGEaojLnf7M0rhGxiWCmdA4QwoMsHZCD3r5Rdryo5zJcfOvr2Uo9r2b9h6KrrIFTpnITUppRqul3EAbHBByQIVQ2cMnj5CT5x3CEemUblpnalsm0a8_3wodgEd-n0EFO7UCRUW7q5k9-cH0IDj3xpIbg8kIdrV4PjxiRMKd-RG5Cpj20ZEQUzThEXnS_gHIYDIRuju2mk36sl4Cn09nGQDdx5oZnhSzY49GXkE_XSQgBZ2esf_h9bv_w-tP0BX_VN2QBER30Zby7o1DwEeLvNHPu5_A6ojX7o
  priority: 102
  providerName: Scholars Portal
Title Based Upon Repeat Pattern (BURP): an algorithm to characterize the long-term evolution of Staphylococcus aureus populations based on spa polymorphisms
URI https://www.ncbi.nlm.nih.gov/pubmed/17967176
https://www.proquest.com/docview/20356482
https://www.proquest.com/docview/69074426
https://pubmed.ncbi.nlm.nih.gov/PMC2148047
https://bmcmicrobiol.biomedcentral.com/counter/pdf/10.1186/1471-2180-7-98
https://doaj.org/article/db815e655d0d47958491ea80c3094677
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: KQ8
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1471-2180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: A8Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2180
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: M48
  dateStart: 20010701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017837
  issn: 1471-2180
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagE4IX7oPCGBZCYjyki5M4cXhrEdNAYqoKlQYvlmM7XSFNqqYBdT-E38tx4pZm0wQPvCRSz4nqnJzLZ8v-DkIvDSlZkvqpQ7VgTqCE7zAvIk5KmfRcrUyPY7Pb4iQ8HgcfTumppRQyZ2GSmZxNLQVRb_sEetYccDANFPTicK7SJt5ZeEggvzpQqVwncmJ2He2EFGB5B-2MT4b9L_XpIqtgSRsvP9QqSjV3_-UMvVWiLm6fvFnlc7H6KbJsqzYd3UHf1m_VbEn53quWSU-eXyB8_C-vfRfdtggW9xuXu4eu6fw-utH0tFw9QL8GUBcVHs-LHAO6h1SPhzWHZ44PBuPR8PUbLHIsskmxmC7PZnhZYLkhjT7XGAApzop84piagfUPGxq4SDEAY3AKqL6FlFWJRbXQcJtvWpCVOKn_G7QhT4IgW80K8KNpOSsfovHRu89vjx3b_MGRIfWWjicj4cqQEakSPwKUARND8KnUTbQIVKJiV4tYakaIpDG4GNOmmxYAyJT6niLa30WdvMj1Y4QNyaCKvYQmrgoCV8ZEE5LE1FcAh5RHushZf30uLTO6adCR8XqGxEJubM2NrXnEY9ZFrzb684YT5ErNgXGmjZbh8q5_KBYTblMDVwkjVIeUKhheFAMihAEK5kofpt4QSl30wrgiN2wdudkONBFVWfL3n0a8D_CzbnhAYUxWKS1g7FLY0xVgAUPw1dLca2lCOpEt8fO1x3MjMnvwcl1UJfdcn4YB867WqFdaAPJ10aMmQv6YJ4rDiEQgiVqx07JMW5JPz2q2cw8m7G4AVjjYRNlfrP7k31Wfolv1Yj2AES_eQ53lotLPAGUuk_16dQauHwMG19Hg677NKL8BB5F8Rw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BKgQX3o9AgRVCohw29WvtNbcEURUOVVWIVE6rfTkNOHYUx6D0h_B7mbU3IW5VwYFTJO9YWY_n8a018w1Cry0pmczCjFAjGIm0CAkLEp9klKnAM9rOOLbVFkfx4Tj6dEpPHaWQ7YWRMzWbOgqiwXYHet42ONgBCmaxP9dZ6-8s3vchvhLIVB5JSMquo52YAizvoZ3x0fHwa9Nd5AQcaePlmzpJqeHuvxyht1LUxfLJm3UxF6ufIs-3ctPBHfRt_VRtScr3Qb2UA3V-gfDxvzz2XXTbIVg8bE3uHrpmivvoRjvTcvUA_RpBXtR4PC8LDOgeQj0-bjg8C7w3Gp8cv32HRYFFPikX0-XZDC9LrDak0ecGAyDFeVlMiM0Z2PxwroHLDAMwBqOA7FsqVVdY1AsDP_PNCLIKy-a_QRriJCzkq1kJdjStZtVDND748OX9IXHDH4iKabAkgUqEp2LmKy3DBFAGHAzBpjJPGhFpqVPPiFQZ5vuKpmBizNhpWgAgMxoG2jfhI9QrysI8QdiSDOo0kFR6Ooo8lfrG92VKQw1wSAd-H5H12-fKMaPbAR05b05ILOZW19zqmic8ZX30ZiM_bzlBrpQcWWPaSFku7-ZCuZhwFxq4lsynJqZUw_aSFBAhbFAwT4Vw9AZX6qNX1hS5ZesobDnQRNRVxT9-PuFDgJ_NwAMKe3JCWQl7V8J1V4AGLMFXR3K3IwnhRHWWX64tntslW4NXmLKueOCFNI5YcLVE86UFIF8fPW495I96kjRO_ARWko7vdDTTXSmmZw3beQAHdi8CLextvOwvWn_676LP0K3mYz2AkSDdRb3lojbPAWUu5QsXP34DbTp5aQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Based+Upon+Repeat+Pattern+%28BURP%29%3A+an+algorithm+to+characterize+the+long-term+evolution+of+Staphylococcus+aureus+populations+based+on+spa+polymorphisms&rft.jtitle=BMC+microbiology&rft.au=Sammeth+Michael&rft.au=Rothg%C3%A4nger+J%C3%B6rg&rft.au=Berssenbr%C3%BCgge+Christoph&rft.au=Weniger+Thomas&rft.date=2007-10-29&rft.pub=BMC&rft.issn=1471-2180&rft.eissn=1471-2180&rft.volume=7&rft.issue=1&rft.spage=98&rft_id=info:doi/10.1186%2F1471-2180-7-98&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_db815e655d0d47958491ea80c3094677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2180&client=summon