Genetic architecture of complex traits: Large phenotypic effects and pervasive epistasis
The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enab...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 50; pp. 19910 - 19914 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
16.12.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.0810388105 |
Cover
Abstract | The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enable statistically powerful studies based on testing engineered inbred strains that have single, unique, and nonoverlapping genetic differences, thereby providing measures of phenotypic effects that are attributable to individual chromosomes. Here, we report a study of phenotypic effects and gene interactions for 90 blood, bone, and metabolic traits in a mouse CSS panel and 54 traits in a rat CSS panel. Two key observations emerge about the genetic architecture of these traits. First, the traits tend to be highly polygenic: across the genome, many individual chromosome substitutions each had significant phenotypic effects and, within each of the chromosomes studied, multiple distinct loci were found. Second, strong epistasis was found among the individual chromosomes. Specifically, individual chromosome substitutions often conferred surprisingly large effects (often a substantial fraction of the entire phenotypic difference between the parental strains), with the result that the sum of these individual effects often dramatically exceeded the difference between the parental strains. We suggest that strong, pervasive epistasis may reflect the presence of several phenotypically-buffered physiological states. These results have implications for identification of complex trait genes, developmental and physiological studies of phenotypic variation, and opportunities to engineer phenotypic outcomes in complex biological systems. |
---|---|
AbstractList | The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enable statistically powerful studies based on testing engineered inbred strains that have single, unique, and nonoverlapping genetic differences, thereby providing measures of phenotypic effects that are attributable to individual chromosomes. Here, we report a study of phenotypic effects and gene interactions for 90 blood, bone, and metabolic traits in a mouse CSS panel and 54 traits in a rat CSS panel. Two key observations emerge about the genetic architecture of these traits. First, the traits tend to be highly polygenic: across the genome, many individual chromosome substitutions each had significant phenotypic effects and, within each of the chromosomes studied, multiple distinct loci were found. Second, strong epistasis was found among the individual chromosomes. Specifically, individual chromosome substitutions often conferred surprisingly large effects (often a substantial fraction of the entire phenotypic difference between the parental strains), with the result that the sum of these individual effects often dramatically exceeded the difference between the parental strains. We suggest that strong, pervasive epistasis may reflect the presence of several phenotypically-buffered physiological states. These results have implications for identification of complex trait genes, developmental and physiological studies of phenotypic variation, and opportunities to engineer phenotypic outcomes in complex biological systems. The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enable statistically powerful studies based on testing engineered inbred strains that have single, unique, and nonoverlapping genetic differences, thereby providing measures of phenotypic effects that are attributable to individual chromosomes. Here, we report a study of phenotypic effects and gene interactions for 90 blood, bone, and metabolic traits in a mouse CSS panel and 54 traits in a rat CSS panel. Two key observations emerge about the genetic architecture of these traits. First, the traits tend to be highly polygenic: across the genome, many individual chromosome substitutions each had significant phenotypic effects and, within each of the chromosomes studied, multiple distinct loci were found. Second, strong epistasis was found among the individual chromosomes. Specifically, individual chromosome substitutions often conferred surprisingly large effects (often a substantial fraction of the entire phenotypic difference between the parental strains), with the result that the sum of these individual effects often dramatically exceeded the difference between the parental strains. We suggest that strong, pervasive epistasis may reflect the presence of several phenotypically-buffered physiological states. These results have implications for identification of complex trait genes, developmental and physiological studies of phenotypic variation, and opportunities to engineer phenotypic outcomes in complex biological systems. [PUBLICATION ABSTRACT] The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enable statistically powerful studies based on testing engineered inbred strains that have single, unique, and nonoverlapping genetic differences, thereby providing measures of phenotypic effects that are attributable to individual chromosomes. Here, we report a study of phenotypic effects and gene interactions for 90 blood, bone, and metabolic traits in a mouse CSS panel and 54 traits in a rat CSS panel. Two key observations emerge about the genetic architecture of these traits. First, the traits tend to be highly polygenic: across the genome, many individual chromosome substitutions each had significant phenotypic effects and, within each of the chromosomes studied, multiple distinct loci were found. Second, strong epistasis was found among the individual chromosomes. Specifically, individual chromosome substitutions often conferred surprisingly large effects (often a substantial fraction of the entire phenotypic difference between the parental strains), with the result that the sum of these individual effects often dramatically exceeded the difference between the parental strains. We suggest that strong, pervasive epistasis may reflect the presence of several phenotypically-buffered physiological states. These results have implications for identification of complex trait genes, developmental and physiological studies of phenotypic variation, and opportunities to engineer phenotypic outcomes in complex biological systems.The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enable statistically powerful studies based on testing engineered inbred strains that have single, unique, and nonoverlapping genetic differences, thereby providing measures of phenotypic effects that are attributable to individual chromosomes. Here, we report a study of phenotypic effects and gene interactions for 90 blood, bone, and metabolic traits in a mouse CSS panel and 54 traits in a rat CSS panel. Two key observations emerge about the genetic architecture of these traits. First, the traits tend to be highly polygenic: across the genome, many individual chromosome substitutions each had significant phenotypic effects and, within each of the chromosomes studied, multiple distinct loci were found. Second, strong epistasis was found among the individual chromosomes. Specifically, individual chromosome substitutions often conferred surprisingly large effects (often a substantial fraction of the entire phenotypic difference between the parental strains), with the result that the sum of these individual effects often dramatically exceeded the difference between the parental strains. We suggest that strong, pervasive epistasis may reflect the presence of several phenotypically-buffered physiological states. These results have implications for identification of complex trait genes, developmental and physiological studies of phenotypic variation, and opportunities to engineer phenotypic outcomes in complex biological systems. The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enable statistically powerful studies based on testing engineered inbred strains that have single, unique, and nonoverlapping genetic differences, thereby providing measures of phenotypic effects that are attributable to individual chromosomes. Here, we report a study of phenotypic effects and gene interactions for 90 blood, bone, and metabolic traits in a mouse CSS panel and 54 traits in a rat CSS panel. Two key observations emerge about the genetic architecture of these traits. First, the traits tend to be highly polygenic: across the genome, many individual chromosome substitutions each had significant phenotypic effects and, within each of the chromosomes studied, multiple distinct loci were found. Second, strong epistasis was found among the individual chromosomes. Specifically, individual chromosome substitutions often conferred surprisingly large effects (often a substantial fraction of the entire phenotypic difference between the parental strains), with the result that the sum of these individual effects often dramatically exceeded the difference between the parental strains. We suggest that strong, pervasive epistasis may reflect the presence of several phenotypically-buffered physiological states. These results have implications for identification of complex trait genes, developmental and physiological studies of phenotypic variation, and opportunities to engineer phenotypic outcomes in complex biological systems. chromosome substitution genetic variation quantitative trait loci |
Author | Ernest, Sheila R Nadeau, Joseph H Burrage, Lindsay C Lander, Eric S Daly, Mark J O'Brien, William Hill, Annie E Jepsen, Karl J Kulbokas, E.J Sinasac, David S Broman, Karl W Shao, Haifeng Kirby, Andrew Courtland, Hayden-William |
Author_xml | – sequence: 1 fullname: Shao, Haifeng – sequence: 2 fullname: Burrage, Lindsay C – sequence: 3 fullname: Sinasac, David S – sequence: 4 fullname: Hill, Annie E – sequence: 5 fullname: Ernest, Sheila R – sequence: 6 fullname: O'Brien, William – sequence: 7 fullname: Courtland, Hayden-William – sequence: 8 fullname: Jepsen, Karl J – sequence: 9 fullname: Kirby, Andrew – sequence: 10 fullname: Kulbokas, E.J – sequence: 11 fullname: Daly, Mark J – sequence: 12 fullname: Broman, Karl W – sequence: 13 fullname: Lander, Eric S – sequence: 14 fullname: Nadeau, Joseph H |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19066216$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1rFDEYxgep2G317EkdPAgetn3zOYkHQYpWYcGDFryFbCbZzTI7mSaZpf3vzbLrVguyEJLA-3se3q-z6qQPva2qlwguEDTkcuh1ugCBgIhysSfVBIFEU04lnFQTANxMBcX0tDpLaQUAkgl4Vp0iCZxjxCfVr2vb2-xNraNZ-mxNHqOtg6tNWA-dvatz1D6nD_VMx4Wth6XtQ74fisA6V-hU676tBxs3OvmNre3gUy7f9Lx66nSX7Iv9e17dfPn88-rrdPb9-tvVp9nUcIbytGVAMQataUuE1nPCUblNK6hzrNVG69ZpMhdAJHLEMFGOtsyWOgx3UpLz6uPOdxjna9sa25eMOzVEv9bxXgXt1b-R3i_VImwU5kAlb4rBu71BDLejTVmtfTK263Rvw5gUl0JKROlRkAokGcHHQQwYS854Ad8-AldhjH1pV2EQbqCMuECv_y7wUNmfGRaA7QATQ0rROmV81tmHbb2-UwjUdlfUdlfUw64U3eUj3cH6v4p6n8o28EAzxYqidAkK8v4IotzYddne5cK-2rGrlEM8wJhRzhq6ncybXdzpoPQi-qRufpTGEECsQYID-Q1ndu5g |
CitedBy_id | crossref_primary_10_1161_HYPERTENSIONAHA_111_00814 crossref_primary_10_1155_2019_8594825 crossref_primary_10_2217_epi_10_26 crossref_primary_10_1186_s13104_015_1078_z crossref_primary_10_1186_s12859_022_04699_7 crossref_primary_10_1038_nrg3065 crossref_primary_10_1016_j_euroneuro_2009_10_001 crossref_primary_10_1007_s00335_008_9165_2 crossref_primary_10_1111_jeb_13660 crossref_primary_10_1186_s13195_018_0411_x crossref_primary_10_3389_fphys_2017_00009 crossref_primary_10_1038_s41573_018_0009_9 crossref_primary_10_3389_fgene_2015_00084 crossref_primary_10_3390_plants12101956 crossref_primary_10_1186_s12711_016_0217_x crossref_primary_10_1016_j_isci_2022_105058 crossref_primary_10_1146_annurev_animal_022114_110751 crossref_primary_10_1186_s12711_016_0258_1 crossref_primary_10_1093_genetics_iyac013 crossref_primary_10_1038_nbt_2422 crossref_primary_10_1371_journal_pgen_1006869 crossref_primary_10_1186_1471_2164_11_361 crossref_primary_10_1016_j_tig_2021_06_004 crossref_primary_10_1038_nrg2809 crossref_primary_10_1016_j_shpsc_2015_02_004 crossref_primary_10_1111_gbb_12064 crossref_primary_10_1111_pbi_13270 crossref_primary_10_1534_g3_113_008649 crossref_primary_10_1186_1471_2148_11_309 crossref_primary_10_1093_genetics_iyab156 crossref_primary_10_1038_hdy_2014_42 crossref_primary_10_1093_molbev_msaa134 crossref_primary_10_1016_j_ajhg_2012_04_017 crossref_primary_10_12688_f1000research_3_9_v2 crossref_primary_10_1373_clinchem_2010_157016 crossref_primary_10_1038_s41467_022_29111_z crossref_primary_10_1097_HJH_0000000000001732 crossref_primary_10_1016_j_physbeh_2011_04_006 crossref_primary_10_12688_f1000research_3_9_v1 crossref_primary_10_1038_nrg3575 crossref_primary_10_1186_1471_2105_12_342 crossref_primary_10_1016_j_euprot_2015_03_002 crossref_primary_10_1016_j_tig_2009_03_007 crossref_primary_10_1007_s00018_012_0996_3 crossref_primary_10_1534_genetics_118_301635 crossref_primary_10_1186_1752_0509_5_84 crossref_primary_10_1371_journal_pgen_1006186 crossref_primary_10_1002_jbmr_41 crossref_primary_10_1371_journal_pone_0090335 crossref_primary_10_1038_nrg3688 crossref_primary_10_1093_database_bau020 crossref_primary_10_1371_journal_pgen_1007025 crossref_primary_10_1007_s00335_012_9400_8 crossref_primary_10_1371_journal_pone_0123970 crossref_primary_10_1152_physiolgenomics_00059_2017 crossref_primary_10_1371_journal_pone_0019586 crossref_primary_10_1002_yea_3530 crossref_primary_10_1101_gr_187450_114 crossref_primary_10_1002_evl3_139 crossref_primary_10_1158_0008_5472_CAN_09_3342 crossref_primary_10_1534_genetics_114_162511 crossref_primary_10_1016_j_schres_2014_09_063 crossref_primary_10_1371_journal_pgen_1005805 crossref_primary_10_1016_j_atherosclerosis_2015_06_024 crossref_primary_10_1111_evo_13979 crossref_primary_10_1371_journal_pgen_1002644 crossref_primary_10_1534_g3_119_400043 crossref_primary_10_1371_journal_pone_0014319 crossref_primary_10_1038_nrg3047 crossref_primary_10_1016_j_biosystems_2023_105000 crossref_primary_10_1016_j_pharmthera_2009_11_006 crossref_primary_10_1007_s00335_014_9530_2 crossref_primary_10_1186_s12859_018_2291_2 crossref_primary_10_1152_physiolgenomics_00066_2010 crossref_primary_10_3389_fgene_2020_501376 crossref_primary_10_1371_journal_pone_0012264 crossref_primary_10_1534_genetics_109_104497 crossref_primary_10_1111_1365_2435_14590 crossref_primary_10_1371_journal_pgen_1008986 crossref_primary_10_1002_wsbm_91 crossref_primary_10_1093_genetics_iyaf026 crossref_primary_10_1176_appi_ajp_2018_18111275 crossref_primary_10_1101_gr_086660_108 crossref_primary_10_1016_j_cmet_2012_12_007 crossref_primary_10_1016_j_bone_2010_02_016 crossref_primary_10_1007_s12041_008_0057_8 crossref_primary_10_1007_s00122_009_1203_2 crossref_primary_10_1016_j_bone_2013_05_012 crossref_primary_10_1007_s00335_010_9247_9 crossref_primary_10_1016_j_tig_2011_05_007 crossref_primary_10_1038_nrg2578 crossref_primary_10_1214_18_AOS1753 crossref_primary_10_1038_jhg_2010_9 crossref_primary_10_1111_j_1601_183X_2009_00526_x crossref_primary_10_3390_ijerph8124425 crossref_primary_10_7717_peerj_856 crossref_primary_10_1007_s00335_010_9270_x crossref_primary_10_1371_journal_pone_0079771 crossref_primary_10_1038_nature10413 crossref_primary_10_1007_s00213_009_1656_7 crossref_primary_10_1007_s00294_018_0835_7 crossref_primary_10_1016_j_neuroimage_2013_09_049 crossref_primary_10_1063_1_3456057 crossref_primary_10_1534_g3_117_300213 crossref_primary_10_1016_j_tig_2019_10_005 crossref_primary_10_1093_g3journal_jkad118 crossref_primary_10_1007_s00335_015_9554_2 crossref_primary_10_1038_ijo_2015_184 crossref_primary_10_14814_phy2_13093 crossref_primary_10_1186_1471_2156_13_38 crossref_primary_10_1097_MED_0000000000000321 crossref_primary_10_1038_hr_2012_44 crossref_primary_10_1111_ecog_03234 crossref_primary_10_1111_bij_12773 crossref_primary_10_3389_fgene_2014_00198 crossref_primary_10_1186_gb_2012_13_1_237 crossref_primary_10_1111_j_1558_5646_2010_01028_x crossref_primary_10_1371_journal_pone_0141494 crossref_primary_10_1161_HYPERTENSIONAHA_111_190116 crossref_primary_10_1038_nmeth_1581 crossref_primary_10_1534_genetics_116_198051 crossref_primary_10_1007_s00335_010_9313_3 crossref_primary_10_1038_mp_2011_91 crossref_primary_10_1017_S0016672309990279 crossref_primary_10_1534_g3_113_005710 crossref_primary_10_1007_s11692_011_9116_9 crossref_primary_10_1093_nar_gkp528 crossref_primary_10_1093_bioinformatics_bts531 crossref_primary_10_1186_1756_0381_3_5 crossref_primary_10_1007_s00425_017_2833_2 crossref_primary_10_1016_j_ajhg_2023_10_002 crossref_primary_10_1007_s00251_013_0709_6 crossref_primary_10_1002_gcc_20812 crossref_primary_10_1534_g3_120_401287 crossref_primary_10_1016_j_livsci_2014_04_028 crossref_primary_10_1111_mec_14853 crossref_primary_10_1016_j_bbadis_2010_03_014 crossref_primary_10_1038_s10038_022_01027_y crossref_primary_10_1038_nrg2554 crossref_primary_10_1534_genetics_115_180661 crossref_primary_10_1111_jeb_13871 crossref_primary_10_1016_j_jkss_2014_03_001 crossref_primary_10_1017_S003329171000070X crossref_primary_10_1002_jbmr_234 crossref_primary_10_1186_1297_9686_45_17 crossref_primary_10_1038_nrg_2016_87 crossref_primary_10_1186_1756_0381_4_21 crossref_primary_10_1016_j_conb_2010_08_009 crossref_primary_10_1007_s10439_012_0611_7 crossref_primary_10_1038_mp_2009_85 crossref_primary_10_1016_j_neuro_2016_09_018 crossref_primary_10_1161_CIRCULATIONAHA_108_797225 crossref_primary_10_1101_gr_120741_111 crossref_primary_10_1016_j_anbehav_2015_02_012 crossref_primary_10_1194_jlr_R066944 crossref_primary_10_1016_j_biosystems_2021_104393 crossref_primary_10_1038_nrg3002 crossref_primary_10_1073_pnas_2015772118 crossref_primary_10_1007_s00335_012_9426_y crossref_primary_10_1098_rstb_2010_0178 crossref_primary_10_1038_s41576_024_00711_3 crossref_primary_10_1161_CIRCGENETICS_111_960765 crossref_primary_10_1371_journal_pgen_1006003 crossref_primary_10_1007_s00335_010_9267_5 crossref_primary_10_1093_chemse_bjq038 crossref_primary_10_1534_g3_120_401824 crossref_primary_10_1586_ecp_09_32 crossref_primary_10_3389_fpls_2015_01096 crossref_primary_10_1371_journal_pone_0118413 crossref_primary_10_1016_j_tig_2014_09_001 crossref_primary_10_1152_physiolgenomics_00046_2013 crossref_primary_10_1016_j_ajhg_2017_06_004 crossref_primary_10_1093_hmg_ddq332 crossref_primary_10_1093_hmg_ddp366 crossref_primary_10_1214_11_AOAS504 crossref_primary_10_15406_bbij_2014_01_00007 crossref_primary_10_1111_j_1601_183X_2012_00795_x crossref_primary_10_1359_jbmr_090720 crossref_primary_10_1093_gbe_evr065 crossref_primary_10_1038_nrg3627 crossref_primary_10_1152_physiolgenomics_00159_2013 crossref_primary_10_1073_pnas_1922305118 crossref_primary_10_1161_CIRCGENETICS_110_936955 crossref_primary_10_1073_pnas_1119675109 crossref_primary_10_1111_ahg_12042 crossref_primary_10_1111_evo_12214 crossref_primary_10_1371_journal_pgen_1006516 crossref_primary_10_1086_693482 crossref_primary_10_1016_j_brainres_2009_02_012 |
Cites_doi | 10.1146/annurev.genet.35.102401.090633 10.1038/416326a 10.1017/S0080456800012163 10.1038/ng.2007.22 10.1038/nrg2316 10.1080/10618600.1996.10474713 10.1172/JCI34772 10.5962/bhl.title.27468 10.1126/science.1093139 10.1038/nrg1576 10.1073/pnas.0408709102 10.1038/ng1840 10.1007/s00335-005-0176-y 10.1534/genetics.106.059717 10.1007/s00335-003-3033-x 10.1038/ng1693 10.1038/13874 10.1038/ng1195-241 10.1093/hmg/11.20.2463 10.1007/s00335-003-2264-1 10.1126/science.1056072 10.1093/genetics/121.1.185 10.1038/ng.121 10.1038/ng.122 10.1038/nrg1407 10.1038/ng1006-1095 10.1371/journal.pgen.1000008 10.1093/genetics/52.5.875 10.1038/ng.125 10.1038/73427 10.1093/bioinformatics/btg112 10.1038/35056009 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 16, 2008 2008 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 16, 2008 – notice: 2008 by The National Academy of Sciences of the USA |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0810388105 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA Genetics Abstracts MEDLINE Virology and AIDS Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Architecture |
EISSN | 1091-6490 |
EndPage | 19914 |
ExternalDocumentID | PMC2604967 1615329201 19066216 10_1073_pnas_0810388105 105_50_19910 25465747 US201301571860 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P40 RR012305 – fundername: NIGMS NIH HHS grantid: T32 GM07250 – fundername: NIGMS NIH HHS grantid: T32 GM008613 – fundername: NIAMS NIH HHS grantid: R56 AR044927 – fundername: NIAMS NIH HHS grantid: R01 AR044927 – fundername: NIGMS NIH HHS grantid: T32 GM007250 – fundername: NCRR NIH HHS grantid: RR12305 – fundername: NIAMS NIH HHS grantid: AR44927 – fundername: NIGMS NIH HHS grantid: GM08613 – fundername: NIAMS NIH HHS grantid: R29 AR044927 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c651t-d504220aa4d38aab361aabcd84ff5dacaadfa3b80391f3c58c58ae5e580c6f993 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:03:21 EDT 2025 Fri Sep 05 14:42:36 EDT 2025 Fri Sep 05 08:06:27 EDT 2025 Fri Sep 05 04:41:05 EDT 2025 Mon Jun 30 08:26:48 EDT 2025 Thu Apr 03 06:58:21 EDT 2025 Thu Apr 24 23:06:01 EDT 2025 Tue Jul 01 02:39:08 EDT 2025 Wed Nov 11 00:29:46 EST 2020 Thu May 30 08:49:41 EDT 2019 Thu May 29 08:42:51 EDT 2025 Thu Apr 03 09:47:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c651t-d504220aa4d38aab361aabcd84ff5dacaadfa3b80391f3c58c58ae5e580c6f993 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Contributed by Eric S. Lander, October 20, 2008 2E.S.L. and J.H.N. contributed equally to this work. Author contributions: H.S., E.S.L., and J.H.N. designed research; H.S., L.C.B., D.S.S., A.E.H., W.O., H.-W.C., K.J.J., A.K., E.J.K., and M.J.D. performed research; S.R.E. contributed new reagents/analytic tools; H.S., K.W.B., E.S.L., and J.H.N. analyzed data; and H.S., E.S.L., and J.H.N. wrote the paper. 1H.S., L.C.B., and D.S.S. contributed equally to this work. |
OpenAccessLink | http://doi.org/10.1073/pnas.0810388105 |
PMID | 19066216 |
PQID | 201270073 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | pnas_primary_105_50_19910 proquest_journals_201270073 fao_agris_US201301571860 proquest_miscellaneous_48195324 jstor_primary_25465747 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2604967 proquest_miscellaneous_69899144 pubmed_primary_19066216 crossref_citationtrail_10_1073_pnas_0810388105 crossref_primary_10_1073_pnas_0810388105 pnas_primary_105_50_19910_fulltext proquest_miscellaneous_20229656 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-12-16 |
PublicationDateYYYYMMDD | 2008-12-16 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-16 day: 16 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 Robertson A (e_1_3_3_14_2) 1967 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Ihaka R (e_1_3_3_33_2) 1996; 5 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 18283274 - Nat Rev Genet. 2008 Apr;9(4):314-8 12724300 - Bioinformatics. 2003 May 1;19(7):889-90 16951076 - Genetics. 2006 Oct;174(2):999-1007 16415889 - Nat Genet. 2006 Feb;38(2):234-9 15031436 - Science. 2004 Apr 16;304(5669):445-8 18451988 - J Clin Invest. 2008 May;118(5):1590-605 10700173 - Nat Genet. 2000 Mar;24(3):221-5 14722722 - Mamm Genome. 2003 Nov;14(11):723-32 11256068 - Nat Rev Genet. 2001 Mar;2(3):165-74 17952072 - Nat Genet. 2007 Nov;39(11):1369-75 17006459 - Nat Genet. 2006 Oct;38(10):1095-8 7581446 - Nat Genet. 1995 Nov;11(3):241-7 15659551 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1572-7 18391951 - Nat Genet. 2008 May;40(5):609-15 15266344 - Nat Rev Genet. 2004 Aug;5(8):618-25 11907579 - Nature. 2002 Mar 21;416(6878):326-30 15803197 - Nat Rev Genet. 2005 Apr;6(4):271-86 10508525 - Nat Genet. 1999 Oct;23(2):237-40 12351582 - Hum Mol Genet. 2002 Oct 1;11(20):2463-8 16783641 - Mamm Genome. 2006 Jun;17(6):598-614 18391952 - Nat Genet. 2008 May;40(5):575-83 15058379 - Mamm Genome. 2004 Feb;15(2):77-82 16832355 - Nat Genet. 2006 Aug;38(8):879-87 11232561 - Science. 2001 Feb 9;291(5506):1001-4 18391950 - Nat Genet. 2008 May;40(5):584-91 18454194 - PLoS Genet. 2008 Feb;4(2):e1000008 2563713 - Genetics. 1989 Jan;121(1):185-99 17248281 - Genetics. 1965 Nov;52(5):875-90 11700286 - Annu Rev Genet. 2001;35:303-39 |
References_xml | – ident: e_1_3_3_15_2 doi: 10.1146/annurev.genet.35.102401.090633 – ident: e_1_3_3_3_2 doi: 10.1038/416326a – ident: e_1_3_3_22_2 doi: 10.1017/S0080456800012163 – ident: e_1_3_3_5_2 doi: 10.1038/ng.2007.22 – ident: e_1_3_3_2_2 doi: 10.1038/nrg2316 – volume: 5 start-page: 299 year: 1996 ident: e_1_3_3_33_2 article-title: R: A language for data analysis and graphics publication-title: J Comput Graph Stat doi: 10.1080/10618600.1996.10474713 – ident: e_1_3_3_1_2 doi: 10.1172/JCI34772 – ident: e_1_3_3_13_2 doi: 10.5962/bhl.title.27468 – ident: e_1_3_3_7_2 doi: 10.1126/science.1093139 – ident: e_1_3_3_17_2 doi: 10.1038/nrg1576 – ident: e_1_3_3_4_2 doi: 10.1073/pnas.0408709102 – ident: e_1_3_3_18_2 doi: 10.1038/ng1840 – ident: e_1_3_3_11_2 doi: 10.1007/s00335-005-0176-y – ident: e_1_3_3_12_2 doi: 10.1534/genetics.106.059717 – ident: e_1_3_3_16_2 doi: 10.1007/s00335-003-3033-x – ident: e_1_3_3_8_2 doi: 10.1038/ng1693 – ident: e_1_3_3_9_2 doi: 10.1038/13874 – ident: e_1_3_3_32_2 doi: 10.1038/ng1195-241 – ident: e_1_3_3_21_2 doi: 10.1093/hmg/11.20.2463 – ident: e_1_3_3_10_2 doi: 10.1007/s00335-003-2264-1 – ident: e_1_3_3_26_2 doi: 10.1126/science.1056072 – ident: e_1_3_3_30_2 doi: 10.1093/genetics/121.1.185 – ident: e_1_3_3_23_2 doi: 10.1038/ng.121 – ident: e_1_3_3_25_2 doi: 10.1038/ng.122 – start-page: 265 volume-title: Heritage from Mendel year: 1967 ident: e_1_3_3_14_2 – ident: e_1_3_3_20_2 doi: 10.1038/nrg1407 – ident: e_1_3_3_28_2 doi: 10.1038/ng1006-1095 – ident: e_1_3_3_19_2 doi: 10.1371/journal.pgen.1000008 – ident: e_1_3_3_29_2 doi: 10.1093/genetics/52.5.875 – ident: e_1_3_3_24_2 doi: 10.1038/ng.125 – ident: e_1_3_3_6_2 doi: 10.1038/73427 – ident: e_1_3_3_31_2 doi: 10.1093/bioinformatics/btg112 – ident: e_1_3_3_27_2 doi: 10.1038/35056009 – reference: 17006459 - Nat Genet. 2006 Oct;38(10):1095-8 – reference: 10700173 - Nat Genet. 2000 Mar;24(3):221-5 – reference: 18454194 - PLoS Genet. 2008 Feb;4(2):e1000008 – reference: 15659551 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1572-7 – reference: 15058379 - Mamm Genome. 2004 Feb;15(2):77-82 – reference: 18283274 - Nat Rev Genet. 2008 Apr;9(4):314-8 – reference: 15266344 - Nat Rev Genet. 2004 Aug;5(8):618-25 – reference: 18391951 - Nat Genet. 2008 May;40(5):609-15 – reference: 10508525 - Nat Genet. 1999 Oct;23(2):237-40 – reference: 12351582 - Hum Mol Genet. 2002 Oct 1;11(20):2463-8 – reference: 16951076 - Genetics. 2006 Oct;174(2):999-1007 – reference: 11700286 - Annu Rev Genet. 2001;35:303-39 – reference: 15031436 - Science. 2004 Apr 16;304(5669):445-8 – reference: 18391950 - Nat Genet. 2008 May;40(5):584-91 – reference: 18451988 - J Clin Invest. 2008 May;118(5):1590-605 – reference: 16832355 - Nat Genet. 2006 Aug;38(8):879-87 – reference: 2563713 - Genetics. 1989 Jan;121(1):185-99 – reference: 11232561 - Science. 2001 Feb 9;291(5506):1001-4 – reference: 18391952 - Nat Genet. 2008 May;40(5):575-83 – reference: 16783641 - Mamm Genome. 2006 Jun;17(6):598-614 – reference: 11907579 - Nature. 2002 Mar 21;416(6878):326-30 – reference: 11256068 - Nat Rev Genet. 2001 Mar;2(3):165-74 – reference: 17248281 - Genetics. 1965 Nov;52(5):875-90 – reference: 16415889 - Nat Genet. 2006 Feb;38(2):234-9 – reference: 17952072 - Nat Genet. 2007 Nov;39(11):1369-75 – reference: 14722722 - Mamm Genome. 2003 Nov;14(11):723-32 – reference: 7581446 - Nat Genet. 1995 Nov;11(3):241-7 – reference: 15803197 - Nat Rev Genet. 2005 Apr;6(4):271-86 – reference: 12724300 - Bioinformatics. 2003 May 1;19(7):889-90 |
SSID | ssj0009580 |
Score | 2.4146945 |
Snippet | The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19910 |
SubjectTerms | Animals Architecture Biological Sciences Blood Body Weight - genetics Bone Chromosome substitution Chromosomes Disease - genetics Effects Epistasis Epistasis, Genetic Evolutionary genetics Genes genetic variation Genetics Genomes Genotype & phenotype Human genetics Inbreeding loci Medical genetics Mice Mice, Congenic Mice, Inbred C57BL Phenotype Phenotypic traits phenotypic variation Phenotypic variations Physiology Polygenic inheritance Quantitative Trait Loci Quantitative traits Rats Rodents |
Title | Genetic architecture of complex traits: Large phenotypic effects and pervasive epistasis |
URI | https://www.jstor.org/stable/25465747 http://www.pnas.org/content/105/50/19910.abstract https://www.ncbi.nlm.nih.gov/pubmed/19066216 https://www.proquest.com/docview/201270073 https://www.proquest.com/docview/20229656 https://www.proquest.com/docview/48195324 https://www.proquest.com/docview/69899144 https://pubmed.ncbi.nlm.nih.gov/PMC2604967 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZp97KXsW7r6nUXMfbQEZz5IvmytzBawuiyQhPIm1FsqQ0MJ9QJrPsF-9k7R5Zlp2vYBYIIlqwoPsfS0dF3vkPIOylSlqs8cgufKZfBGuIK5qduGHExV55QRYIBzl_G0WjKPs_4rNf72UEtbdbzQf7j3riS_5EqXAO5YpTsP0jWdgoX4DvIF0qQMJR_JWPkjNaEq93TgAYnLr_r_A9rjXk7R8B3H_Fcy_XtCm5pcByaJwAdsxrGLldoTlaLqmuzXtg1rmoQBePGhThsA1LMLFH13f7FuE1vfHkttDd2JBZKmmWyDp-4EXVad3QLVOK2469dlKISuYXct-7ZkSHfHpblQpogisZlkSD8o46otCEEsDSyOnjaTsMe7-gb9_orjKRE7AiUrDPH6qudBdvW_7YawPSFKYxhzAOwfJD3pvmRLd7t8dfsbHp-nk1OZ5M98iCIwQpr_D6Wvjmpg5nMwBuSqDj8cKf7LftmT4llA3RF9lxoet9O5i4gt2PhTB6TR2ZrQoe1nh2QniyfkINGrPTEMJS_f0pmRvFoV_HoUlGjeLRWvI9Uqx1t1Y4ataOgdtSqHbVq94xMz04nn0auSdHh5hH3127BkUPOE4IVYSLEPIx8KPMiYUrxQuRCFEqE8wTzEKgw5wl8hOQSHmceKbCND8l-uSzlEaEMQ6Aj6Ym0iFheIE9gKBLYnYNNXoAJ5ZBB82Cz3PDX47_5lmkcRRxm-HizVhIOObE3rGrqlt1Nj0BSmbiChTWbXgZ4nO9zMNsizyGHWny2C0wgwWET7hBH99J2zTMO3aN2OuTtzrpMGVSXQ44bTcjMpFJlQQ0FiUOHvLG1MOPjMZ4o5XKDTYIghW3Y7hZMH44HbHcLTBsLbw20eF5rXjvUFHNC-NB7vKWTtgHy0W_XlItrzUsfRB5Lo_jFH8d1TB6208JLsr--2chXYNuv56_1a_cLe-T4xw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+architecture+of+complex+traits%3A+Large+phenotypic+effects+and+pervasive+epistasis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Shao%2C+Haifeng&rft.au=Burrage%2C+Lindsay+C&rft.au=Sinasac%2C+David+S&rft.au=Hill%2C+Annie+E&rft.date=2008-12-16&rft.issn=0027-8424&rft.volume=105&rft.issue=50+p.19910-19914&rft.spage=19910&rft.epage=19914&rft_id=info:doi/10.1073%2Fpnas.0810388105&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F50.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F50.cover.gif |