Genetic architecture of complex traits: Large phenotypic effects and pervasive epistasis

The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enab...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 50; pp. 19910 - 19914
Main Authors Shao, Haifeng, Burrage, Lindsay C, Sinasac, David S, Hill, Annie E, Ernest, Sheila R, O'Brien, William, Courtland, Hayden-William, Jepsen, Karl J, Kirby, Andrew, Kulbokas, E.J, Daly, Mark J, Broman, Karl W, Lander, Eric S, Nadeau, Joseph H
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 16.12.2008
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.0810388105

Cover

Abstract The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enable statistically powerful studies based on testing engineered inbred strains that have single, unique, and nonoverlapping genetic differences, thereby providing measures of phenotypic effects that are attributable to individual chromosomes. Here, we report a study of phenotypic effects and gene interactions for 90 blood, bone, and metabolic traits in a mouse CSS panel and 54 traits in a rat CSS panel. Two key observations emerge about the genetic architecture of these traits. First, the traits tend to be highly polygenic: across the genome, many individual chromosome substitutions each had significant phenotypic effects and, within each of the chromosomes studied, multiple distinct loci were found. Second, strong epistasis was found among the individual chromosomes. Specifically, individual chromosome substitutions often conferred surprisingly large effects (often a substantial fraction of the entire phenotypic difference between the parental strains), with the result that the sum of these individual effects often dramatically exceeded the difference between the parental strains. We suggest that strong, pervasive epistasis may reflect the presence of several phenotypically-buffered physiological states. These results have implications for identification of complex trait genes, developmental and physiological studies of phenotypic variation, and opportunities to engineer phenotypic outcomes in complex biological systems.
AbstractList The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enable statistically powerful studies based on testing engineered inbred strains that have single, unique, and nonoverlapping genetic differences, thereby providing measures of phenotypic effects that are attributable to individual chromosomes. Here, we report a study of phenotypic effects and gene interactions for 90 blood, bone, and metabolic traits in a mouse CSS panel and 54 traits in a rat CSS panel. Two key observations emerge about the genetic architecture of these traits. First, the traits tend to be highly polygenic: across the genome, many individual chromosome substitutions each had significant phenotypic effects and, within each of the chromosomes studied, multiple distinct loci were found. Second, strong epistasis was found among the individual chromosomes. Specifically, individual chromosome substitutions often conferred surprisingly large effects (often a substantial fraction of the entire phenotypic difference between the parental strains), with the result that the sum of these individual effects often dramatically exceeded the difference between the parental strains. We suggest that strong, pervasive epistasis may reflect the presence of several phenotypically-buffered physiological states. These results have implications for identification of complex trait genes, developmental and physiological studies of phenotypic variation, and opportunities to engineer phenotypic outcomes in complex biological systems.
The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enable statistically powerful studies based on testing engineered inbred strains that have single, unique, and nonoverlapping genetic differences, thereby providing measures of phenotypic effects that are attributable to individual chromosomes. Here, we report a study of phenotypic effects and gene interactions for 90 blood, bone, and metabolic traits in a mouse CSS panel and 54 traits in a rat CSS panel. Two key observations emerge about the genetic architecture of these traits. First, the traits tend to be highly polygenic: across the genome, many individual chromosome substitutions each had significant phenotypic effects and, within each of the chromosomes studied, multiple distinct loci were found. Second, strong epistasis was found among the individual chromosomes. Specifically, individual chromosome substitutions often conferred surprisingly large effects (often a substantial fraction of the entire phenotypic difference between the parental strains), with the result that the sum of these individual effects often dramatically exceeded the difference between the parental strains. We suggest that strong, pervasive epistasis may reflect the presence of several phenotypically-buffered physiological states. These results have implications for identification of complex trait genes, developmental and physiological studies of phenotypic variation, and opportunities to engineer phenotypic outcomes in complex biological systems. [PUBLICATION ABSTRACT]
The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enable statistically powerful studies based on testing engineered inbred strains that have single, unique, and nonoverlapping genetic differences, thereby providing measures of phenotypic effects that are attributable to individual chromosomes. Here, we report a study of phenotypic effects and gene interactions for 90 blood, bone, and metabolic traits in a mouse CSS panel and 54 traits in a rat CSS panel. Two key observations emerge about the genetic architecture of these traits. First, the traits tend to be highly polygenic: across the genome, many individual chromosome substitutions each had significant phenotypic effects and, within each of the chromosomes studied, multiple distinct loci were found. Second, strong epistasis was found among the individual chromosomes. Specifically, individual chromosome substitutions often conferred surprisingly large effects (often a substantial fraction of the entire phenotypic difference between the parental strains), with the result that the sum of these individual effects often dramatically exceeded the difference between the parental strains. We suggest that strong, pervasive epistasis may reflect the presence of several phenotypically-buffered physiological states. These results have implications for identification of complex trait genes, developmental and physiological studies of phenotypic variation, and opportunities to engineer phenotypic outcomes in complex biological systems.The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enable statistically powerful studies based on testing engineered inbred strains that have single, unique, and nonoverlapping genetic differences, thereby providing measures of phenotypic effects that are attributable to individual chromosomes. Here, we report a study of phenotypic effects and gene interactions for 90 blood, bone, and metabolic traits in a mouse CSS panel and 54 traits in a rat CSS panel. Two key observations emerge about the genetic architecture of these traits. First, the traits tend to be highly polygenic: across the genome, many individual chromosome substitutions each had significant phenotypic effects and, within each of the chromosomes studied, multiple distinct loci were found. Second, strong epistasis was found among the individual chromosomes. Specifically, individual chromosome substitutions often conferred surprisingly large effects (often a substantial fraction of the entire phenotypic difference between the parental strains), with the result that the sum of these individual effects often dramatically exceeded the difference between the parental strains. We suggest that strong, pervasive epistasis may reflect the presence of several phenotypically-buffered physiological states. These results have implications for identification of complex trait genes, developmental and physiological studies of phenotypic variation, and opportunities to engineer phenotypic outcomes in complex biological systems.
The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes that underlie these traits, the magnitude of their effects, or the extent to which they interact. Chromosome substitution strains (CSSs) enable statistically powerful studies based on testing engineered inbred strains that have single, unique, and nonoverlapping genetic differences, thereby providing measures of phenotypic effects that are attributable to individual chromosomes. Here, we report a study of phenotypic effects and gene interactions for 90 blood, bone, and metabolic traits in a mouse CSS panel and 54 traits in a rat CSS panel. Two key observations emerge about the genetic architecture of these traits. First, the traits tend to be highly polygenic: across the genome, many individual chromosome substitutions each had significant phenotypic effects and, within each of the chromosomes studied, multiple distinct loci were found. Second, strong epistasis was found among the individual chromosomes. Specifically, individual chromosome substitutions often conferred surprisingly large effects (often a substantial fraction of the entire phenotypic difference between the parental strains), with the result that the sum of these individual effects often dramatically exceeded the difference between the parental strains. We suggest that strong, pervasive epistasis may reflect the presence of several phenotypically-buffered physiological states. These results have implications for identification of complex trait genes, developmental and physiological studies of phenotypic variation, and opportunities to engineer phenotypic outcomes in complex biological systems. chromosome substitution genetic variation quantitative trait loci
Author Ernest, Sheila R
Nadeau, Joseph H
Burrage, Lindsay C
Lander, Eric S
Daly, Mark J
O'Brien, William
Hill, Annie E
Jepsen, Karl J
Kulbokas, E.J
Sinasac, David S
Broman, Karl W
Shao, Haifeng
Kirby, Andrew
Courtland, Hayden-William
Author_xml – sequence: 1
  fullname: Shao, Haifeng
– sequence: 2
  fullname: Burrage, Lindsay C
– sequence: 3
  fullname: Sinasac, David S
– sequence: 4
  fullname: Hill, Annie E
– sequence: 5
  fullname: Ernest, Sheila R
– sequence: 6
  fullname: O'Brien, William
– sequence: 7
  fullname: Courtland, Hayden-William
– sequence: 8
  fullname: Jepsen, Karl J
– sequence: 9
  fullname: Kirby, Andrew
– sequence: 10
  fullname: Kulbokas, E.J
– sequence: 11
  fullname: Daly, Mark J
– sequence: 12
  fullname: Broman, Karl W
– sequence: 13
  fullname: Lander, Eric S
– sequence: 14
  fullname: Nadeau, Joseph H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19066216$$D View this record in MEDLINE/PubMed
BookMark eNqFks1rFDEYxgep2G317EkdPAgetn3zOYkHQYpWYcGDFryFbCbZzTI7mSaZpf3vzbLrVguyEJLA-3se3q-z6qQPva2qlwguEDTkcuh1ugCBgIhysSfVBIFEU04lnFQTANxMBcX0tDpLaQUAkgl4Vp0iCZxjxCfVr2vb2-xNraNZ-mxNHqOtg6tNWA-dvatz1D6nD_VMx4Wth6XtQ74fisA6V-hU676tBxs3OvmNre3gUy7f9Lx66nSX7Iv9e17dfPn88-rrdPb9-tvVp9nUcIbytGVAMQataUuE1nPCUblNK6hzrNVG69ZpMhdAJHLEMFGOtsyWOgx3UpLz6uPOdxjna9sa25eMOzVEv9bxXgXt1b-R3i_VImwU5kAlb4rBu71BDLejTVmtfTK263Rvw5gUl0JKROlRkAokGcHHQQwYS854Ad8-AldhjH1pV2EQbqCMuECv_y7wUNmfGRaA7QATQ0rROmV81tmHbb2-UwjUdlfUdlfUw64U3eUj3cH6v4p6n8o28EAzxYqidAkK8v4IotzYddne5cK-2rGrlEM8wJhRzhq6ncybXdzpoPQi-qRufpTGEECsQYID-Q1ndu5g
CitedBy_id crossref_primary_10_1161_HYPERTENSIONAHA_111_00814
crossref_primary_10_1155_2019_8594825
crossref_primary_10_2217_epi_10_26
crossref_primary_10_1186_s13104_015_1078_z
crossref_primary_10_1186_s12859_022_04699_7
crossref_primary_10_1038_nrg3065
crossref_primary_10_1016_j_euroneuro_2009_10_001
crossref_primary_10_1007_s00335_008_9165_2
crossref_primary_10_1111_jeb_13660
crossref_primary_10_1186_s13195_018_0411_x
crossref_primary_10_3389_fphys_2017_00009
crossref_primary_10_1038_s41573_018_0009_9
crossref_primary_10_3389_fgene_2015_00084
crossref_primary_10_3390_plants12101956
crossref_primary_10_1186_s12711_016_0217_x
crossref_primary_10_1016_j_isci_2022_105058
crossref_primary_10_1146_annurev_animal_022114_110751
crossref_primary_10_1186_s12711_016_0258_1
crossref_primary_10_1093_genetics_iyac013
crossref_primary_10_1038_nbt_2422
crossref_primary_10_1371_journal_pgen_1006869
crossref_primary_10_1186_1471_2164_11_361
crossref_primary_10_1016_j_tig_2021_06_004
crossref_primary_10_1038_nrg2809
crossref_primary_10_1016_j_shpsc_2015_02_004
crossref_primary_10_1111_gbb_12064
crossref_primary_10_1111_pbi_13270
crossref_primary_10_1534_g3_113_008649
crossref_primary_10_1186_1471_2148_11_309
crossref_primary_10_1093_genetics_iyab156
crossref_primary_10_1038_hdy_2014_42
crossref_primary_10_1093_molbev_msaa134
crossref_primary_10_1016_j_ajhg_2012_04_017
crossref_primary_10_12688_f1000research_3_9_v2
crossref_primary_10_1373_clinchem_2010_157016
crossref_primary_10_1038_s41467_022_29111_z
crossref_primary_10_1097_HJH_0000000000001732
crossref_primary_10_1016_j_physbeh_2011_04_006
crossref_primary_10_12688_f1000research_3_9_v1
crossref_primary_10_1038_nrg3575
crossref_primary_10_1186_1471_2105_12_342
crossref_primary_10_1016_j_euprot_2015_03_002
crossref_primary_10_1016_j_tig_2009_03_007
crossref_primary_10_1007_s00018_012_0996_3
crossref_primary_10_1534_genetics_118_301635
crossref_primary_10_1186_1752_0509_5_84
crossref_primary_10_1371_journal_pgen_1006186
crossref_primary_10_1002_jbmr_41
crossref_primary_10_1371_journal_pone_0090335
crossref_primary_10_1038_nrg3688
crossref_primary_10_1093_database_bau020
crossref_primary_10_1371_journal_pgen_1007025
crossref_primary_10_1007_s00335_012_9400_8
crossref_primary_10_1371_journal_pone_0123970
crossref_primary_10_1152_physiolgenomics_00059_2017
crossref_primary_10_1371_journal_pone_0019586
crossref_primary_10_1002_yea_3530
crossref_primary_10_1101_gr_187450_114
crossref_primary_10_1002_evl3_139
crossref_primary_10_1158_0008_5472_CAN_09_3342
crossref_primary_10_1534_genetics_114_162511
crossref_primary_10_1016_j_schres_2014_09_063
crossref_primary_10_1371_journal_pgen_1005805
crossref_primary_10_1016_j_atherosclerosis_2015_06_024
crossref_primary_10_1111_evo_13979
crossref_primary_10_1371_journal_pgen_1002644
crossref_primary_10_1534_g3_119_400043
crossref_primary_10_1371_journal_pone_0014319
crossref_primary_10_1038_nrg3047
crossref_primary_10_1016_j_biosystems_2023_105000
crossref_primary_10_1016_j_pharmthera_2009_11_006
crossref_primary_10_1007_s00335_014_9530_2
crossref_primary_10_1186_s12859_018_2291_2
crossref_primary_10_1152_physiolgenomics_00066_2010
crossref_primary_10_3389_fgene_2020_501376
crossref_primary_10_1371_journal_pone_0012264
crossref_primary_10_1534_genetics_109_104497
crossref_primary_10_1111_1365_2435_14590
crossref_primary_10_1371_journal_pgen_1008986
crossref_primary_10_1002_wsbm_91
crossref_primary_10_1093_genetics_iyaf026
crossref_primary_10_1176_appi_ajp_2018_18111275
crossref_primary_10_1101_gr_086660_108
crossref_primary_10_1016_j_cmet_2012_12_007
crossref_primary_10_1016_j_bone_2010_02_016
crossref_primary_10_1007_s12041_008_0057_8
crossref_primary_10_1007_s00122_009_1203_2
crossref_primary_10_1016_j_bone_2013_05_012
crossref_primary_10_1007_s00335_010_9247_9
crossref_primary_10_1016_j_tig_2011_05_007
crossref_primary_10_1038_nrg2578
crossref_primary_10_1214_18_AOS1753
crossref_primary_10_1038_jhg_2010_9
crossref_primary_10_1111_j_1601_183X_2009_00526_x
crossref_primary_10_3390_ijerph8124425
crossref_primary_10_7717_peerj_856
crossref_primary_10_1007_s00335_010_9270_x
crossref_primary_10_1371_journal_pone_0079771
crossref_primary_10_1038_nature10413
crossref_primary_10_1007_s00213_009_1656_7
crossref_primary_10_1007_s00294_018_0835_7
crossref_primary_10_1016_j_neuroimage_2013_09_049
crossref_primary_10_1063_1_3456057
crossref_primary_10_1534_g3_117_300213
crossref_primary_10_1016_j_tig_2019_10_005
crossref_primary_10_1093_g3journal_jkad118
crossref_primary_10_1007_s00335_015_9554_2
crossref_primary_10_1038_ijo_2015_184
crossref_primary_10_14814_phy2_13093
crossref_primary_10_1186_1471_2156_13_38
crossref_primary_10_1097_MED_0000000000000321
crossref_primary_10_1038_hr_2012_44
crossref_primary_10_1111_ecog_03234
crossref_primary_10_1111_bij_12773
crossref_primary_10_3389_fgene_2014_00198
crossref_primary_10_1186_gb_2012_13_1_237
crossref_primary_10_1111_j_1558_5646_2010_01028_x
crossref_primary_10_1371_journal_pone_0141494
crossref_primary_10_1161_HYPERTENSIONAHA_111_190116
crossref_primary_10_1038_nmeth_1581
crossref_primary_10_1534_genetics_116_198051
crossref_primary_10_1007_s00335_010_9313_3
crossref_primary_10_1038_mp_2011_91
crossref_primary_10_1017_S0016672309990279
crossref_primary_10_1534_g3_113_005710
crossref_primary_10_1007_s11692_011_9116_9
crossref_primary_10_1093_nar_gkp528
crossref_primary_10_1093_bioinformatics_bts531
crossref_primary_10_1186_1756_0381_3_5
crossref_primary_10_1007_s00425_017_2833_2
crossref_primary_10_1016_j_ajhg_2023_10_002
crossref_primary_10_1007_s00251_013_0709_6
crossref_primary_10_1002_gcc_20812
crossref_primary_10_1534_g3_120_401287
crossref_primary_10_1016_j_livsci_2014_04_028
crossref_primary_10_1111_mec_14853
crossref_primary_10_1016_j_bbadis_2010_03_014
crossref_primary_10_1038_s10038_022_01027_y
crossref_primary_10_1038_nrg2554
crossref_primary_10_1534_genetics_115_180661
crossref_primary_10_1111_jeb_13871
crossref_primary_10_1016_j_jkss_2014_03_001
crossref_primary_10_1017_S003329171000070X
crossref_primary_10_1002_jbmr_234
crossref_primary_10_1186_1297_9686_45_17
crossref_primary_10_1038_nrg_2016_87
crossref_primary_10_1186_1756_0381_4_21
crossref_primary_10_1016_j_conb_2010_08_009
crossref_primary_10_1007_s10439_012_0611_7
crossref_primary_10_1038_mp_2009_85
crossref_primary_10_1016_j_neuro_2016_09_018
crossref_primary_10_1161_CIRCULATIONAHA_108_797225
crossref_primary_10_1101_gr_120741_111
crossref_primary_10_1016_j_anbehav_2015_02_012
crossref_primary_10_1194_jlr_R066944
crossref_primary_10_1016_j_biosystems_2021_104393
crossref_primary_10_1038_nrg3002
crossref_primary_10_1073_pnas_2015772118
crossref_primary_10_1007_s00335_012_9426_y
crossref_primary_10_1098_rstb_2010_0178
crossref_primary_10_1038_s41576_024_00711_3
crossref_primary_10_1161_CIRCGENETICS_111_960765
crossref_primary_10_1371_journal_pgen_1006003
crossref_primary_10_1007_s00335_010_9267_5
crossref_primary_10_1093_chemse_bjq038
crossref_primary_10_1534_g3_120_401824
crossref_primary_10_1586_ecp_09_32
crossref_primary_10_3389_fpls_2015_01096
crossref_primary_10_1371_journal_pone_0118413
crossref_primary_10_1016_j_tig_2014_09_001
crossref_primary_10_1152_physiolgenomics_00046_2013
crossref_primary_10_1016_j_ajhg_2017_06_004
crossref_primary_10_1093_hmg_ddq332
crossref_primary_10_1093_hmg_ddp366
crossref_primary_10_1214_11_AOAS504
crossref_primary_10_15406_bbij_2014_01_00007
crossref_primary_10_1111_j_1601_183X_2012_00795_x
crossref_primary_10_1359_jbmr_090720
crossref_primary_10_1093_gbe_evr065
crossref_primary_10_1038_nrg3627
crossref_primary_10_1152_physiolgenomics_00159_2013
crossref_primary_10_1073_pnas_1922305118
crossref_primary_10_1161_CIRCGENETICS_110_936955
crossref_primary_10_1073_pnas_1119675109
crossref_primary_10_1111_ahg_12042
crossref_primary_10_1111_evo_12214
crossref_primary_10_1371_journal_pgen_1006516
crossref_primary_10_1086_693482
crossref_primary_10_1016_j_brainres_2009_02_012
Cites_doi 10.1146/annurev.genet.35.102401.090633
10.1038/416326a
10.1017/S0080456800012163
10.1038/ng.2007.22
10.1038/nrg2316
10.1080/10618600.1996.10474713
10.1172/JCI34772
10.5962/bhl.title.27468
10.1126/science.1093139
10.1038/nrg1576
10.1073/pnas.0408709102
10.1038/ng1840
10.1007/s00335-005-0176-y
10.1534/genetics.106.059717
10.1007/s00335-003-3033-x
10.1038/ng1693
10.1038/13874
10.1038/ng1195-241
10.1093/hmg/11.20.2463
10.1007/s00335-003-2264-1
10.1126/science.1056072
10.1093/genetics/121.1.185
10.1038/ng.121
10.1038/ng.122
10.1038/nrg1407
10.1038/ng1006-1095
10.1371/journal.pgen.1000008
10.1093/genetics/52.5.875
10.1038/ng.125
10.1038/73427
10.1093/bioinformatics/btg112
10.1038/35056009
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 16, 2008
2008 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 16, 2008
– notice: 2008 by The National Academy of Sciences of the USA
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0810388105
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
Genetics Abstracts

MEDLINE
Virology and AIDS Abstracts
CrossRef

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Architecture
EISSN 1091-6490
EndPage 19914
ExternalDocumentID PMC2604967
1615329201
19066216
10_1073_pnas_0810388105
105_50_19910
25465747
US201301571860
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: P40 RR012305
– fundername: NIGMS NIH HHS
  grantid: T32 GM07250
– fundername: NIGMS NIH HHS
  grantid: T32 GM008613
– fundername: NIAMS NIH HHS
  grantid: R56 AR044927
– fundername: NIAMS NIH HHS
  grantid: R01 AR044927
– fundername: NIGMS NIH HHS
  grantid: T32 GM007250
– fundername: NCRR NIH HHS
  grantid: RR12305
– fundername: NIAMS NIH HHS
  grantid: AR44927
– fundername: NIGMS NIH HHS
  grantid: GM08613
– fundername: NIAMS NIH HHS
  grantid: R29 AR044927
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c651t-d504220aa4d38aab361aabcd84ff5dacaadfa3b80391f3c58c58ae5e580c6f993
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:03:21 EDT 2025
Fri Sep 05 14:42:36 EDT 2025
Fri Sep 05 08:06:27 EDT 2025
Fri Sep 05 04:41:05 EDT 2025
Mon Jun 30 08:26:48 EDT 2025
Thu Apr 03 06:58:21 EDT 2025
Thu Apr 24 23:06:01 EDT 2025
Tue Jul 01 02:39:08 EDT 2025
Wed Nov 11 00:29:46 EST 2020
Thu May 30 08:49:41 EDT 2019
Thu May 29 08:42:51 EDT 2025
Thu Apr 03 09:47:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c651t-d504220aa4d38aab361aabcd84ff5dacaadfa3b80391f3c58c58ae5e580c6f993
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Contributed by Eric S. Lander, October 20, 2008
2E.S.L. and J.H.N. contributed equally to this work.
Author contributions: H.S., E.S.L., and J.H.N. designed research; H.S., L.C.B., D.S.S., A.E.H., W.O., H.-W.C., K.J.J., A.K., E.J.K., and M.J.D. performed research; S.R.E. contributed new reagents/analytic tools; H.S., K.W.B., E.S.L., and J.H.N. analyzed data; and H.S., E.S.L., and J.H.N. wrote the paper.
1H.S., L.C.B., and D.S.S. contributed equally to this work.
OpenAccessLink http://doi.org/10.1073/pnas.0810388105
PMID 19066216
PQID 201270073
PQPubID 42026
PageCount 5
ParticipantIDs pnas_primary_105_50_19910
proquest_journals_201270073
fao_agris_US201301571860
proquest_miscellaneous_48195324
jstor_primary_25465747
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2604967
proquest_miscellaneous_69899144
pubmed_primary_19066216
crossref_citationtrail_10_1073_pnas_0810388105
crossref_primary_10_1073_pnas_0810388105
pnas_primary_105_50_19910_fulltext
proquest_miscellaneous_20229656
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-16
PublicationDateYYYYMMDD 2008-12-16
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-16
  day: 16
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
Robertson A (e_1_3_3_14_2) 1967
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Ihaka R (e_1_3_3_33_2) 1996; 5
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
18283274 - Nat Rev Genet. 2008 Apr;9(4):314-8
12724300 - Bioinformatics. 2003 May 1;19(7):889-90
16951076 - Genetics. 2006 Oct;174(2):999-1007
16415889 - Nat Genet. 2006 Feb;38(2):234-9
15031436 - Science. 2004 Apr 16;304(5669):445-8
18451988 - J Clin Invest. 2008 May;118(5):1590-605
10700173 - Nat Genet. 2000 Mar;24(3):221-5
14722722 - Mamm Genome. 2003 Nov;14(11):723-32
11256068 - Nat Rev Genet. 2001 Mar;2(3):165-74
17952072 - Nat Genet. 2007 Nov;39(11):1369-75
17006459 - Nat Genet. 2006 Oct;38(10):1095-8
7581446 - Nat Genet. 1995 Nov;11(3):241-7
15659551 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1572-7
18391951 - Nat Genet. 2008 May;40(5):609-15
15266344 - Nat Rev Genet. 2004 Aug;5(8):618-25
11907579 - Nature. 2002 Mar 21;416(6878):326-30
15803197 - Nat Rev Genet. 2005 Apr;6(4):271-86
10508525 - Nat Genet. 1999 Oct;23(2):237-40
12351582 - Hum Mol Genet. 2002 Oct 1;11(20):2463-8
16783641 - Mamm Genome. 2006 Jun;17(6):598-614
18391952 - Nat Genet. 2008 May;40(5):575-83
15058379 - Mamm Genome. 2004 Feb;15(2):77-82
16832355 - Nat Genet. 2006 Aug;38(8):879-87
11232561 - Science. 2001 Feb 9;291(5506):1001-4
18391950 - Nat Genet. 2008 May;40(5):584-91
18454194 - PLoS Genet. 2008 Feb;4(2):e1000008
2563713 - Genetics. 1989 Jan;121(1):185-99
17248281 - Genetics. 1965 Nov;52(5):875-90
11700286 - Annu Rev Genet. 2001;35:303-39
References_xml – ident: e_1_3_3_15_2
  doi: 10.1146/annurev.genet.35.102401.090633
– ident: e_1_3_3_3_2
  doi: 10.1038/416326a
– ident: e_1_3_3_22_2
  doi: 10.1017/S0080456800012163
– ident: e_1_3_3_5_2
  doi: 10.1038/ng.2007.22
– ident: e_1_3_3_2_2
  doi: 10.1038/nrg2316
– volume: 5
  start-page: 299
  year: 1996
  ident: e_1_3_3_33_2
  article-title: R: A language for data analysis and graphics
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.1996.10474713
– ident: e_1_3_3_1_2
  doi: 10.1172/JCI34772
– ident: e_1_3_3_13_2
  doi: 10.5962/bhl.title.27468
– ident: e_1_3_3_7_2
  doi: 10.1126/science.1093139
– ident: e_1_3_3_17_2
  doi: 10.1038/nrg1576
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.0408709102
– ident: e_1_3_3_18_2
  doi: 10.1038/ng1840
– ident: e_1_3_3_11_2
  doi: 10.1007/s00335-005-0176-y
– ident: e_1_3_3_12_2
  doi: 10.1534/genetics.106.059717
– ident: e_1_3_3_16_2
  doi: 10.1007/s00335-003-3033-x
– ident: e_1_3_3_8_2
  doi: 10.1038/ng1693
– ident: e_1_3_3_9_2
  doi: 10.1038/13874
– ident: e_1_3_3_32_2
  doi: 10.1038/ng1195-241
– ident: e_1_3_3_21_2
  doi: 10.1093/hmg/11.20.2463
– ident: e_1_3_3_10_2
  doi: 10.1007/s00335-003-2264-1
– ident: e_1_3_3_26_2
  doi: 10.1126/science.1056072
– ident: e_1_3_3_30_2
  doi: 10.1093/genetics/121.1.185
– ident: e_1_3_3_23_2
  doi: 10.1038/ng.121
– ident: e_1_3_3_25_2
  doi: 10.1038/ng.122
– start-page: 265
  volume-title: Heritage from Mendel
  year: 1967
  ident: e_1_3_3_14_2
– ident: e_1_3_3_20_2
  doi: 10.1038/nrg1407
– ident: e_1_3_3_28_2
  doi: 10.1038/ng1006-1095
– ident: e_1_3_3_19_2
  doi: 10.1371/journal.pgen.1000008
– ident: e_1_3_3_29_2
  doi: 10.1093/genetics/52.5.875
– ident: e_1_3_3_24_2
  doi: 10.1038/ng.125
– ident: e_1_3_3_6_2
  doi: 10.1038/73427
– ident: e_1_3_3_31_2
  doi: 10.1093/bioinformatics/btg112
– ident: e_1_3_3_27_2
  doi: 10.1038/35056009
– reference: 17006459 - Nat Genet. 2006 Oct;38(10):1095-8
– reference: 10700173 - Nat Genet. 2000 Mar;24(3):221-5
– reference: 18454194 - PLoS Genet. 2008 Feb;4(2):e1000008
– reference: 15659551 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1572-7
– reference: 15058379 - Mamm Genome. 2004 Feb;15(2):77-82
– reference: 18283274 - Nat Rev Genet. 2008 Apr;9(4):314-8
– reference: 15266344 - Nat Rev Genet. 2004 Aug;5(8):618-25
– reference: 18391951 - Nat Genet. 2008 May;40(5):609-15
– reference: 10508525 - Nat Genet. 1999 Oct;23(2):237-40
– reference: 12351582 - Hum Mol Genet. 2002 Oct 1;11(20):2463-8
– reference: 16951076 - Genetics. 2006 Oct;174(2):999-1007
– reference: 11700286 - Annu Rev Genet. 2001;35:303-39
– reference: 15031436 - Science. 2004 Apr 16;304(5669):445-8
– reference: 18391950 - Nat Genet. 2008 May;40(5):584-91
– reference: 18451988 - J Clin Invest. 2008 May;118(5):1590-605
– reference: 16832355 - Nat Genet. 2006 Aug;38(8):879-87
– reference: 2563713 - Genetics. 1989 Jan;121(1):185-99
– reference: 11232561 - Science. 2001 Feb 9;291(5506):1001-4
– reference: 18391952 - Nat Genet. 2008 May;40(5):575-83
– reference: 16783641 - Mamm Genome. 2006 Jun;17(6):598-614
– reference: 11907579 - Nature. 2002 Mar 21;416(6878):326-30
– reference: 11256068 - Nat Rev Genet. 2001 Mar;2(3):165-74
– reference: 17248281 - Genetics. 1965 Nov;52(5):875-90
– reference: 16415889 - Nat Genet. 2006 Feb;38(2):234-9
– reference: 17952072 - Nat Genet. 2007 Nov;39(11):1369-75
– reference: 14722722 - Mamm Genome. 2003 Nov;14(11):723-32
– reference: 7581446 - Nat Genet. 1995 Nov;11(3):241-7
– reference: 15803197 - Nat Rev Genet. 2005 Apr;6(4):271-86
– reference: 12724300 - Bioinformatics. 2003 May 1;19(7):889-90
SSID ssj0009580
Score 2.4146945
Snippet The genetic architecture of complex traits underlying physiology and disease in most organisms remains elusive. We still know little about the number of genes...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19910
SubjectTerms Animals
Architecture
Biological Sciences
Blood
Body Weight - genetics
Bone
Chromosome substitution
Chromosomes
Disease - genetics
Effects
Epistasis
Epistasis, Genetic
Evolutionary genetics
Genes
genetic variation
Genetics
Genomes
Genotype & phenotype
Human genetics
Inbreeding
loci
Medical genetics
Mice
Mice, Congenic
Mice, Inbred C57BL
Phenotype
Phenotypic traits
phenotypic variation
Phenotypic variations
Physiology
Polygenic inheritance
Quantitative Trait Loci
Quantitative traits
Rats
Rodents
Title Genetic architecture of complex traits: Large phenotypic effects and pervasive epistasis
URI https://www.jstor.org/stable/25465747
http://www.pnas.org/content/105/50/19910.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19066216
https://www.proquest.com/docview/201270073
https://www.proquest.com/docview/20229656
https://www.proquest.com/docview/48195324
https://www.proquest.com/docview/69899144
https://pubmed.ncbi.nlm.nih.gov/PMC2604967
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZp97KXsW7r6nUXMfbQEZz5IvmytzBawuiyQhPIm1FsqQ0MJ9QJrPsF-9k7R5Zlp2vYBYIIlqwoPsfS0dF3vkPIOylSlqs8cgufKZfBGuIK5qduGHExV55QRYIBzl_G0WjKPs_4rNf72UEtbdbzQf7j3riS_5EqXAO5YpTsP0jWdgoX4DvIF0qQMJR_JWPkjNaEq93TgAYnLr_r_A9rjXk7R8B3H_Fcy_XtCm5pcByaJwAdsxrGLldoTlaLqmuzXtg1rmoQBePGhThsA1LMLFH13f7FuE1vfHkttDd2JBZKmmWyDp-4EXVad3QLVOK2469dlKISuYXct-7ZkSHfHpblQpogisZlkSD8o46otCEEsDSyOnjaTsMe7-gb9_orjKRE7AiUrDPH6qudBdvW_7YawPSFKYxhzAOwfJD3pvmRLd7t8dfsbHp-nk1OZ5M98iCIwQpr_D6Wvjmpg5nMwBuSqDj8cKf7LftmT4llA3RF9lxoet9O5i4gt2PhTB6TR2ZrQoe1nh2QniyfkINGrPTEMJS_f0pmRvFoV_HoUlGjeLRWvI9Uqx1t1Y4ataOgdtSqHbVq94xMz04nn0auSdHh5hH3127BkUPOE4IVYSLEPIx8KPMiYUrxQuRCFEqE8wTzEKgw5wl8hOQSHmceKbCND8l-uSzlEaEMQ6Aj6Ym0iFheIE9gKBLYnYNNXoAJ5ZBB82Cz3PDX47_5lmkcRRxm-HizVhIOObE3rGrqlt1Nj0BSmbiChTWbXgZ4nO9zMNsizyGHWny2C0wgwWET7hBH99J2zTMO3aN2OuTtzrpMGVSXQ44bTcjMpFJlQQ0FiUOHvLG1MOPjMZ4o5XKDTYIghW3Y7hZMH44HbHcLTBsLbw20eF5rXjvUFHNC-NB7vKWTtgHy0W_XlItrzUsfRB5Lo_jFH8d1TB6208JLsr--2chXYNuv56_1a_cLe-T4xw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+architecture+of+complex+traits%3A+Large+phenotypic+effects+and+pervasive+epistasis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Shao%2C+Haifeng&rft.au=Burrage%2C+Lindsay+C&rft.au=Sinasac%2C+David+S&rft.au=Hill%2C+Annie+E&rft.date=2008-12-16&rft.issn=0027-8424&rft.volume=105&rft.issue=50+p.19910-19914&rft.spage=19910&rft.epage=19914&rft_id=info:doi/10.1073%2Fpnas.0810388105&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F50.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F50.cover.gif