Development of a real-time cattle lameness detection system using a single side-view camera
Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs...
Saved in:
| Published in | Scientific reports Vol. 14; no. 1; pp. 13734 - 22 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
14.06.2024
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-024-64664-7 |
Cover
| Abstract | Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs image processing techniques and deep learning methods for cattle detection, tracking, and lameness classification. We utilize two powerful object detection algorithms: Mask-RCNN from Detectron2 and the popular YOLOv8. Their performance is compared to identify the most effective approach for this application. Bounding boxes are drawn around detected cattle to assign unique local IDs, enabling individual tracking and isolation throughout the video sequence. Additionally, mask regions generated by the chosen detection algorithm provide valuable data for feature extraction, which is crucial for subsequent lameness classification. The extracted cattle mask region values serve as the basis for feature extraction, capturing relevant information indicative of lameness. These features, combined with the local IDs assigned during tracking, are used to compute a lameness score for each cattle. We explore the efficacy of various established machine learning algorithms, such as Support Vector Machines (SVM), AdaBoost and so on, in analyzing the extracted lameness features. Evaluation of the proposed system was conducted across three key domains: detection, tracking, and lameness classification. Notably, the detection module employing Detectron2 achieved an impressive accuracy of 98.98%. Similarly, the tracking module attained a high accuracy of 99.50%. In lameness classification, AdaBoost emerged as the most effective algorithm, yielding the highest overall average accuracy (77.9%). Other established machine learning algorithms, including Decision Trees (DT), Support Vector Machines (SVM), and Random Forests, also demonstrated promising performance (DT: 75.32%, SVM: 75.20%, Random Forest: 74.9%). The presented approach demonstrates the successful implementation for cattle lameness detection. The proposed system has the potential to revolutionize dairy farm management by enabling early lameness detection and facilitating effective monitoring of cattle health. Our findings contribute valuable insights into the application of advanced computer vision methods for livestock health management. |
|---|---|
| AbstractList | Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs image processing techniques and deep learning methods for cattle detection, tracking, and lameness classification. We utilize two powerful object detection algorithms: Mask-RCNN from Detectron2 and the popular YOLOv8. Their performance is compared to identify the most effective approach for this application. Bounding boxes are drawn around detected cattle to assign unique local IDs, enabling individual tracking and isolation throughout the video sequence. Additionally, mask regions generated by the chosen detection algorithm provide valuable data for feature extraction, which is crucial for subsequent lameness classification. The extracted cattle mask region values serve as the basis for feature extraction, capturing relevant information indicative of lameness. These features, combined with the local IDs assigned during tracking, are used to compute a lameness score for each cattle. We explore the efficacy of various established machine learning algorithms, such as Support Vector Machines (SVM), AdaBoost and so on, in analyzing the extracted lameness features. Evaluation of the proposed system was conducted across three key domains: detection, tracking, and lameness classification. Notably, the detection module employing Detectron2 achieved an impressive accuracy of 98.98%. Similarly, the tracking module attained a high accuracy of 99.50%. In lameness classification, AdaBoost emerged as the most effective algorithm, yielding the highest overall average accuracy (77.9%). Other established machine learning algorithms, including Decision Trees (DT), Support Vector Machines (SVM), and Random Forests, also demonstrated promising performance (DT: 75.32%, SVM: 75.20%, Random Forest: 74.9%). The presented approach demonstrates the successful implementation for cattle lameness detection. The proposed system has the potential to revolutionize dairy farm management by enabling early lameness detection and facilitating effective monitoring of cattle health. Our findings contribute valuable insights into the application of advanced computer vision methods for livestock health management.Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs image processing techniques and deep learning methods for cattle detection, tracking, and lameness classification. We utilize two powerful object detection algorithms: Mask-RCNN from Detectron2 and the popular YOLOv8. Their performance is compared to identify the most effective approach for this application. Bounding boxes are drawn around detected cattle to assign unique local IDs, enabling individual tracking and isolation throughout the video sequence. Additionally, mask regions generated by the chosen detection algorithm provide valuable data for feature extraction, which is crucial for subsequent lameness classification. The extracted cattle mask region values serve as the basis for feature extraction, capturing relevant information indicative of lameness. These features, combined with the local IDs assigned during tracking, are used to compute a lameness score for each cattle. We explore the efficacy of various established machine learning algorithms, such as Support Vector Machines (SVM), AdaBoost and so on, in analyzing the extracted lameness features. Evaluation of the proposed system was conducted across three key domains: detection, tracking, and lameness classification. Notably, the detection module employing Detectron2 achieved an impressive accuracy of 98.98%. Similarly, the tracking module attained a high accuracy of 99.50%. In lameness classification, AdaBoost emerged as the most effective algorithm, yielding the highest overall average accuracy (77.9%). Other established machine learning algorithms, including Decision Trees (DT), Support Vector Machines (SVM), and Random Forests, also demonstrated promising performance (DT: 75.32%, SVM: 75.20%, Random Forest: 74.9%). The presented approach demonstrates the successful implementation for cattle lameness detection. The proposed system has the potential to revolutionize dairy farm management by enabling early lameness detection and facilitating effective monitoring of cattle health. Our findings contribute valuable insights into the application of advanced computer vision methods for livestock health management. Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs image processing techniques and deep learning methods for cattle detection, tracking, and lameness classification. We utilize two powerful object detection algorithms: Mask-RCNN from Detectron2 and the popular YOLOv8. Their performance is compared to identify the most effective approach for this application. Bounding boxes are drawn around detected cattle to assign unique local IDs, enabling individual tracking and isolation throughout the video sequence. Additionally, mask regions generated by the chosen detection algorithm provide valuable data for feature extraction, which is crucial for subsequent lameness classification. The extracted cattle mask region values serve as the basis for feature extraction, capturing relevant information indicative of lameness. These features, combined with the local IDs assigned during tracking, are used to compute a lameness score for each cattle. We explore the efficacy of various established machine learning algorithms, such as Support Vector Machines (SVM), AdaBoost and so on, in analyzing the extracted lameness features. Evaluation of the proposed system was conducted across three key domains: detection, tracking, and lameness classification. Notably, the detection module employing Detectron2 achieved an impressive accuracy of 98.98%. Similarly, the tracking module attained a high accuracy of 99.50%. In lameness classification, AdaBoost emerged as the most effective algorithm, yielding the highest overall average accuracy (77.9%). Other established machine learning algorithms, including Decision Trees (DT), Support Vector Machines (SVM), and Random Forests, also demonstrated promising performance (DT: 75.32%, SVM: 75.20%, Random Forest: 74.9%). The presented approach demonstrates the successful implementation for cattle lameness detection. The proposed system has the potential to revolutionize dairy farm management by enabling early lameness detection and facilitating effective monitoring of cattle health. Our findings contribute valuable insights into the application of advanced computer vision methods for livestock health management. Abstract Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs image processing techniques and deep learning methods for cattle detection, tracking, and lameness classification. We utilize two powerful object detection algorithms: Mask-RCNN from Detectron2 and the popular YOLOv8. Their performance is compared to identify the most effective approach for this application. Bounding boxes are drawn around detected cattle to assign unique local IDs, enabling individual tracking and isolation throughout the video sequence. Additionally, mask regions generated by the chosen detection algorithm provide valuable data for feature extraction, which is crucial for subsequent lameness classification. The extracted cattle mask region values serve as the basis for feature extraction, capturing relevant information indicative of lameness. These features, combined with the local IDs assigned during tracking, are used to compute a lameness score for each cattle. We explore the efficacy of various established machine learning algorithms, such as Support Vector Machines (SVM), AdaBoost and so on, in analyzing the extracted lameness features. Evaluation of the proposed system was conducted across three key domains: detection, tracking, and lameness classification. Notably, the detection module employing Detectron2 achieved an impressive accuracy of 98.98%. Similarly, the tracking module attained a high accuracy of 99.50%. In lameness classification, AdaBoost emerged as the most effective algorithm, yielding the highest overall average accuracy (77.9%). Other established machine learning algorithms, including Decision Trees (DT), Support Vector Machines (SVM), and Random Forests, also demonstrated promising performance (DT: 75.32%, SVM: 75.20%, Random Forest: 74.9%). The presented approach demonstrates the successful implementation for cattle lameness detection. The proposed system has the potential to revolutionize dairy farm management by enabling early lameness detection and facilitating effective monitoring of cattle health. Our findings contribute valuable insights into the application of advanced computer vision methods for livestock health management. |
| ArticleNumber | 13734 |
| Author | Myint, Bo Bo Kobayashi, Ikuo Onizuka, Tsubasa Tin, Pyke Zin, Thi Thi Aikawa, Masaru |
| Author_xml | – sequence: 1 givenname: Bo Bo surname: Myint fullname: Myint, Bo Bo organization: Graduate School of Engineering, University of Miyazaki – sequence: 2 givenname: Tsubasa surname: Onizuka fullname: Onizuka, Tsubasa organization: Graduate School of Engineering, University of Miyazaki – sequence: 3 givenname: Pyke surname: Tin fullname: Tin, Pyke organization: Graduate School of Engineering, University of Miyazaki – sequence: 4 givenname: Masaru surname: Aikawa fullname: Aikawa, Masaru organization: Organization for Learning and Student Development, University of Miyazaki – sequence: 5 givenname: Ikuo surname: Kobayashi fullname: Kobayashi, Ikuo organization: Sumiyoshi Livestock Science Station, Field Science Center, Faculty of Agriculture, University of Miyazaki – sequence: 6 givenname: Thi Thi surname: Zin fullname: Zin, Thi Thi email: thithi@cc.miyazaki-u.ac.jp organization: Graduate School of Engineering, University of Miyazaki |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38877097$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhSNUREvpH2CBIrFhE_Arsb1CqLwqVWIDKxaW41wPHjnxYDtTzb_HmRlK20WFN7bsc47O_fy8OpnCBFX1EqO3GFHxLjHcStEgwpqOdR1r-JPqjCDWNoQScnLnfFpdpLRGZbVEMiyfVadUCM6R5GfVz4-wBR82I0y5DrbWdQTtm-xGqI3O2UPtdXmElOoBMpjswlSnXcow1nNy06pYlq0Ikxug2Tq4Kc4Ron5RPbXaJ7g47ufVj8-fvl9-ba6_fbm6_HDdmK7FuRmQAWq5EYRhIspYg-UC9UYM0vCWMNv1CJhFVLeW84FKSxBnRFhu-wEDp-fV1SF3CHqtNtGNOu5U0E7tL0JcKR2zMx4U5kL2mmndE8q6vhXGIGlLkiSUs16WLHrImqeN3t1o728DMVILeXUgrwp5tSevlgbvD67N3I8wmAIzan-vyv2Xyf1Sq7BVGC-NKCkJb44JMfyeIWU1umTAez1BmJOiqBOcScFxkb5-IF2HOU6F8F5FOCXtMsiru5Vuu_z9-iIQB4GJIaUIVhmX9fK9paHzj49LHlj_i9GRbCriaQXxX-1HXH8Ai2fjUA |
| CitedBy_id | crossref_primary_10_3390_ruminants4030027 crossref_primary_10_1038_s41598_024_83279_6 |
| Cites_doi | 10.1109/ACCESS.2019.2897737 10.1186/s12917-019-2095-2 10.7120/09627286.24.1.069 10.1016/j.compag.2010.07.004 10.1016/j.applanim.2012.10.001 10.1109/ACCESS.2018.2854599 10.3168/jds.2012-5806 10.3168/jds.2007-0496 10.1109/TIP.2018.2855422 10.1016/j.biosystemseng.2014.01.009 10.3390/ani12060703 10.1109/ACCESS.2019.2906934 10.1016/j.compag.2023.108252 10.3168/jds.2009-2115 10.3168/jds.2017-13439 10.1038/s41598-023-31297-1 10.1016/j.compag.2008.05.016 10.1109/ACCESS.2018.2885698 10.1109/ACCESS.2019.2896621 10.1016/j.compag.2023.107618 10.1016/j.compag.2022.106729 10.1017/S0022029921000297 10.1017/S1751731111002606 10.1016/j.theriogenology.2011.03.019 10.1016/j.compag.2019.01.025 10.3390/s20123564 10.1016/j.compag.2021.106030 10.3168/jds.2010-3882 10.1016/j.livsci.2018.10.005 10.1016/j.compag.2020.105286 10.3168/jds.2018-15717 10.1017/S1751731119001642 10.3390/ani5030387 10.3168/jds.2018-14847 10.7120/09627286.23.2.157 10.3168/jds.2018-15035 10.3168/jds.S0022-0302(06)72077-X 10.1016/j.compag.2018.03.014 10.13031/2013.32580 10.1109/ICCV.2017.324 10.1109/ICCV.2017.322 10.1109/GCCE56475.2022.10014248 10.1109/CVPR.2018.00644 10.1109/GCCE56475.2022.10014109 10.13031/2013.27258 10.1007/978-3-319-46448-0_2 10.1109/LifeTech53646.2022.9754780 10.1109/CVPR.2016.91 10.1109/GCCE56475.2022.10014268 10.1145/3343031.3350535 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-024-64664-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Open Access Content Collection ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: (Open Access) Springer Nature eJournals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 22 |
| ExternalDocumentID | oai_doaj_org_article_1789ba4aab2346b58cc09ff7f92374b9 10.1038/s41598-024-64664-7 PMC11178932 38877097 10_1038_s41598_024_64664_7 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: JKA through its promotion funds from KEIRIN RACE grantid: 2023M-425; 2023M-425; 2023M-425; 2023M-425; 2023M-425; 2023M-425 – fundername: JKA through its promotion funds from KEIRIN RACE grantid: 2023M-425 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c651t-d0ce3f7c824128415df780bc8d9c7524f6b0e4f03a5f77d39f207428f7fbd1e73 |
| IEDL.DBID | M48 |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:05:45 EDT 2025 Sun Oct 26 03:50:25 EDT 2025 Tue Sep 30 17:09:06 EDT 2025 Thu Oct 02 12:09:07 EDT 2025 Tue Oct 07 07:56:32 EDT 2025 Mon Jul 21 06:06:09 EDT 2025 Wed Oct 01 01:44:59 EDT 2025 Thu Apr 24 23:07:02 EDT 2025 Fri Feb 21 02:38:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c651t-d0ce3f7c824128415df780bc8d9c7524f6b0e4f03a5f77d39f207428f7fbd1e73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-64664-7 |
| PMID | 38877097 |
| PQID | 3068273259 |
| PQPubID | 2041939 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1789ba4aab2346b58cc09ff7f92374b9 unpaywall_primary_10_1038_s41598_024_64664_7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11178932 proquest_miscellaneous_3068749871 proquest_journals_3068273259 pubmed_primary_38877097 crossref_citationtrail_10_1038_s41598_024_64664_7 crossref_primary_10_1038_s41598_024_64664_7 springer_journals_10_1038_s41598_024_64664_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-14 |
| PublicationDateYYYYMMDD | 2024-06-14 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Barney (CR53) 2023; 13 Jiang, Song, He (CR6) 2019; 158 Van Nuffel, Zwertvaegher, Pluym, Van Weyenberg, Thorup, Pastell, Sonck, Saeys (CR23) 2015; 5 Wadsworth, Mayo, Tsai, Stone, Ray, Clark, Bewley (CR21) 2016 CR39 Schlageter-Tello, Bokkers, Groot Koerkamp, Van Hertem, Viazzi, Romanini, Lokhorst (CR9) 2015; 24 Poursaberi, Bahr, Pluk, Van Nuffel, Berckmans (CR19) 2010; 74 Zhao (CR49) 2018; 148 Zhang (CR28) 2019; 7 Taneja, Byabazaire, Jalodia, Davy, Olariu, Malone (CR48) 2020; 171 Van Hertem, Viazzi, Steensels, Maltz, Antler, Alchanatis, SchlageterTello, Lokhorst, Romanini, Bahr, Berckmans, Halachmi (CR34) 2014 Beggs (CR2) 2019; 102 Matthew, Chukwudi, Bassey, Chibuzor (CR32) 2020; 4 Pluk, Bahr, Leroy, Poursaberi, Song, Vranken, Maertens, Van Nuffel, Berckmans (CR18) 2010; 53 Grimm (CR4) 2019; 102 Zin, Maung, Tin (CR35) 2022; 13 Eaindrar, Thi (CR40) 2023; 14 Viazzi, Bahr, Schlageter-Tello, Van Hertem, Romanini, Pluk, Halachmi, Lokhorst, Berckmans (CR20) 2013; 96 Jiang (CR46) 2022; 194 Yao, Pan, Ning (CR30) 2019; 7 Hu, Sun, Nie, Li, Liu (CR31) 2019; 7 Zin, Pwint, Seint, Thant, Misawa, Sumi, Yoshida (CR37) 2020; 20 CR43 Song, Leroy, Vranken, Maertens, Sonck, Berckmans (CR26) 2008; 64 CR42 Cho, Thi, Ikuo (CR36) 2022; 13 CR41 Tassinari, Bovo, Benni, Franzoni, Poggi, Mammi, Mattoccia, Di Stefano, Bonora, Barbaresi, Santolini (CR47) 2021; 182 Morris, Kaneko, Walker, Jones, Routly, Smith, Dobson (CR13) 2011; 76 Kranepuhl (CR52) 2021; 88 Zin, Sakurai, Sumi, Kobayashi, Hama (CR38) 2016; 7 Thomsen, Munksgaard, Togersen (CR15) 2008; 91 Ouared, Zidane, Aggad, Niar (CR12) 2015; 14 Wang (CR27) 2018; 6 CR16 Zillner, Tücking, Plattes, Heggemann, Büscher (CR25) 2018; 218 CR59 CR58 CR57 CR56 CR55 CR51 CR50 Zheng, Zhang, Qin, Yue, Zeng (CR1) 2023; 205 Oehm (CR5) 2019; 15 Greenough, Bergsten, Brizzi, Mülling (CR17) 2007 Bruijnis, Beerda, Hogeveen, Stassen (CR11) 2012; 6 Piette (CR45) 2020; 14 Flower, Weary (CR14) 2006; 89 Chapinal, de Passillé, Weary, von Keyserlingk, Rushen (CR22) 2009; 92 Yang (CR29) 2018; 27 Vinayakumar, Alazab, Soman, Poornachandran, Venkatraman (CR33) 2019; 7 Werema (CR44) 2022; 12 Randall (CR7) 2018; 101 Chapinal, de Passillé, Pastell, Hänninen, Munksgaard, Rushen (CR10) 2011; 94 Zhang, Han, Jianzhai, Cheng, Wang, Saisai, Liu (CR54) 2023; 213 CR61 Alsaaod, Römer, Kleinmanns, Hendriksen, Rose-Meierhöfer, Plümer, Büscher (CR24) 2012; 142 CR60 Thompson (CR3) 2019; 102 Horseman (CR8) 2014; 23 AW Oehm (64664_CR5) 2019; 15 R Vinayakumar (64664_CR33) 2019; 7 LV Randall (64664_CR7) 2018; 101 C Matthew (64664_CR32) 2020; 4 B Zhang (64664_CR28) 2019; 7 K Zhang (64664_CR54) 2023; 213 A Van Nuffel (64664_CR23) 2015; 5 64664_CR60 64664_CR61 A Pluk (64664_CR18) 2010; 53 D Piette (64664_CR45) 2020; 14 AJ Thompson (64664_CR3) 2019; 102 A Schlageter-Tello (64664_CR9) 2015; 24 Z Wang (64664_CR27) 2018; 6 TT Zin (64664_CR35) 2022; 13 64664_CR39 MJ Morris (64664_CR13) 2011; 76 B Jiang (64664_CR46) 2022; 194 Bo Jiang (64664_CR6) 2019; 158 P Tassinari (64664_CR47) 2021; 182 N Chapinal (64664_CR10) 2011; 94 Y Hu (64664_CR31) 2019; 7 N Chapinal (64664_CR22) 2009; 92 AC Cho (64664_CR36) 2022; 13 JC Zillner (64664_CR25) 2018; 218 Y Yang (64664_CR29) 2018; 27 SV Horseman (64664_CR8) 2014; 23 PR Greenough (64664_CR17) 2007 S Barney (64664_CR53) 2023; 13 A Poursaberi (64664_CR19) 2010; 74 TT Zin (64664_CR37) 2020; 20 M Bruijnis (64664_CR11) 2012; 6 T Van Hertem (64664_CR34) 2014 64664_CR42 64664_CR43 64664_CR41 M Kranepuhl (64664_CR52) 2021; 88 FC Flower (64664_CR14) 2006; 89 PT Thomsen (64664_CR15) 2008; 91 S Viazzi (64664_CR20) 2013; 96 CW Werema (64664_CR44) 2022; 12 L Yao (64664_CR30) 2019; 7 M Taneja (64664_CR48) 2020; 171 K Zhao (64664_CR49) 2018; 148 K Ouared (64664_CR12) 2015; 14 K Grimm (64664_CR4) 2019; 102 XY Song (64664_CR26) 2008; 64 TT Zin (64664_CR38) 2016; 7 64664_CR57 64664_CR58 64664_CR55 M Alsaaod (64664_CR24) 2012; 142 64664_CR56 64664_CR59 64664_CR16 64664_CR50 BA Wadsworth (64664_CR21) 2016 MW Eaindrar (64664_CR40) 2023; 14 DS Beggs (64664_CR2) 2019; 102 64664_CR51 Z Zheng (64664_CR1) 2023; 205 |
| References_xml | – volume: 7 start-page: 29277 year: 2019 end-page: 29284 ident: CR28 article-title: Multispectral heterogeneity detection based on frame accumulation and deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897737 – year: 2007 ident: CR17 article-title: Bovine Laminitis and Lameness, a Hands-on Approach publication-title: Saunders – volume: 15 start-page: 1 issue: 1 year: 2019 end-page: 14 ident: CR5 article-title: A systematic review and meta-analyses of risk factors associated with lameness in dairy cows publication-title: BMC Vet. Res. doi: 10.1186/s12917-019-2095-2 – volume: 24 start-page: 69 issue: 1 year: 2015 end-page: 79 ident: CR9 article-title: Comparison of locomotion scoring for dairy cows by experienced and inexperienced raters using live or video observation methods publication-title: Anim. Welf. doi: 10.7120/09627286.24.1.069 – volume: 74 start-page: 110 year: 2010 end-page: 119 ident: CR19 article-title: Real-time automatic lameness detection based on back posture extraction in dairy cattle: shape analysis of cow with image processing techniques publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2010.07.004 – year: 2016 ident: CR21 article-title: Behavioral Comparisons Among Lame Versus Sound Cattle Using Precision Technologies publication-title: Precision Dairy Farming Conference – volume: 142 start-page: 134 year: 2012 end-page: 141 ident: CR24 article-title: Electronic detection of lameness in dairy cows through measuring pedometric activity and lying behavior publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2012.10.001 – ident: CR39 – ident: CR16 – volume: 6 start-page: 38367 year: 2018 end-page: 38384 ident: CR27 article-title: Deep learning-based intrusion detection with adversaries publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2854599 – volume: 96 start-page: 257 year: 2013 end-page: 266 ident: CR20 article-title: Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle publication-title: J. Dairy Sci. doi: 10.3168/jds.2012-5806 – ident: CR51 – volume: 91 start-page: 119 year: 2008 end-page: 126 ident: CR15 article-title: Evaluation of a lameness scoring system for dairy cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2007-0496 – volume: 13 start-page: 405 year: 2022 end-page: 412 ident: CR35 article-title: A deep learning method of edge-based cow region detection and multiple linear classification publication-title: ICIC Express Lett. Part B Appl. – volume: 27 start-page: 5600 issue: 11 year: 2018 end-page: 5611 ident: CR29 article-title: Video captioning by adversarial LSTM publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2855422 – ident: CR61 – ident: CR58 – year: 2014 ident: CR34 article-title: Automatic lameness detection based on consecutive 3D-video recordings publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2014.01.009 – ident: CR42 – volume: 12 start-page: 703 issue: 6 year: 2022 ident: CR44 article-title: Evaluating alternatives to locomotion scoring for detecting lameness in pasture-based dairy cattle in New Zealand: In-parlour scoring publication-title: Animals doi: 10.3390/ani12060703 – volume: 7 start-page: 46717 year: 2019 end-page: 46738 ident: CR33 article-title: Robust intelligent malware detection using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906934 – volume: 213 start-page: 108252 year: 2023 ident: CR54 article-title: Early lameness detection in dairy cattle based on wearable gait analysis using semi-supervised LSTM-autoencoder publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108252 – volume: 92 start-page: 4365 issue: 9 year: 2009 end-page: 4374 ident: CR22 article-title: Using gait score, walking speed, and lying behavior to detect hoof lesions in dairy cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2009-2115 – volume: 101 start-page: 1311 issue: 2 year: 2018 end-page: 1324 ident: CR7 article-title: The contribution of previous lameness events and body condition score to the occurrence of lameness in dairy herds: A study of 2 herds publication-title: J. Dairy Sci. doi: 10.3168/jds.2017-13439 – volume: 13 start-page: 4499 issue: 1 year: 2023 ident: CR53 article-title: Deep learning pose estimation for multi-cattle lameness detection publication-title: Sci. Rep. doi: 10.1038/s41598-023-31297-1 – volume: 14 start-page: 10 year: 2015 end-page: 12 ident: CR12 article-title: Impact of clinical lameness on the milk yield of dairy cows publication-title: J. Animal Vet. Adv. – ident: CR50 – ident: CR57 – volume: 14 start-page: 65 issue: 01 year: 2023 ident: CR40 article-title: Cattle face detection with ear tags using YOLOv5 model publication-title: Innov. Comput., Inf. Control Bull.-B: Appl. – volume: 13 start-page: 1313 issue: 12 year: 2022 ident: CR36 article-title: Black cow tracking by using deep learning-based algorithms publication-title: Bull. Innov. Comput., Inf. Control-B: Appl. – ident: CR60 – volume: 64 start-page: 39 year: 2008 end-page: 44 ident: CR26 article-title: Automatic detection of lameness in dairy cattle—vision-based trackway analysis in cow's locomotion publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2008.05.016 – volume: 4 start-page: 1 year: 2020 end-page: 11 ident: CR32 article-title: Modeling and optimization of L. kernel oil extraction using response surface methodology and artificial neural network publication-title: Artif. Intell. Agric. – volume: 7 start-page: 3430 year: 2019 end-page: 3437 ident: CR30 article-title: Unlabeled short text similarity With LSTM Encoder publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2885698 – volume: 7 start-page: 34020 year: 2019 end-page: 34030 ident: CR31 article-title: An enhanced LSTM for trend following of time series publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2896621 – volume: 7 start-page: 1857 issue: 8 year: 2016 end-page: 1862 ident: CR38 article-title: The Identification of dairy cows using image processing techniques publication-title: ICIC Express Lett. Part B, Appl.: Int. J. Res. Surv. – volume: 205 start-page: 107618 year: 2023 ident: CR1 article-title: Cows' legs tracking and lameness detection in dairy cattle using video analysis and Siamese neural networks publication-title: Comput Electron Agric doi: 10.1016/j.compag.2023.107618 – ident: CR43 – volume: 194 start-page: 106729 year: 2022 ident: CR46 article-title: Dairy cow lameness detection using a back curvature feature publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106729 – volume: 88 start-page: 162 issue: 2 year: 2021 end-page: 165 ident: CR52 article-title: Association of body condition with lameness in dairy cattle: A single-farm longitudinal study publication-title: J. Dairy Res. doi: 10.1017/S0022029921000297 – volume: 6 start-page: 962 year: 2012 end-page: 70 ident: CR11 article-title: Assessing the welfare impact of foot disorders in dairy cattle by a modeling approach publication-title: Anim.: Int. J. Anim. Biosci. doi: 10.1017/S1751731111002606 – volume: 76 start-page: 658 year: 2011 end-page: 668 ident: CR13 article-title: Influence of lameness on follicular growth, ovulation, reproductive hormone concentrations and estrus behavior in dairy cows publication-title: Theriogenology doi: 10.1016/j.theriogenology.2011.03.019 – volume: 158 start-page: 140 year: 2019 end-page: 149 ident: CR6 article-title: Lameness detection of dairy cows based on a double normal background statistical model publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.01.025 – volume: 20 start-page: 3564 issue: 12 year: 2020 ident: CR37 article-title: Automatic cow location tracking system using ear tag visual analysis publication-title: Sensors doi: 10.3390/s20123564 – volume: 182 start-page: 106030 year: 2021 ident: CR47 article-title: A computer vision approach based on deep learning for the detection of dairy cows in free stall barn publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106030 – ident: CR56 – volume: 94 start-page: 2895 issue: 6 year: 2011 end-page: 2901 ident: CR10 article-title: Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle publication-title: J Dairy Sci. doi: 10.3168/jds.2010-3882 – volume: 218 start-page: 119 year: 2018 end-page: 123 ident: CR25 article-title: Using walking speed for lameness detection in lactating dairy cows publication-title: Livestock Sci. doi: 10.1016/j.livsci.2018.10.005 – volume: 171 year: 2020 ident: CR48 article-title: Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105286 – volume: 102 start-page: 6373 issue: 7 year: 2019 end-page: 6382 ident: CR3 article-title: Lameness and lying behavior in grazing dairy cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2018-15717 – volume: 14 start-page: 409 issue: 2 year: 2020 end-page: 417 ident: CR45 article-title: Individualised automated lameness detection in dairy cows and the impact of historical window length on algorithm performance publication-title: Animal doi: 10.1017/S1751731119001642 – volume: 5 start-page: 838 issue: 3 year: 2015 end-page: 860 ident: CR23 article-title: Lameness detection in dairy cows: Part 1. How to distinguish between non-lame and lame cows based on differences in locomotion or behavior publication-title: Animals doi: 10.3390/ani5030387 – volume: 102 start-page: 1522 issue: 2 year: 2019 end-page: 1529 ident: CR2 article-title: Lame cows on Australian dairy farms: A comparison of farmer-identified lameness and formal lameness scoring, and the position of lame cows within the milking order publication-title: J. Dairy Sci. doi: 10.3168/jds.2018-14847 – volume: 23 start-page: 157 issue: 2 year: 2014 end-page: 165 ident: CR8 article-title: The use of in-depth interviews to understand the process of treating lame dairy cows from the farmers’ perspective publication-title: Anim Welf. doi: 10.7120/09627286.23.2.157 – volume: 102 start-page: 2453 issue: 3 year: 2019 end-page: 2468 ident: CR4 article-title: New insights into the association between lameness, behavior, and performance in Simmental cows publication-title: Journal of dairy science doi: 10.3168/jds.2018-15035 – ident: CR55 – volume: 89 start-page: 139 year: 2006 end-page: 146 ident: CR14 article-title: Effect of hoof pathologies on subjective assessments of dairy cow gait publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(06)72077-X – volume: 148 start-page: 226 year: 2018 end-page: 236 ident: CR49 article-title: Automatic lameness detection in dairy cattle based on leg swing analysis with an image processing technique publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.014 – ident: CR59 – ident: CR41 – volume: 53 start-page: 1305 year: 2010 end-page: 1312 ident: CR18 article-title: Evaluation of step overlap as an automatic measure in dairy cow locomotion publication-title: Trans. ASABE doi: 10.13031/2013.32580 – volume: 6 start-page: 962 year: 2012 ident: 64664_CR11 publication-title: Anim.: Int. J. Anim. Biosci. doi: 10.1017/S1751731111002606 – ident: 64664_CR58 doi: 10.1109/ICCV.2017.324 – volume: 88 start-page: 162 issue: 2 year: 2021 ident: 64664_CR52 publication-title: J. Dairy Res. doi: 10.1017/S0022029921000297 – volume: 7 start-page: 34020 year: 2019 ident: 64664_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2896621 – ident: 64664_CR59 – volume: 7 start-page: 29277 year: 2019 ident: 64664_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897737 – volume: 7 start-page: 46717 year: 2019 ident: 64664_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906934 – volume: 96 start-page: 257 year: 2013 ident: 64664_CR20 publication-title: J. Dairy Sci. doi: 10.3168/jds.2012-5806 – year: 2014 ident: 64664_CR34 publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2014.01.009 – ident: 64664_CR60 doi: 10.1109/ICCV.2017.322 – volume: 205 start-page: 107618 year: 2023 ident: 64664_CR1 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2023.107618 – ident: 64664_CR41 doi: 10.1109/GCCE56475.2022.10014248 – volume: 13 start-page: 4499 issue: 1 year: 2023 ident: 64664_CR53 publication-title: Sci. Rep. doi: 10.1038/s41598-023-31297-1 – volume: 53 start-page: 1305 year: 2010 ident: 64664_CR18 publication-title: Trans. ASABE doi: 10.13031/2013.32580 – volume: 218 start-page: 119 year: 2018 ident: 64664_CR25 publication-title: Livestock Sci. doi: 10.1016/j.livsci.2018.10.005 – ident: 64664_CR61 doi: 10.1109/CVPR.2018.00644 – volume: 102 start-page: 6373 issue: 7 year: 2019 ident: 64664_CR3 publication-title: J. Dairy Sci. doi: 10.3168/jds.2018-15717 – volume: 23 start-page: 157 issue: 2 year: 2014 ident: 64664_CR8 publication-title: Anim Welf. doi: 10.7120/09627286.23.2.157 – volume: 13 start-page: 405 year: 2022 ident: 64664_CR35 publication-title: ICIC Express Lett. Part B Appl. – volume: 7 start-page: 3430 year: 2019 ident: 64664_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2885698 – ident: 64664_CR39 doi: 10.1109/GCCE56475.2022.10014109 – volume: 213 start-page: 108252 year: 2023 ident: 64664_CR54 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108252 – volume: 15 start-page: 1 issue: 1 year: 2019 ident: 64664_CR5 publication-title: BMC Vet. Res. doi: 10.1186/s12917-019-2095-2 – volume: 13 start-page: 1313 issue: 12 year: 2022 ident: 64664_CR36 publication-title: Bull. Innov. Comput., Inf. Control-B: Appl. – volume: 102 start-page: 2453 issue: 3 year: 2019 ident: 64664_CR4 publication-title: Journal of dairy science doi: 10.3168/jds.2018-15035 – volume: 14 start-page: 409 issue: 2 year: 2020 ident: 64664_CR45 publication-title: Animal doi: 10.1017/S1751731119001642 – volume: 91 start-page: 119 year: 2008 ident: 64664_CR15 publication-title: J. Dairy Sci. doi: 10.3168/jds.2007-0496 – volume: 89 start-page: 139 year: 2006 ident: 64664_CR14 publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(06)72077-X – volume: 5 start-page: 838 issue: 3 year: 2015 ident: 64664_CR23 publication-title: Animals doi: 10.3390/ani5030387 – volume: 20 start-page: 3564 issue: 12 year: 2020 ident: 64664_CR37 publication-title: Sensors doi: 10.3390/s20123564 – ident: 64664_CR42 – volume: 14 start-page: 10 year: 2015 ident: 64664_CR12 publication-title: J. Animal Vet. Adv. – volume: 101 start-page: 1311 issue: 2 year: 2018 ident: 64664_CR7 publication-title: J. Dairy Sci. doi: 10.3168/jds.2017-13439 – volume: 142 start-page: 134 year: 2012 ident: 64664_CR24 publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2012.10.001 – volume: 4 start-page: 1 year: 2020 ident: 64664_CR32 publication-title: Artif. Intell. Agric. – volume: 27 start-page: 5600 issue: 11 year: 2018 ident: 64664_CR29 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2855422 – ident: 64664_CR16 doi: 10.13031/2013.27258 – ident: 64664_CR56 doi: 10.1007/978-3-319-46448-0_2 – volume: 76 start-page: 658 year: 2011 ident: 64664_CR13 publication-title: Theriogenology doi: 10.1016/j.theriogenology.2011.03.019 – volume: 24 start-page: 69 issue: 1 year: 2015 ident: 64664_CR9 publication-title: Anim. Welf. doi: 10.7120/09627286.24.1.069 – volume: 64 start-page: 39 year: 2008 ident: 64664_CR26 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2008.05.016 – volume: 12 start-page: 703 issue: 6 year: 2022 ident: 64664_CR44 publication-title: Animals doi: 10.3390/ani12060703 – volume: 74 start-page: 110 year: 2010 ident: 64664_CR19 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2010.07.004 – volume: 158 start-page: 140 year: 2019 ident: 64664_CR6 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.01.025 – volume: 6 start-page: 38367 year: 2018 ident: 64664_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2854599 – ident: 64664_CR50 – volume-title: Precision Dairy Farming Conference year: 2016 ident: 64664_CR21 – ident: 64664_CR43 doi: 10.1109/LifeTech53646.2022.9754780 – volume: 102 start-page: 1522 issue: 2 year: 2019 ident: 64664_CR2 publication-title: J. Dairy Sci. doi: 10.3168/jds.2018-14847 – volume: 92 start-page: 4365 issue: 9 year: 2009 ident: 64664_CR22 publication-title: J. Dairy Sci. doi: 10.3168/jds.2009-2115 – volume: 148 start-page: 226 year: 2018 ident: 64664_CR49 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.014 – volume: 14 start-page: 65 issue: 01 year: 2023 ident: 64664_CR40 publication-title: Innov. Comput., Inf. Control Bull.-B: Appl. – volume: 94 start-page: 2895 issue: 6 year: 2011 ident: 64664_CR10 publication-title: J Dairy Sci. doi: 10.3168/jds.2010-3882 – volume: 182 start-page: 106030 year: 2021 ident: 64664_CR47 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106030 – volume: 7 start-page: 1857 issue: 8 year: 2016 ident: 64664_CR38 publication-title: ICIC Express Lett. Part B, Appl.: Int. J. Res. Surv. – volume: 171 year: 2020 ident: 64664_CR48 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105286 – volume-title: Saunders year: 2007 ident: 64664_CR17 – volume: 194 start-page: 106729 year: 2022 ident: 64664_CR46 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106729 – ident: 64664_CR57 doi: 10.1109/CVPR.2016.91 – ident: 64664_CR51 doi: 10.1109/GCCE56475.2022.10014268 – ident: 64664_CR55 doi: 10.1145/3343031.3350535 |
| SSID | ssj0000529419 |
| Score | 2.5207226 |
| Snippet | Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and... Abstract Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection,... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 13734 |
| SubjectTerms | 639/705/117 639/705/258 Accuracy Algorithms Animals Cattle Cattle Diseases - diagnosis Classification Computer vision Dairy farms Deep Learning Farm management Humanities and Social Sciences Image processing Image Processing, Computer-Assisted - methods Lameness, Animal - diagnosis Learning algorithms Livestock Machine Learning multidisciplinary Science Science (multidisciplinary) Support Vector Machine Support vector machines Video Recording - methods |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SEPUgfru1SgRvNjSbj01yVLEUQU8WCh7CZjZR4bGv2PeQ_vedJPvW91CqB08LuwnMzkwyM5nJbwh5hZFxGEAmJqIEpgRoFgblGESD3mkLgyvF4x8_dSen6sOZPttq9ZVrwio8cGXcUWusC73q-yCk6oK2ADyfMyb0TIwK5eoet24rmKqo3sKp1k23ZLi0RxdoqfJtMqFYlyHVmdmxRAWw_09e5u_FknPG9A65tR7P-8uf_WKxZZSO75G7kzdJ39S_uE9uxPEBuVn7S14-JF-2SoLoMtGeoou4YLmfPIWCXkxRIcpuR4e4KlVZI63gzjRXxH_FKfmBA3NbT5bzCDgzH2Q9IqfH7z-_O2FTNwUGnW5XbOAQZTJg0WajTWr1kIzlAezgwGihUhd4VInLXidjBumSyHGzRVaHoY1GPiZ743KMTwlNWgOgI6mDVAoityAFR-FG03VO2NCQdsNZDxPUeO54sfAl5S2tr9LwKA1fpOFNQ17Pc84r0Ma1o99mgc0jM0h2eYGq4yfV8X9TnYYcbMTtp5V74TGEsujSYVTYkJfzZ1xzOZHSj3G5rmOMchhrNuRJ1Y6ZEom7tuEOKbQ7erND6u6X8fu3guuNZgcplqIhhxsV-0XXdbw4nNXwH1i3_z9Y94zcFnkp5SZO6oDsrX6s43P0zlbhRVmIV9osM18 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFVEfxO9Gq0TwzS5NdjfZzYOIlZYieIhYKPgQsl-tcOSu7R3S_96ZzUd7KIdPgWQXJjszO7Mzs78BeIcnY-OsCIx7YZnktmDGyYpZr9A7za2rYvH412l5fCK_nBanWzAd7sJQWeWwJ8aN2s0txcj30bXVaGrRW_-4uGDUNYqyq0MLjaZvreA-RIixO7DNCRlrAtsHh9Nv38eoC-W1ZF71t2cyofev0ILRLTMuWUlQ60ytWagI5P8v7_PvIsoxk_oA7q3aRXP9u5nNbhmro0fwsPcy00-dWDyGLd8-gbtd38nrp_DzVqlQOg9pk6LrOGPUZz61EdU4RUGJu2Dq_DJWa7VpB_qcUqX8GU6hBw6kdp-M1g5nUoDrGZwcHf74fMz6LgvMlkW-ZC6zXgRlNdpytFV54YLSmbHaVVYVXIbSZF6GTDRFUMqJKnA6T-uggnG5V-I5TNp563cgDUVhLTqYhRFSWp9pK3iGTPeqLCuuTQL5sLK17SHIqRPGrI6pcKHrjhs1cqOO3KhVAu_HOYsOgGPj6ANi2DiSwLPji_nlWd3rYp0rXZlGNo3hQpam0NZmFLoO6OwqaaoEdgd2171GX9U38pfA2_Ez6iIlWJrWz1fdGCUrPIMm8KKTjpESgbu5yiqkUK_JzRqp61_aX-cR7xvNEVIseAJ7g4jd0LVpLfZGMfyPpXu5-a9fwX1OSkJtm-QuTJaXK_8a_bGledMr2R-wmTE2 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_qFVEfxO-uVongmxfczccmeTzFUg70RQsFH8Imm6hw7BV7R-l_7yS7t3apFH062M0cQ2ZmZyYz-Q3AG8yMXet5pCxwTwXzkrpWGOqDwui08q3JzeOfPtfHJ2J5Kk_3YL67CzOp32fo7nN0MekaGBO0TljoVN2CfY2KqWewv1gsvyzHM5VUtRKVGe7GIPm768QT_5Nh-v8WW15vkRzrpPfgzrY7ay4vmtXqiis6egD3hxiSLHqhP4S90D2C2_1UycvH8O1KIxBZR9IQDAxXNE2RJz5jFhNUg_yNI23Y5F6sjvSQziT1wX9HkvSDC9MwT5qqB0iZjq-ewMnRx68fjukwQ4H6WlYb2pY-8Ki8Rk-NnqiSbVS6dF63xivJRKxdGUQseSOjUi03kaVsWUcVXVsFxZ_CrFt34QBIlNJ7DB-l40L4UGrPWYkiDaquDdOugGq3s9YPAONpzsXK5kI317aXhkVp2CwNqwp4O9Kc9fAaN65-nwQ2rkzQ2PkBaowdLM1WShvXiKZxjIvaSe19mQ6mI4aySjhTwOFO3Haw13OLiZPGQA5zwQJej6_R0lL5pOnCetuvUcJghlnAs147Rk44fqtVaZBDPdGbCavTN93PHxnNG50NcsxZAfOdiv3h66a9mI9q-A9b9_z__v0F3GXJaNKQJnEIs82vbXiJ0dfGvRqM7jfxyCV5 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48H4ECjISN-qS-BE7x4KoKiQqDqxUxMGKHbsgVtmKzQqVX8_YyYYGqqqcIiVjaTIeZ76Jx98AvMTM2DaOB8o8d1QwJ6ltREWdV4hOC9dUqXj8w2F5MBfvj-TRQJMTz8JM9u-5fr3CABMPgTFBy8iETtVV2Col4u4ZbM0PP-59jt3jEJdQhAZsOBVz_sBJ5EkE_eehyn-LI8cd0ptwfd2e1Kc_68XiTBDav913M1ol7sJYe_J9d93ZXffrL2bHy73fHbg1YFGy1zvPXbji23twre9OeXofvpwpKCLLQGqCAHNBYzd64hL3MUF3St9K0vgu1XS1pKeGJrGe_hiHxAsKxqagNO5C4Mj4G-wBzPfffXp7QIdeDNSVsuhokzvPg3IaIz5GtEI2QencOt1UTkkmQmlzL0LOaxmUangVWMy6dVDBNoVX_CHM2mXrHwMJUjqHMFRaLoTzuXac5egaXpVlxbTNoNjMk3EDUXnsl7EwacOca9MbzaDRTDKaURm8Gsec9DQdF0q_idM_SkaK7XQDZ8YMK9YUSle2FnVtGRelldq5PP7gDgiJlbBVBtsb5zHDul8ZTMA0AkLMKTN4MT7GFRu3YerWL9e9jBIVZqoZPOp9bdSE4zdf5RVqqCdeOFF1-qT99jWxgmPQQo05y2Bn47B_9LrIFjujU1_CdE_-T_wp3GDRt2OzJ7ENs-7H2j9DFNfZ58Py_Q1dfjt4 priority: 102 providerName: Unpaywall |
| Title | Development of a real-time cattle lameness detection system using a single side-view camera |
| URI | https://link.springer.com/article/10.1038/s41598-024-64664-7 https://www.ncbi.nlm.nih.gov/pubmed/38877097 https://www.proquest.com/docview/3068273259 https://www.proquest.com/docview/3068749871 https://pubmed.ncbi.nlm.nih.gov/PMC11178932 https://doi.org/10.1038/s41598-024-64664-7 https://doaj.org/article/1789ba4aab2346b58cc09ff7f92374b9 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: (Open Access) Nature Free eJournals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: (Open Access) Springer Nature eJournals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6wdj2MPY9b13wYOxl1WZLsiU_jJGGlhJoKNsCGXswlix1A-OkacKW_34n2fEaFkqfDJYULro7353udD-AtxgZq1IzS6hhmnCqE6JKnhFtBHqnsS4zXzx-NkpPx3w4SSY7sC63bTfwamto5_CkxvPqw5_L1WdU-E_NlXH58QqNkLsoRjlJXbd0It7NLokDlnIJ2BZlYxf20XhlDt3hrI0AmvbfNOMe_sP1ZSfoX9D2as32X94wX77L_zbX9P8Kyy7Neh_uLutZsfpdVNU1S3byEB60LmjYb2TmEeyY-jHcaUApV0_gx7U6onBqwyJEv7IiDoQ-1L7lcYhS5D-RYWkWvpSrDpuO0KEro7_AJe6BEx0WKHHJB1zpTr-ewvjk-NvglLQQDESnSbwgZaQNs0JLNPRoyOKktEJGSssy0yKh3KYqMtxGrEisECXLLHXBtrTCqjI2gj2DvXpamxcQ2iTRGr3PRDHOtYmkZjRCiTAiTTMqVQDxemdz3fYndzAZVe7z5EzmDTdy5EbuuZGLAN53a2ZNd44bZx85hnUzXWdt_2I6v8hbRc1jITNV8KJQlPFUJVLryJ1rW_SEBVdZAAdrdudrac0x7pLoB2IoGcCbbhgV1WVfitpMl80cwTMMUAN43khHRwnDT72IMqRQbsjNBqmbI_Wvn74ZONoqpJjRAA7XIvaPrpv24rATw1ts3ctb_K1XcI86TXHATvwA9hbzpXmNHttC9WBXTEQP9vv94dchPo-OR-df8O0gHfT8KUjPayWOjEfn_e9_ASUaQOE |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjR4QNwJDDASPDFrie3EzsOEGGzq2FYhtEmT9mBixx5IVVLWVlP_HL-NY-eyVaCKlz1Vauz2xOduH58PobeQGevSMEeoZYZwalKiS54TYwVEp4kp81A8fjTMBif8y2l6uoJ-d3dhfFllZxODoS5r4_fItyC0leBqIVr_MP5FPGqUP13tIDSKFlqh3A4txtqLHQd2fgkp3GR7_zPw-x2le7vHnwakRRkgJkuTKSljY5kTRoIvA1udpKUTMtZGlrkRKeUu07HlLmZF6oQoWe6ozyelE06XiRUMfvcWWuOM55D8re3sDr9-63d5_DkaT_L2tk7M5NYE_sHfaqOcZL61OxELHjEAB_wr2v27aLM_ub2L1mfVuJhfFqPRNee4dx_da6Na_LERwwdoxVYP0e0G53L-CJ1dK03CtcMFhlB1RDyuPTahizIGwQxWF5d2GqrDKtw0mca-Mv8cpvgPGOjhRYnnFcz0G2qP0cmNrPcTtFrVlX2GsEtTYyCgTTXj3NhYGkZjEDIrsiynUkco6VZWmbbluUfeGKlw9M6karihgBsqcEOJCL3v54ybhh9LR-94hvUjfbPu8EV9ca5a3VeJkLkueFFoynimU2lM7LfKHQTXgus8Qhsdu1VrQSbqSt4j9KZ_DLrvD3SKytazZozgOeS8EXraSEdPCQPvIeIcKJQLcrNA6uKT6ueP0F8c3B9QzGiENjsRu6Jr2Vps9mL4H0v3fPlbv0brg-OjQ3W4Pzx4ge5QrzAeMopvoNXpxcy-hFhwql-1CofR95vW8T9h224Y |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKERQOiDcLBYwEJ2pl1_au7QNCQIlaChUHKkXiYNZeu0WKNqFJVOWv8esYex9tBIq49BQpa69mPU97xvMh9BJ2xqayzBPqmCWc2pyYiitinYDoNLOVisXjXw6LvSP-aZSPNtDv7i5MKKvsbGI01NXEhjPyAYS2ElwtROsD35ZFfN0dvp3-IgFBKmRaOziNRkQO3PIMtm-zN_u7wOtXlA4_fvuwR1qEAWKLPJuTKrWOeWEl-DGw01leeSFTY2WlrMgp94VJHfcpK3MvRMWUp2EvKb3wpsqcYPDeK-iqYEyFckIxEv35Tsig8Uy193RSJgczeH-4z0Y5KUJTdyJWfGGEDPhXnPt3uWafs72Jthb1tFyelePxBbc4vI1utfEsftcI4B204eq76FqDcLm8h75fKErCE49LDEHqmAREe2xj_2QMIhntLa7cPNaF1bhpL41DTf4xTAk_MDAAi5LAJZgZjtLuo6NLWe0HaLOe1O4Rwj7PrYVQNjeMc-tSaRlNQbycKApFpUlQ1q2stm2z84C5MdYx6c6kbrihgRs6ckOLBL3u50ybVh9rR78PDOtHhjbd8Y_J6bFutV5nQipT8rI0lPHC5NLaNBySewirBTcqQdsdu3VrO2b6XNIT9KJ_DFofUjll7SaLZozgCna7CXrYSEdPCQO_IVIFFMoVuVkhdfVJ_fMkdhYHxwcUM5qgnU7EzulatxY7vRj-x9I9Xv_Vz9F10Gz9ef_w4Am6QYO-BKwovo0256cL9xSCwLl5FrUNox-Xrd5_AE1Pa7I |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48H4ECjISN-qS-BE7x4KoKiQqDqxUxMGKHbsgVtmKzQqVX8_YyYYGqqqcIiVjaTIeZ76Jx98AvMTM2DaOB8o8d1QwJ6ltREWdV4hOC9dUqXj8w2F5MBfvj-TRQJMTz8JM9u-5fr3CABMPgTFBy8iETtVV2Col4u4ZbM0PP-59jt3jEJdQhAZsOBVz_sBJ5EkE_eehyn-LI8cd0ptwfd2e1Kc_68XiTBDav913M1ol7sJYe_J9d93ZXffrL2bHy73fHbg1YFGy1zvPXbji23twre9OeXofvpwpKCLLQGqCAHNBYzd64hL3MUF3St9K0vgu1XS1pKeGJrGe_hiHxAsKxqagNO5C4Mj4G-wBzPfffXp7QIdeDNSVsuhokzvPg3IaIz5GtEI2QencOt1UTkkmQmlzL0LOaxmUangVWMy6dVDBNoVX_CHM2mXrHwMJUjqHMFRaLoTzuXac5egaXpVlxbTNoNjMk3EDUXnsl7EwacOca9MbzaDRTDKaURm8Gsec9DQdF0q_idM_SkaK7XQDZ8YMK9YUSle2FnVtGRelldq5PP7gDgiJlbBVBtsb5zHDul8ZTMA0AkLMKTN4MT7GFRu3YerWL9e9jBIVZqoZPOp9bdSE4zdf5RVqqCdeOFF1-qT99jWxgmPQQo05y2Bn47B_9LrIFjujU1_CdE_-T_wp3GDRt2OzJ7ENs-7H2j9DFNfZ58Py_Q1dfjt4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+real-time+cattle+lameness+detection+system+using+a+single+side-view+camera&rft.jtitle=Scientific+reports&rft.au=Myint%2C+Bo+Bo&rft.au=Onizuka%2C+Tsubasa&rft.au=Tin%2C+Pyke&rft.au=Aikawa%2C+Masaru&rft.date=2024-06-14&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=13734&rft_id=info:doi/10.1038%2Fs41598-024-64664-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |