Development of a real-time cattle lameness detection system using a single side-view camera

Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 13734 - 22
Main Authors Myint, Bo Bo, Onizuka, Tsubasa, Tin, Pyke, Aikawa, Masaru, Kobayashi, Ikuo, Zin, Thi Thi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.06.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-64664-7

Cover

Abstract Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs image processing techniques and deep learning methods for cattle detection, tracking, and lameness classification. We utilize two powerful object detection algorithms: Mask-RCNN from Detectron2 and the popular YOLOv8. Their performance is compared to identify the most effective approach for this application. Bounding boxes are drawn around detected cattle to assign unique local IDs, enabling individual tracking and isolation throughout the video sequence. Additionally, mask regions generated by the chosen detection algorithm provide valuable data for feature extraction, which is crucial for subsequent lameness classification. The extracted cattle mask region values serve as the basis for feature extraction, capturing relevant information indicative of lameness. These features, combined with the local IDs assigned during tracking, are used to compute a lameness score for each cattle. We explore the efficacy of various established machine learning algorithms, such as Support Vector Machines (SVM), AdaBoost and so on, in analyzing the extracted lameness features. Evaluation of the proposed system was conducted across three key domains: detection, tracking, and lameness classification. Notably, the detection module employing Detectron2 achieved an impressive accuracy of 98.98%. Similarly, the tracking module attained a high accuracy of 99.50%. In lameness classification, AdaBoost emerged as the most effective algorithm, yielding the highest overall average accuracy (77.9%). Other established machine learning algorithms, including Decision Trees (DT), Support Vector Machines (SVM), and Random Forests, also demonstrated promising performance (DT: 75.32%, SVM: 75.20%, Random Forest: 74.9%). The presented approach demonstrates the successful implementation for cattle lameness detection. The proposed system has the potential to revolutionize dairy farm management by enabling early lameness detection and facilitating effective monitoring of cattle health. Our findings contribute valuable insights into the application of advanced computer vision methods for livestock health management.
AbstractList Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs image processing techniques and deep learning methods for cattle detection, tracking, and lameness classification. We utilize two powerful object detection algorithms: Mask-RCNN from Detectron2 and the popular YOLOv8. Their performance is compared to identify the most effective approach for this application. Bounding boxes are drawn around detected cattle to assign unique local IDs, enabling individual tracking and isolation throughout the video sequence. Additionally, mask regions generated by the chosen detection algorithm provide valuable data for feature extraction, which is crucial for subsequent lameness classification. The extracted cattle mask region values serve as the basis for feature extraction, capturing relevant information indicative of lameness. These features, combined with the local IDs assigned during tracking, are used to compute a lameness score for each cattle. We explore the efficacy of various established machine learning algorithms, such as Support Vector Machines (SVM), AdaBoost and so on, in analyzing the extracted lameness features. Evaluation of the proposed system was conducted across three key domains: detection, tracking, and lameness classification. Notably, the detection module employing Detectron2 achieved an impressive accuracy of 98.98%. Similarly, the tracking module attained a high accuracy of 99.50%. In lameness classification, AdaBoost emerged as the most effective algorithm, yielding the highest overall average accuracy (77.9%). Other established machine learning algorithms, including Decision Trees (DT), Support Vector Machines (SVM), and Random Forests, also demonstrated promising performance (DT: 75.32%, SVM: 75.20%, Random Forest: 74.9%). The presented approach demonstrates the successful implementation for cattle lameness detection. The proposed system has the potential to revolutionize dairy farm management by enabling early lameness detection and facilitating effective monitoring of cattle health. Our findings contribute valuable insights into the application of advanced computer vision methods for livestock health management.Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs image processing techniques and deep learning methods for cattle detection, tracking, and lameness classification. We utilize two powerful object detection algorithms: Mask-RCNN from Detectron2 and the popular YOLOv8. Their performance is compared to identify the most effective approach for this application. Bounding boxes are drawn around detected cattle to assign unique local IDs, enabling individual tracking and isolation throughout the video sequence. Additionally, mask regions generated by the chosen detection algorithm provide valuable data for feature extraction, which is crucial for subsequent lameness classification. The extracted cattle mask region values serve as the basis for feature extraction, capturing relevant information indicative of lameness. These features, combined with the local IDs assigned during tracking, are used to compute a lameness score for each cattle. We explore the efficacy of various established machine learning algorithms, such as Support Vector Machines (SVM), AdaBoost and so on, in analyzing the extracted lameness features. Evaluation of the proposed system was conducted across three key domains: detection, tracking, and lameness classification. Notably, the detection module employing Detectron2 achieved an impressive accuracy of 98.98%. Similarly, the tracking module attained a high accuracy of 99.50%. In lameness classification, AdaBoost emerged as the most effective algorithm, yielding the highest overall average accuracy (77.9%). Other established machine learning algorithms, including Decision Trees (DT), Support Vector Machines (SVM), and Random Forests, also demonstrated promising performance (DT: 75.32%, SVM: 75.20%, Random Forest: 74.9%). The presented approach demonstrates the successful implementation for cattle lameness detection. The proposed system has the potential to revolutionize dairy farm management by enabling early lameness detection and facilitating effective monitoring of cattle health. Our findings contribute valuable insights into the application of advanced computer vision methods for livestock health management.
Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs image processing techniques and deep learning methods for cattle detection, tracking, and lameness classification. We utilize two powerful object detection algorithms: Mask-RCNN from Detectron2 and the popular YOLOv8. Their performance is compared to identify the most effective approach for this application. Bounding boxes are drawn around detected cattle to assign unique local IDs, enabling individual tracking and isolation throughout the video sequence. Additionally, mask regions generated by the chosen detection algorithm provide valuable data for feature extraction, which is crucial for subsequent lameness classification. The extracted cattle mask region values serve as the basis for feature extraction, capturing relevant information indicative of lameness. These features, combined with the local IDs assigned during tracking, are used to compute a lameness score for each cattle. We explore the efficacy of various established machine learning algorithms, such as Support Vector Machines (SVM), AdaBoost and so on, in analyzing the extracted lameness features. Evaluation of the proposed system was conducted across three key domains: detection, tracking, and lameness classification. Notably, the detection module employing Detectron2 achieved an impressive accuracy of 98.98%. Similarly, the tracking module attained a high accuracy of 99.50%. In lameness classification, AdaBoost emerged as the most effective algorithm, yielding the highest overall average accuracy (77.9%). Other established machine learning algorithms, including Decision Trees (DT), Support Vector Machines (SVM), and Random Forests, also demonstrated promising performance (DT: 75.32%, SVM: 75.20%, Random Forest: 74.9%). The presented approach demonstrates the successful implementation for cattle lameness detection. The proposed system has the potential to revolutionize dairy farm management by enabling early lameness detection and facilitating effective monitoring of cattle health. Our findings contribute valuable insights into the application of advanced computer vision methods for livestock health management.
Abstract Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs image processing techniques and deep learning methods for cattle detection, tracking, and lameness classification. We utilize two powerful object detection algorithms: Mask-RCNN from Detectron2 and the popular YOLOv8. Their performance is compared to identify the most effective approach for this application. Bounding boxes are drawn around detected cattle to assign unique local IDs, enabling individual tracking and isolation throughout the video sequence. Additionally, mask regions generated by the chosen detection algorithm provide valuable data for feature extraction, which is crucial for subsequent lameness classification. The extracted cattle mask region values serve as the basis for feature extraction, capturing relevant information indicative of lameness. These features, combined with the local IDs assigned during tracking, are used to compute a lameness score for each cattle. We explore the efficacy of various established machine learning algorithms, such as Support Vector Machines (SVM), AdaBoost and so on, in analyzing the extracted lameness features. Evaluation of the proposed system was conducted across three key domains: detection, tracking, and lameness classification. Notably, the detection module employing Detectron2 achieved an impressive accuracy of 98.98%. Similarly, the tracking module attained a high accuracy of 99.50%. In lameness classification, AdaBoost emerged as the most effective algorithm, yielding the highest overall average accuracy (77.9%). Other established machine learning algorithms, including Decision Trees (DT), Support Vector Machines (SVM), and Random Forests, also demonstrated promising performance (DT: 75.32%, SVM: 75.20%, Random Forest: 74.9%). The presented approach demonstrates the successful implementation for cattle lameness detection. The proposed system has the potential to revolutionize dairy farm management by enabling early lameness detection and facilitating effective monitoring of cattle health. Our findings contribute valuable insights into the application of advanced computer vision methods for livestock health management.
ArticleNumber 13734
Author Myint, Bo Bo
Kobayashi, Ikuo
Onizuka, Tsubasa
Tin, Pyke
Zin, Thi Thi
Aikawa, Masaru
Author_xml – sequence: 1
  givenname: Bo Bo
  surname: Myint
  fullname: Myint, Bo Bo
  organization: Graduate School of Engineering, University of Miyazaki
– sequence: 2
  givenname: Tsubasa
  surname: Onizuka
  fullname: Onizuka, Tsubasa
  organization: Graduate School of Engineering, University of Miyazaki
– sequence: 3
  givenname: Pyke
  surname: Tin
  fullname: Tin, Pyke
  organization: Graduate School of Engineering, University of Miyazaki
– sequence: 4
  givenname: Masaru
  surname: Aikawa
  fullname: Aikawa, Masaru
  organization: Organization for Learning and Student Development, University of Miyazaki
– sequence: 5
  givenname: Ikuo
  surname: Kobayashi
  fullname: Kobayashi, Ikuo
  organization: Sumiyoshi Livestock Science Station, Field Science Center, Faculty of Agriculture, University of Miyazaki
– sequence: 6
  givenname: Thi Thi
  surname: Zin
  fullname: Zin, Thi Thi
  email: thithi@cc.miyazaki-u.ac.jp
  organization: Graduate School of Engineering, University of Miyazaki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38877097$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhSNUREvpH2CBIrFhE_Arsb1CqLwqVWIDKxaW41wPHjnxYDtTzb_HmRlK20WFN7bsc47O_fy8OpnCBFX1EqO3GFHxLjHcStEgwpqOdR1r-JPqjCDWNoQScnLnfFpdpLRGZbVEMiyfVadUCM6R5GfVz4-wBR82I0y5DrbWdQTtm-xGqI3O2UPtdXmElOoBMpjswlSnXcow1nNy06pYlq0Ikxug2Tq4Kc4Ron5RPbXaJ7g47ufVj8-fvl9-ba6_fbm6_HDdmK7FuRmQAWq5EYRhIspYg-UC9UYM0vCWMNv1CJhFVLeW84FKSxBnRFhu-wEDp-fV1SF3CHqtNtGNOu5U0E7tL0JcKR2zMx4U5kL2mmndE8q6vhXGIGlLkiSUs16WLHrImqeN3t1o728DMVILeXUgrwp5tSevlgbvD67N3I8wmAIzan-vyv2Xyf1Sq7BVGC-NKCkJb44JMfyeIWU1umTAez1BmJOiqBOcScFxkb5-IF2HOU6F8F5FOCXtMsiru5Vuu_z9-iIQB4GJIaUIVhmX9fK9paHzj49LHlj_i9GRbCriaQXxX-1HXH8Ai2fjUA
CitedBy_id crossref_primary_10_3390_ruminants4030027
crossref_primary_10_1038_s41598_024_83279_6
Cites_doi 10.1109/ACCESS.2019.2897737
10.1186/s12917-019-2095-2
10.7120/09627286.24.1.069
10.1016/j.compag.2010.07.004
10.1016/j.applanim.2012.10.001
10.1109/ACCESS.2018.2854599
10.3168/jds.2012-5806
10.3168/jds.2007-0496
10.1109/TIP.2018.2855422
10.1016/j.biosystemseng.2014.01.009
10.3390/ani12060703
10.1109/ACCESS.2019.2906934
10.1016/j.compag.2023.108252
10.3168/jds.2009-2115
10.3168/jds.2017-13439
10.1038/s41598-023-31297-1
10.1016/j.compag.2008.05.016
10.1109/ACCESS.2018.2885698
10.1109/ACCESS.2019.2896621
10.1016/j.compag.2023.107618
10.1016/j.compag.2022.106729
10.1017/S0022029921000297
10.1017/S1751731111002606
10.1016/j.theriogenology.2011.03.019
10.1016/j.compag.2019.01.025
10.3390/s20123564
10.1016/j.compag.2021.106030
10.3168/jds.2010-3882
10.1016/j.livsci.2018.10.005
10.1016/j.compag.2020.105286
10.3168/jds.2018-15717
10.1017/S1751731119001642
10.3390/ani5030387
10.3168/jds.2018-14847
10.7120/09627286.23.2.157
10.3168/jds.2018-15035
10.3168/jds.S0022-0302(06)72077-X
10.1016/j.compag.2018.03.014
10.13031/2013.32580
10.1109/ICCV.2017.324
10.1109/ICCV.2017.322
10.1109/GCCE56475.2022.10014248
10.1109/CVPR.2018.00644
10.1109/GCCE56475.2022.10014109
10.13031/2013.27258
10.1007/978-3-319-46448-0_2
10.1109/LifeTech53646.2022.9754780
10.1109/CVPR.2016.91
10.1109/GCCE56475.2022.10014268
10.1145/3343031.3350535
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-64664-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Open Access Content Collection
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: (Open Access) Springer Nature eJournals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 22
ExternalDocumentID oai_doaj_org_article_1789ba4aab2346b58cc09ff7f92374b9
10.1038/s41598-024-64664-7
PMC11178932
38877097
10_1038_s41598_024_64664_7
Genre Journal Article
GrantInformation_xml – fundername: JKA through its promotion funds from KEIRIN RACE
  grantid: 2023M-425; 2023M-425; 2023M-425; 2023M-425; 2023M-425; 2023M-425
– fundername: JKA through its promotion funds from KEIRIN RACE
  grantid: 2023M-425
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c651t-d0ce3f7c824128415df780bc8d9c7524f6b0e4f03a5f77d39f207428f7fbd1e73
IEDL.DBID M48
ISSN 2045-2322
IngestDate Tue Oct 14 19:05:45 EDT 2025
Sun Oct 26 03:50:25 EDT 2025
Tue Sep 30 17:09:06 EDT 2025
Thu Oct 02 12:09:07 EDT 2025
Tue Oct 07 07:56:32 EDT 2025
Mon Jul 21 06:06:09 EDT 2025
Wed Oct 01 01:44:59 EDT 2025
Thu Apr 24 23:07:02 EDT 2025
Fri Feb 21 02:38:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c651t-d0ce3f7c824128415df780bc8d9c7524f6b0e4f03a5f77d39f207428f7fbd1e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-64664-7
PMID 38877097
PQID 3068273259
PQPubID 2041939
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_1789ba4aab2346b58cc09ff7f92374b9
unpaywall_primary_10_1038_s41598_024_64664_7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11178932
proquest_miscellaneous_3068749871
proquest_journals_3068273259
pubmed_primary_38877097
crossref_citationtrail_10_1038_s41598_024_64664_7
crossref_primary_10_1038_s41598_024_64664_7
springer_journals_10_1038_s41598_024_64664_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-14
PublicationDateYYYYMMDD 2024-06-14
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Barney (CR53) 2023; 13
Jiang, Song, He (CR6) 2019; 158
Van Nuffel, Zwertvaegher, Pluym, Van Weyenberg, Thorup, Pastell, Sonck, Saeys (CR23) 2015; 5
Wadsworth, Mayo, Tsai, Stone, Ray, Clark, Bewley (CR21) 2016
CR39
Schlageter-Tello, Bokkers, Groot Koerkamp, Van Hertem, Viazzi, Romanini, Lokhorst (CR9) 2015; 24
Poursaberi, Bahr, Pluk, Van Nuffel, Berckmans (CR19) 2010; 74
Zhao (CR49) 2018; 148
Zhang (CR28) 2019; 7
Taneja, Byabazaire, Jalodia, Davy, Olariu, Malone (CR48) 2020; 171
Van Hertem, Viazzi, Steensels, Maltz, Antler, Alchanatis, SchlageterTello, Lokhorst, Romanini, Bahr, Berckmans, Halachmi (CR34) 2014
Beggs (CR2) 2019; 102
Matthew, Chukwudi, Bassey, Chibuzor (CR32) 2020; 4
Pluk, Bahr, Leroy, Poursaberi, Song, Vranken, Maertens, Van Nuffel, Berckmans (CR18) 2010; 53
Grimm (CR4) 2019; 102
Zin, Maung, Tin (CR35) 2022; 13
Eaindrar, Thi (CR40) 2023; 14
Viazzi, Bahr, Schlageter-Tello, Van Hertem, Romanini, Pluk, Halachmi, Lokhorst, Berckmans (CR20) 2013; 96
Jiang (CR46) 2022; 194
Yao, Pan, Ning (CR30) 2019; 7
Hu, Sun, Nie, Li, Liu (CR31) 2019; 7
Zin, Pwint, Seint, Thant, Misawa, Sumi, Yoshida (CR37) 2020; 20
CR43
Song, Leroy, Vranken, Maertens, Sonck, Berckmans (CR26) 2008; 64
CR42
Cho, Thi, Ikuo (CR36) 2022; 13
CR41
Tassinari, Bovo, Benni, Franzoni, Poggi, Mammi, Mattoccia, Di Stefano, Bonora, Barbaresi, Santolini (CR47) 2021; 182
Morris, Kaneko, Walker, Jones, Routly, Smith, Dobson (CR13) 2011; 76
Kranepuhl (CR52) 2021; 88
Zin, Sakurai, Sumi, Kobayashi, Hama (CR38) 2016; 7
Thomsen, Munksgaard, Togersen (CR15) 2008; 91
Ouared, Zidane, Aggad, Niar (CR12) 2015; 14
Wang (CR27) 2018; 6
CR16
Zillner, Tücking, Plattes, Heggemann, Büscher (CR25) 2018; 218
CR59
CR58
CR57
CR56
CR55
CR51
CR50
Zheng, Zhang, Qin, Yue, Zeng (CR1) 2023; 205
Oehm (CR5) 2019; 15
Greenough, Bergsten, Brizzi, Mülling (CR17) 2007
Bruijnis, Beerda, Hogeveen, Stassen (CR11) 2012; 6
Piette (CR45) 2020; 14
Flower, Weary (CR14) 2006; 89
Chapinal, de Passillé, Weary, von Keyserlingk, Rushen (CR22) 2009; 92
Yang (CR29) 2018; 27
Vinayakumar, Alazab, Soman, Poornachandran, Venkatraman (CR33) 2019; 7
Werema (CR44) 2022; 12
Randall (CR7) 2018; 101
Chapinal, de Passillé, Pastell, Hänninen, Munksgaard, Rushen (CR10) 2011; 94
Zhang, Han, Jianzhai, Cheng, Wang, Saisai, Liu (CR54) 2023; 213
CR61
Alsaaod, Römer, Kleinmanns, Hendriksen, Rose-Meierhöfer, Plümer, Büscher (CR24) 2012; 142
CR60
Thompson (CR3) 2019; 102
Horseman (CR8) 2014; 23
AW Oehm (64664_CR5) 2019; 15
R Vinayakumar (64664_CR33) 2019; 7
LV Randall (64664_CR7) 2018; 101
C Matthew (64664_CR32) 2020; 4
B Zhang (64664_CR28) 2019; 7
K Zhang (64664_CR54) 2023; 213
A Van Nuffel (64664_CR23) 2015; 5
64664_CR60
64664_CR61
A Pluk (64664_CR18) 2010; 53
D Piette (64664_CR45) 2020; 14
AJ Thompson (64664_CR3) 2019; 102
A Schlageter-Tello (64664_CR9) 2015; 24
Z Wang (64664_CR27) 2018; 6
TT Zin (64664_CR35) 2022; 13
64664_CR39
MJ Morris (64664_CR13) 2011; 76
B Jiang (64664_CR46) 2022; 194
Bo Jiang (64664_CR6) 2019; 158
P Tassinari (64664_CR47) 2021; 182
N Chapinal (64664_CR10) 2011; 94
Y Hu (64664_CR31) 2019; 7
N Chapinal (64664_CR22) 2009; 92
AC Cho (64664_CR36) 2022; 13
JC Zillner (64664_CR25) 2018; 218
Y Yang (64664_CR29) 2018; 27
SV Horseman (64664_CR8) 2014; 23
PR Greenough (64664_CR17) 2007
S Barney (64664_CR53) 2023; 13
A Poursaberi (64664_CR19) 2010; 74
TT Zin (64664_CR37) 2020; 20
M Bruijnis (64664_CR11) 2012; 6
T Van Hertem (64664_CR34) 2014
64664_CR42
64664_CR43
64664_CR41
M Kranepuhl (64664_CR52) 2021; 88
FC Flower (64664_CR14) 2006; 89
PT Thomsen (64664_CR15) 2008; 91
S Viazzi (64664_CR20) 2013; 96
CW Werema (64664_CR44) 2022; 12
L Yao (64664_CR30) 2019; 7
M Taneja (64664_CR48) 2020; 171
K Zhao (64664_CR49) 2018; 148
K Ouared (64664_CR12) 2015; 14
K Grimm (64664_CR4) 2019; 102
XY Song (64664_CR26) 2008; 64
TT Zin (64664_CR38) 2016; 7
64664_CR57
64664_CR58
64664_CR55
M Alsaaod (64664_CR24) 2012; 142
64664_CR56
64664_CR59
64664_CR16
64664_CR50
BA Wadsworth (64664_CR21) 2016
MW Eaindrar (64664_CR40) 2023; 14
DS Beggs (64664_CR2) 2019; 102
64664_CR51
Z Zheng (64664_CR1) 2023; 205
References_xml – volume: 7
  start-page: 29277
  year: 2019
  end-page: 29284
  ident: CR28
  article-title: Multispectral heterogeneity detection based on frame accumulation and deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897737
– year: 2007
  ident: CR17
  article-title: Bovine Laminitis and Lameness, a Hands-on Approach
  publication-title: Saunders
– volume: 15
  start-page: 1
  issue: 1
  year: 2019
  end-page: 14
  ident: CR5
  article-title: A systematic review and meta-analyses of risk factors associated with lameness in dairy cows
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-019-2095-2
– volume: 24
  start-page: 69
  issue: 1
  year: 2015
  end-page: 79
  ident: CR9
  article-title: Comparison of locomotion scoring for dairy cows by experienced and inexperienced raters using live or video observation methods
  publication-title: Anim. Welf.
  doi: 10.7120/09627286.24.1.069
– volume: 74
  start-page: 110
  year: 2010
  end-page: 119
  ident: CR19
  article-title: Real-time automatic lameness detection based on back posture extraction in dairy cattle: shape analysis of cow with image processing techniques
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.07.004
– year: 2016
  ident: CR21
  article-title: Behavioral Comparisons Among Lame Versus Sound Cattle Using Precision Technologies
  publication-title: Precision Dairy Farming Conference
– volume: 142
  start-page: 134
  year: 2012
  end-page: 141
  ident: CR24
  article-title: Electronic detection of lameness in dairy cows through measuring pedometric activity and lying behavior
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2012.10.001
– ident: CR39
– ident: CR16
– volume: 6
  start-page: 38367
  year: 2018
  end-page: 38384
  ident: CR27
  article-title: Deep learning-based intrusion detection with adversaries
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2854599
– volume: 96
  start-page: 257
  year: 2013
  end-page: 266
  ident: CR20
  article-title: Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2012-5806
– ident: CR51
– volume: 91
  start-page: 119
  year: 2008
  end-page: 126
  ident: CR15
  article-title: Evaluation of a lameness scoring system for dairy cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2007-0496
– volume: 13
  start-page: 405
  year: 2022
  end-page: 412
  ident: CR35
  article-title: A deep learning method of edge-based cow region detection and multiple linear classification
  publication-title: ICIC Express Lett. Part B Appl.
– volume: 27
  start-page: 5600
  issue: 11
  year: 2018
  end-page: 5611
  ident: CR29
  article-title: Video captioning by adversarial LSTM
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2855422
– ident: CR61
– ident: CR58
– year: 2014
  ident: CR34
  article-title: Automatic lameness detection based on consecutive 3D-video recordings
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2014.01.009
– ident: CR42
– volume: 12
  start-page: 703
  issue: 6
  year: 2022
  ident: CR44
  article-title: Evaluating alternatives to locomotion scoring for detecting lameness in pasture-based dairy cattle in New Zealand: In-parlour scoring
  publication-title: Animals
  doi: 10.3390/ani12060703
– volume: 7
  start-page: 46717
  year: 2019
  end-page: 46738
  ident: CR33
  article-title: Robust intelligent malware detection using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906934
– volume: 213
  start-page: 108252
  year: 2023
  ident: CR54
  article-title: Early lameness detection in dairy cattle based on wearable gait analysis using semi-supervised LSTM-autoencoder
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108252
– volume: 92
  start-page: 4365
  issue: 9
  year: 2009
  end-page: 4374
  ident: CR22
  article-title: Using gait score, walking speed, and lying behavior to detect hoof lesions in dairy cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2009-2115
– volume: 101
  start-page: 1311
  issue: 2
  year: 2018
  end-page: 1324
  ident: CR7
  article-title: The contribution of previous lameness events and body condition score to the occurrence of lameness in dairy herds: A study of 2 herds
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2017-13439
– volume: 13
  start-page: 4499
  issue: 1
  year: 2023
  ident: CR53
  article-title: Deep learning pose estimation for multi-cattle lameness detection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-31297-1
– volume: 14
  start-page: 10
  year: 2015
  end-page: 12
  ident: CR12
  article-title: Impact of clinical lameness on the milk yield of dairy cows
  publication-title: J. Animal Vet. Adv.
– ident: CR50
– ident: CR57
– volume: 14
  start-page: 65
  issue: 01
  year: 2023
  ident: CR40
  article-title: Cattle face detection with ear tags using YOLOv5 model
  publication-title: Innov. Comput., Inf. Control Bull.-B: Appl.
– volume: 13
  start-page: 1313
  issue: 12
  year: 2022
  ident: CR36
  article-title: Black cow tracking by using deep learning-based algorithms
  publication-title: Bull. Innov. Comput., Inf. Control-B: Appl.
– ident: CR60
– volume: 64
  start-page: 39
  year: 2008
  end-page: 44
  ident: CR26
  article-title: Automatic detection of lameness in dairy cattle—vision-based trackway analysis in cow's locomotion
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2008.05.016
– volume: 4
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR32
  article-title: Modeling and optimization of L. kernel oil extraction using response surface methodology and artificial neural network
  publication-title: Artif. Intell. Agric.
– volume: 7
  start-page: 3430
  year: 2019
  end-page: 3437
  ident: CR30
  article-title: Unlabeled short text similarity With LSTM Encoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2885698
– volume: 7
  start-page: 34020
  year: 2019
  end-page: 34030
  ident: CR31
  article-title: An enhanced LSTM for trend following of time series
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2896621
– volume: 7
  start-page: 1857
  issue: 8
  year: 2016
  end-page: 1862
  ident: CR38
  article-title: The Identification of dairy cows using image processing techniques
  publication-title: ICIC Express Lett. Part B, Appl.: Int. J. Res. Surv.
– volume: 205
  start-page: 107618
  year: 2023
  ident: CR1
  article-title: Cows' legs tracking and lameness detection in dairy cattle using video analysis and Siamese neural networks
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2023.107618
– ident: CR43
– volume: 194
  start-page: 106729
  year: 2022
  ident: CR46
  article-title: Dairy cow lameness detection using a back curvature feature
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106729
– volume: 88
  start-page: 162
  issue: 2
  year: 2021
  end-page: 165
  ident: CR52
  article-title: Association of body condition with lameness in dairy cattle: A single-farm longitudinal study
  publication-title: J. Dairy Res.
  doi: 10.1017/S0022029921000297
– volume: 6
  start-page: 962
  year: 2012
  end-page: 70
  ident: CR11
  article-title: Assessing the welfare impact of foot disorders in dairy cattle by a modeling approach
  publication-title: Anim.: Int. J. Anim. Biosci.
  doi: 10.1017/S1751731111002606
– volume: 76
  start-page: 658
  year: 2011
  end-page: 668
  ident: CR13
  article-title: Influence of lameness on follicular growth, ovulation, reproductive hormone concentrations and estrus behavior in dairy cows
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2011.03.019
– volume: 158
  start-page: 140
  year: 2019
  end-page: 149
  ident: CR6
  article-title: Lameness detection of dairy cows based on a double normal background statistical model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.025
– volume: 20
  start-page: 3564
  issue: 12
  year: 2020
  ident: CR37
  article-title: Automatic cow location tracking system using ear tag visual analysis
  publication-title: Sensors
  doi: 10.3390/s20123564
– volume: 182
  start-page: 106030
  year: 2021
  ident: CR47
  article-title: A computer vision approach based on deep learning for the detection of dairy cows in free stall barn
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106030
– ident: CR56
– volume: 94
  start-page: 2895
  issue: 6
  year: 2011
  end-page: 2901
  ident: CR10
  article-title: Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle
  publication-title: J Dairy Sci.
  doi: 10.3168/jds.2010-3882
– volume: 218
  start-page: 119
  year: 2018
  end-page: 123
  ident: CR25
  article-title: Using walking speed for lameness detection in lactating dairy cows
  publication-title: Livestock Sci.
  doi: 10.1016/j.livsci.2018.10.005
– volume: 171
  year: 2020
  ident: CR48
  article-title: Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105286
– volume: 102
  start-page: 6373
  issue: 7
  year: 2019
  end-page: 6382
  ident: CR3
  article-title: Lameness and lying behavior in grazing dairy cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2018-15717
– volume: 14
  start-page: 409
  issue: 2
  year: 2020
  end-page: 417
  ident: CR45
  article-title: Individualised automated lameness detection in dairy cows and the impact of historical window length on algorithm performance
  publication-title: Animal
  doi: 10.1017/S1751731119001642
– volume: 5
  start-page: 838
  issue: 3
  year: 2015
  end-page: 860
  ident: CR23
  article-title: Lameness detection in dairy cows: Part 1. How to distinguish between non-lame and lame cows based on differences in locomotion or behavior
  publication-title: Animals
  doi: 10.3390/ani5030387
– volume: 102
  start-page: 1522
  issue: 2
  year: 2019
  end-page: 1529
  ident: CR2
  article-title: Lame cows on Australian dairy farms: A comparison of farmer-identified lameness and formal lameness scoring, and the position of lame cows within the milking order
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2018-14847
– volume: 23
  start-page: 157
  issue: 2
  year: 2014
  end-page: 165
  ident: CR8
  article-title: The use of in-depth interviews to understand the process of treating lame dairy cows from the farmers’ perspective
  publication-title: Anim Welf.
  doi: 10.7120/09627286.23.2.157
– volume: 102
  start-page: 2453
  issue: 3
  year: 2019
  end-page: 2468
  ident: CR4
  article-title: New insights into the association between lameness, behavior, and performance in Simmental cows
  publication-title: Journal of dairy science
  doi: 10.3168/jds.2018-15035
– ident: CR55
– volume: 89
  start-page: 139
  year: 2006
  end-page: 146
  ident: CR14
  article-title: Effect of hoof pathologies on subjective assessments of dairy cow gait
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(06)72077-X
– volume: 148
  start-page: 226
  year: 2018
  end-page: 236
  ident: CR49
  article-title: Automatic lameness detection in dairy cattle based on leg swing analysis with an image processing technique
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.014
– ident: CR59
– ident: CR41
– volume: 53
  start-page: 1305
  year: 2010
  end-page: 1312
  ident: CR18
  article-title: Evaluation of step overlap as an automatic measure in dairy cow locomotion
  publication-title: Trans. ASABE
  doi: 10.13031/2013.32580
– volume: 6
  start-page: 962
  year: 2012
  ident: 64664_CR11
  publication-title: Anim.: Int. J. Anim. Biosci.
  doi: 10.1017/S1751731111002606
– ident: 64664_CR58
  doi: 10.1109/ICCV.2017.324
– volume: 88
  start-page: 162
  issue: 2
  year: 2021
  ident: 64664_CR52
  publication-title: J. Dairy Res.
  doi: 10.1017/S0022029921000297
– volume: 7
  start-page: 34020
  year: 2019
  ident: 64664_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2896621
– ident: 64664_CR59
– volume: 7
  start-page: 29277
  year: 2019
  ident: 64664_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897737
– volume: 7
  start-page: 46717
  year: 2019
  ident: 64664_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906934
– volume: 96
  start-page: 257
  year: 2013
  ident: 64664_CR20
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2012-5806
– year: 2014
  ident: 64664_CR34
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2014.01.009
– ident: 64664_CR60
  doi: 10.1109/ICCV.2017.322
– volume: 205
  start-page: 107618
  year: 2023
  ident: 64664_CR1
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2023.107618
– ident: 64664_CR41
  doi: 10.1109/GCCE56475.2022.10014248
– volume: 13
  start-page: 4499
  issue: 1
  year: 2023
  ident: 64664_CR53
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-31297-1
– volume: 53
  start-page: 1305
  year: 2010
  ident: 64664_CR18
  publication-title: Trans. ASABE
  doi: 10.13031/2013.32580
– volume: 218
  start-page: 119
  year: 2018
  ident: 64664_CR25
  publication-title: Livestock Sci.
  doi: 10.1016/j.livsci.2018.10.005
– ident: 64664_CR61
  doi: 10.1109/CVPR.2018.00644
– volume: 102
  start-page: 6373
  issue: 7
  year: 2019
  ident: 64664_CR3
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2018-15717
– volume: 23
  start-page: 157
  issue: 2
  year: 2014
  ident: 64664_CR8
  publication-title: Anim Welf.
  doi: 10.7120/09627286.23.2.157
– volume: 13
  start-page: 405
  year: 2022
  ident: 64664_CR35
  publication-title: ICIC Express Lett. Part B Appl.
– volume: 7
  start-page: 3430
  year: 2019
  ident: 64664_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2885698
– ident: 64664_CR39
  doi: 10.1109/GCCE56475.2022.10014109
– volume: 213
  start-page: 108252
  year: 2023
  ident: 64664_CR54
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108252
– volume: 15
  start-page: 1
  issue: 1
  year: 2019
  ident: 64664_CR5
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-019-2095-2
– volume: 13
  start-page: 1313
  issue: 12
  year: 2022
  ident: 64664_CR36
  publication-title: Bull. Innov. Comput., Inf. Control-B: Appl.
– volume: 102
  start-page: 2453
  issue: 3
  year: 2019
  ident: 64664_CR4
  publication-title: Journal of dairy science
  doi: 10.3168/jds.2018-15035
– volume: 14
  start-page: 409
  issue: 2
  year: 2020
  ident: 64664_CR45
  publication-title: Animal
  doi: 10.1017/S1751731119001642
– volume: 91
  start-page: 119
  year: 2008
  ident: 64664_CR15
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2007-0496
– volume: 89
  start-page: 139
  year: 2006
  ident: 64664_CR14
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(06)72077-X
– volume: 5
  start-page: 838
  issue: 3
  year: 2015
  ident: 64664_CR23
  publication-title: Animals
  doi: 10.3390/ani5030387
– volume: 20
  start-page: 3564
  issue: 12
  year: 2020
  ident: 64664_CR37
  publication-title: Sensors
  doi: 10.3390/s20123564
– ident: 64664_CR42
– volume: 14
  start-page: 10
  year: 2015
  ident: 64664_CR12
  publication-title: J. Animal Vet. Adv.
– volume: 101
  start-page: 1311
  issue: 2
  year: 2018
  ident: 64664_CR7
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2017-13439
– volume: 142
  start-page: 134
  year: 2012
  ident: 64664_CR24
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2012.10.001
– volume: 4
  start-page: 1
  year: 2020
  ident: 64664_CR32
  publication-title: Artif. Intell. Agric.
– volume: 27
  start-page: 5600
  issue: 11
  year: 2018
  ident: 64664_CR29
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2855422
– ident: 64664_CR16
  doi: 10.13031/2013.27258
– ident: 64664_CR56
  doi: 10.1007/978-3-319-46448-0_2
– volume: 76
  start-page: 658
  year: 2011
  ident: 64664_CR13
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2011.03.019
– volume: 24
  start-page: 69
  issue: 1
  year: 2015
  ident: 64664_CR9
  publication-title: Anim. Welf.
  doi: 10.7120/09627286.24.1.069
– volume: 64
  start-page: 39
  year: 2008
  ident: 64664_CR26
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2008.05.016
– volume: 12
  start-page: 703
  issue: 6
  year: 2022
  ident: 64664_CR44
  publication-title: Animals
  doi: 10.3390/ani12060703
– volume: 74
  start-page: 110
  year: 2010
  ident: 64664_CR19
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.07.004
– volume: 158
  start-page: 140
  year: 2019
  ident: 64664_CR6
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.025
– volume: 6
  start-page: 38367
  year: 2018
  ident: 64664_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2854599
– ident: 64664_CR50
– volume-title: Precision Dairy Farming Conference
  year: 2016
  ident: 64664_CR21
– ident: 64664_CR43
  doi: 10.1109/LifeTech53646.2022.9754780
– volume: 102
  start-page: 1522
  issue: 2
  year: 2019
  ident: 64664_CR2
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2018-14847
– volume: 92
  start-page: 4365
  issue: 9
  year: 2009
  ident: 64664_CR22
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2009-2115
– volume: 148
  start-page: 226
  year: 2018
  ident: 64664_CR49
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.014
– volume: 14
  start-page: 65
  issue: 01
  year: 2023
  ident: 64664_CR40
  publication-title: Innov. Comput., Inf. Control Bull.-B: Appl.
– volume: 94
  start-page: 2895
  issue: 6
  year: 2011
  ident: 64664_CR10
  publication-title: J Dairy Sci.
  doi: 10.3168/jds.2010-3882
– volume: 182
  start-page: 106030
  year: 2021
  ident: 64664_CR47
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106030
– volume: 7
  start-page: 1857
  issue: 8
  year: 2016
  ident: 64664_CR38
  publication-title: ICIC Express Lett. Part B, Appl.: Int. J. Res. Surv.
– volume: 171
  year: 2020
  ident: 64664_CR48
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105286
– volume-title: Saunders
  year: 2007
  ident: 64664_CR17
– volume: 194
  start-page: 106729
  year: 2022
  ident: 64664_CR46
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106729
– ident: 64664_CR57
  doi: 10.1109/CVPR.2016.91
– ident: 64664_CR51
  doi: 10.1109/GCCE56475.2022.10014268
– ident: 64664_CR55
  doi: 10.1145/3343031.3350535
SSID ssj0000529419
Score 2.5207226
Snippet Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and...
Abstract Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection,...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13734
SubjectTerms 639/705/117
639/705/258
Accuracy
Algorithms
Animals
Cattle
Cattle Diseases - diagnosis
Classification
Computer vision
Dairy farms
Deep Learning
Farm management
Humanities and Social Sciences
Image processing
Image Processing, Computer-Assisted - methods
Lameness, Animal - diagnosis
Learning algorithms
Livestock
Machine Learning
multidisciplinary
Science
Science (multidisciplinary)
Support Vector Machine
Support vector machines
Video Recording - methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SEPUgfru1SgRvNjSbj01yVLEUQU8WCh7CZjZR4bGv2PeQ_vedJPvW91CqB08LuwnMzkwyM5nJbwh5hZFxGEAmJqIEpgRoFgblGESD3mkLgyvF4x8_dSen6sOZPttq9ZVrwio8cGXcUWusC73q-yCk6oK2ADyfMyb0TIwK5eoet24rmKqo3sKp1k23ZLi0RxdoqfJtMqFYlyHVmdmxRAWw_09e5u_FknPG9A65tR7P-8uf_WKxZZSO75G7kzdJ39S_uE9uxPEBuVn7S14-JF-2SoLoMtGeoou4YLmfPIWCXkxRIcpuR4e4KlVZI63gzjRXxH_FKfmBA3NbT5bzCDgzH2Q9IqfH7z-_O2FTNwUGnW5XbOAQZTJg0WajTWr1kIzlAezgwGihUhd4VInLXidjBumSyHGzRVaHoY1GPiZ743KMTwlNWgOgI6mDVAoityAFR-FG03VO2NCQdsNZDxPUeO54sfAl5S2tr9LwKA1fpOFNQ17Pc84r0Ma1o99mgc0jM0h2eYGq4yfV8X9TnYYcbMTtp5V74TGEsujSYVTYkJfzZ1xzOZHSj3G5rmOMchhrNuRJ1Y6ZEom7tuEOKbQ7erND6u6X8fu3guuNZgcplqIhhxsV-0XXdbw4nNXwH1i3_z9Y94zcFnkp5SZO6oDsrX6s43P0zlbhRVmIV9osM18
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFVEfxO9Gq0TwzS5NdjfZzYOIlZYieIhYKPgQsl-tcOSu7R3S_96ZzUd7KIdPgWQXJjszO7Mzs78BeIcnY-OsCIx7YZnktmDGyYpZr9A7za2rYvH412l5fCK_nBanWzAd7sJQWeWwJ8aN2s0txcj30bXVaGrRW_-4uGDUNYqyq0MLjaZvreA-RIixO7DNCRlrAtsHh9Nv38eoC-W1ZF71t2cyofev0ILRLTMuWUlQ60ytWagI5P8v7_PvIsoxk_oA7q3aRXP9u5nNbhmro0fwsPcy00-dWDyGLd8-gbtd38nrp_DzVqlQOg9pk6LrOGPUZz61EdU4RUGJu2Dq_DJWa7VpB_qcUqX8GU6hBw6kdp-M1g5nUoDrGZwcHf74fMz6LgvMlkW-ZC6zXgRlNdpytFV54YLSmbHaVVYVXIbSZF6GTDRFUMqJKnA6T-uggnG5V-I5TNp563cgDUVhLTqYhRFSWp9pK3iGTPeqLCuuTQL5sLK17SHIqRPGrI6pcKHrjhs1cqOO3KhVAu_HOYsOgGPj6ANi2DiSwLPji_nlWd3rYp0rXZlGNo3hQpam0NZmFLoO6OwqaaoEdgd2171GX9U38pfA2_Ez6iIlWJrWz1fdGCUrPIMm8KKTjpESgbu5yiqkUK_JzRqp61_aX-cR7xvNEVIseAJ7g4jd0LVpLfZGMfyPpXu5-a9fwX1OSkJtm-QuTJaXK_8a_bGledMr2R-wmTE2
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_qFVEfxO-uVongmxfczccmeTzFUg70RQsFH8Imm6hw7BV7R-l_7yS7t3apFH062M0cQ2ZmZyYz-Q3AG8yMXet5pCxwTwXzkrpWGOqDwui08q3JzeOfPtfHJ2J5Kk_3YL67CzOp32fo7nN0MekaGBO0TljoVN2CfY2KqWewv1gsvyzHM5VUtRKVGe7GIPm768QT_5Nh-v8WW15vkRzrpPfgzrY7ay4vmtXqiis6egD3hxiSLHqhP4S90D2C2_1UycvH8O1KIxBZR9IQDAxXNE2RJz5jFhNUg_yNI23Y5F6sjvSQziT1wX9HkvSDC9MwT5qqB0iZjq-ewMnRx68fjukwQ4H6WlYb2pY-8Ki8Rk-NnqiSbVS6dF63xivJRKxdGUQseSOjUi03kaVsWUcVXVsFxZ_CrFt34QBIlNJ7DB-l40L4UGrPWYkiDaquDdOugGq3s9YPAONpzsXK5kI317aXhkVp2CwNqwp4O9Kc9fAaN65-nwQ2rkzQ2PkBaowdLM1WShvXiKZxjIvaSe19mQ6mI4aySjhTwOFO3Haw13OLiZPGQA5zwQJej6_R0lL5pOnCetuvUcJghlnAs147Rk44fqtVaZBDPdGbCavTN93PHxnNG50NcsxZAfOdiv3h66a9mI9q-A9b9_z__v0F3GXJaNKQJnEIs82vbXiJ0dfGvRqM7jfxyCV5
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48H4ECjISN-qS-BE7x4KoKiQqDqxUxMGKHbsgVtmKzQqVX8_YyYYGqqqcIiVjaTIeZ76Jx98AvMTM2DaOB8o8d1QwJ6ltREWdV4hOC9dUqXj8w2F5MBfvj-TRQJMTz8JM9u-5fr3CABMPgTFBy8iETtVV2Col4u4ZbM0PP-59jt3jEJdQhAZsOBVz_sBJ5EkE_eehyn-LI8cd0ptwfd2e1Kc_68XiTBDav913M1ol7sJYe_J9d93ZXffrL2bHy73fHbg1YFGy1zvPXbji23twre9OeXofvpwpKCLLQGqCAHNBYzd64hL3MUF3St9K0vgu1XS1pKeGJrGe_hiHxAsKxqagNO5C4Mj4G-wBzPfffXp7QIdeDNSVsuhokzvPg3IaIz5GtEI2QencOt1UTkkmQmlzL0LOaxmUangVWMy6dVDBNoVX_CHM2mXrHwMJUjqHMFRaLoTzuXac5egaXpVlxbTNoNjMk3EDUXnsl7EwacOca9MbzaDRTDKaURm8Gsec9DQdF0q_idM_SkaK7XQDZ8YMK9YUSle2FnVtGRelldq5PP7gDgiJlbBVBtsb5zHDul8ZTMA0AkLMKTN4MT7GFRu3YerWL9e9jBIVZqoZPOp9bdSE4zdf5RVqqCdeOFF1-qT99jWxgmPQQo05y2Bn47B_9LrIFjujU1_CdE_-T_wp3GDRt2OzJ7ENs-7H2j9DFNfZ58Py_Q1dfjt4
  priority: 102
  providerName: Unpaywall
Title Development of a real-time cattle lameness detection system using a single side-view camera
URI https://link.springer.com/article/10.1038/s41598-024-64664-7
https://www.ncbi.nlm.nih.gov/pubmed/38877097
https://www.proquest.com/docview/3068273259
https://www.proquest.com/docview/3068749871
https://pubmed.ncbi.nlm.nih.gov/PMC11178932
https://doi.org/10.1038/s41598-024-64664-7
https://doaj.org/article/1789ba4aab2346b58cc09ff7f92374b9
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: (Open Access) Nature Free eJournals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: (Open Access) Springer Nature eJournals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6wdj2MPY9b13wYOxl1WZLsiU_jJGGlhJoKNsCGXswlix1A-OkacKW_34n2fEaFkqfDJYULro7353udD-AtxgZq1IzS6hhmnCqE6JKnhFtBHqnsS4zXzx-NkpPx3w4SSY7sC63bTfwamto5_CkxvPqw5_L1WdU-E_NlXH58QqNkLsoRjlJXbd0It7NLokDlnIJ2BZlYxf20XhlDt3hrI0AmvbfNOMe_sP1ZSfoX9D2as32X94wX77L_zbX9P8Kyy7Neh_uLutZsfpdVNU1S3byEB60LmjYb2TmEeyY-jHcaUApV0_gx7U6onBqwyJEv7IiDoQ-1L7lcYhS5D-RYWkWvpSrDpuO0KEro7_AJe6BEx0WKHHJB1zpTr-ewvjk-NvglLQQDESnSbwgZaQNs0JLNPRoyOKktEJGSssy0yKh3KYqMtxGrEisECXLLHXBtrTCqjI2gj2DvXpamxcQ2iTRGr3PRDHOtYmkZjRCiTAiTTMqVQDxemdz3fYndzAZVe7z5EzmDTdy5EbuuZGLAN53a2ZNd44bZx85hnUzXWdt_2I6v8hbRc1jITNV8KJQlPFUJVLryJ1rW_SEBVdZAAdrdudrac0x7pLoB2IoGcCbbhgV1WVfitpMl80cwTMMUAN43khHRwnDT72IMqRQbsjNBqmbI_Wvn74ZONoqpJjRAA7XIvaPrpv24rATw1ts3ctb_K1XcI86TXHATvwA9hbzpXmNHttC9WBXTEQP9vv94dchPo-OR-df8O0gHfT8KUjPayWOjEfn_e9_ASUaQOE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjR4QNwJDDASPDFrie3EzsOEGGzq2FYhtEmT9mBixx5IVVLWVlP_HL-NY-eyVaCKlz1Vauz2xOduH58PobeQGevSMEeoZYZwalKiS54TYwVEp4kp81A8fjTMBif8y2l6uoJ-d3dhfFllZxODoS5r4_fItyC0leBqIVr_MP5FPGqUP13tIDSKFlqh3A4txtqLHQd2fgkp3GR7_zPw-x2le7vHnwakRRkgJkuTKSljY5kTRoIvA1udpKUTMtZGlrkRKeUu07HlLmZF6oQoWe6ozyelE06XiRUMfvcWWuOM55D8re3sDr9-63d5_DkaT_L2tk7M5NYE_sHfaqOcZL61OxELHjEAB_wr2v27aLM_ub2L1mfVuJhfFqPRNee4dx_da6Na_LERwwdoxVYP0e0G53L-CJ1dK03CtcMFhlB1RDyuPTahizIGwQxWF5d2GqrDKtw0mca-Mv8cpvgPGOjhRYnnFcz0G2qP0cmNrPcTtFrVlX2GsEtTYyCgTTXj3NhYGkZjEDIrsiynUkco6VZWmbbluUfeGKlw9M6karihgBsqcEOJCL3v54ybhh9LR-94hvUjfbPu8EV9ca5a3VeJkLkueFFoynimU2lM7LfKHQTXgus8Qhsdu1VrQSbqSt4j9KZ_DLrvD3SKytazZozgOeS8EXraSEdPCQPvIeIcKJQLcrNA6uKT6ueP0F8c3B9QzGiENjsRu6Jr2Vps9mL4H0v3fPlbv0brg-OjQ3W4Pzx4ge5QrzAeMopvoNXpxcy-hFhwql-1CofR95vW8T9h224Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKERQOiDcLBYwEJ2pl1_au7QNCQIlaChUHKkXiYNZeu0WKNqFJVOWv8esYex9tBIq49BQpa69mPU97xvMh9BJ2xqayzBPqmCWc2pyYiitinYDoNLOVisXjXw6LvSP-aZSPNtDv7i5MKKvsbGI01NXEhjPyAYS2ElwtROsD35ZFfN0dvp3-IgFBKmRaOziNRkQO3PIMtm-zN_u7wOtXlA4_fvuwR1qEAWKLPJuTKrWOeWEl-DGw01leeSFTY2WlrMgp94VJHfcpK3MvRMWUp2EvKb3wpsqcYPDeK-iqYEyFckIxEv35Tsig8Uy193RSJgczeH-4z0Y5KUJTdyJWfGGEDPhXnPt3uWafs72Jthb1tFyelePxBbc4vI1utfEsftcI4B204eq76FqDcLm8h75fKErCE49LDEHqmAREe2xj_2QMIhntLa7cPNaF1bhpL41DTf4xTAk_MDAAi5LAJZgZjtLuo6NLWe0HaLOe1O4Rwj7PrYVQNjeMc-tSaRlNQbycKApFpUlQ1q2stm2z84C5MdYx6c6kbrihgRs6ckOLBL3u50ybVh9rR78PDOtHhjbd8Y_J6bFutV5nQipT8rI0lPHC5NLaNBySewirBTcqQdsdu3VrO2b6XNIT9KJ_DFofUjll7SaLZozgCna7CXrYSEdPCQO_IVIFFMoVuVkhdfVJ_fMkdhYHxwcUM5qgnU7EzulatxY7vRj-x9I9Xv_Vz9F10Gz9ef_w4Am6QYO-BKwovo0256cL9xSCwLl5FrUNox-Xrd5_AE1Pa7I
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48H4ECjISN-qS-BE7x4KoKiQqDqxUxMGKHbsgVtmKzQqVX8_YyYYGqqqcIiVjaTIeZ76Jx98AvMTM2DaOB8o8d1QwJ6ltREWdV4hOC9dUqXj8w2F5MBfvj-TRQJMTz8JM9u-5fr3CABMPgTFBy8iETtVV2Col4u4ZbM0PP-59jt3jEJdQhAZsOBVz_sBJ5EkE_eehyn-LI8cd0ptwfd2e1Kc_68XiTBDav913M1ol7sJYe_J9d93ZXffrL2bHy73fHbg1YFGy1zvPXbji23twre9OeXofvpwpKCLLQGqCAHNBYzd64hL3MUF3St9K0vgu1XS1pKeGJrGe_hiHxAsKxqagNO5C4Mj4G-wBzPfffXp7QIdeDNSVsuhokzvPg3IaIz5GtEI2QencOt1UTkkmQmlzL0LOaxmUangVWMy6dVDBNoVX_CHM2mXrHwMJUjqHMFRaLoTzuXac5egaXpVlxbTNoNjMk3EDUXnsl7EwacOca9MbzaDRTDKaURm8Gsec9DQdF0q_idM_SkaK7XQDZ8YMK9YUSle2FnVtGRelldq5PP7gDgiJlbBVBtsb5zHDul8ZTMA0AkLMKTN4MT7GFRu3YerWL9e9jBIVZqoZPOp9bdSE4zdf5RVqqCdeOFF1-qT99jWxgmPQQo05y2Bn47B_9LrIFjujU1_CdE_-T_wp3GDRt2OzJ7ENs-7H2j9DFNfZ58Py_Q1dfjt4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+real-time+cattle+lameness+detection+system+using+a+single+side-view+camera&rft.jtitle=Scientific+reports&rft.au=Myint%2C+Bo+Bo&rft.au=Onizuka%2C+Tsubasa&rft.au=Tin%2C+Pyke&rft.au=Aikawa%2C+Masaru&rft.date=2024-06-14&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=13734&rft_id=info:doi/10.1038%2Fs41598-024-64664-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon