Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation
Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 int...
Saved in:
| Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 106; no. 29; pp. 12079 - 12084 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
National Academy of Sciences
21.07.2009
National Acad Sciences |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0027-8424 1091-6490 1091-6490 |
| DOI | 10.1073/pnas.0900979106 |
Cover
| Abstract | Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Δvif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles. |
|---|---|
| AbstractList | Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Δvif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles. Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a [delta]vif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles. Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Δ vif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles. Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a ...vif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles. (ProQuest: ... denotes formulae/symbols omitted.) Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Δ vif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles. Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Deltavif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Deltavif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles. Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retrovirai genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a singledomain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Δvif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles. Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Deltavif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles. |
| Author | Perković, Mario Schneider, Gisbert Weisel, Martin Kopietz, Ferdinand Münk, Carsten Hofmann, Henning Stauch, Benjamin Cichutek, Klaus |
| Author_xml | – sequence: 1 fullname: Stauch, Benjamin – sequence: 2 fullname: Hofmann, Henning – sequence: 3 fullname: Perković, Mario – sequence: 4 fullname: Weisel, Martin – sequence: 5 fullname: Kopietz, Ferdinand – sequence: 6 fullname: Cichutek, Klaus – sequence: 7 fullname: Münk, Carsten – sequence: 8 fullname: Schneider, Gisbert |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19581596$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktvEzEURkeoiKaFNSvAYoHEIu31-DHjTaUSlYdUVCTo2nJsT3CY2Kntaem_x0MiAl2QlaX5zv3kezxH1YEP3lbVcwwnGBpyuvYqnYAAEI3AwB9VEwwCTzkVcFBNAOpm2tKaHlZHKS2hYKyFJ9UhLidmgk-qu8_B2B6lHAedh2hR6ND5l6t3FzMyQ9HeWtUnpNDceeP8Aq2D_mEzWgUz9CqPX6KbBz_o3jqNlHYGOZ9tVDq74EvBzeCiNagLEVmv1To5o8boafW4K9X22fY8rq7fX3ybfZxeXn34NDu_nGrOcJ6WaxqjNcxVp1pqBCFMdIRpRgEwKZspjUnbGqGZ5qSp7Zwq0VGusKpboyg5rmDTO_i1ur9TfS_X0a1UvJcY5OhQjg7lzmEZOduMrIf5yhptfY5qNxaUk_8m3n2Xi3Ar6wYzKsaCN9uCGG4Gm7JcuaRt3ytvw5Akbxi0jNZ7QcpJ3XCO94I1tNA00Bbw9QNwGYboi-HCYIo5ZyP08u8Fd0K2f0UB2AbQMaQUbSe1y7-frezr-v-YO30wt9812l5lDHY0l7WQuIZGFOTtHkR2Q99n-zMX9sWGXaYc4h-YAm1pUV7yV5u8U0GqRXRJXn8tYgjgIoYCIb8Al8IH2g |
| CitedBy_id | crossref_primary_10_1042_BCJ20210529 crossref_primary_10_1016_j_jmb_2020_10_014 crossref_primary_10_1128_JVI_01651_10 crossref_primary_10_1016_j_semcdb_2011_10_004 crossref_primary_10_1016_j_virol_2011_12_017 crossref_primary_10_1093_nar_gkt898 crossref_primary_10_1093_nar_gkz1164 crossref_primary_10_1371_journal_ppat_1005833 crossref_primary_10_1016_j_str_2014_02_011 crossref_primary_10_1002_wrna_1226 crossref_primary_10_1016_j_virol_2014_09_023 crossref_primary_10_1038_s41586_019_1314_0 crossref_primary_10_1021_ci300184x crossref_primary_10_1021_pr100719n crossref_primary_10_1016_j_sbi_2011_01_004 crossref_primary_10_1016_j_jmb_2013_12_014 crossref_primary_10_1089_hum_2020_111 crossref_primary_10_1016_j_jmb_2017_03_015 crossref_primary_10_3390_v13030497 crossref_primary_10_1021_ci300469h crossref_primary_10_1038_nprot_2016_169 crossref_primary_10_1016_j_jmb_2016_05_022 crossref_primary_10_1002_minf_201300082 crossref_primary_10_1371_journal_pone_0011515 crossref_primary_10_1080_15476286_2016_1259783 crossref_primary_10_1002_cbic_200900604 crossref_primary_10_1002_minf_201400028 crossref_primary_10_1128_JVI_01497_16 crossref_primary_10_1007_s40484_013_0018_y crossref_primary_10_1038_nsmb_2378 crossref_primary_10_1016_j_chembiol_2011_12_007 crossref_primary_10_1093_nar_gkx066 crossref_primary_10_1128_MMBR_00065_15 crossref_primary_10_1371_journal_pone_0012214 crossref_primary_10_1021_bi101540g crossref_primary_10_1002_minf_200900081 |
| Cites_doi | 10.1006/jmbi.1999.3091 10.1371/journal.ppat.1000330 10.1016/S0092-8674(03)00515-4 10.1146/annurev.biophys.29.1.291 10.1006/geno.2002.6718 10.1074/jbc.M408802200 10.1038/nature00939 10.1016/S0022-2836(05)80360-2 10.1038/nm945 10.1128/JVI.80.8.3853-3862.2006 10.1128/JVI.78.11.6073-6076.2004 10.1128/jvi.69.7.4582-4586.1995 10.1038/emboj.2008.290 10.1074/jbc.C300376200 10.1074/jbc.M601716200 10.1038/nature06638 10.1006/jmbi.1995.0514 10.1002/(SICI)1096-987X(199902)20:3<336::AID-JCC5>3.0.CO;2-A 10.1038/nature07357 10.1128/JVI.00892-07 10.1038/nature01709 10.1093/nar/gkh354 10.1006/jmbi.1997.1287 10.1038/nm946 10.1016/j.jmb.2004.02.040 10.1128/JVI.80.10.4673-4682.2006 10.1126/science.1083338 10.1006/jmbi.1993.1626 10.1128/JVI.01665-08 10.1073/pnas.0600398103 10.1038/nature05492 10.1093/protein/12.2.85 10.1093/nar/gki343 10.1002/0471140864.ps0209s50 10.1186/1752-153X-1-7 10.1021/jm030580l 10.1186/1471-2199-9-104 10.1016/j.tibs.2007.01.004 10.1016/j.cub.2004.06.057 10.1128/JVI.01976-08 10.1371/journal.ppat.0030153 10.1074/jbc.M808853200 10.1006/jmbi.1998.1665 10.1186/gb-2008-9-3-r48 10.1016/j.cub.2006.01.031 10.1093/nar/28.1.235 10.1038/nature01707 10.1038/366413a0 |
| ContentType | Journal Article |
| Copyright | Copyright National Academy of Sciences Jul 21, 2009 |
| Copyright_xml | – notice: Copyright National Academy of Sciences Jul 21, 2009 |
| DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7T7 7S9 L.6 7X8 5PM ADTOC UNPAY |
| DOI | 10.1073/pnas.0900979106 |
| DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | Virology and AIDS Abstracts CrossRef Virology and AIDS Abstracts MEDLINE - Academic AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| EndPage | 12084 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:2715496 PMC2715496 1799781921 19581596 10_1073_pnas_0900979106 106_29_12079 40484085 US201301658403 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
| GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7T7 7S9 L.6 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c651t-581ddcc0bafa84d93359f35c540013424ac1388d9c5c6372eb4a9f46a1a28da43 |
| IEDL.DBID | UNPAY |
| ISSN | 0027-8424 1091-6490 |
| IngestDate | Sun Oct 26 04:17:11 EDT 2025 Tue Sep 30 16:45:31 EDT 2025 Fri Sep 05 07:25:49 EDT 2025 Thu Sep 04 20:16:08 EDT 2025 Tue Oct 07 09:28:54 EDT 2025 Tue Oct 21 14:11:49 EDT 2025 Mon Jul 21 05:52:12 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Wed Oct 01 01:21:21 EDT 2025 Thu May 30 08:50:59 EDT 2019 Wed Nov 11 00:29:54 EST 2020 Thu May 29 08:42:58 EDT 2025 Thu Apr 03 09:41:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 29 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c651t-581ddcc0bafa84d93359f35c540013424ac1388d9c5c6372eb4a9f46a1a28da43 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Author contributions: B.S., H.H., C.M., and G.S. designed research; B.S., H.H., M.P., and F.K. performed research; M.W. contributed new reagents/analytic tools; B.S., H.H., K.C., C.M., and G.S. analyzed data; and B.S., C.M., and G.S. wrote the paper. Edited by Tadatsugu Taniguchi, University of Tokyo, Tokyo, Japan, and approved May 22, 2009 1B.S. and H.H. contributed equally to this work. 2Present address: Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany. 3Present address: Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany. |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1073/pnas.0900979106 |
| PMID | 19581596 |
| PQID | 201416658 |
| PQPubID | 42026 |
| PageCount | 6 |
| ParticipantIDs | jstor_primary_40484085 pnas_primary_106_29_12079_fulltext pubmedcentral_primary_oai_pubmedcentral_nih_gov_2715496 fao_agris_US201301658403 proquest_miscellaneous_67508542 proquest_journals_201416658 crossref_citationtrail_10_1073_pnas_0900979106 crossref_primary_10_1073_pnas_0900979106 proquest_miscellaneous_20807708 pnas_primary_106_29_12079 pubmed_primary_19581596 proquest_miscellaneous_46327661 unpaywall_primary_10_1073_pnas_0900979106 |
| ProviderPackageCode | RNA PNE CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-07-21 |
| PublicationDateYYYYMMDD | 2009-07-21 |
| PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-21 day: 21 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2009 |
| Publisher | National Academy of Sciences National Acad Sciences |
| Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
| References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
| References_xml | – ident: e_1_3_3_26_2 doi: 10.1006/jmbi.1999.3091 – ident: e_1_3_3_41_2 doi: 10.1371/journal.ppat.1000330 – ident: e_1_3_3_4_2 doi: 10.1016/S0092-8674(03)00515-4 – ident: e_1_3_3_37_2 doi: 10.1146/annurev.biophys.29.1.291 – ident: e_1_3_3_13_2 doi: 10.1006/geno.2002.6718 – ident: e_1_3_3_18_2 doi: 10.1074/jbc.M408802200 – ident: e_1_3_3_1_2 doi: 10.1038/nature00939 – ident: e_1_3_3_25_2 doi: 10.1016/S0022-2836(05)80360-2 – ident: e_1_3_3_9_2 doi: 10.1038/nm945 – ident: e_1_3_3_16_2 doi: 10.1128/JVI.80.8.3853-3862.2006 – ident: e_1_3_3_47_2 doi: 10.1128/JVI.78.11.6073-6076.2004 – ident: e_1_3_3_48_2 doi: 10.1128/jvi.69.7.4582-4586.1995 – ident: e_1_3_3_23_2 doi: 10.1038/emboj.2008.290 – ident: e_1_3_3_39_2 doi: 10.1074/jbc.C300376200 – ident: e_1_3_3_45_2 doi: 10.1074/jbc.M601716200 – ident: e_1_3_3_20_2 doi: 10.1038/nature06638 – ident: e_1_3_3_28_2 doi: 10.1006/jmbi.1995.0514 – ident: e_1_3_3_44_2 doi: 10.1002/(SICI)1096-987X(199902)20:3<336::AID-JCC5>3.0.CO;2-A – ident: e_1_3_3_21_2 doi: 10.1038/nature07357 – ident: e_1_3_3_38_2 doi: 10.1128/JVI.00892-07 – ident: e_1_3_3_3_2 doi: 10.1038/nature01709 – ident: e_1_3_3_31_2 doi: 10.1093/nar/gkh354 – ident: e_1_3_3_35_2 doi: 10.1006/jmbi.1997.1287 – ident: e_1_3_3_8_2 doi: 10.1038/nm946 – ident: e_1_3_3_30_2 doi: 10.1016/j.jmb.2004.02.040 – ident: e_1_3_3_40_2 doi: 10.1128/JVI.80.10.4673-4682.2006 – ident: e_1_3_3_2_2 doi: 10.1126/science.1083338 – ident: e_1_3_3_43_2 doi: 10.1006/jmbi.1993.1626 – ident: e_1_3_3_15_2 doi: 10.1128/JVI.01665-08 – ident: e_1_3_3_29_2 doi: 10.1073/pnas.0600398103 – ident: e_1_3_3_22_2 doi: 10.1038/nature05492 – ident: e_1_3_3_36_2 doi: 10.1093/protein/12.2.85 – ident: e_1_3_3_17_2 doi: 10.1093/nar/gki343 – ident: e_1_3_3_24_2 doi: 10.1002/0471140864.ps0209s50 – ident: e_1_3_3_33_2 doi: 10.1186/1752-153X-1-7 – ident: e_1_3_3_34_2 doi: 10.1021/jm030580l – ident: e_1_3_3_12_2 doi: 10.1186/1471-2199-9-104 – ident: e_1_3_3_7_2 doi: 10.1016/j.tibs.2007.01.004 – ident: e_1_3_3_6_2 doi: 10.1016/j.cub.2004.06.057 – ident: e_1_3_3_10_2 doi: 10.1128/JVI.01976-08 – ident: e_1_3_3_19_2 doi: 10.1371/journal.ppat.0030153 – ident: e_1_3_3_46_2 doi: 10.1074/jbc.M808853200 – ident: e_1_3_3_27_2 doi: 10.1006/jmbi.1998.1665 – ident: e_1_3_3_11_2 doi: 10.1186/gb-2008-9-3-r48 – ident: e_1_3_3_14_2 doi: 10.1016/j.cub.2006.01.031 – ident: e_1_3_3_42_2 doi: 10.1093/nar/28.1.235 – ident: e_1_3_3_5_2 doi: 10.1038/nature01707 – ident: e_1_3_3_32_2 doi: 10.1038/366413a0 |
| SSID | ssj0009580 |
| Score | 2.1514075 |
| Snippet | Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref pnas jstor fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 12079 |
| SubjectTerms | Algorithms Antiviral activity antiviral properties Antivirals APOBEC Deaminases Binding Sites Biochemistry Biological Sciences Capsid - metabolism Cell Line Cytidine Deaminase Cytosine Deaminase - chemistry Cytosine Deaminase - metabolism Deamination Dimerization Dimers Encapsidation Genetic mutation genome Genomes Genomics HIV 1 Human immunodeficiency virus 1 Humans Immunity Immunoblotting loci Models, Molecular Mutant Proteins - metabolism Mutation Packaging Plasmids Protein Multimerization Protein Processing, Post-Translational Protein Structure, Secondary Proteins Retrovirus Reverse transcription Ribonucleic acid RNA RNA - metabolism Simian immunodeficiency virus vif Gene Products, Human Immunodeficiency Virus - metabolism Vif protein virion Virions Viruses |
| Title | Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation |
| URI | https://www.jstor.org/stable/40484085 http://www.pnas.org/content/106/29/12079.abstract https://www.ncbi.nlm.nih.gov/pubmed/19581596 https://www.proquest.com/docview/201416658 https://www.proquest.com/docview/20807708 https://www.proquest.com/docview/46327661 https://www.proquest.com/docview/67508542 https://pubmed.ncbi.nlm.nih.gov/PMC2715496 http://doi.org/10.1073/pnas.0900979106 |
| UnpaywallVersion | submittedVersion |
| Volume | 106 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250501 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250501 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_R7gFegAFjYTAsxMP2kC6xEzt5LNU-hMSYBJXKk3VxEogoSdUPTfDXc07SlqqUidf44sT23fln3d3PAG8NgQbji8zlaZS6hIg9srkQ3ShHC1hjRM9WI3-4llfD4P0oHK0TZDfC90qcTUqc9bzYVhvQviY7sCdDwtxd2Bte3_S_NPkb5GaD5vZa2vxcGcTeksNnu4eN7aeTY7XMQ7TkpiT6N6C5nS95f1FO8Octjsd_bEYXj-ByWdLT5KB87y3mSc_82mZ4vGOcj-Fhi0dZv1GgfbiXlU9gv7X4GTtpaalPn8KtvTZtzBrC2cU0Y1XO-jcf350PxIBZIihSZIYsKeo6GTYhR5vN2Y8qrS8IoyfTIqlKS59cGIamSJmlqpg2hRXUgU1JzlJGIJrRt3FCZlJrzTMYXpx_Hly57bUNrpGhP3dDgsCpMV6COUZBGgsRxrkIDWFDwpu0UkjKEUVpbEIjheJZEmCcBxJ95FGKgTiAblmV2aEtKI-inA5UoUFCekbS2UzmiTJCkedIo9iB3nI1tWk5ze3VGmNdx9aV0HZi9XpiHThZvTBp6Dx2ix6Semj8Ss5WDz9xG-L1LV7zhAMHtc6sugjID1qqOAecupd111LzWPvcU_Svb3a26bzN9HHgaKl-unUmM81tMq6kTzvwetVKXsCGdrDMqoUViTylvH9IBFJwRWBstwQdHWkIAXfgeaPu61-NaU3J7hxQG4awErAc5ZstZfGt5irnynIA0punK5O5a-Jf_IfsETxownvK5f5L6JIJZK8IJc6TY-hcjvzj1lH8BmJ2Xko |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QEuhQKloTwsxKE9ZJvYiZ0cl1VLhUSpBCuVkzVxElixTVb7UAW_nnFey2pZKq7xxIntmfFnzcxngLeGQIPxRebyNEpdQsQe2VyIbpSjBawxomerkT9eyotR8OE6vF4lyK6F75U4nRY473uxrTagfU3uwK4MCXP3YHd0eTX4WudvkJsN6ttrafNzZRB7LYfPZg9r289OjmWbh2jJTUn0b0BzM1_y_rKY4s9bnEz-2IzOH8L7tqSnzkH50V8ukr75tcnweMc4H8Feg0fZoFagfbiXFY9hv7H4OTtuaKlPnsCtvTZtwmrC2eUsY2XOBlef3p0NxZBZIihSZIYsGVd1MmxKjjZbsJsyrS4IoyezcVIWlj55bBiaccosVcWsLqygDmxKcpYyAtGMvo1TMpNKa57C6Pzsy_DCba5tcI0M_YUbEgROjfESzDEK0liIMM5FaAgbEt6klUJSjihKYxMaKRTPkgDjPJDoI49SDMQB9IqyyA5tQXkU5XSgCg0S0jOSzmYyT5QRijxHGsUO9NvV1KbhNLdXa0x0FVtXQtuJ1auJdeC4e2Fa03lsFz0k9dD4jZytHn3mNsTrW7zmCQcOKp3pugjID1qqOAecqpdV11LzWPvcU_Svb7a26bzJ9HHgqFU_3TiTueY2GVfSpx143bWSF7ChHSyycmlFIk8p7x8SgRRcERjbLkFHRxpCwB14Vqv76ldjWlOyOwfUmiF0ApajfL2lGH-vuMq5shyA9OZJZzJ3Tfzz_5A9ggd1eE-53H8BPTKB7CWhxEXyqnERvwEyZF1Z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+structure+of+APOBEC3C+reveals+a+binding+pocket+modulating+ribonucleic+acid+interaction+required+for+encapsidation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Benjamin+Stauch&rft.au=Henning+Hofmann&rft.au=Mario+Perkovi%C4%87&rft.au=Martin+Weisel&rft.date=2009-07-21&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=106&rft.issue=29&rft.spage=12079&rft_id=info:doi/10.1073%2Fpnas.0900979106&rft_id=info%3Apmid%2F19581596&rft.externalDBID=n%2Fa&rft.externalDocID=106_29_12079 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F29.cover.gif |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F29.cover.gif |