Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation

Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 int...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 29; pp. 12079 - 12084
Main Authors Stauch, Benjamin, Hofmann, Henning, Perković, Mario, Weisel, Martin, Kopietz, Ferdinand, Cichutek, Klaus, Münk, Carsten, Schneider, Gisbert
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 21.07.2009
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.0900979106

Cover

Abstract Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Δvif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.
AbstractList Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Δvif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.
Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a [delta]vif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.
Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Δ vif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.
Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a ...vif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles. (ProQuest: ... denotes formulae/symbols omitted.)
Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Δ vif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.
Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Deltavif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Deltavif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.
Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retrovirai genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a singledomain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Δvif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.
Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Deltavif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.
Author Perković, Mario
Schneider, Gisbert
Weisel, Martin
Kopietz, Ferdinand
Münk, Carsten
Hofmann, Henning
Stauch, Benjamin
Cichutek, Klaus
Author_xml – sequence: 1
  fullname: Stauch, Benjamin
– sequence: 2
  fullname: Hofmann, Henning
– sequence: 3
  fullname: Perković, Mario
– sequence: 4
  fullname: Weisel, Martin
– sequence: 5
  fullname: Kopietz, Ferdinand
– sequence: 6
  fullname: Cichutek, Klaus
– sequence: 7
  fullname: Münk, Carsten
– sequence: 8
  fullname: Schneider, Gisbert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19581596$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEURkeoiKaFNSvAYoHEIu31-DHjTaUSlYdUVCTo2nJsT3CY2Kntaem_x0MiAl2QlaX5zv3kezxH1YEP3lbVcwwnGBpyuvYqnYAAEI3AwB9VEwwCTzkVcFBNAOpm2tKaHlZHKS2hYKyFJ9UhLidmgk-qu8_B2B6lHAedh2hR6ND5l6t3FzMyQ9HeWtUnpNDceeP8Aq2D_mEzWgUz9CqPX6KbBz_o3jqNlHYGOZ9tVDq74EvBzeCiNagLEVmv1To5o8boafW4K9X22fY8rq7fX3ybfZxeXn34NDu_nGrOcJ6WaxqjNcxVp1pqBCFMdIRpRgEwKZspjUnbGqGZ5qSp7Zwq0VGusKpboyg5rmDTO_i1ur9TfS_X0a1UvJcY5OhQjg7lzmEZOduMrIf5yhptfY5qNxaUk_8m3n2Xi3Ar6wYzKsaCN9uCGG4Gm7JcuaRt3ytvw5Akbxi0jNZ7QcpJ3XCO94I1tNA00Bbw9QNwGYboi-HCYIo5ZyP08u8Fd0K2f0UB2AbQMaQUbSe1y7-frezr-v-YO30wt9812l5lDHY0l7WQuIZGFOTtHkR2Q99n-zMX9sWGXaYc4h-YAm1pUV7yV5u8U0GqRXRJXn8tYgjgIoYCIb8Al8IH2g
CitedBy_id crossref_primary_10_1042_BCJ20210529
crossref_primary_10_1016_j_jmb_2020_10_014
crossref_primary_10_1128_JVI_01651_10
crossref_primary_10_1016_j_semcdb_2011_10_004
crossref_primary_10_1016_j_virol_2011_12_017
crossref_primary_10_1093_nar_gkt898
crossref_primary_10_1093_nar_gkz1164
crossref_primary_10_1371_journal_ppat_1005833
crossref_primary_10_1016_j_str_2014_02_011
crossref_primary_10_1002_wrna_1226
crossref_primary_10_1016_j_virol_2014_09_023
crossref_primary_10_1038_s41586_019_1314_0
crossref_primary_10_1021_ci300184x
crossref_primary_10_1021_pr100719n
crossref_primary_10_1016_j_sbi_2011_01_004
crossref_primary_10_1016_j_jmb_2013_12_014
crossref_primary_10_1089_hum_2020_111
crossref_primary_10_1016_j_jmb_2017_03_015
crossref_primary_10_3390_v13030497
crossref_primary_10_1021_ci300469h
crossref_primary_10_1038_nprot_2016_169
crossref_primary_10_1016_j_jmb_2016_05_022
crossref_primary_10_1002_minf_201300082
crossref_primary_10_1371_journal_pone_0011515
crossref_primary_10_1080_15476286_2016_1259783
crossref_primary_10_1002_cbic_200900604
crossref_primary_10_1002_minf_201400028
crossref_primary_10_1128_JVI_01497_16
crossref_primary_10_1007_s40484_013_0018_y
crossref_primary_10_1038_nsmb_2378
crossref_primary_10_1016_j_chembiol_2011_12_007
crossref_primary_10_1093_nar_gkx066
crossref_primary_10_1128_MMBR_00065_15
crossref_primary_10_1371_journal_pone_0012214
crossref_primary_10_1021_bi101540g
crossref_primary_10_1002_minf_200900081
Cites_doi 10.1006/jmbi.1999.3091
10.1371/journal.ppat.1000330
10.1016/S0092-8674(03)00515-4
10.1146/annurev.biophys.29.1.291
10.1006/geno.2002.6718
10.1074/jbc.M408802200
10.1038/nature00939
10.1016/S0022-2836(05)80360-2
10.1038/nm945
10.1128/JVI.80.8.3853-3862.2006
10.1128/JVI.78.11.6073-6076.2004
10.1128/jvi.69.7.4582-4586.1995
10.1038/emboj.2008.290
10.1074/jbc.C300376200
10.1074/jbc.M601716200
10.1038/nature06638
10.1006/jmbi.1995.0514
10.1002/(SICI)1096-987X(199902)20:3<336::AID-JCC5>3.0.CO;2-A
10.1038/nature07357
10.1128/JVI.00892-07
10.1038/nature01709
10.1093/nar/gkh354
10.1006/jmbi.1997.1287
10.1038/nm946
10.1016/j.jmb.2004.02.040
10.1128/JVI.80.10.4673-4682.2006
10.1126/science.1083338
10.1006/jmbi.1993.1626
10.1128/JVI.01665-08
10.1073/pnas.0600398103
10.1038/nature05492
10.1093/protein/12.2.85
10.1093/nar/gki343
10.1002/0471140864.ps0209s50
10.1186/1752-153X-1-7
10.1021/jm030580l
10.1186/1471-2199-9-104
10.1016/j.tibs.2007.01.004
10.1016/j.cub.2004.06.057
10.1128/JVI.01976-08
10.1371/journal.ppat.0030153
10.1074/jbc.M808853200
10.1006/jmbi.1998.1665
10.1186/gb-2008-9-3-r48
10.1016/j.cub.2006.01.031
10.1093/nar/28.1.235
10.1038/nature01707
10.1038/366413a0
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jul 21, 2009
Copyright_xml – notice: Copyright National Academy of Sciences Jul 21, 2009
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7T7
7S9
L.6
7X8
5PM
ADTOC
UNPAY
DOI 10.1073/pnas.0900979106
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
CrossRef
Virology and AIDS Abstracts


MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12084
ExternalDocumentID oai:pubmedcentral.nih.gov:2715496
PMC2715496
1799781921
19581596
10_1073_pnas_0900979106
106_29_12079
40484085
US201301658403
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7T7
7S9
L.6
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c651t-581ddcc0bafa84d93359f35c540013424ac1388d9c5c6372eb4a9f46a1a28da43
IEDL.DBID UNPAY
ISSN 0027-8424
1091-6490
IngestDate Sun Oct 26 04:17:11 EDT 2025
Tue Sep 30 16:45:31 EDT 2025
Fri Sep 05 07:25:49 EDT 2025
Thu Sep 04 20:16:08 EDT 2025
Tue Oct 07 09:28:54 EDT 2025
Tue Oct 21 14:11:49 EDT 2025
Mon Jul 21 05:52:12 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Wed Oct 01 01:21:21 EDT 2025
Thu May 30 08:50:59 EDT 2019
Wed Nov 11 00:29:54 EST 2020
Thu May 29 08:42:58 EDT 2025
Thu Apr 03 09:41:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c651t-581ddcc0bafa84d93359f35c540013424ac1388d9c5c6372eb4a9f46a1a28da43
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author contributions: B.S., H.H., C.M., and G.S. designed research; B.S., H.H., M.P., and F.K. performed research; M.W. contributed new reagents/analytic tools; B.S., H.H., K.C., C.M., and G.S. analyzed data; and B.S., C.M., and G.S. wrote the paper.
Edited by Tadatsugu Taniguchi, University of Tokyo, Tokyo, Japan, and approved May 22, 2009
1B.S. and H.H. contributed equally to this work.
2Present address: Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
3Present address: Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1073/pnas.0900979106
PMID 19581596
PQID 201416658
PQPubID 42026
PageCount 6
ParticipantIDs jstor_primary_40484085
pnas_primary_106_29_12079_fulltext
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2715496
fao_agris_US201301658403
proquest_miscellaneous_67508542
proquest_journals_201416658
crossref_citationtrail_10_1073_pnas_0900979106
crossref_primary_10_1073_pnas_0900979106
proquest_miscellaneous_20807708
pnas_primary_106_29_12079
pubmed_primary_19581596
proquest_miscellaneous_46327661
unpaywall_primary_10_1073_pnas_0900979106
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-21
PublicationDateYYYYMMDD 2009-07-21
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-21
  day: 21
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_26_2
  doi: 10.1006/jmbi.1999.3091
– ident: e_1_3_3_41_2
  doi: 10.1371/journal.ppat.1000330
– ident: e_1_3_3_4_2
  doi: 10.1016/S0092-8674(03)00515-4
– ident: e_1_3_3_37_2
  doi: 10.1146/annurev.biophys.29.1.291
– ident: e_1_3_3_13_2
  doi: 10.1006/geno.2002.6718
– ident: e_1_3_3_18_2
  doi: 10.1074/jbc.M408802200
– ident: e_1_3_3_1_2
  doi: 10.1038/nature00939
– ident: e_1_3_3_25_2
  doi: 10.1016/S0022-2836(05)80360-2
– ident: e_1_3_3_9_2
  doi: 10.1038/nm945
– ident: e_1_3_3_16_2
  doi: 10.1128/JVI.80.8.3853-3862.2006
– ident: e_1_3_3_47_2
  doi: 10.1128/JVI.78.11.6073-6076.2004
– ident: e_1_3_3_48_2
  doi: 10.1128/jvi.69.7.4582-4586.1995
– ident: e_1_3_3_23_2
  doi: 10.1038/emboj.2008.290
– ident: e_1_3_3_39_2
  doi: 10.1074/jbc.C300376200
– ident: e_1_3_3_45_2
  doi: 10.1074/jbc.M601716200
– ident: e_1_3_3_20_2
  doi: 10.1038/nature06638
– ident: e_1_3_3_28_2
  doi: 10.1006/jmbi.1995.0514
– ident: e_1_3_3_44_2
  doi: 10.1002/(SICI)1096-987X(199902)20:3<336::AID-JCC5>3.0.CO;2-A
– ident: e_1_3_3_21_2
  doi: 10.1038/nature07357
– ident: e_1_3_3_38_2
  doi: 10.1128/JVI.00892-07
– ident: e_1_3_3_3_2
  doi: 10.1038/nature01709
– ident: e_1_3_3_31_2
  doi: 10.1093/nar/gkh354
– ident: e_1_3_3_35_2
  doi: 10.1006/jmbi.1997.1287
– ident: e_1_3_3_8_2
  doi: 10.1038/nm946
– ident: e_1_3_3_30_2
  doi: 10.1016/j.jmb.2004.02.040
– ident: e_1_3_3_40_2
  doi: 10.1128/JVI.80.10.4673-4682.2006
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1083338
– ident: e_1_3_3_43_2
  doi: 10.1006/jmbi.1993.1626
– ident: e_1_3_3_15_2
  doi: 10.1128/JVI.01665-08
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.0600398103
– ident: e_1_3_3_22_2
  doi: 10.1038/nature05492
– ident: e_1_3_3_36_2
  doi: 10.1093/protein/12.2.85
– ident: e_1_3_3_17_2
  doi: 10.1093/nar/gki343
– ident: e_1_3_3_24_2
  doi: 10.1002/0471140864.ps0209s50
– ident: e_1_3_3_33_2
  doi: 10.1186/1752-153X-1-7
– ident: e_1_3_3_34_2
  doi: 10.1021/jm030580l
– ident: e_1_3_3_12_2
  doi: 10.1186/1471-2199-9-104
– ident: e_1_3_3_7_2
  doi: 10.1016/j.tibs.2007.01.004
– ident: e_1_3_3_6_2
  doi: 10.1016/j.cub.2004.06.057
– ident: e_1_3_3_10_2
  doi: 10.1128/JVI.01976-08
– ident: e_1_3_3_19_2
  doi: 10.1371/journal.ppat.0030153
– ident: e_1_3_3_46_2
  doi: 10.1074/jbc.M808853200
– ident: e_1_3_3_27_2
  doi: 10.1006/jmbi.1998.1665
– ident: e_1_3_3_11_2
  doi: 10.1186/gb-2008-9-3-r48
– ident: e_1_3_3_14_2
  doi: 10.1016/j.cub.2006.01.031
– ident: e_1_3_3_42_2
  doi: 10.1093/nar/28.1.235
– ident: e_1_3_3_5_2
  doi: 10.1038/nature01707
– ident: e_1_3_3_32_2
  doi: 10.1038/366413a0
SSID ssj0009580
Score 2.1514075
Snippet Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12079
SubjectTerms Algorithms
Antiviral activity
antiviral properties
Antivirals
APOBEC Deaminases
Binding Sites
Biochemistry
Biological Sciences
Capsid - metabolism
Cell Line
Cytidine Deaminase
Cytosine Deaminase - chemistry
Cytosine Deaminase - metabolism
Deamination
Dimerization
Dimers
Encapsidation
Genetic mutation
genome
Genomes
Genomics
HIV 1
Human immunodeficiency virus 1
Humans
Immunity
Immunoblotting
loci
Models, Molecular
Mutant Proteins - metabolism
Mutation
Packaging
Plasmids
Protein Multimerization
Protein Processing, Post-Translational
Protein Structure, Secondary
Proteins
Retrovirus
Reverse transcription
Ribonucleic acid
RNA
RNA - metabolism
Simian immunodeficiency virus
vif Gene Products, Human Immunodeficiency Virus - metabolism
Vif protein
virion
Virions
Viruses
Title Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation
URI https://www.jstor.org/stable/40484085
http://www.pnas.org/content/106/29/12079.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19581596
https://www.proquest.com/docview/201416658
https://www.proquest.com/docview/20807708
https://www.proquest.com/docview/46327661
https://www.proquest.com/docview/67508542
https://pubmed.ncbi.nlm.nih.gov/PMC2715496
http://doi.org/10.1073/pnas.0900979106
UnpaywallVersion submittedVersion
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250501
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250501
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_R7gFegAFjYTAsxMP2kC6xEzt5LNU-hMSYBJXKk3VxEogoSdUPTfDXc07SlqqUidf44sT23fln3d3PAG8NgQbji8zlaZS6hIg9srkQ3ShHC1hjRM9WI3-4llfD4P0oHK0TZDfC90qcTUqc9bzYVhvQviY7sCdDwtxd2Bte3_S_NPkb5GaD5vZa2vxcGcTeksNnu4eN7aeTY7XMQ7TkpiT6N6C5nS95f1FO8Octjsd_bEYXj-ByWdLT5KB87y3mSc_82mZ4vGOcj-Fhi0dZv1GgfbiXlU9gv7X4GTtpaalPn8KtvTZtzBrC2cU0Y1XO-jcf350PxIBZIihSZIYsKeo6GTYhR5vN2Y8qrS8IoyfTIqlKS59cGIamSJmlqpg2hRXUgU1JzlJGIJrRt3FCZlJrzTMYXpx_Hly57bUNrpGhP3dDgsCpMV6COUZBGgsRxrkIDWFDwpu0UkjKEUVpbEIjheJZEmCcBxJ95FGKgTiAblmV2aEtKI-inA5UoUFCekbS2UzmiTJCkedIo9iB3nI1tWk5ze3VGmNdx9aV0HZi9XpiHThZvTBp6Dx2ix6Semj8Ss5WDz9xG-L1LV7zhAMHtc6sugjID1qqOAecupd111LzWPvcU_Svb3a26bzN9HHgaKl-unUmM81tMq6kTzvwetVKXsCGdrDMqoUViTylvH9IBFJwRWBstwQdHWkIAXfgeaPu61-NaU3J7hxQG4awErAc5ZstZfGt5irnynIA0punK5O5a-Jf_IfsETxownvK5f5L6JIJZK8IJc6TY-hcjvzj1lH8BmJ2Xko
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QEuhQKloTwsxKE9ZJvYiZ0cl1VLhUSpBCuVkzVxElixTVb7UAW_nnFey2pZKq7xxIntmfFnzcxngLeGQIPxRebyNEpdQsQe2VyIbpSjBawxomerkT9eyotR8OE6vF4lyK6F75U4nRY473uxrTagfU3uwK4MCXP3YHd0eTX4WudvkJsN6ttrafNzZRB7LYfPZg9r289OjmWbh2jJTUn0b0BzM1_y_rKY4s9bnEz-2IzOH8L7tqSnzkH50V8ukr75tcnweMc4H8Feg0fZoFagfbiXFY9hv7H4OTtuaKlPnsCtvTZtwmrC2eUsY2XOBlef3p0NxZBZIihSZIYsGVd1MmxKjjZbsJsyrS4IoyezcVIWlj55bBiaccosVcWsLqygDmxKcpYyAtGMvo1TMpNKa57C6Pzsy_DCba5tcI0M_YUbEgROjfESzDEK0liIMM5FaAgbEt6klUJSjihKYxMaKRTPkgDjPJDoI49SDMQB9IqyyA5tQXkU5XSgCg0S0jOSzmYyT5QRijxHGsUO9NvV1KbhNLdXa0x0FVtXQtuJ1auJdeC4e2Fa03lsFz0k9dD4jZytHn3mNsTrW7zmCQcOKp3pugjID1qqOAecqpdV11LzWPvcU_Svb7a26bzJ9HHgqFU_3TiTueY2GVfSpx143bWSF7ChHSyycmlFIk8p7x8SgRRcERjbLkFHRxpCwB14Vqv76ldjWlOyOwfUmiF0ApajfL2lGH-vuMq5shyA9OZJZzJ3Tfzz_5A9ggd1eE-53H8BPTKB7CWhxEXyqnERvwEyZF1Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+structure+of+APOBEC3C+reveals+a+binding+pocket+modulating+ribonucleic+acid+interaction+required+for+encapsidation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Benjamin+Stauch&rft.au=Henning+Hofmann&rft.au=Mario+Perkovi%C4%87&rft.au=Martin+Weisel&rft.date=2009-07-21&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=106&rft.issue=29&rft.spage=12079&rft_id=info:doi/10.1073%2Fpnas.0900979106&rft_id=info%3Apmid%2F19581596&rft.externalDBID=n%2Fa&rft.externalDocID=106_29_12079
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F29.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F29.cover.gif