A convolutional neural network-based model that predicts acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation

Background Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolut...

Full description

Saved in:
Bibliographic Details
Published inCommunications medicine Vol. 3; no. 1; pp. 67 - 11
Main Authors Jo, Tomoyasu, Arai, Yasuyuki, Kanda, Junya, Kondo, Tadakazu, Ikegame, Kazuhiro, Uchida, Naoyuki, Doki, Noriko, Fukuda, Takahiro, Ozawa, Yukiyasu, Tanaka, Masatsugu, Ara, Takahide, Kuriyama, Takuro, Katayama, Yuta, Kawakita, Toshiro, Kanda, Yoshinobu, Onizuka, Makoto, Ichinohe, Tatsuo, Atsuta, Yoshiko, Terakura, Seitaro
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.05.2023
Springer Nature B.V
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2730-664X
2730-664X
DOI10.1038/s43856-023-00299-5

Cover

Abstract Background Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD. Method We analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models. Results Here, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II–IV and grade III–IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III–IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70–5.97; p  < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined. Conclusions Our results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice. Plain language summary Hematopoietic stem cell transplantation (HSCT) is a procedure used in patients to reestablish blood cell production. It involves the transplant of cells from a donor to the patient. In some patients the transplanted cells damage cells within the patients. This is called graft-versus-host disease (GVHD). We developed a computational code that can predict the likelihood a person will develop GVHD soon after HSCT. Using this computer program will enable doctors to better identify those at risk of GVHD and initiate treatments when required. Jo et al. establish a convolutional neural network-based model to predict acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation. The model both predicts aGVHD and identifies pre-transplant parameters that increase risk of aGVHD.
AbstractList Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD. We analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models. Here, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II-IV and grade III-IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III-IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70-5.97; p < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined. Our results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice.
Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD.BACKGROUNDForecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD.We analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models.METHODWe analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models.Here, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II-IV and grade III-IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III-IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70-5.97; p < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined.RESULTSHere, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II-IV and grade III-IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III-IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70-5.97; p < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined.Our results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice.CONCLUSIONSOur results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice.
BackgroundForecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD.MethodWe analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models.ResultsHere, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II–IV and grade III–IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III–IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70–5.97; p < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined.ConclusionsOur results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice.Plain language summaryHematopoietic stem cell transplantation (HSCT) is a procedure used in patients to reestablish blood cell production. It involves the transplant of cells from a donor to the patient. In some patients the transplanted cells damage cells within the patients. This is called graft-versus-host disease (GVHD). We developed a computational code that can predict the likelihood a person will develop GVHD soon after HSCT. Using this computer program will enable doctors to better identify those at risk of GVHD and initiate treatments when required.
Background Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD. Method We analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models. Results Here, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II–IV and grade III–IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III–IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70–5.97; p  < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined. Conclusions Our results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice. Plain language summary Hematopoietic stem cell transplantation (HSCT) is a procedure used in patients to reestablish blood cell production. It involves the transplant of cells from a donor to the patient. In some patients the transplanted cells damage cells within the patients. This is called graft-versus-host disease (GVHD). We developed a computational code that can predict the likelihood a person will develop GVHD soon after HSCT. Using this computer program will enable doctors to better identify those at risk of GVHD and initiate treatments when required. Jo et al. establish a convolutional neural network-based model to predict acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation. The model both predicts aGVHD and identifies pre-transplant parameters that increase risk of aGVHD.
Hematopoietic stem cell transplantation (HSCT) is a procedure used in patients to reestablish blood cell production. It involves the transplant of cells from a donor to the patient. In some patients the transplanted cells damage cells within the patients. This is called graft-versus-host disease (GVHD). We developed a computational code that can predict the likelihood a person will develop GVHD soon after HSCT. Using this computer program will enable doctors to better identify those at risk of GVHD and initiate treatments when required. Jo et al. establish a convolutional neural network-based model to predict acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation. The model both predicts aGVHD and identifies pre-transplant parameters that increase risk of aGVHD.
Abstract Background Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD. Method We analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models. Results Here, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II–IV and grade III–IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III–IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70–5.97; p < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined. Conclusions Our results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice.
ArticleNumber 67
Author Kondo, Tadakazu
Kanda, Junya
Tanaka, Masatsugu
Arai, Yasuyuki
Ichinohe, Tatsuo
Ikegame, Kazuhiro
Katayama, Yuta
Atsuta, Yoshiko
Ozawa, Yukiyasu
Kuriyama, Takuro
Terakura, Seitaro
Doki, Noriko
Kanda, Yoshinobu
Onizuka, Makoto
Jo, Tomoyasu
Ara, Takahide
Uchida, Naoyuki
Fukuda, Takahiro
Kawakita, Toshiro
Author_xml – sequence: 1
  givenname: Tomoyasu
  surname: Jo
  fullname: Jo, Tomoyasu
  organization: Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Center for Research and Application of Cellular Therapy, Kyoto University Hospital
– sequence: 2
  givenname: Yasuyuki
  orcidid: 0000-0002-9662-5093
  surname: Arai
  fullname: Arai, Yasuyuki
  email: ysykrai@kuhp.kyoto-u.ac.jp
  organization: Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Center for Research and Application of Cellular Therapy, Kyoto University Hospital
– sequence: 3
  givenname: Junya
  surname: Kanda
  fullname: Kanda, Junya
  organization: Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University
– sequence: 4
  givenname: Tadakazu
  surname: Kondo
  fullname: Kondo, Tadakazu
  organization: Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University
– sequence: 5
  givenname: Kazuhiro
  surname: Ikegame
  fullname: Ikegame, Kazuhiro
  organization: Department of Hematology, Hyogo Medical University Hospital
– sequence: 6
  givenname: Naoyuki
  surname: Uchida
  fullname: Uchida, Naoyuki
  organization: Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital
– sequence: 7
  givenname: Noriko
  orcidid: 0000-0002-8661-3179
  surname: Doki
  fullname: Doki, Noriko
  organization: Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
– sequence: 8
  givenname: Takahiro
  surname: Fukuda
  fullname: Fukuda, Takahiro
  organization: Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital
– sequence: 9
  givenname: Yukiyasu
  surname: Ozawa
  fullname: Ozawa, Yukiyasu
  organization: Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital
– sequence: 10
  givenname: Masatsugu
  surname: Tanaka
  fullname: Tanaka, Masatsugu
  organization: Department of Hematology, Kanagawa Cancer Center
– sequence: 11
  givenname: Takahide
  orcidid: 0000-0001-9609-3202
  surname: Ara
  fullname: Ara, Takahide
  organization: Department of Hematology, Hokkaido University Hospital
– sequence: 12
  givenname: Takuro
  surname: Kuriyama
  fullname: Kuriyama, Takuro
  organization: Department of Hematology, Hamanomachi Hospital
– sequence: 13
  givenname: Yuta
  surname: Katayama
  fullname: Katayama, Yuta
  organization: Department of Hematology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital
– sequence: 14
  givenname: Toshiro
  surname: Kawakita
  fullname: Kawakita, Toshiro
  organization: Department of Hematology, National Hospital Organization Kumamoto Medical Center
– sequence: 15
  givenname: Yoshinobu
  surname: Kanda
  fullname: Kanda, Yoshinobu
  organization: Division of Hematology, Jichi Medical University Saitama Medical Center
– sequence: 16
  givenname: Makoto
  surname: Onizuka
  fullname: Onizuka, Makoto
  organization: Department of Hematology/Oncology, Tokai University School of Medicine
– sequence: 17
  givenname: Tatsuo
  surname: Ichinohe
  fullname: Ichinohe, Tatsuo
  organization: Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University
– sequence: 18
  givenname: Yoshiko
  orcidid: 0000-0003-4404-2870
  surname: Atsuta
  fullname: Atsuta, Yoshiko
  organization: Japanese Data Center for Hematopoietic Cell Transplantation, Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine
– sequence: 19
  givenname: Seitaro
  orcidid: 0000-0002-1194-8046
  surname: Terakura
  fullname: Terakura, Seitaro
  organization: Department of Hematology and Oncology, Nagoya University Graduate School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37193882$$D View this record in MEDLINE/PubMed
BookMark eNqNUs1u1DAYjFARLUtfgAOyxIVLwD-x45xQVbVQqRIXkLhZXvvLbpbEDrazVR-DN653s5S2h4rT55-Z0XjGr4sj5x0UxVuCPxLM5KdYMclFiSkrMaZNU_IXxQmtGS6FqH4ePVgfF6cxbnBG1aKpJH5VHLOaNExKelL8OUPGu63vp9R5p3vkYAr7kW58-FUudQSLBm-hR2mtExoD2M6kiLSZEqBV0G0qtxDiFMu1jwnZLkImoXwOAem-9ytw0Bm0hkEnP_oOUt7FBAMy0GfZoF0ce-2S3nl4U7xsdR_h9DAXxY_Li-_nX8vrb1-uzs-uSyM4SSWDpaENN3XFMG4JMdYy3eiKMG4lZoIYbFpjqcwoIVoDy1bgPIwEqKAVbFFczbrW640aQzfocKu87tT-wIeV0iE77UHVtuItN6RuOK9sVWspOOXLxtaEVq01WYvNWpMb9e1NfvS9IMFq15ea-1K5L7XvS_HM-jyzxmk5gDXgchT9IyuPb1y3Viu_zYJEZjGaFT4cFIL_PUFMaujiLlTtwE9RUUkqSYSkMkPfP4Fu_BRy4zOK0hrnKBfFu4eW7r38_TAZIGeACT7GAK0y3dxbdtj1zz-XPqH-V0aHZGMGuxWEf7afYd0Bgvv58g
CitedBy_id crossref_primary_10_3390_cancers17030395
crossref_primary_10_46989_001c_124926
crossref_primary_10_1038_s41467_023_43372_2
crossref_primary_10_3389_fimmu_2024_1366962
crossref_primary_10_1177_20406207241294054
crossref_primary_10_3390_technologies12070095
Cites_doi 10.1007/BF03006932
10.1214/aos/1176350951
10.1182/bloodadvances.2021005800
10.1182/blood-2005-05-2004
10.1038/bmt.2012.282
10.1182/blood-2007-06-097386
10.1200/CCI.19.00105
10.1056/NEJM199810223391701
10.1109/ACCESS.2018.2870052
10.1016/j.bbmt.2015.01.001
10.1056/NEJMoa1004383
10.1016/j.bbmt.2010.12.702
10.1016/j.bbmt.2013.09.005
10.1200/JCO.2014.59.1339
10.1182/blood-2010-08-302109
10.1182/bloodadvances.2019000934
10.1182/blood-2015-04-642652
10.1186/s13045-015-0201-x
10.1080/01621459.1999.10474144
10.1097/00000421-198212000-00014
10.1016/j.bbmt.2008.12.497
10.1038/bmt.2015.205
10.1038/s41598-019-42431-3
10.3389/fmats.2016.00028
10.1007/s12185-015-1894-x
10.1109/TVCG.2020.2986996
10.1097/TP.0000000000003424
10.1053/bbmt.2002.v8.pm12171485
10.3115/v1/D14-1181
10.1145/2939672.2939778
10.3115/v1/P14-1062
10.1007/978-3-319-46493-0_38
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2023
2023. The Author(s).
The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023. corrected publication 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s43856-023-00299-5
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2730-664X
EndPage 11
ExternalDocumentID oai_doaj_org_article_7d45f5c179554d47a86525b9d7124fdc
10.1038/s43856-023-00299-5
PMC10188562
37193882
10_1038_s43856_023_00299_5
Genre Journal Article
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP22ek0510034
  funderid: https://doi.org/10.13039/100009619
– fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP22ek0510034
– fundername: ;
  grantid: JP22ek0510034
GroupedDBID 0R~
53G
7X7
88E
8C1
8FI
8FJ
AAJSJ
ABUWG
ACLNF
ACSMW
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
C6C
CCPQU
EBLON
FYUFA
GROUPED_DOAJ
HMCUK
M0T
M1P
M~E
NAO
OK1
PGMZT
PIMPY
PSQYO
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c651t-3ebc295c74300f11cdd3a9a4135d80361c0cfcd28c2966fcebf60fcec8ee4ef63
IEDL.DBID UNPAY
ISSN 2730-664X
IngestDate Fri Oct 03 12:52:42 EDT 2025
Sun Oct 26 03:57:56 EDT 2025
Tue Sep 30 17:14:24 EDT 2025
Thu Sep 04 19:13:16 EDT 2025
Tue Oct 07 07:20:29 EDT 2025
Thu Jan 02 22:51:25 EST 2025
Thu Apr 24 23:08:40 EDT 2025
Wed Oct 01 04:44:18 EDT 2025
Fri Feb 21 02:37:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c651t-3ebc295c74300f11cdd3a9a4135d80361c0cfcd28c2966fcebf60fcec8ee4ef63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1194-8046
0000-0001-9609-3202
0000-0002-9662-5093
0000-0003-4404-2870
0000-0002-8661-3179
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s43856-023-00299-5.pdf
PMID 37193882
PQID 2814227074
PQPubID 5642959
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_7d45f5c179554d47a86525b9d7124fdc
unpaywall_primary_10_1038_s43856_023_00299_5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10188562
proquest_miscellaneous_2814816828
proquest_journals_2814227074
pubmed_primary_37193882
crossref_citationtrail_10_1038_s43856_023_00299_5
crossref_primary_10_1038_s43856_023_00299_5
springer_journals_10_1038_s43856_023_00299_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-16
PublicationDateYYYYMMDD 2023-05-16
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications medicine
PublicationTitleAbbrev Commun Med
PublicationTitleAlternate Commun Med (Lond)
PublicationYear 2023
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Portfolio
References Chatzimparmpas, Martins, Kerren (CR26) 2020; 26
Iwasaki (CR8) 2022; 6
Atsuta (CR13) 2016; 103
Oken (CR17) 1982; 5
MacMillan (CR5) 2015; 21
MacMillan (CR33) 2002; 8
Tang (CR34) 2020; 4
Sorror (CR18) 2005; 106
CR32
Gooley (CR1) 2010; 363
CR31
Giralt (CR19) 2009; 15
Adadi AB (CR10) 2018; 6
Atsuta (CR14) 2007; 86
Lee (CR6) 2007; 110
Sasazuki (CR36) 1998; 339
Shouval (CR9) 2015; 33
Arai (CR20) 2015; 8
Iacobelli (CR30) 2013; 48
Gray (CR28) 1988; 16
CR27
Arai (CR2) 2015; 126
Przepiorka (CR21) 1995; 15
Abdeltawab (CR11) 2019; 9
CR25
CR24
CR23
CR22
Arai (CR15) 2013; 19
Connor, O’Sullivan, Marson, Wigmore, Harrison (CR12) 2021; 105
Fine, Gray (CR29) 1999; 94
Ho (CR16) 2011; 17
Arai (CR3) 2016; 51
Flowers (CR4) 2011; 117
Arai (CR7) 2019; 3
Wagner, Rondinelli (CR35) 2016; 3
ME Flowers (299_CR4) 2011; 117
ML MacMillan (299_CR5) 2015; 21
Y Arai (299_CR15) 2013; 19
VT Ho (299_CR16) 2011; 17
299_CR31
N Wagner (299_CR35) 2016; 3
299_CR32
ML Sorror (299_CR18) 2005; 106
S Giralt (299_CR19) 2009; 15
Y Arai (299_CR7) 2019; 3
S Tang (299_CR34) 2020; 4
Y Arai (299_CR20) 2015; 8
S Iacobelli (299_CR30) 2013; 48
Y Arai (299_CR2) 2015; 126
RJ Gray (299_CR28) 1988; 16
H Abdeltawab (299_CR11) 2019; 9
Y Atsuta (299_CR14) 2007; 86
299_CR27
299_CR22
299_CR23
299_CR24
Y Arai (299_CR3) 2016; 51
299_CR25
JP Fine (299_CR29) 1999; 94
ML MacMillan (299_CR33) 2002; 8
KL Connor (299_CR12) 2021; 105
D Przepiorka (299_CR21) 1995; 15
M Adadi AB (299_CR10) 2018; 6
T Sasazuki (299_CR36) 1998; 339
TA Gooley (299_CR1) 2010; 363
R Shouval (299_CR9) 2015; 33
MM Oken (299_CR17) 1982; 5
A Chatzimparmpas (299_CR26) 2020; 26
SJ Lee (299_CR6) 2007; 110
Y Atsuta (299_CR13) 2016; 103
M Iwasaki (299_CR8) 2022; 6
37349499 - Commun Med (Lond). 2023 Jun 22;3(1):89
References_xml – ident: CR22
– volume: 86
  start-page: 269
  year: 2007
  end-page: 274
  ident: CR14
  article-title: Unification of hematopoietic stem cell transplantation registries in Japan and establishment of the TRUMP System
  publication-title: Int. J. Hematol.
  doi: 10.1007/BF03006932
– volume: 16
  start-page: 1141
  year: 1988
  end-page: 1154
  ident: CR28
  article-title: A class of -sample tests for comparing the cumulative incidence of a competing risk
  publication-title: Ann. Stat
  doi: 10.1214/aos/1176350951
– volume: 6
  start-page: 2618
  year: 2022
  end-page: 2627
  ident: CR8
  article-title: Establishment of a predictive model for GVHD-free, relapse-free survival after allogeneic HSCT using ensemble learning
  publication-title: Blood Adv.
  doi: 10.1182/bloodadvances.2021005800
– volume: 106
  start-page: 2912
  year: 2005
  end-page: 2919
  ident: CR18
  article-title: Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT
  publication-title: Blood
  doi: 10.1182/blood-2005-05-2004
– volume: 48
  start-page: S1
  year: 2013
  end-page: S37
  ident: CR30
  article-title: Suggestions on the use of statistical methodologies in studies of the European Group for Blood and Marrow Transplantation
  publication-title: Bone Marrow Transplant.
  doi: 10.1038/bmt.2012.282
– volume: 110
  start-page: 4576
  year: 2007
  end-page: 4583
  ident: CR6
  article-title: High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation
  publication-title: Blood
  doi: 10.1182/blood-2007-06-097386
– volume: 4
  start-page: 128
  year: 2020
  end-page: 135
  ident: CR34
  article-title: Predicting acute graft-versus-host disease using machine learning and longitudinal vital sign data from electronic health records
  publication-title: JCO Clin. Cancer Inform.
  doi: 10.1200/CCI.19.00105
– volume: 339
  start-page: 1177
  year: 1998
  end-page: 1185
  ident: CR36
  article-title: Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. Japan Marrow Donor Program
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199810223391701
– volume: 6
  start-page: 52138
  year: 2018
  end-page: 52160
  ident: CR10
  article-title: Peeking inside the Black-Box: a survey on explainable artificial intelligence (XAI)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– volume: 21
  start-page: 761
  year: 2015
  end-page: 767
  ident: CR5
  article-title: A refined risk score for acute graft-versus-host disease that predicts response to initial therapy, survival, and transplant-related mortality
  publication-title: Biol. Blood Marrow Transplant
  doi: 10.1016/j.bbmt.2015.01.001
– ident: CR25
– volume: 363
  start-page: 2091
  year: 2010
  end-page: 2101
  ident: CR1
  article-title: Reduced mortality after allogeneic hematopoietic-cell transplantation
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1004383
– volume: 17
  start-page: 1196
  year: 2011
  end-page: 1204
  ident: CR16
  article-title: Use of matched unrelated donors compared with matched related donors is associated with lower relapse and superior progression-free survival after reduced-intensity conditioning hematopoietic stem cell transplantation
  publication-title: Biol. Blood Marrow Transplant.
  doi: 10.1016/j.bbmt.2010.12.702
– ident: CR27
– volume: 19
  start-page: 1683
  year: 2013
  end-page: 1689
  ident: CR15
  article-title: Serum neutrophil extracellular trap levels predict thrombotic microangiopathy after allogeneic stem cell transplantation
  publication-title: Biol. Blood Marrow Transplant.
  doi: 10.1016/j.bbmt.2013.09.005
– ident: CR23
– volume: 33
  start-page: 3144
  year: 2015
  end-page: 3151
  ident: CR9
  article-title: Prediction of allogeneic hematopoietic stem-cell transplantation mortality 100 days after transplantation using a machine learning algorithm: a European Group for Blood and Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2014.59.1339
– volume: 117
  start-page: 3214
  year: 2011
  end-page: 3219
  ident: CR4
  article-title: Comparative analysis of risk factors for acute graft-versus-host disease and for chronic graft-versus-host disease according to National Institutes of Health consensus criteria
  publication-title: Blood
  doi: 10.1182/blood-2010-08-302109
– volume: 3
  start-page: 3626
  year: 2019
  end-page: 3634
  ident: CR7
  article-title: Using a machine learning algorithm to predict acute graft-versus-host disease following allogeneic transplantation
  publication-title: Blood Adv.
  doi: 10.1182/bloodadvances.2019000934
– volume: 126
  start-page: 415
  year: 2015
  end-page: 422
  ident: CR2
  article-title: Efficiency of high-dose cytarabine added to CY/TBI in cord blood transplantation for myeloid malignancy
  publication-title: Blood
  doi: 10.1182/blood-2015-04-642652
– volume: 8
  start-page: 102
  year: 2015
  ident: CR20
  article-title: Clinical significance of high-dose cytarabine added to cyclophosphamide/total-body irradiation in bone marrow or peripheral blood stem cell transplantation for myeloid malignancy
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-015-0201-x
– volume: 94
  start-page: 496
  year: 1999
  end-page: 509
  ident: CR29
  article-title: A proportional hazards model for the subdistribution of a competing risk
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1999.10474144
– volume: 5
  start-page: 649
  year: 1982
  end-page: 655
  ident: CR17
  article-title: Toxicity and response criteria of the Eastern Cooperative Oncology Group
  publication-title: Am. J. Clin. Oncol.
  doi: 10.1097/00000421-198212000-00014
– ident: CR31
– volume: 15
  start-page: 367
  year: 2009
  end-page: 369
  ident: CR19
  article-title: Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the Center for International Blood and Marrow Transplant Research
  publication-title: Biol. Blood Marrow Transplant.
  doi: 10.1016/j.bbmt.2008.12.497
– volume: 15
  start-page: 825
  year: 1995
  end-page: 828
  ident: CR21
  article-title: 1994 Consensus Conference on Acute GVHD Grading
  publication-title: Bone Marrow Transplant.
– volume: 51
  start-page: 96
  year: 2016
  end-page: 102
  ident: CR3
  article-title: Risk factors and prognosis of hepatic acute GvHD after allogeneic hematopoietic cell transplantation
  publication-title: Bone Marrow Transplant.
  doi: 10.1038/bmt.2015.205
– volume: 9
  year: 2019
  ident: CR11
  article-title: A novel CNN-based CAD system for early assessment of transplanted kidney dysfunction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42431-3
– volume: 3
  start-page: 28
  year: 2016
  ident: CR35
  article-title: Theory-guided machine learning in materials science
  publication-title: Front. Mater
  doi: 10.3389/fmats.2016.00028
– volume: 103
  start-page: 3
  year: 2016
  end-page: 10
  ident: CR13
  article-title: Introduction of Transplant Registry Unified Management Program 2 (TRUMP2): scripts for TRUMP data analyses, part I (variables other than HLA-related data)
  publication-title: Int. J. Hematol.
  doi: 10.1007/s12185-015-1894-x
– ident: CR32
– volume: 26
  start-page: 2696
  year: 2020
  end-page: 2714
  ident: CR26
  article-title: t-visne: interactive assessment and interpretation of t-sne projections
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2020.2986996
– volume: 105
  start-page: 723
  year: 2021
  end-page: 735
  ident: CR12
  article-title: The future role of machine learning in clinical transplantation
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000003424
– ident: CR24
– volume: 8
  start-page: 387
  year: 2002
  end-page: 394
  ident: CR33
  article-title: Response of 443 patients to steroids as primary therapy for acute graft-versus-host disease: comparison of grading systems
  publication-title: Biol. Blood Marrow Transplant.
  doi: 10.1053/bbmt.2002.v8.pm12171485
– volume: 15
  start-page: 825
  year: 1995
  ident: 299_CR21
  publication-title: Bone Marrow Transplant.
– volume: 94
  start-page: 496
  year: 1999
  ident: 299_CR29
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1999.10474144
– volume: 110
  start-page: 4576
  year: 2007
  ident: 299_CR6
  publication-title: Blood
  doi: 10.1182/blood-2007-06-097386
– volume: 5
  start-page: 649
  year: 1982
  ident: 299_CR17
  publication-title: Am. J. Clin. Oncol.
  doi: 10.1097/00000421-198212000-00014
– ident: 299_CR32
  doi: 10.3115/v1/D14-1181
– ident: 299_CR24
– ident: 299_CR27
  doi: 10.1145/2939672.2939778
– volume: 16
  start-page: 1141
  year: 1988
  ident: 299_CR28
  publication-title: Ann. Stat
  doi: 10.1214/aos/1176350951
– volume: 19
  start-page: 1683
  year: 2013
  ident: 299_CR15
  publication-title: Biol. Blood Marrow Transplant.
  doi: 10.1016/j.bbmt.2013.09.005
– volume: 105
  start-page: 723
  year: 2021
  ident: 299_CR12
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000003424
– volume: 103
  start-page: 3
  year: 2016
  ident: 299_CR13
  publication-title: Int. J. Hematol.
  doi: 10.1007/s12185-015-1894-x
– ident: 299_CR22
– volume: 21
  start-page: 761
  year: 2015
  ident: 299_CR5
  publication-title: Biol. Blood Marrow Transplant
  doi: 10.1016/j.bbmt.2015.01.001
– volume: 3
  start-page: 3626
  year: 2019
  ident: 299_CR7
  publication-title: Blood Adv.
  doi: 10.1182/bloodadvances.2019000934
– volume: 4
  start-page: 128
  year: 2020
  ident: 299_CR34
  publication-title: JCO Clin. Cancer Inform.
  doi: 10.1200/CCI.19.00105
– volume: 33
  start-page: 3144
  year: 2015
  ident: 299_CR9
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2014.59.1339
– volume: 8
  start-page: 387
  year: 2002
  ident: 299_CR33
  publication-title: Biol. Blood Marrow Transplant.
  doi: 10.1053/bbmt.2002.v8.pm12171485
– volume: 126
  start-page: 415
  year: 2015
  ident: 299_CR2
  publication-title: Blood
  doi: 10.1182/blood-2015-04-642652
– volume: 15
  start-page: 367
  year: 2009
  ident: 299_CR19
  publication-title: Biol. Blood Marrow Transplant.
  doi: 10.1016/j.bbmt.2008.12.497
– volume: 117
  start-page: 3214
  year: 2011
  ident: 299_CR4
  publication-title: Blood
  doi: 10.1182/blood-2010-08-302109
– volume: 6
  start-page: 2618
  year: 2022
  ident: 299_CR8
  publication-title: Blood Adv.
  doi: 10.1182/bloodadvances.2021005800
– volume: 6
  start-page: 52138
  year: 2018
  ident: 299_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– ident: 299_CR31
  doi: 10.3115/v1/P14-1062
– volume: 51
  start-page: 96
  year: 2016
  ident: 299_CR3
  publication-title: Bone Marrow Transplant.
  doi: 10.1038/bmt.2015.205
– volume: 26
  start-page: 2696
  year: 2020
  ident: 299_CR26
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2020.2986996
– volume: 8
  start-page: 102
  year: 2015
  ident: 299_CR20
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-015-0201-x
– volume: 339
  start-page: 1177
  year: 1998
  ident: 299_CR36
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199810223391701
– volume: 363
  start-page: 2091
  year: 2010
  ident: 299_CR1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1004383
– volume: 17
  start-page: 1196
  year: 2011
  ident: 299_CR16
  publication-title: Biol. Blood Marrow Transplant.
  doi: 10.1016/j.bbmt.2010.12.702
– volume: 106
  start-page: 2912
  year: 2005
  ident: 299_CR18
  publication-title: Blood
  doi: 10.1182/blood-2005-05-2004
– ident: 299_CR23
– volume: 48
  start-page: S1
  year: 2013
  ident: 299_CR30
  publication-title: Bone Marrow Transplant.
  doi: 10.1038/bmt.2012.282
– volume: 3
  start-page: 28
  year: 2016
  ident: 299_CR35
  publication-title: Front. Mater
  doi: 10.3389/fmats.2016.00028
– volume: 9
  year: 2019
  ident: 299_CR11
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42431-3
– ident: 299_CR25
  doi: 10.1007/978-3-319-46493-0_38
– volume: 86
  start-page: 269
  year: 2007
  ident: 299_CR14
  publication-title: Int. J. Hematol.
  doi: 10.1007/BF03006932
– reference: 37349499 - Commun Med (Lond). 2023 Jun 22;3(1):89
SSID ssj0002769480
Score 2.2696621
Snippet Background Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with...
Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional...
BackgroundForecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with...
Hematopoietic stem cell transplantation (HSCT) is a procedure used in patients to reestablish blood cell production. It involves the transplant of cells from a...
Abstract Background Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 67
SubjectTerms 631/114
631/532/1542
692/699/1541
692/699/249/1529
Algorithms
Antigens
Computer centers
Graft versus host disease
Hematology
Machine learning
Medicine
Medicine & Public Health
Natural language
Neural networks
Patients
Stem cell transplantation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiHcDBRmJG7XqxI84x4KoKqRyolJvluMHXbTKrnazQvwM_jEzTjbsClQ4cIqUjCXH8zkzzsx8Q8ibUhjpG1WxNkkMM9YlM2CpWeRBlbXh4EFjNfLFJ31-KT9eqaudVl-YEzbQAw8Ld1IHqZLygBswfEHWzmhVqbYJNVimFDx-fblpdg5TX3M4TTfS8LFKhgtzspbCKMy3FQwjUQ1Te5YoE_b_ycv8PVlyipjeI3c23dJ9_-bm8x2jdPaA3B-9SXo6vMVDcit2j8jtizFe_pj8OKWYVj7CCySRvjJfcvI3QxsWaO6GQ_tr19PlCsf2a-r8po_0y8qlnmHmxmbNsB6EjgEdmnuLU4zaAwLjzNNM_rpYLmZYFUmRHppiUID2mT197oYSp-4JuTz78Pn9ORubMDCvVdkzEVtfNcqDp8F5KksfgnCNA9unggHzV3rukw-VASmtk49t0hwu3sQoY9LiKTnoFl08JFSnJiajpYdDkhQOXJ_WBxWkVm3L61QXpNwqxPqRoRwbZcxtjpQLYwclWlCizUq0qiBvpzHLgZ_jRul3qOdJErm18w1AnB0RZ_-GuIIcbVFixw2_tpXBn2k1OGQFeT09hq2KS-26uNgMMtjmpDIFeTaAapqJqMGThtNOQcwe3Pamuv-km11nOnDkXIP3hKHHW2T-mtdNa3E8ofcflu75_1i6F-RulXegYqU-Igf9ahNfglPXt6_y_v0JUZJIWg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_1Cn48iF-1q1Ui-GZD9yvZ7INIKy1F6CFioW9LNh_twbF7vdtD_DP8j53JZrceyuFTYHcCSWaSmWRmfkPI-ySTuS55ymqXo5uxSJgETc1sbHhSyBgsaMxGvpiK88v8yxW_2iHTIRcGwyqHM9Ef1KbV-EZ-lEp8rShA431a3DKsGoXe1aGEhgqlFcxHDzF2j-ymiIw1Ibsnp9Ov38ZXl7QQZS7jkD0TZ_JolWeSYxxuxtBDVTK-oaE8kP-_rM-_gyhHT-oj8mDdLNTPH2o-_0NZnT0hj4OVSY97sXhKdmzzjNy_CH705-TXMcVw8yB2QImwlr7xQeEMdZuhvkoO7W5URxdL7NutqNLrztLrpXIdw4iO9YphnggNjh7qa45T9OaDZNqZph4Utl20M8yWpAgbTdFZQDuPqj5XfepT84Jcnp1-_3zOQnEGpgVPOpbZWqcl12CBxLFLEm1MpkoFOpEbCWox0bF22qQSqIRw2tZOxNBoaW1uncj2yKRpG7tPqHCldVLkGi5PeabAJKq14SYXvK7jwhURSQaGVDogl2MBjXnlPeiZrHomVsDEyjOx4hH5MPZZ9LgdW6lPkM8jJWJu-w_t8roKW7gqTM4d13CCgQlm8kJJwVNel6YAG8kZHZGDQUqqcBCsqjuxjci78TdsYVxq1dh23dNg-ZNURuRlL1TjSLICLGy4BUVEbojbxlA3_zSzGw8TjlhsME_oejhI5t24tq3F4Si9_7F0r7bP-jV5mPq9xVkiDsikW67tGzDjuvpt2Ju_AYLHRtM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEB_OHvjxIH4bPWUF3-xiPnY3m8cqHkfhfNGDewub_fAKJS1tivhn-B87s0mj5eTQp0AzU7Y7s51fMjO_AXibFVrYSua8CYLSjGXGNUZq7lMns1KniKCpG_n8szq7EPNLeXkE030vzEH-PlJ3b0WhJRXKFpxSSBWXt-BYo2PqCRzPZvMv8_GdSl6qSuh06I1B9ffXlQ_iT6Tp_xu2vF4iOeZJ78GdXbs2P76b5fKPUHT6AO4PGJLNeqM_hCPfPoLb50OW_DH8nDEqJh-cCiWJtDJeYsk3p8jlWJyBw7or07H1hnS7LTN213n2bWNCx6leY7fl1AXChjQOixPFGeXq0e_8wrJI-bparxbUC8mIFJpRKoB1kTN9afrGpvYJXJx--vrxjA-jF7hVMut44RubV9IivkjTkGXWucJUBiOedBqDXmZTG6zLNUopFaxvgkrxYrX3wgdVPIVJu2r9c2AqVD5oJSw-GonCIOBprJNOKNk0aRnKBLK9QWo78JLTeIxlHfPjha57I9ZoxDoasZYJvBt11j0rx43SH8jOoyQxascP0NHq4YDWpRMySIv_TwiwnCiNVjKXTeVKREDB2QRO9l5SD8d8W-eaXqGVCMMSeDPexgNKW21av9r1MjTcJNcJPOudalxJUSJ-xmecBPSBux0s9fBOu7iKJODEtIa_E1Wne8_8va6b9mI6eu8_bN2L__v2l3A3j2dN8kydwKTb7PwrBG1d83o4q78A1oo7Eg
  priority: 102
  providerName: Springer Nature
Title A convolutional neural network-based model that predicts acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation
URI https://link.springer.com/article/10.1038/s43856-023-00299-5
https://www.ncbi.nlm.nih.gov/pubmed/37193882
https://www.proquest.com/docview/2814227074
https://www.proquest.com/docview/2814816828
https://pubmed.ncbi.nlm.nih.gov/PMC10188562
https://www.nature.com/articles/s43856-023-00299-5.pdf
https://doaj.org/article/7d45f5c179554d47a86525b9d7124fdc
UnpaywallVersion publishedVersion
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: RPM
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: NAO
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: 7X7
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: BENPR
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: 8C1
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: AAJSJ
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: C6C
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEB4SG3o89D7UpmYLfWvW0bWr9aNjEoIhJrQ1dZ-EtEdiamRjS5T2X_Qfd3YluXUbQvOiBWkWdkejmdHOzDcA74JIxHLAQpqb2IYZk4AKtNRU-4oFifDRg7bVyOcTfjaNxzM22wPe1sK4pH0HaenUdJsddrSJI8FsumxEbSBpQFl_pcw-dDlDH7wD3enkYvjFdpJDkaWcx7OmQsaPxDWTd6yQA-u_zsP8N1FyGy29D3erYpV9_5YtFn8YpNOH8LndSp2H8rVflXlf_vgL5fH2e30EDxoflQxrysewp4sncOe8icI_hZ9DYpPVG6FFSguK6QaXUk6tZVTE9dgh5VVWktXazi03JJNVqcnlOjMltfkg1YbaKhPShImI61hObC4AyrWeS-IgZZer5dzWWhILOk1sqIGUDpN9kdWFU8UzmJ6efBqd0aa1A5WcBSWNdC7DAZPov_i-CQKpVJQNMrSoTAk0qoH0pZEqFEjFuZE6N9zHQQqtY2149Bw6xbLQL4FwM9BG8Fjir1ccZehQ5VIxFXOW535iEg-C9lWnssE9t-03FqmLv0cirfmdIr9Tx--UefB-O2dVo37cSH1sJWhLaRG73Y3l-jJt3mqaqJgZJlH_oQOn4iQTnIUsH6gEPSyjpAcHrfyljRrZpKGwR3QJunkevN0-RgVgWZ0VelnVNLZ5Sig8eFGL63YlUYL-Of5DeSB2BHlnqbtPivmVAxm3SG64T5x62Mr873XdxIvD7XfxH6x7dTvy13AvdJ8FowE_gE65rvQbdArLvAf7ySzBqxgFPegOh-OPYxyPTyYXH_DuiI967ril587zeo2--AXb72WH
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgcEG8CBYwEJ2o1D9txDgiVQrWl3Z5aqbeQ-NGutEqW3ayq_gz-CL-RGedRVqCKS0-RNuOV4xl_M_a8CHkXJYrrTMSsdBzdjGnEFGhqZkMjolSFYEFjNvL4SI5O-LdTcbpGfvW5MBhW2WOiB2pTa7wj344V3lakoPE-zX4w7BqF3tW-hUYrFgf28gKObIuP-1-Av-_jeO_r8e6IdV0FmJYialhiSx1nQoPqDEMXRdqYpMgKAHNhFOB5pEPttIkVUEnptC2dDOGhlbXcOpnA_94it3kSpwgEajca7nTiVGZchV1uTpio7QVPlMAo34Sh_ytjYkX_-TYB_7Jt_w7RHPy098jGspoVlxfFdPqHKtx7QO53NizdaYXuIVmz1SNyZ9x56R-TnzsUg9k7oQZKLJrpHz7knKHmNNT34KHNedHQ2RzHNgta6GVj6dm8cA3DeJHlgmEWCu3cSNR3NKcYKwBybyea-pKz9ayeYC4mxaLUFF0RtPE126dFm1hVPSEnN8Kkp2S9qiv7nFDpMuuU5BqOZjwpwOAqtRGGS1GWYerSgEQ9Q3Ld1UXH9hzT3PvnE5W3TMyBiblnYi4C8mEYM2urglxL_Rn5PFBiRW__Qz0_yzuAyFPDhRMa8BEMPMPTQkkRizIzKVhgzuiAbPZSkncws8ivNkVA3g6vASBwqYvK1suWBpurxCogz1qhGmaSpGC_wxkrIGpF3Famuvqmmpz7IuRY6Q2-E4Zu9ZJ5Na_r1mJrkN7_WLoX13_1G7IxOh4f5of7Rwcvyd3Y7zPBIrlJ1pv50r4Cg7EpX_tdSsn3m4aF3zlGfuw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkQocEG8WChgJTtTaJI5j54BQoaxaSisOVNpbmvjRrrRKlt2sqv4M_g6_jhnnUVagFZeeIm3GK8cz_mbseRHyJuQq1qmIWOFidDPKkCnQ1MwGRoRSBWBBYzby0XGyfxJ_GYvxBvnV5cJgWGWHiR6oTaXxjnwYKbytkKDxhq4Ni_i2N_ow-8GwgxR6Wrt2Go2IHNrLCzi-Ld4f7AGv30bR6PP3T_us7TDAdCLCmnFb6CgVGtRoELgw1MbwPM0B2IVRgO2hDrTTJlJAlSRO28IlATy0sja2LuHwvzfITcl5iuGEciz7-51IJmmsgjZPJ-BquIi5Ehjxyxn6wlImVnShbxnwLzv373DN3md7h9xalrP88iKfTv9Qi6N75G5rz9LdRgDvkw1bPiBbR63H_iH5uUsxsL0VcKDEApr-4cPPGWpRQ30_Hlqf5zWdzXFsvaC5XtaWns1zVzOMHVkuGGak0NalRH13c4pxA7AH7ERTX362mlUTzMukWKCaoluC1r5--zRvkqzKR-TkWpj0mGyWVWmfEpq41DqVxBqOaTHPwfgqtBEmTkRRBNLJAQk7hmS6rZGOrTqmmffVc5U1TMyAiZlnYiYG5F0_ZtZUCFlL_RH53FNidW__QzU_y1qwyKSJhRMasBKMPRPLXCUiEkVqJFhjzugB2e6kJGshZ5FdbZABed2_BrDApc5LWy0bGmy0EqkBedIIVT8TLsGWh_PWgKgVcVuZ6uqbcnLuC5Jj1Tf4Thi600nm1bzWrcVOL73_sXTP1n_1K7IFgJB9PTg-fE5uR36bCRYm22Szni_tC7Ad6-Kl36SUnF43KvwGlcKDWw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEF6VVOJ44D4MBS0Sb3SDj931-jEgqgqpFQ9EhCfL3qONiBwrsYXgX_CPmVkfEKgq-mQpnpV2x-OZz5mZbwh5FSWK60zErHQc04xpxBREamZDI6JUhYCgsRv55FQez_mHhVjsETn0wviifU9p6d30UB32ZssTJbBcNmGYSMqYmNbGXSP7UgAGn5D9-enH2RecJAcmy6Tki75DJkzUBYt3opAn678IYf5bKDlmS2-RG21VF9-_FavVHwHp6A75PBylq0P5Om2bcqp__MXyePWz3iW3e4xKZ53kPbJnq_vk-kmfhX9Afs4oFqv3RguSSIrpL76knGFkNNTP2KHNedHQeoNrmy0tdNtYerYpXMOwHqTdMuwyoX2aiPqJ5RRrAcCu7VJTTym7rtdL7LWkSDpNMdVAG8_Jviq6xqnqIZkfvf_07pj1ox2YliJqWGJLHWdCA34JQxdF2pikyAqIqMIoCKqRDrXTJlYgJaXTtnQyhItW1nLrZPKITKp1ZZ8QKl1mnZJcw6cXTwoAVKU2wnApyjJMXRqQaHjUue55z3H8xir3-fdE5Z2-c9B37vWdi4C8HtfUHevHpdJv0YJGSWTs9j-sN2d5_1Tz1HDhhAb_BwDO8LRQUsSizEwKCMsZHZCDwf7y3o1s81jhX3QpwLyAvBxvgwNAVReVXbedDA5PiVVAHnfmOu4kSQGfwzdUQNSOIe9sdfdOtTz3JOPI5AbnhKWHg83_3tdlujgc34v_UN3Tq4k_Izdj_1oIFskDMmk2rX0OoLApX_Qe4BdloF3L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolutional+neural+network-based+model+that+predicts+acute+graft-versus-host+disease+after+allogeneic+hematopoietic+stem+cell+transplantation&rft.jtitle=Communications+medicine&rft.au=Tomoyasu+Jo&rft.au=Yasuyuki+Arai&rft.au=Junya+Kanda&rft.au=Tadakazu+Kondo&rft.date=2023-05-16&rft.pub=Nature+Portfolio&rft.eissn=2730-664X&rft.volume=3&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs43856-023-00299-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7d45f5c179554d47a86525b9d7124fdc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-664X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-664X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-664X&client=summon