A convolutional neural network-based model that predicts acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation
Background Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolut...
Saved in:
| Published in | Communications medicine Vol. 3; no. 1; pp. 67 - 11 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
16.05.2023
Springer Nature B.V Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2730-664X 2730-664X |
| DOI | 10.1038/s43856-023-00299-5 |
Cover
| Abstract | Background
Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD.
Method
We analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models.
Results
Here, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II–IV and grade III–IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III–IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70–5.97;
p
< 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined.
Conclusions
Our results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice.
Plain language summary
Hematopoietic stem cell transplantation (HSCT) is a procedure used in patients to reestablish blood cell production. It involves the transplant of cells from a donor to the patient. In some patients the transplanted cells damage cells within the patients. This is called graft-versus-host disease (GVHD). We developed a computational code that can predict the likelihood a person will develop GVHD soon after HSCT. Using this computer program will enable doctors to better identify those at risk of GVHD and initiate treatments when required.
Jo et al. establish a convolutional neural network-based model to predict acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation. The model both predicts aGVHD and identifies pre-transplant parameters that increase risk of aGVHD. |
|---|---|
| AbstractList | Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD.
We analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models.
Here, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II-IV and grade III-IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III-IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70-5.97; p < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined.
Our results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice. Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD.BACKGROUNDForecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD.We analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models.METHODWe analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models.Here, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II-IV and grade III-IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III-IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70-5.97; p < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined.RESULTSHere, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II-IV and grade III-IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III-IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70-5.97; p < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined.Our results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice.CONCLUSIONSOur results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice. BackgroundForecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD.MethodWe analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models.ResultsHere, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II–IV and grade III–IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III–IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70–5.97; p < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined.ConclusionsOur results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice.Plain language summaryHematopoietic stem cell transplantation (HSCT) is a procedure used in patients to reestablish blood cell production. It involves the transplant of cells from a donor to the patient. In some patients the transplanted cells damage cells within the patients. This is called graft-versus-host disease (GVHD). We developed a computational code that can predict the likelihood a person will develop GVHD soon after HSCT. Using this computer program will enable doctors to better identify those at risk of GVHD and initiate treatments when required. Background Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD. Method We analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models. Results Here, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II–IV and grade III–IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III–IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70–5.97; p < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined. Conclusions Our results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice. Plain language summary Hematopoietic stem cell transplantation (HSCT) is a procedure used in patients to reestablish blood cell production. It involves the transplant of cells from a donor to the patient. In some patients the transplanted cells damage cells within the patients. This is called graft-versus-host disease (GVHD). We developed a computational code that can predict the likelihood a person will develop GVHD soon after HSCT. Using this computer program will enable doctors to better identify those at risk of GVHD and initiate treatments when required. Jo et al. establish a convolutional neural network-based model to predict acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation. The model both predicts aGVHD and identifies pre-transplant parameters that increase risk of aGVHD. Hematopoietic stem cell transplantation (HSCT) is a procedure used in patients to reestablish blood cell production. It involves the transplant of cells from a donor to the patient. In some patients the transplanted cells damage cells within the patients. This is called graft-versus-host disease (GVHD). We developed a computational code that can predict the likelihood a person will develop GVHD soon after HSCT. Using this computer program will enable doctors to better identify those at risk of GVHD and initiate treatments when required. Jo et al. establish a convolutional neural network-based model to predict acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation. The model both predicts aGVHD and identifies pre-transplant parameters that increase risk of aGVHD. Abstract Background Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD. Method We analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models. Results Here, we evaluate 18,763 patients between 16 and 80 years of age (median, 50 years). In total, grade II–IV and grade III–IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III–IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70–5.97; p < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined. Conclusions Our results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice. |
| ArticleNumber | 67 |
| Author | Kondo, Tadakazu Kanda, Junya Tanaka, Masatsugu Arai, Yasuyuki Ichinohe, Tatsuo Ikegame, Kazuhiro Katayama, Yuta Atsuta, Yoshiko Ozawa, Yukiyasu Kuriyama, Takuro Terakura, Seitaro Doki, Noriko Kanda, Yoshinobu Onizuka, Makoto Jo, Tomoyasu Ara, Takahide Uchida, Naoyuki Fukuda, Takahiro Kawakita, Toshiro |
| Author_xml | – sequence: 1 givenname: Tomoyasu surname: Jo fullname: Jo, Tomoyasu organization: Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Center for Research and Application of Cellular Therapy, Kyoto University Hospital – sequence: 2 givenname: Yasuyuki orcidid: 0000-0002-9662-5093 surname: Arai fullname: Arai, Yasuyuki email: ysykrai@kuhp.kyoto-u.ac.jp organization: Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Center for Research and Application of Cellular Therapy, Kyoto University Hospital – sequence: 3 givenname: Junya surname: Kanda fullname: Kanda, Junya organization: Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University – sequence: 4 givenname: Tadakazu surname: Kondo fullname: Kondo, Tadakazu organization: Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University – sequence: 5 givenname: Kazuhiro surname: Ikegame fullname: Ikegame, Kazuhiro organization: Department of Hematology, Hyogo Medical University Hospital – sequence: 6 givenname: Naoyuki surname: Uchida fullname: Uchida, Naoyuki organization: Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital – sequence: 7 givenname: Noriko orcidid: 0000-0002-8661-3179 surname: Doki fullname: Doki, Noriko organization: Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital – sequence: 8 givenname: Takahiro surname: Fukuda fullname: Fukuda, Takahiro organization: Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital – sequence: 9 givenname: Yukiyasu surname: Ozawa fullname: Ozawa, Yukiyasu organization: Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital – sequence: 10 givenname: Masatsugu surname: Tanaka fullname: Tanaka, Masatsugu organization: Department of Hematology, Kanagawa Cancer Center – sequence: 11 givenname: Takahide orcidid: 0000-0001-9609-3202 surname: Ara fullname: Ara, Takahide organization: Department of Hematology, Hokkaido University Hospital – sequence: 12 givenname: Takuro surname: Kuriyama fullname: Kuriyama, Takuro organization: Department of Hematology, Hamanomachi Hospital – sequence: 13 givenname: Yuta surname: Katayama fullname: Katayama, Yuta organization: Department of Hematology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital – sequence: 14 givenname: Toshiro surname: Kawakita fullname: Kawakita, Toshiro organization: Department of Hematology, National Hospital Organization Kumamoto Medical Center – sequence: 15 givenname: Yoshinobu surname: Kanda fullname: Kanda, Yoshinobu organization: Division of Hematology, Jichi Medical University Saitama Medical Center – sequence: 16 givenname: Makoto surname: Onizuka fullname: Onizuka, Makoto organization: Department of Hematology/Oncology, Tokai University School of Medicine – sequence: 17 givenname: Tatsuo surname: Ichinohe fullname: Ichinohe, Tatsuo organization: Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University – sequence: 18 givenname: Yoshiko orcidid: 0000-0003-4404-2870 surname: Atsuta fullname: Atsuta, Yoshiko organization: Japanese Data Center for Hematopoietic Cell Transplantation, Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine – sequence: 19 givenname: Seitaro orcidid: 0000-0002-1194-8046 surname: Terakura fullname: Terakura, Seitaro organization: Department of Hematology and Oncology, Nagoya University Graduate School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37193882$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUs1u1DAYjFARLUtfgAOyxIVLwD-x45xQVbVQqRIXkLhZXvvLbpbEDrazVR-DN653s5S2h4rT55-Z0XjGr4sj5x0UxVuCPxLM5KdYMclFiSkrMaZNU_IXxQmtGS6FqH4ePVgfF6cxbnBG1aKpJH5VHLOaNExKelL8OUPGu63vp9R5p3vkYAr7kW58-FUudQSLBm-hR2mtExoD2M6kiLSZEqBV0G0qtxDiFMu1jwnZLkImoXwOAem-9ytw0Bm0hkEnP_oOUt7FBAMy0GfZoF0ce-2S3nl4U7xsdR_h9DAXxY_Li-_nX8vrb1-uzs-uSyM4SSWDpaENN3XFMG4JMdYy3eiKMG4lZoIYbFpjqcwoIVoDy1bgPIwEqKAVbFFczbrW640aQzfocKu87tT-wIeV0iE77UHVtuItN6RuOK9sVWspOOXLxtaEVq01WYvNWpMb9e1NfvS9IMFq15ea-1K5L7XvS_HM-jyzxmk5gDXgchT9IyuPb1y3Viu_zYJEZjGaFT4cFIL_PUFMaujiLlTtwE9RUUkqSYSkMkPfP4Fu_BRy4zOK0hrnKBfFu4eW7r38_TAZIGeACT7GAK0y3dxbdtj1zz-XPqH-V0aHZGMGuxWEf7afYd0Bgvv58g |
| CitedBy_id | crossref_primary_10_3390_cancers17030395 crossref_primary_10_46989_001c_124926 crossref_primary_10_1038_s41467_023_43372_2 crossref_primary_10_3389_fimmu_2024_1366962 crossref_primary_10_1177_20406207241294054 crossref_primary_10_3390_technologies12070095 |
| Cites_doi | 10.1007/BF03006932 10.1214/aos/1176350951 10.1182/bloodadvances.2021005800 10.1182/blood-2005-05-2004 10.1038/bmt.2012.282 10.1182/blood-2007-06-097386 10.1200/CCI.19.00105 10.1056/NEJM199810223391701 10.1109/ACCESS.2018.2870052 10.1016/j.bbmt.2015.01.001 10.1056/NEJMoa1004383 10.1016/j.bbmt.2010.12.702 10.1016/j.bbmt.2013.09.005 10.1200/JCO.2014.59.1339 10.1182/blood-2010-08-302109 10.1182/bloodadvances.2019000934 10.1182/blood-2015-04-642652 10.1186/s13045-015-0201-x 10.1080/01621459.1999.10474144 10.1097/00000421-198212000-00014 10.1016/j.bbmt.2008.12.497 10.1038/bmt.2015.205 10.1038/s41598-019-42431-3 10.3389/fmats.2016.00028 10.1007/s12185-015-1894-x 10.1109/TVCG.2020.2986996 10.1097/TP.0000000000003424 10.1053/bbmt.2002.v8.pm12171485 10.3115/v1/D14-1181 10.1145/2939672.2939778 10.3115/v1/P14-1062 10.1007/978-3-319-46493-0_38 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023. corrected publication 2023 2023. The Author(s). The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023 |
| Copyright_xml | – notice: The Author(s) 2023. corrected publication 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88C 88E 8C1 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M0T M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s43856-023-00299-5 |
| DatabaseName | Springer Nature OA Free Journals (Selected full-text) CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Healthcare Administration Database Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Health Management ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2730-664X |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_7d45f5c179554d47a86525b9d7124fdc 10.1038/s43856-023-00299-5 PMC10188562 37193882 10_1038_s43856_023_00299_5 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP22ek0510034 funderid: https://doi.org/10.13039/100009619 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP22ek0510034 – fundername: ; grantid: JP22ek0510034 |
| GroupedDBID | 0R~ 53G 7X7 88E 8C1 8FI 8FJ AAJSJ ABUWG ACLNF ACSMW AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR C6C CCPQU EBLON FYUFA GROUPED_DOAJ HMCUK M0T M1P M~E NAO OK1 PGMZT PIMPY PSQYO RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT PJZUB PPXIY PUEGO NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c651t-3ebc295c74300f11cdd3a9a4135d80361c0cfcd28c2966fcebf60fcec8ee4ef63 |
| IEDL.DBID | UNPAY |
| ISSN | 2730-664X |
| IngestDate | Fri Oct 03 12:52:42 EDT 2025 Sun Oct 26 03:57:56 EDT 2025 Tue Sep 30 17:14:24 EDT 2025 Thu Sep 04 19:13:16 EDT 2025 Tue Oct 07 07:20:29 EDT 2025 Thu Jan 02 22:51:25 EST 2025 Thu Apr 24 23:08:40 EDT 2025 Wed Oct 01 04:44:18 EDT 2025 Fri Feb 21 02:37:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c651t-3ebc295c74300f11cdd3a9a4135d80361c0cfcd28c2966fcebf60fcec8ee4ef63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1194-8046 0000-0001-9609-3202 0000-0002-9662-5093 0000-0003-4404-2870 0000-0002-8661-3179 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s43856-023-00299-5.pdf |
| PMID | 37193882 |
| PQID | 2814227074 |
| PQPubID | 5642959 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7d45f5c179554d47a86525b9d7124fdc unpaywall_primary_10_1038_s43856_023_00299_5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10188562 proquest_miscellaneous_2814816828 proquest_journals_2814227074 pubmed_primary_37193882 crossref_citationtrail_10_1038_s43856_023_00299_5 crossref_primary_10_1038_s43856_023_00299_5 springer_journals_10_1038_s43856_023_00299_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-16 |
| PublicationDateYYYYMMDD | 2023-05-16 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Communications medicine |
| PublicationTitleAbbrev | Commun Med |
| PublicationTitleAlternate | Commun Med (Lond) |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Springer Nature B.V Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Portfolio |
| References | Chatzimparmpas, Martins, Kerren (CR26) 2020; 26 Iwasaki (CR8) 2022; 6 Atsuta (CR13) 2016; 103 Oken (CR17) 1982; 5 MacMillan (CR5) 2015; 21 MacMillan (CR33) 2002; 8 Tang (CR34) 2020; 4 Sorror (CR18) 2005; 106 CR32 Gooley (CR1) 2010; 363 CR31 Giralt (CR19) 2009; 15 Adadi AB (CR10) 2018; 6 Atsuta (CR14) 2007; 86 Lee (CR6) 2007; 110 Sasazuki (CR36) 1998; 339 Shouval (CR9) 2015; 33 Arai (CR20) 2015; 8 Iacobelli (CR30) 2013; 48 Gray (CR28) 1988; 16 CR27 Arai (CR2) 2015; 126 Przepiorka (CR21) 1995; 15 Abdeltawab (CR11) 2019; 9 CR25 CR24 CR23 CR22 Arai (CR15) 2013; 19 Connor, O’Sullivan, Marson, Wigmore, Harrison (CR12) 2021; 105 Fine, Gray (CR29) 1999; 94 Ho (CR16) 2011; 17 Arai (CR3) 2016; 51 Flowers (CR4) 2011; 117 Arai (CR7) 2019; 3 Wagner, Rondinelli (CR35) 2016; 3 ME Flowers (299_CR4) 2011; 117 ML MacMillan (299_CR5) 2015; 21 Y Arai (299_CR15) 2013; 19 VT Ho (299_CR16) 2011; 17 299_CR31 N Wagner (299_CR35) 2016; 3 299_CR32 ML Sorror (299_CR18) 2005; 106 S Giralt (299_CR19) 2009; 15 Y Arai (299_CR7) 2019; 3 S Tang (299_CR34) 2020; 4 Y Arai (299_CR20) 2015; 8 S Iacobelli (299_CR30) 2013; 48 Y Arai (299_CR2) 2015; 126 RJ Gray (299_CR28) 1988; 16 H Abdeltawab (299_CR11) 2019; 9 Y Atsuta (299_CR14) 2007; 86 299_CR27 299_CR22 299_CR23 299_CR24 Y Arai (299_CR3) 2016; 51 299_CR25 JP Fine (299_CR29) 1999; 94 ML MacMillan (299_CR33) 2002; 8 KL Connor (299_CR12) 2021; 105 D Przepiorka (299_CR21) 1995; 15 M Adadi AB (299_CR10) 2018; 6 T Sasazuki (299_CR36) 1998; 339 TA Gooley (299_CR1) 2010; 363 R Shouval (299_CR9) 2015; 33 MM Oken (299_CR17) 1982; 5 A Chatzimparmpas (299_CR26) 2020; 26 SJ Lee (299_CR6) 2007; 110 Y Atsuta (299_CR13) 2016; 103 M Iwasaki (299_CR8) 2022; 6 37349499 - Commun Med (Lond). 2023 Jun 22;3(1):89 |
| References_xml | – ident: CR22 – volume: 86 start-page: 269 year: 2007 end-page: 274 ident: CR14 article-title: Unification of hematopoietic stem cell transplantation registries in Japan and establishment of the TRUMP System publication-title: Int. J. Hematol. doi: 10.1007/BF03006932 – volume: 16 start-page: 1141 year: 1988 end-page: 1154 ident: CR28 article-title: A class of -sample tests for comparing the cumulative incidence of a competing risk publication-title: Ann. Stat doi: 10.1214/aos/1176350951 – volume: 6 start-page: 2618 year: 2022 end-page: 2627 ident: CR8 article-title: Establishment of a predictive model for GVHD-free, relapse-free survival after allogeneic HSCT using ensemble learning publication-title: Blood Adv. doi: 10.1182/bloodadvances.2021005800 – volume: 106 start-page: 2912 year: 2005 end-page: 2919 ident: CR18 article-title: Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT publication-title: Blood doi: 10.1182/blood-2005-05-2004 – volume: 48 start-page: S1 year: 2013 end-page: S37 ident: CR30 article-title: Suggestions on the use of statistical methodologies in studies of the European Group for Blood and Marrow Transplantation publication-title: Bone Marrow Transplant. doi: 10.1038/bmt.2012.282 – volume: 110 start-page: 4576 year: 2007 end-page: 4583 ident: CR6 article-title: High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation publication-title: Blood doi: 10.1182/blood-2007-06-097386 – volume: 4 start-page: 128 year: 2020 end-page: 135 ident: CR34 article-title: Predicting acute graft-versus-host disease using machine learning and longitudinal vital sign data from electronic health records publication-title: JCO Clin. Cancer Inform. doi: 10.1200/CCI.19.00105 – volume: 339 start-page: 1177 year: 1998 end-page: 1185 ident: CR36 article-title: Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. Japan Marrow Donor Program publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199810223391701 – volume: 6 start-page: 52138 year: 2018 end-page: 52160 ident: CR10 article-title: Peeking inside the Black-Box: a survey on explainable artificial intelligence (XAI) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – volume: 21 start-page: 761 year: 2015 end-page: 767 ident: CR5 article-title: A refined risk score for acute graft-versus-host disease that predicts response to initial therapy, survival, and transplant-related mortality publication-title: Biol. Blood Marrow Transplant doi: 10.1016/j.bbmt.2015.01.001 – ident: CR25 – volume: 363 start-page: 2091 year: 2010 end-page: 2101 ident: CR1 article-title: Reduced mortality after allogeneic hematopoietic-cell transplantation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1004383 – volume: 17 start-page: 1196 year: 2011 end-page: 1204 ident: CR16 article-title: Use of matched unrelated donors compared with matched related donors is associated with lower relapse and superior progression-free survival after reduced-intensity conditioning hematopoietic stem cell transplantation publication-title: Biol. Blood Marrow Transplant. doi: 10.1016/j.bbmt.2010.12.702 – ident: CR27 – volume: 19 start-page: 1683 year: 2013 end-page: 1689 ident: CR15 article-title: Serum neutrophil extracellular trap levels predict thrombotic microangiopathy after allogeneic stem cell transplantation publication-title: Biol. Blood Marrow Transplant. doi: 10.1016/j.bbmt.2013.09.005 – ident: CR23 – volume: 33 start-page: 3144 year: 2015 end-page: 3151 ident: CR9 article-title: Prediction of allogeneic hematopoietic stem-cell transplantation mortality 100 days after transplantation using a machine learning algorithm: a European Group for Blood and Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2014.59.1339 – volume: 117 start-page: 3214 year: 2011 end-page: 3219 ident: CR4 article-title: Comparative analysis of risk factors for acute graft-versus-host disease and for chronic graft-versus-host disease according to National Institutes of Health consensus criteria publication-title: Blood doi: 10.1182/blood-2010-08-302109 – volume: 3 start-page: 3626 year: 2019 end-page: 3634 ident: CR7 article-title: Using a machine learning algorithm to predict acute graft-versus-host disease following allogeneic transplantation publication-title: Blood Adv. doi: 10.1182/bloodadvances.2019000934 – volume: 126 start-page: 415 year: 2015 end-page: 422 ident: CR2 article-title: Efficiency of high-dose cytarabine added to CY/TBI in cord blood transplantation for myeloid malignancy publication-title: Blood doi: 10.1182/blood-2015-04-642652 – volume: 8 start-page: 102 year: 2015 ident: CR20 article-title: Clinical significance of high-dose cytarabine added to cyclophosphamide/total-body irradiation in bone marrow or peripheral blood stem cell transplantation for myeloid malignancy publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-015-0201-x – volume: 94 start-page: 496 year: 1999 end-page: 509 ident: CR29 article-title: A proportional hazards model for the subdistribution of a competing risk publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1999.10474144 – volume: 5 start-page: 649 year: 1982 end-page: 655 ident: CR17 article-title: Toxicity and response criteria of the Eastern Cooperative Oncology Group publication-title: Am. J. Clin. Oncol. doi: 10.1097/00000421-198212000-00014 – ident: CR31 – volume: 15 start-page: 367 year: 2009 end-page: 369 ident: CR19 article-title: Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the Center for International Blood and Marrow Transplant Research publication-title: Biol. Blood Marrow Transplant. doi: 10.1016/j.bbmt.2008.12.497 – volume: 15 start-page: 825 year: 1995 end-page: 828 ident: CR21 article-title: 1994 Consensus Conference on Acute GVHD Grading publication-title: Bone Marrow Transplant. – volume: 51 start-page: 96 year: 2016 end-page: 102 ident: CR3 article-title: Risk factors and prognosis of hepatic acute GvHD after allogeneic hematopoietic cell transplantation publication-title: Bone Marrow Transplant. doi: 10.1038/bmt.2015.205 – volume: 9 year: 2019 ident: CR11 article-title: A novel CNN-based CAD system for early assessment of transplanted kidney dysfunction publication-title: Sci. Rep. doi: 10.1038/s41598-019-42431-3 – volume: 3 start-page: 28 year: 2016 ident: CR35 article-title: Theory-guided machine learning in materials science publication-title: Front. Mater doi: 10.3389/fmats.2016.00028 – volume: 103 start-page: 3 year: 2016 end-page: 10 ident: CR13 article-title: Introduction of Transplant Registry Unified Management Program 2 (TRUMP2): scripts for TRUMP data analyses, part I (variables other than HLA-related data) publication-title: Int. J. Hematol. doi: 10.1007/s12185-015-1894-x – ident: CR32 – volume: 26 start-page: 2696 year: 2020 end-page: 2714 ident: CR26 article-title: t-visne: interactive assessment and interpretation of t-sne projections publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2020.2986996 – volume: 105 start-page: 723 year: 2021 end-page: 735 ident: CR12 article-title: The future role of machine learning in clinical transplantation publication-title: Transplantation doi: 10.1097/TP.0000000000003424 – ident: CR24 – volume: 8 start-page: 387 year: 2002 end-page: 394 ident: CR33 article-title: Response of 443 patients to steroids as primary therapy for acute graft-versus-host disease: comparison of grading systems publication-title: Biol. Blood Marrow Transplant. doi: 10.1053/bbmt.2002.v8.pm12171485 – volume: 15 start-page: 825 year: 1995 ident: 299_CR21 publication-title: Bone Marrow Transplant. – volume: 94 start-page: 496 year: 1999 ident: 299_CR29 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1999.10474144 – volume: 110 start-page: 4576 year: 2007 ident: 299_CR6 publication-title: Blood doi: 10.1182/blood-2007-06-097386 – volume: 5 start-page: 649 year: 1982 ident: 299_CR17 publication-title: Am. J. Clin. Oncol. doi: 10.1097/00000421-198212000-00014 – ident: 299_CR32 doi: 10.3115/v1/D14-1181 – ident: 299_CR24 – ident: 299_CR27 doi: 10.1145/2939672.2939778 – volume: 16 start-page: 1141 year: 1988 ident: 299_CR28 publication-title: Ann. Stat doi: 10.1214/aos/1176350951 – volume: 19 start-page: 1683 year: 2013 ident: 299_CR15 publication-title: Biol. Blood Marrow Transplant. doi: 10.1016/j.bbmt.2013.09.005 – volume: 105 start-page: 723 year: 2021 ident: 299_CR12 publication-title: Transplantation doi: 10.1097/TP.0000000000003424 – volume: 103 start-page: 3 year: 2016 ident: 299_CR13 publication-title: Int. J. Hematol. doi: 10.1007/s12185-015-1894-x – ident: 299_CR22 – volume: 21 start-page: 761 year: 2015 ident: 299_CR5 publication-title: Biol. Blood Marrow Transplant doi: 10.1016/j.bbmt.2015.01.001 – volume: 3 start-page: 3626 year: 2019 ident: 299_CR7 publication-title: Blood Adv. doi: 10.1182/bloodadvances.2019000934 – volume: 4 start-page: 128 year: 2020 ident: 299_CR34 publication-title: JCO Clin. Cancer Inform. doi: 10.1200/CCI.19.00105 – volume: 33 start-page: 3144 year: 2015 ident: 299_CR9 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2014.59.1339 – volume: 8 start-page: 387 year: 2002 ident: 299_CR33 publication-title: Biol. Blood Marrow Transplant. doi: 10.1053/bbmt.2002.v8.pm12171485 – volume: 126 start-page: 415 year: 2015 ident: 299_CR2 publication-title: Blood doi: 10.1182/blood-2015-04-642652 – volume: 15 start-page: 367 year: 2009 ident: 299_CR19 publication-title: Biol. Blood Marrow Transplant. doi: 10.1016/j.bbmt.2008.12.497 – volume: 117 start-page: 3214 year: 2011 ident: 299_CR4 publication-title: Blood doi: 10.1182/blood-2010-08-302109 – volume: 6 start-page: 2618 year: 2022 ident: 299_CR8 publication-title: Blood Adv. doi: 10.1182/bloodadvances.2021005800 – volume: 6 start-page: 52138 year: 2018 ident: 299_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – ident: 299_CR31 doi: 10.3115/v1/P14-1062 – volume: 51 start-page: 96 year: 2016 ident: 299_CR3 publication-title: Bone Marrow Transplant. doi: 10.1038/bmt.2015.205 – volume: 26 start-page: 2696 year: 2020 ident: 299_CR26 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2020.2986996 – volume: 8 start-page: 102 year: 2015 ident: 299_CR20 publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-015-0201-x – volume: 339 start-page: 1177 year: 1998 ident: 299_CR36 publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199810223391701 – volume: 363 start-page: 2091 year: 2010 ident: 299_CR1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1004383 – volume: 17 start-page: 1196 year: 2011 ident: 299_CR16 publication-title: Biol. Blood Marrow Transplant. doi: 10.1016/j.bbmt.2010.12.702 – volume: 106 start-page: 2912 year: 2005 ident: 299_CR18 publication-title: Blood doi: 10.1182/blood-2005-05-2004 – ident: 299_CR23 – volume: 48 start-page: S1 year: 2013 ident: 299_CR30 publication-title: Bone Marrow Transplant. doi: 10.1038/bmt.2012.282 – volume: 3 start-page: 28 year: 2016 ident: 299_CR35 publication-title: Front. Mater doi: 10.3389/fmats.2016.00028 – volume: 9 year: 2019 ident: 299_CR11 publication-title: Sci. Rep. doi: 10.1038/s41598-019-42431-3 – ident: 299_CR25 doi: 10.1007/978-3-319-46493-0_38 – volume: 86 start-page: 269 year: 2007 ident: 299_CR14 publication-title: Int. J. Hematol. doi: 10.1007/BF03006932 – reference: 37349499 - Commun Med (Lond). 2023 Jun 22;3(1):89 |
| SSID | ssj0002769480 |
| Score | 2.2696621 |
| Snippet | Background
Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with... Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional... BackgroundForecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with... Hematopoietic stem cell transplantation (HSCT) is a procedure used in patients to reestablish blood cell production. It involves the transplant of cells from a... Abstract Background Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 67 |
| SubjectTerms | 631/114 631/532/1542 692/699/1541 692/699/249/1529 Algorithms Antigens Computer centers Graft versus host disease Hematology Machine learning Medicine Medicine & Public Health Natural language Neural networks Patients Stem cell transplantation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiHcDBRmJG7XqxI84x4KoKqRyolJvluMHXbTKrnazQvwM_jEzTjbsClQ4cIqUjCXH8zkzzsx8Q8ibUhjpG1WxNkkMM9YlM2CpWeRBlbXh4EFjNfLFJ31-KT9eqaudVl-YEzbQAw8Ld1IHqZLygBswfEHWzmhVqbYJNVimFDx-fblpdg5TX3M4TTfS8LFKhgtzspbCKMy3FQwjUQ1Te5YoE_b_ycv8PVlyipjeI3c23dJ9_-bm8x2jdPaA3B-9SXo6vMVDcit2j8jtizFe_pj8OKWYVj7CCySRvjJfcvI3QxsWaO6GQ_tr19PlCsf2a-r8po_0y8qlnmHmxmbNsB6EjgEdmnuLU4zaAwLjzNNM_rpYLmZYFUmRHppiUID2mT197oYSp-4JuTz78Pn9ORubMDCvVdkzEVtfNcqDp8F5KksfgnCNA9unggHzV3rukw-VASmtk49t0hwu3sQoY9LiKTnoFl08JFSnJiajpYdDkhQOXJ_WBxWkVm3L61QXpNwqxPqRoRwbZcxtjpQLYwclWlCizUq0qiBvpzHLgZ_jRul3qOdJErm18w1AnB0RZ_-GuIIcbVFixw2_tpXBn2k1OGQFeT09hq2KS-26uNgMMtjmpDIFeTaAapqJqMGThtNOQcwe3Pamuv-km11nOnDkXIP3hKHHW2T-mtdNa3E8ofcflu75_1i6F-RulXegYqU-Igf9ahNfglPXt6_y_v0JUZJIWg priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_1Cn48iF-1q1Ui-GZD9yvZ7INIKy1F6CFioW9LNh_twbF7vdtD_DP8j53JZrceyuFTYHcCSWaSmWRmfkPI-ySTuS55ymqXo5uxSJgETc1sbHhSyBgsaMxGvpiK88v8yxW_2iHTIRcGwyqHM9Ef1KbV-EZ-lEp8rShA431a3DKsGoXe1aGEhgqlFcxHDzF2j-ymiIw1Ibsnp9Ov38ZXl7QQZS7jkD0TZ_JolWeSYxxuxtBDVTK-oaE8kP-_rM-_gyhHT-oj8mDdLNTPH2o-_0NZnT0hj4OVSY97sXhKdmzzjNy_CH705-TXMcVw8yB2QImwlr7xQeEMdZuhvkoO7W5URxdL7NutqNLrztLrpXIdw4iO9YphnggNjh7qa45T9OaDZNqZph4Utl20M8yWpAgbTdFZQDuPqj5XfepT84Jcnp1-_3zOQnEGpgVPOpbZWqcl12CBxLFLEm1MpkoFOpEbCWox0bF22qQSqIRw2tZOxNBoaW1uncj2yKRpG7tPqHCldVLkGi5PeabAJKq14SYXvK7jwhURSQaGVDogl2MBjXnlPeiZrHomVsDEyjOx4hH5MPZZ9LgdW6lPkM8jJWJu-w_t8roKW7gqTM4d13CCgQlm8kJJwVNel6YAG8kZHZGDQUqqcBCsqjuxjci78TdsYVxq1dh23dNg-ZNURuRlL1TjSLICLGy4BUVEbojbxlA3_zSzGw8TjlhsME_oejhI5t24tq3F4Si9_7F0r7bP-jV5mPq9xVkiDsikW67tGzDjuvpt2Ju_AYLHRtM priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEB_OHvjxIH4bPWUF3-xiPnY3m8cqHkfhfNGDewub_fAKJS1tivhn-B87s0mj5eTQp0AzU7Y7s51fMjO_AXibFVrYSua8CYLSjGXGNUZq7lMns1KniKCpG_n8szq7EPNLeXkE030vzEH-PlJ3b0WhJRXKFpxSSBWXt-BYo2PqCRzPZvMv8_GdSl6qSuh06I1B9ffXlQ_iT6Tp_xu2vF4iOeZJ78GdXbs2P76b5fKPUHT6AO4PGJLNeqM_hCPfPoLb50OW_DH8nDEqJh-cCiWJtDJeYsk3p8jlWJyBw7or07H1hnS7LTN213n2bWNCx6leY7fl1AXChjQOixPFGeXq0e_8wrJI-bparxbUC8mIFJpRKoB1kTN9afrGpvYJXJx--vrxjA-jF7hVMut44RubV9IivkjTkGXWucJUBiOedBqDXmZTG6zLNUopFaxvgkrxYrX3wgdVPIVJu2r9c2AqVD5oJSw-GonCIOBprJNOKNk0aRnKBLK9QWo78JLTeIxlHfPjha57I9ZoxDoasZYJvBt11j0rx43SH8jOoyQxascP0NHq4YDWpRMySIv_TwiwnCiNVjKXTeVKREDB2QRO9l5SD8d8W-eaXqGVCMMSeDPexgNKW21av9r1MjTcJNcJPOudalxJUSJ-xmecBPSBux0s9fBOu7iKJODEtIa_E1Wne8_8va6b9mI6eu8_bN2L__v2l3A3j2dN8kydwKTb7PwrBG1d83o4q78A1oo7Eg priority: 102 providerName: Springer Nature |
| Title | A convolutional neural network-based model that predicts acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation |
| URI | https://link.springer.com/article/10.1038/s43856-023-00299-5 https://www.ncbi.nlm.nih.gov/pubmed/37193882 https://www.proquest.com/docview/2814227074 https://www.proquest.com/docview/2814816828 https://pubmed.ncbi.nlm.nih.gov/PMC10188562 https://www.nature.com/articles/s43856-023-00299-5.pdf https://doaj.org/article/7d45f5c179554d47a86525b9d7124fdc |
| UnpaywallVersion | publishedVersion |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2730-664X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769480 issn: 2730-664X databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2730-664X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769480 issn: 2730-664X databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2730-664X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769480 issn: 2730-664X databaseCode: RPM dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2730-664X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769480 issn: 2730-664X databaseCode: NAO dateStart: 20211201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2730-664X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769480 issn: 2730-664X databaseCode: 7X7 dateStart: 20211201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2730-664X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769480 issn: 2730-664X databaseCode: BENPR dateStart: 20211201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 2730-664X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769480 issn: 2730-664X databaseCode: 8C1 dateStart: 20211201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2730-664X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769480 issn: 2730-664X databaseCode: AAJSJ dateStart: 20211201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2730-664X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769480 issn: 2730-664X databaseCode: C6C dateStart: 20211201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEB4SG3o89D7UpmYLfWvW0bWr9aNjEoIhJrQ1dZ-EtEdiamRjS5T2X_Qfd3YluXUbQvOiBWkWdkejmdHOzDcA74JIxHLAQpqb2IYZk4AKtNRU-4oFifDRg7bVyOcTfjaNxzM22wPe1sK4pH0HaenUdJsddrSJI8FsumxEbSBpQFl_pcw-dDlDH7wD3enkYvjFdpJDkaWcx7OmQsaPxDWTd6yQA-u_zsP8N1FyGy29D3erYpV9_5YtFn8YpNOH8LndSp2H8rVflXlf_vgL5fH2e30EDxoflQxrysewp4sncOe8icI_hZ9DYpPVG6FFSguK6QaXUk6tZVTE9dgh5VVWktXazi03JJNVqcnlOjMltfkg1YbaKhPShImI61hObC4AyrWeS-IgZZer5dzWWhILOk1sqIGUDpN9kdWFU8UzmJ6efBqd0aa1A5WcBSWNdC7DAZPov_i-CQKpVJQNMrSoTAk0qoH0pZEqFEjFuZE6N9zHQQqtY2149Bw6xbLQL4FwM9BG8Fjir1ccZehQ5VIxFXOW535iEg-C9lWnssE9t-03FqmLv0cirfmdIr9Tx--UefB-O2dVo37cSH1sJWhLaRG73Y3l-jJt3mqaqJgZJlH_oQOn4iQTnIUsH6gEPSyjpAcHrfyljRrZpKGwR3QJunkevN0-RgVgWZ0VelnVNLZ5Sig8eFGL63YlUYL-Of5DeSB2BHlnqbtPivmVAxm3SG64T5x62Mr873XdxIvD7XfxH6x7dTvy13AvdJ8FowE_gE65rvQbdArLvAf7ySzBqxgFPegOh-OPYxyPTyYXH_DuiI967ril587zeo2--AXb72WH |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgcEG8CBYwEJ2o1D9txDgiVQrWl3Z5aqbeQ-NGutEqW3ayq_gz-CL-RGedRVqCKS0-RNuOV4xl_M_a8CHkXJYrrTMSsdBzdjGnEFGhqZkMjolSFYEFjNvL4SI5O-LdTcbpGfvW5MBhW2WOiB2pTa7wj344V3lakoPE-zX4w7BqF3tW-hUYrFgf28gKObIuP-1-Av-_jeO_r8e6IdV0FmJYialhiSx1nQoPqDEMXRdqYpMgKAHNhFOB5pEPttIkVUEnptC2dDOGhlbXcOpnA_94it3kSpwgEajca7nTiVGZchV1uTpio7QVPlMAo34Sh_ytjYkX_-TYB_7Jt_w7RHPy098jGspoVlxfFdPqHKtx7QO53NizdaYXuIVmz1SNyZ9x56R-TnzsUg9k7oQZKLJrpHz7knKHmNNT34KHNedHQ2RzHNgta6GVj6dm8cA3DeJHlgmEWCu3cSNR3NKcYKwBybyea-pKz9ayeYC4mxaLUFF0RtPE126dFm1hVPSEnN8Kkp2S9qiv7nFDpMuuU5BqOZjwpwOAqtRGGS1GWYerSgEQ9Q3Ld1UXH9hzT3PvnE5W3TMyBiblnYi4C8mEYM2urglxL_Rn5PFBiRW__Qz0_yzuAyFPDhRMa8BEMPMPTQkkRizIzKVhgzuiAbPZSkncws8ivNkVA3g6vASBwqYvK1suWBpurxCogz1qhGmaSpGC_wxkrIGpF3Famuvqmmpz7IuRY6Q2-E4Zu9ZJ5Na_r1mJrkN7_WLoX13_1G7IxOh4f5of7Rwcvyd3Y7zPBIrlJ1pv50r4Cg7EpX_tdSsn3m4aF3zlGfuw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkQocEG8WChgJTtTaJI5j54BQoaxaSisOVNpbmvjRrrRKlt2sqv4M_g6_jhnnUVagFZeeIm3GK8cz_mbseRHyJuQq1qmIWOFidDPKkCnQ1MwGRoRSBWBBYzby0XGyfxJ_GYvxBvnV5cJgWGWHiR6oTaXxjnwYKbytkKDxhq4Ni_i2N_ow-8GwgxR6Wrt2Go2IHNrLCzi-Ld4f7AGv30bR6PP3T_us7TDAdCLCmnFb6CgVGtRoELgw1MbwPM0B2IVRgO2hDrTTJlJAlSRO28IlATy0sja2LuHwvzfITcl5iuGEciz7-51IJmmsgjZPJ-BquIi5Ehjxyxn6wlImVnShbxnwLzv373DN3md7h9xalrP88iKfTv9Qi6N75G5rz9LdRgDvkw1bPiBbR63H_iH5uUsxsL0VcKDEApr-4cPPGWpRQ30_Hlqf5zWdzXFsvaC5XtaWns1zVzOMHVkuGGak0NalRH13c4pxA7AH7ERTX362mlUTzMukWKCaoluC1r5--zRvkqzKR-TkWpj0mGyWVWmfEpq41DqVxBqOaTHPwfgqtBEmTkRRBNLJAQk7hmS6rZGOrTqmmffVc5U1TMyAiZlnYiYG5F0_ZtZUCFlL_RH53FNidW__QzU_y1qwyKSJhRMasBKMPRPLXCUiEkVqJFhjzugB2e6kJGshZ5FdbZABed2_BrDApc5LWy0bGmy0EqkBedIIVT8TLsGWh_PWgKgVcVuZ6uqbcnLuC5Jj1Tf4Thi600nm1bzWrcVOL73_sXTP1n_1K7IFgJB9PTg-fE5uR36bCRYm22Szni_tC7Ad6-Kl36SUnF43KvwGlcKDWw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEF6VVOJ44D4MBS0Sb3SDj931-jEgqgqpFQ9EhCfL3qONiBwrsYXgX_CPmVkfEKgq-mQpnpV2x-OZz5mZbwh5FSWK60zErHQc04xpxBREamZDI6JUhYCgsRv55FQez_mHhVjsETn0wviifU9p6d30UB32ZssTJbBcNmGYSMqYmNbGXSP7UgAGn5D9-enH2RecJAcmy6Tki75DJkzUBYt3opAn678IYf5bKDlmS2-RG21VF9-_FavVHwHp6A75PBylq0P5Om2bcqp__MXyePWz3iW3e4xKZ53kPbJnq_vk-kmfhX9Afs4oFqv3RguSSIrpL76knGFkNNTP2KHNedHQeoNrmy0tdNtYerYpXMOwHqTdMuwyoX2aiPqJ5RRrAcCu7VJTTym7rtdL7LWkSDpNMdVAG8_Jviq6xqnqIZkfvf_07pj1ox2YliJqWGJLHWdCA34JQxdF2pikyAqIqMIoCKqRDrXTJlYgJaXTtnQyhItW1nLrZPKITKp1ZZ8QKl1mnZJcw6cXTwoAVKU2wnApyjJMXRqQaHjUue55z3H8xir3-fdE5Z2-c9B37vWdi4C8HtfUHevHpdJv0YJGSWTs9j-sN2d5_1Tz1HDhhAb_BwDO8LRQUsSizEwKCMsZHZCDwf7y3o1s81jhX3QpwLyAvBxvgwNAVReVXbedDA5PiVVAHnfmOu4kSQGfwzdUQNSOIe9sdfdOtTz3JOPI5AbnhKWHg83_3tdlujgc34v_UN3Tq4k_Izdj_1oIFskDMmk2rX0OoLApX_Qe4BdloF3L |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolutional+neural+network-based+model+that+predicts+acute+graft-versus-host+disease+after+allogeneic+hematopoietic+stem+cell+transplantation&rft.jtitle=Communications+medicine&rft.au=Tomoyasu+Jo&rft.au=Yasuyuki+Arai&rft.au=Junya+Kanda&rft.au=Tadakazu+Kondo&rft.date=2023-05-16&rft.pub=Nature+Portfolio&rft.eissn=2730-664X&rft.volume=3&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs43856-023-00299-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7d45f5c179554d47a86525b9d7124fdc |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-664X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-664X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-664X&client=summon |