Lean-seafood intake decreases urinary markers of mitochondrial lipid and energy metabolism in healthy subjects: Metabolomics results from a randomized crossover intervention study
Scope Proteins constitute an important part of the human diet, but understanding of the effects of different dietary protein sources on human metabolism is sparse. We aimed to elucidate diet‐induced metabolic changes through untargeted urinary metabolomics after four weeks of intervention with lean‐...
Saved in:
Published in | Molecular nutrition & food research Vol. 60; no. 7; pp. 1661 - 1672 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.07.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-4125 1613-4133 |
DOI | 10.1002/mnfr.201500785 |
Cover
Abstract | Scope
Proteins constitute an important part of the human diet, but understanding of the effects of different dietary protein sources on human metabolism is sparse. We aimed to elucidate diet‐induced metabolic changes through untargeted urinary metabolomics after four weeks of intervention with lean‐seafood or nonseafood diets. It is shown that lean‐seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects.
Methods
In a randomized controlled trial with crossover design, 20 healthy subjects consumed two balanced diets that varied in main protein sources for 4 weeks. Morning spot urine samples were collected before and after each intervention period. Untargeted metabolomics based on 1H NMR spectroscopy and LC‐MS analyses were applied to characterize the urinary metabolic response to the interventions.
Results
The lean‐seafood diet period reduced the urinary level of l‐carnitine, 2,6‐dimethylheptanoylcarnitine, and N‐methyl‐2‐pyridone‐5‐carboxamide, relative to the nonseafood period. The dietary analysis revealed that the higher urinary level of trimethylamine‐N‐oxide after the lean‐seafood diet period and guanidinoacetate and 3‐methylhistidine after the nonseafood diet period was related to the endogenous content of these compounds in the diets.
Conclusions
Our data reveal that 4 weeks of lean‐seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects after the lean‐seafood intake.
The scope of the present study is to elucidate the diet‐induced metabolic changes in healthy subjects through untargeted urinary metabolomics after four weeks of intervention with lean‐seafood or nonseafood as the main protein sources. It is shown that lean‐seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects. |
---|---|
AbstractList | SCOPE: Proteins constitute an important part of the human diet, but understanding of the effects of different dietary protein sources on human metabolism is sparse. We aimed to elucidate diet‐induced metabolic changes through untargeted urinary metabolomics after four weeks of intervention with lean‐seafood or nonseafood diets. It is shown that lean‐seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects. METHODS: In a randomized controlled trial with crossover design, 20 healthy subjects consumed two balanced diets that varied in main protein sources for 4 weeks. Morning spot urine samples were collected before and after each intervention period. Untargeted metabolomics based on ¹H NMR spectroscopy and LC‐MS analyses were applied to characterize the urinary metabolic response to the interventions. RESULTS: The lean‐seafood diet period reduced the urinary level of l‐carnitine, 2,6‐dimethylheptanoylcarnitine, and N‐methyl‐2‐pyridone‐5‐carboxamide, relative to the nonseafood period. The dietary analysis revealed that the higher urinary level of trimethylamine‐N‐oxide after the lean‐seafood diet period and guanidinoacetate and 3‐methylhistidine after the nonseafood diet period was related to the endogenous content of these compounds in the diets. CONCLUSIONS: Our data reveal that 4 weeks of lean‐seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects after the lean‐seafood intake. Proteins constitute an important part of the human diet, but understanding of the effects of different dietary protein sources on human metabolism is sparse. We aimed to elucidate diet-induced metabolic changes through untargeted urinary metabolomics after four weeks of intervention with lean-seafood or nonseafood diets. It is shown that lean-seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects. In a randomized controlled trial with crossover design, 20 healthy subjects consumed two balanced diets that varied in main protein sources for 4 weeks. Morning spot urine samples were collected before and after each intervention period. Untargeted metabolomics based on (1) H NMR spectroscopy and LC-MS analyses were applied to characterize the urinary metabolic response to the interventions. The lean-seafood diet period reduced the urinary level of l-carnitine, 2,6-dimethylheptanoylcarnitine, and N-methyl-2-pyridone-5-carboxamide, relative to the nonseafood period. The dietary analysis revealed that the higher urinary level of trimethylamine-N-oxide after the lean-seafood diet period and guanidinoacetate and 3-methylhistidine after the nonseafood diet period was related to the endogenous content of these compounds in the diets. Our data reveal that 4 weeks of lean-seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects after the lean-seafood intake. Scope Proteins constitute an important part of the human diet, but understanding of the effects of different dietary protein sources on human metabolism is sparse. We aimed to elucidate diet‐induced metabolic changes through untargeted urinary metabolomics after four weeks of intervention with lean‐seafood or nonseafood diets. It is shown that lean‐seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects. Methods In a randomized controlled trial with crossover design, 20 healthy subjects consumed two balanced diets that varied in main protein sources for 4 weeks. Morning spot urine samples were collected before and after each intervention period. Untargeted metabolomics based on 1H NMR spectroscopy and LC‐MS analyses were applied to characterize the urinary metabolic response to the interventions. Results The lean‐seafood diet period reduced the urinary level of l‐carnitine, 2,6‐dimethylheptanoylcarnitine, and N‐methyl‐2‐pyridone‐5‐carboxamide, relative to the nonseafood period. The dietary analysis revealed that the higher urinary level of trimethylamine‐N‐oxide after the lean‐seafood diet period and guanidinoacetate and 3‐methylhistidine after the nonseafood diet period was related to the endogenous content of these compounds in the diets. Conclusions Our data reveal that 4 weeks of lean‐seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects after the lean‐seafood intake. The scope of the present study is to elucidate the diet‐induced metabolic changes in healthy subjects through untargeted urinary metabolomics after four weeks of intervention with lean‐seafood or nonseafood as the main protein sources. It is shown that lean‐seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects. Scope Proteins constitute an important part of the human diet, but understanding of the effects of different dietary protein sources on human metabolism is sparse. We aimed to elucidate diet-induced metabolic changes through untargeted urinary metabolomics after four weeks of intervention with lean-seafood or nonseafood diets. It is shown that lean-seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects. Methods In a randomized controlled trial with crossover design, 20 healthy subjects consumed two balanced diets that varied in main protein sources for 4 weeks. Morning spot urine samples were collected before and after each intervention period. Untargeted metabolomics based on super(1)H NMR spectroscopy and LC-MS analyses were applied to characterize the urinary metabolic response to the interventions. Results The lean-seafood diet period reduced the urinary level of l-carnitine, 2,6-dimethylheptanoylcarnitine, and N-methyl-2-pyridone-5-carboxamide, relative to the nonseafood period. The dietary analysis revealed that the higher urinary level of trimethylamine-N-oxide after the lean-seafood diet period and guanidinoacetate and 3-methylhistidine after the nonseafood diet period was related to the endogenous content of these compounds in the diets. Conclusions Our data reveal that 4 weeks of lean-seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects after the lean-seafood intake. The scope of the present study is to elucidate the diet-induced metabolic changes in healthy subjects through untargeted urinary metabolomics after four weeks of intervention with lean-seafood or nonseafood as the main protein sources. It is shown that lean-seafood intake reduces urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism possibly facilitating a higher lipid catabolism in healthy subjects. |
Author | Aadland, Eli Kristin Clausen, Morten Rahr Schmedes, Mette Bertram, Hanne Christine Liaset, Bjørn Lavigne, Charles Graff, Ingvild Eide Jacques, Hélène Holthe, Asle Mellgren, Gunnar Eng, Øyvin Sundekilde, Ulrik Kræmer Young, Jette Feveile |
Author_xml | – sequence: 1 givenname: Mette surname: Schmedes fullname: Schmedes, Mette organization: Department of Food Science, Aarhus University, Aarslev, Denmark – sequence: 2 givenname: Eli Kristin surname: Aadland fullname: Aadland, Eli Kristin organization: National Institute of Nutrition and Seafood Research, Bergen, Norway – sequence: 3 givenname: Ulrik Kræmer surname: Sundekilde fullname: Sundekilde, Ulrik Kræmer organization: Department of Food Science, Aarhus University, Aarslev, Denmark – sequence: 4 givenname: Hélène surname: Jacques fullname: Jacques, Hélène organization: School of Nutrition, Laval Université, Québec, Canada – sequence: 5 givenname: Charles surname: Lavigne fullname: Lavigne, Charles organization: National Institute of Nutrition and Seafood Research, Bergen, Norway – sequence: 6 givenname: Ingvild Eide surname: Graff fullname: Graff, Ingvild Eide organization: National Institute of Nutrition and Seafood Research, Bergen, Norway – sequence: 7 givenname: Øyvin surname: Eng fullname: Eng, Øyvin organization: Hormone Laboratory, Haukeland University Hospital, Bergen, Norway – sequence: 8 givenname: Asle surname: Holthe fullname: Holthe, Asle organization: Bergen University College, Faculty of Education, Bergen, Norway – sequence: 9 givenname: Gunnar surname: Mellgren fullname: Mellgren, Gunnar organization: Department of Clinical Science, University of Bergen, Bergen, Norway – sequence: 10 givenname: Jette Feveile surname: Young fullname: Young, Jette Feveile organization: Department of Food Science, Aarhus University, Foulum, Denmark – sequence: 11 givenname: Hanne Christine surname: Bertram fullname: Bertram, Hanne Christine organization: Department of Food Science, Aarhus University, Aarslev, Denmark – sequence: 12 givenname: Bjørn surname: Liaset fullname: Liaset, Bjørn organization: National Institute of Nutrition and Seafood Research, Bergen, Norway – sequence: 13 givenname: Morten Rahr surname: Clausen fullname: Clausen, Morten Rahr email: mortenr.clausen@food.au.dk organization: Department of Food Science, Aarhus University, Aarslev, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26873789$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2O0zAUhSM0iPmBLUvkJZsU27HjlB0a0RmkdpAQiKV1E99QzyR2sZ2B8lq8IC7tdIGEYGVL_s7x9Tk-L06cd1gUzxmdMUr5q9H1YcYpk5SqRj4qzljNqlKwqjo57rk8Lc5jvKW0YlxUT4pTXjeqUs38rPi5RHBlROi9N8S6BHdIDHYBIWIkU7AOwpaMEO4wROJ7Mtrku7V3JlgYyGA31hBwhqDD8CWTmKD1g41jdiNrhCGttyRO7S12Kb4mq_25H20XScA4DSmSPviRAAnZJx_8QEO64GP09xh2M2G4R5esdySmyWyfFo97GCI-O6wXxafF24-X1-Xy_dW7yzfLsqtzHGVnGq7knHVyrkBwnBtlaiH6loJSvaGA0ijVGuCtFELIChBYY3roJc9CVV0UL_e-m-C_ThiTHm3scBjAoZ-iZg2XgotaVf-B0qZWTDGa0RcHdGpHNHoTbE53qx86yYDYA78zCNjrzibYPT8FsINmVO-q17vq9bH6LJv9IXtw_qvgcM83O-D2H7Re3Sw-8Jru5i_3MhsTfj_K8gfROQkl9eebK81XtJlfL1a6rn4BXB7UsQ |
CitedBy_id | crossref_primary_10_1080_10408398_2021_1901256 crossref_primary_10_1007_s11306_018_1322_3 crossref_primary_10_1017_S0954422418000240 crossref_primary_10_1002_mnfr_201600400 crossref_primary_10_1002_mnfr_201600387 crossref_primary_10_1080_23308249_2017_1399104 crossref_primary_10_1093_advances_nmab054 crossref_primary_10_3390_nu10050598 crossref_primary_10_1021_acs_analchem_6b04420 crossref_primary_10_1016_j_numecd_2025_103908 crossref_primary_10_3390_nu9030247 crossref_primary_10_1093_ajcn_nqz293 crossref_primary_10_1002_mnfr_201700363 crossref_primary_10_1093_ckj_sfy037 crossref_primary_10_1007_s11306_016_1094_6 crossref_primary_10_1002_fsn3_4226 crossref_primary_10_1186_s12263_019_0656_4 crossref_primary_10_1016_j_clinms_2019_05_002 crossref_primary_10_1016_j_advnut_2023_08_010 crossref_primary_10_1097_MCO_0000000000000906 crossref_primary_10_1002_mnfr_201800608 crossref_primary_10_1038_s41598_018_19732_0 crossref_primary_10_2337_dc21_0447 crossref_primary_10_1016_j_jnutbio_2017_06_001 crossref_primary_10_1007_s11306_019_1562_x crossref_primary_10_1016_j_jfca_2018_01_018 crossref_primary_10_3945_jn_115_229278 crossref_primary_10_3945_jn_117_252197 crossref_primary_10_1002_mnfr_201900799 crossref_primary_10_1002_mnfr_202100872 crossref_primary_10_31665_JFB_2018_2138 crossref_primary_10_1016_j_jchromb_2016_10_017 crossref_primary_10_1155_2018_9719584 crossref_primary_10_1080_87559129_2020_1828452 crossref_primary_10_1002_mnfr_201700976 |
Cites_doi | 10.1038/oby.2009.510 10.1038/ncomms7498 10.1158/1055-9965.EPI-11-0048 10.1006/taap.1994.1076 10.1017/S0007114511006866 10.1530/JOE-14-0024 10.1371/journal.pone.0112859 10.1021/ac300698c 10.1161/01.CIR.0000038493.65177.94 10.1371/journal.pone.0089845 10.1271/bbb.61.1200 10.1172/JCI72331 10.1172/JCI114468 10.1001/jamainternmed.2013.6633 10.1002/mnfr.201200571 10.2337/db12-0754 10.1016/S2213-8587(13)70143-8 10.1042/cs0590509 10.1016/j.chroma.2011.08.086 10.1089/ars.2012.4508 10.1016/0005-2795(75)90315-3 10.1371/journal.pone.0019194 10.1161/CIRCULATIONAHA.109.915165 10.1093/ajcn/50.1.114 10.1021/pr400051s 10.1073/pnas.0705408104 10.1007/s00125-013-2913-1 10.1021/ac4020325 10.3945/ajcn.115.112086 10.3389/fnins.2015.00022 10.2337/dc07-0273 10.1017/S0007114507450322 10.1093/eurheartj/ehu002 10.1093/ajcn/77.3.587 10.1016/j.cmet.2015.05.023 10.1093/nar/gkl923 10.1080/02652030902858921 10.1111/j.1365-2265.2011.04244.x 10.1007/s00394-007-0686-3 10.1017/S0007114512001717 10.1152/physiolgenomics.00194.2006 10.1242/jeb.205.3.297 10.1021/ac202450g 10.1093/ajcn/32.8.1617 10.1016/j.atherosclerosis.2013.10.013 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7S9 L.6 |
DOI | 10.1002/mnfr.201500785 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 1613-4133 |
EndPage | 1672 |
ExternalDocumentID | 26873789 10_1002_mnfr_201500785 MNFR2600 ark_67375_WNG_2M089HFM_6 |
Genre | article Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAFWJ AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WXSBR WYISQ XG1 XV2 Y6R ~IA ~KM ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE DROCM RWI AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7S9 L.6 |
ID | FETCH-LOGICAL-c6500-cd827591c597a42e9d7d644fb0a77fd0ae5d77bda2b544453aea18dfaf5227573 |
IEDL.DBID | DR2 |
ISSN | 1613-4125 |
IngestDate | Fri Sep 05 17:26:14 EDT 2025 Tue Aug 05 10:35:28 EDT 2025 Wed Feb 19 02:43:48 EST 2025 Tue Jul 01 01:51:41 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 Wed Jan 22 16:59:24 EST 2025 Tue Sep 09 05:31:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Urine Biomarkers Dietary protein Lipid metabolism Metabolism |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6500-cd827591c597a42e9d7d644fb0a77fd0ae5d77bda2b544453aea18dfaf5227573 |
Notes | istex:B9F13D34897DE355E3E11275800752EF45A3BD84 ark:/67375/WNG-2M089HFM-6 ArticleID:MNFR2600 bli@nifes.no Additional corresponding author: Bjørn Liaset E‐mail ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26873789 |
PQID | 1808671710 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1825424673 proquest_miscellaneous_1808671710 pubmed_primary_26873789 crossref_citationtrail_10_1002_mnfr_201500785 crossref_primary_10_1002_mnfr_201500785 wiley_primary_10_1002_mnfr_201500785_MNFR2600 istex_primary_ark_67375_WNG_2M089HFM_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2016 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: July 2016 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Molecular nutrition & food research |
PublicationTitleAlternate | Mol. Nutr. Food Res |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Thorburn, A. W., Gumbiner, B., Bulacan, F., Wallace, P. et al., Intracellular glucose oxidation and glycogen synthase activity are reduced in non-insulin-dependent (type II) diabetes independent of impaired glucose uptake. J. Clin. Invest. 1990, 85, 522-529. Salek, R. M., Maguire, M. L., Bentley, E., Rubtsov, D. V. et al., A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol. Genomics 2007, 29, 99-108. Wishart, D. S., Tzur, D., Knox, C., Eisner, R. et al., HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521-D526. Tautenhahn, R., Patti, G. J., Rinehart, D., Siuzdak, G., XCMS online: a web-based platform to process untargeted metabolomic data. Anal. Chem. 2012, 84, 5035-5039. Tastesen, H. S., Ronnevik, A. K., Borkowski, K., Madsen, L. et al., A mixture of cod and scallop protein reduces adiposity and improves glucose tolerance in high-fat fed male C57BL/6J mice. PLoS One 2014, 9, e112859. Elia, M., Carter, A., Bacon, S., Smith, R., The effect of 3-methylhistidine in food on its urinary excretion in man. Clin. Sci. 1980, 59, 509-511. Ussher, J. R., Lopaschuk, G. D., Arduini, A., Gut microbiota metabolism of L-carnitine and cardiovascular risk. Atherosclerosis 2013, 231, 456-461. Bertram, H. C., Hoppe, C., Petersen, B. O., Duus, J. O. et al., An NMR-based metabonomic investigation on effects of milk and meat protein diets given to 8-year-old boys. Brit. J. Nutr. 2007, 97, 758-763. Miao, J., Ling, A. V., Manthena, P. V., Gearing, M. E. et al., Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat. Commun. 2015, 6, 624-626. Aadland, E. K., Lavigne, C., Graff, I. E., Eng, Ø. et al., Lean-seafood intake reduces cardiovascular lipid risk factors in healthy subjects: results from a randomized controlled trial with a crossover design. Am. J. Clin. Nutr. 2015, 102, 582-592. Shibata, K., Matsuo, H., Correlation between niacin equivalent intake and urinary excretion of its metabolites, N'-methylnicotinamide, N'-methyl-2-pyridone-5-carboxamide, and N'-methyl-4-pyridone-3-carboxamide, in humans consuming a self-selected food. Am. J. Clin. Nutr. 1989, 50, 114-119. Ouellet, V., Marois, J., Weisnagel, S. J., Jacques, H., Dietary cod protein improves insulin sensitivity in insulin-resistant men and women. Diabetes Care 2007, 30, 2816-2821. Beauchesne-Rondeau, E., Gascon, A., Bergeron, J., Jacques, H., Plasma lipids and lipoproteins in hypercholesterolemic men fed a lipid-lowering diet containing lean beef, lean fish, or poultry. Am. J. Clin. Nutr. 2003, 77, 587-593. Seibel, B. A., Walsh, P. J., Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J. Exp. Biol. 2002, 205, 297-306. Wang, Z., Tang, W. H., Buffa, J. A., Fu, X. et al., Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 2014, 35, 904-910. Kris-Etherton, P. M., Harris, W. S., Appel, L. J., Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747-2757. Roberts, L. D., Koulman, A., Griffin, J. L., Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome. Lancet Diabetes Endocrinol. 2014, 2, 65-75. Parra, D., Bandarra, N. M., Kiely, M., Thorsdottir, I. et al., Impact of fish intake on oxidative stress when included into a moderate energy-restricted program to treat obesity. Eur. J. Nutr. 2007, 46, 460-467. Ha, C. Y., Kim, J. Y., Paik, J. K., Kim, O. Y. et al., The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin. Endocrinol. 2012, 76, 674-682. Mihalik, S. J., Goodpaster, B. H., Kelley, D. E., Chace, D. H. et al., Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity 2010, 18, 1695-1700. Bondia-Pons, I., Barri, T., Hanhineva, K., Juntunen, K. et al., UPLC-QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention. Mol. Nutr. Food Res. 2013, 57, 412-422. Haverberg, L. N., Omstedt, P. T., Munro, H. N., Young, V. R., Nτ-Methylhistidine content of mixed proteins in various rat tissues. Biochim. Biophys. Acta 1975, 405, 67-71. Ho, J. E., Larson, M. G., Vasan, R. S., Ghorbani, A. et al., Metabolite profiles during oral glucose challenge. Diabetes 2013, 62, 2689-2698. Tomasi, G., Savorani, F., Engelsen, S. B., icoshift: an effective tool for the alignment of chromatographic data. J. Chromatogr. A 2011, 1218, 7832-7840. Suhre, K., Metabolic profiling in diabetes. J. Endocrinol. 2014, 221, R75-R85. Chung, S. W., Chan, B. T., Trimethylamine oxide, dimethylamine, trimethylamine and formaldehyde levels in main traded fish species in Hong Kong. Food Addit. Contam. Part B Surveill. 2009, 2, 44-51. Pan, A., Sun, Q., Bernstein, A. M., Manson, J. E. et al., Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: three cohorts of us men and women. JAMA Intern. Med. 2013, 173, 1328-1335. Cantó, C., Menzies, K. J., Auwerx, J., NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015, 22, 31-53. Smith, J. L., Wishnok, J. S., Deen, W. M., Metabolism and excretion of methylamines in rats. Toxicol. Appl. Pharm. 1994, 125, 296-308. Tang, W. H. W., Hazen, S. L., The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 2014, 124, 4204-4211. Petersen, K. F., Dufour, S., Savage, D. B., Bilz, S. et al., The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc. Natl. Acad. Sci. USA 2007, 104, 12587-12594. Boulange, C. L., Claus, S. P., Chou, C. J., Collino, S. et al., Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways. J. Proteome Res. 2013, 12, 1956-1968. Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R. et al., CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 2012, 84, 283-289. Turner, N., Kowalski, G. M., Leslie, S. J., Risis, S. et al., Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 2013, 56, 1638-1648. Rylander, C., Sandanger, T. M., Engeset, D., Lund, E., Consumption of lean fish reduces the risk of type 2 diabetes mellitus: a prospective population based cohort study of Norwegian Women. PLoS One 2014, 9, e89845. Garcia-Rodriguez, C. E., Mesa, M. D., Olza, J., Vlachava, M. et al., Does consumption of two portions of salmon per week enhance the antioxidant defense system in pregnant women? Antioxid. Redox. Sign. 2012, 16, 1401-1406. Marliss, E. B., Wei, C. N., Dietrich, L. L., The short-term effects of protein intake on 3-methylhistidine excretion. Am. J. Clin. Nutr. 1979, 32, 1617-1621. Braidy, N., Guillemin, G. J., Mansour, H., Chan-Ling, T. et al., Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 2011, 6, e19194. Cross, A. J., Major, J. M., Sinha, R., Urinary biomarkers of meat consumption. Cancer Epidemiol. Biomarkers Prev. 2011, 20, 1107-1111. Zheng, H., Clausen, M. R., Dalsgaard, T. K., Mortensen, G. et al., Time-saving design of experiment protocol for optimization of LC-MS data processing in metabolomic approaches. Anal. Chem. 2013, 85, 7109-7116. Shibata, K., Toda, S., Effects of sex hormones on the metabolism of tryptophan to niacin and to serotonin in male rats. Biosci. Biotechnol. Biochem. 1997, 61, 1200-1202. Bernstein, A. M., Sun, Q., Hu, F. B., Stampfer, M. J. et al., Major dietary protein sources and risk of coronary heart disease in women. Circulation 2010, 122, 876-883. Zhang, J., Wang, C., Li, L., Man, Q. et al., Dietary inclusion of salmon, herring and pompano as oily fish reduces CVD risk markers in dyslipidaemic middle-aged and elderly Chinese women. Brit. J. Nutr. 2012, 108, 1455-1465. Vikoren, L. A., Nygard, O. K., Lied, E., Rostrup, E. et al., A randomised study on the effects of fish protein supplement on glucose tolerance, lipids and body composition in overweight adults. Brit. J. Nutr. 2013, 109, 648-657. Rogatzki, M. J., Ferguson, B. S., Goodwin, M. L., Gladden, L. B., Lactate is always the end product of glycolysis. Front. Neurosci. 2015, 9, 22. 2007; 104 2015; 6 1997; 61 2012 2013; 109 2015; 102 2010; 18 2013; 62 2013; 85 2010; 122 2012; 16 2007; 30 2007; 97 2015; 9 2011; 6 1979; 32 2007; 35 2012; 76 2012; 108 2003; 77 1990; 85 2007; 29 1980; 59 1989; 50 1994; 125 2014; 2 2013; 57 2013; 56 2013; 12 2015; 22 2002; 106 2011; 20 2002; 205 2014; 35 2011; 1218 2013; 173 2013; 231 2014; 9 2014; 221 2009; 2 1975; 405 2007; 46 2012; 84 2014; 124 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – reference: Turner, N., Kowalski, G. M., Leslie, S. J., Risis, S. et al., Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 2013, 56, 1638-1648. – reference: Cantó, C., Menzies, K. J., Auwerx, J., NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015, 22, 31-53. – reference: Ouellet, V., Marois, J., Weisnagel, S. J., Jacques, H., Dietary cod protein improves insulin sensitivity in insulin-resistant men and women. Diabetes Care 2007, 30, 2816-2821. – reference: Zheng, H., Clausen, M. R., Dalsgaard, T. K., Mortensen, G. et al., Time-saving design of experiment protocol for optimization of LC-MS data processing in metabolomic approaches. Anal. Chem. 2013, 85, 7109-7116. – reference: Bernstein, A. M., Sun, Q., Hu, F. B., Stampfer, M. J. et al., Major dietary protein sources and risk of coronary heart disease in women. Circulation 2010, 122, 876-883. – reference: Rylander, C., Sandanger, T. M., Engeset, D., Lund, E., Consumption of lean fish reduces the risk of type 2 diabetes mellitus: a prospective population based cohort study of Norwegian Women. PLoS One 2014, 9, e89845. – reference: Bondia-Pons, I., Barri, T., Hanhineva, K., Juntunen, K. et al., UPLC-QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention. Mol. Nutr. Food Res. 2013, 57, 412-422. – reference: Bertram, H. C., Hoppe, C., Petersen, B. O., Duus, J. O. et al., An NMR-based metabonomic investigation on effects of milk and meat protein diets given to 8-year-old boys. Brit. J. Nutr. 2007, 97, 758-763. – reference: Tomasi, G., Savorani, F., Engelsen, S. B., icoshift: an effective tool for the alignment of chromatographic data. J. Chromatogr. A 2011, 1218, 7832-7840. – reference: Petersen, K. F., Dufour, S., Savage, D. B., Bilz, S. et al., The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc. Natl. Acad. Sci. USA 2007, 104, 12587-12594. – reference: Aadland, E. K., Lavigne, C., Graff, I. E., Eng, Ø. et al., Lean-seafood intake reduces cardiovascular lipid risk factors in healthy subjects: results from a randomized controlled trial with a crossover design. Am. J. Clin. Nutr. 2015, 102, 582-592. – reference: Parra, D., Bandarra, N. M., Kiely, M., Thorsdottir, I. et al., Impact of fish intake on oxidative stress when included into a moderate energy-restricted program to treat obesity. Eur. J. Nutr. 2007, 46, 460-467. – reference: Thorburn, A. W., Gumbiner, B., Bulacan, F., Wallace, P. et al., Intracellular glucose oxidation and glycogen synthase activity are reduced in non-insulin-dependent (type II) diabetes independent of impaired glucose uptake. J. Clin. Invest. 1990, 85, 522-529. – reference: Beauchesne-Rondeau, E., Gascon, A., Bergeron, J., Jacques, H., Plasma lipids and lipoproteins in hypercholesterolemic men fed a lipid-lowering diet containing lean beef, lean fish, or poultry. Am. J. Clin. Nutr. 2003, 77, 587-593. – reference: Wang, Z., Tang, W. H., Buffa, J. A., Fu, X. et al., Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 2014, 35, 904-910. – reference: Tastesen, H. S., Ronnevik, A. K., Borkowski, K., Madsen, L. et al., A mixture of cod and scallop protein reduces adiposity and improves glucose tolerance in high-fat fed male C57BL/6J mice. PLoS One 2014, 9, e112859. – reference: Zhang, J., Wang, C., Li, L., Man, Q. et al., Dietary inclusion of salmon, herring and pompano as oily fish reduces CVD risk markers in dyslipidaemic middle-aged and elderly Chinese women. Brit. J. Nutr. 2012, 108, 1455-1465. – reference: Salek, R. M., Maguire, M. L., Bentley, E., Rubtsov, D. V. et al., A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol. Genomics 2007, 29, 99-108. – reference: Garcia-Rodriguez, C. E., Mesa, M. D., Olza, J., Vlachava, M. et al., Does consumption of two portions of salmon per week enhance the antioxidant defense system in pregnant women? Antioxid. Redox. Sign. 2012, 16, 1401-1406. – reference: Cross, A. J., Major, J. M., Sinha, R., Urinary biomarkers of meat consumption. Cancer Epidemiol. Biomarkers Prev. 2011, 20, 1107-1111. – reference: Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R. et al., CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 2012, 84, 283-289. – reference: Marliss, E. B., Wei, C. N., Dietrich, L. L., The short-term effects of protein intake on 3-methylhistidine excretion. Am. J. Clin. Nutr. 1979, 32, 1617-1621. – reference: Tautenhahn, R., Patti, G. J., Rinehart, D., Siuzdak, G., XCMS online: a web-based platform to process untargeted metabolomic data. Anal. Chem. 2012, 84, 5035-5039. – reference: Braidy, N., Guillemin, G. J., Mansour, H., Chan-Ling, T. et al., Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 2011, 6, e19194. – reference: Ho, J. E., Larson, M. G., Vasan, R. S., Ghorbani, A. et al., Metabolite profiles during oral glucose challenge. Diabetes 2013, 62, 2689-2698. – reference: Suhre, K., Metabolic profiling in diabetes. J. Endocrinol. 2014, 221, R75-R85. – reference: Haverberg, L. N., Omstedt, P. T., Munro, H. N., Young, V. R., Nτ-Methylhistidine content of mixed proteins in various rat tissues. Biochim. Biophys. Acta 1975, 405, 67-71. – reference: Wishart, D. S., Tzur, D., Knox, C., Eisner, R. et al., HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521-D526. – reference: Seibel, B. A., Walsh, P. J., Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J. Exp. Biol. 2002, 205, 297-306. – reference: Vikoren, L. A., Nygard, O. K., Lied, E., Rostrup, E. et al., A randomised study on the effects of fish protein supplement on glucose tolerance, lipids and body composition in overweight adults. Brit. J. Nutr. 2013, 109, 648-657. – reference: Shibata, K., Toda, S., Effects of sex hormones on the metabolism of tryptophan to niacin and to serotonin in male rats. Biosci. Biotechnol. Biochem. 1997, 61, 1200-1202. – reference: Tang, W. H. W., Hazen, S. L., The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 2014, 124, 4204-4211. – reference: Ha, C. Y., Kim, J. Y., Paik, J. K., Kim, O. Y. et al., The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin. Endocrinol. 2012, 76, 674-682. – reference: Chung, S. W., Chan, B. T., Trimethylamine oxide, dimethylamine, trimethylamine and formaldehyde levels in main traded fish species in Hong Kong. Food Addit. Contam. Part B Surveill. 2009, 2, 44-51. – reference: Elia, M., Carter, A., Bacon, S., Smith, R., The effect of 3-methylhistidine in food on its urinary excretion in man. Clin. Sci. 1980, 59, 509-511. – reference: Boulange, C. L., Claus, S. P., Chou, C. J., Collino, S. et al., Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways. J. Proteome Res. 2013, 12, 1956-1968. – reference: Rogatzki, M. J., Ferguson, B. S., Goodwin, M. L., Gladden, L. B., Lactate is always the end product of glycolysis. Front. Neurosci. 2015, 9, 22. – reference: Roberts, L. D., Koulman, A., Griffin, J. L., Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome. Lancet Diabetes Endocrinol. 2014, 2, 65-75. – reference: Shibata, K., Matsuo, H., Correlation between niacin equivalent intake and urinary excretion of its metabolites, N'-methylnicotinamide, N'-methyl-2-pyridone-5-carboxamide, and N'-methyl-4-pyridone-3-carboxamide, in humans consuming a self-selected food. Am. J. Clin. Nutr. 1989, 50, 114-119. – reference: Mihalik, S. J., Goodpaster, B. H., Kelley, D. E., Chace, D. H. et al., Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity 2010, 18, 1695-1700. – reference: Smith, J. L., Wishnok, J. S., Deen, W. M., Metabolism and excretion of methylamines in rats. Toxicol. Appl. Pharm. 1994, 125, 296-308. – reference: Pan, A., Sun, Q., Bernstein, A. M., Manson, J. E. et al., Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: three cohorts of us men and women. JAMA Intern. Med. 2013, 173, 1328-1335. – reference: Miao, J., Ling, A. V., Manthena, P. V., Gearing, M. E. et al., Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat. Commun. 2015, 6, 624-626. – reference: Kris-Etherton, P. M., Harris, W. S., Appel, L. J., Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747-2757. – reference: Ussher, J. R., Lopaschuk, G. D., Arduini, A., Gut microbiota metabolism of L-carnitine and cardiovascular risk. Atherosclerosis 2013, 231, 456-461. – volume: 76 start-page: 674 year: 2012 end-page: 682 article-title: The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes publication-title: Clin. Endocrinol – volume: 2 start-page: 44 year: 2009 end-page: 51 article-title: Trimethylamine oxide, dimethylamine, trimethylamine and formaldehyde levels in main traded fish species in Hong Kong publication-title: Food Addit. Contam. Part B Surveill – volume: 109 start-page: 648 year: 2013 end-page: 657 article-title: A randomised study on the effects of fish protein supplement on glucose tolerance, lipids and body composition in overweight adults publication-title: Brit. J. Nutr – volume: 84 start-page: 5035 year: 2012 end-page: 5039 article-title: XCMS online: a web‐based platform to process untargeted metabolomic data publication-title: Anal. Chem. – volume: 57 start-page: 412 year: 2013 end-page: 422 article-title: UPLC‐QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention publication-title: Mol. Nutr. Food Res – volume: 16 start-page: 1401 year: 2012 end-page: 1406 article-title: Does consumption of two portions of salmon per week enhance the antioxidant defense system in pregnant women? publication-title: Antioxid. Redox. Sign – volume: 30 start-page: 2816 year: 2007 end-page: 2821 article-title: Dietary cod protein improves insulin sensitivity in insulin‐resistant men and women publication-title: Diabetes Care – volume: 32 start-page: 1617 year: 1979 end-page: 1621 article-title: The short‐term effects of protein intake on 3‐methylhistidine excretion publication-title: Am. J. Clin. Nutr – volume: 6 start-page: 624 year: 2015 end-page: 626 article-title: Flavin‐containing monooxygenase 3 as a potential player in diabetes‐associated atherosclerosis publication-title: Nat. Commun – volume: 1218 start-page: 7832 year: 2011 end-page: 7840 article-title: icoshift: an effective tool for the alignment of chromatographic data publication-title: J. Chromatogr. A – volume: 50 start-page: 114 year: 1989 end-page: 119 article-title: Correlation between niacin equivalent intake and urinary excretion of its metabolites, N'‐methylnicotinamide, N'‐methyl‐2‐pyridone‐5‐carboxamide, and N'‐methyl‐4‐pyridone‐3‐carboxamide, in humans consuming a self‐selected food publication-title: Am. J. Clin. Nutr – volume: 97 start-page: 758 year: 2007 end-page: 763 article-title: An NMR‐based metabonomic investigation on effects of milk and meat protein diets given to 8‐year‐old boys publication-title: Brit. J. Nutr. – volume: 12 start-page: 1956 year: 2013 end-page: 1968 article-title: Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways publication-title: J. Proteome Res – volume: 20 start-page: 1107 year: 2011 end-page: 1111 article-title: Urinary biomarkers of meat consumption publication-title: Cancer Epidemiol. Biomarkers Prev – year: 2012 article-title: Integrating nutrition and physical activity – volume: 35 start-page: D521 year: 2007 end-page: D526 article-title: HMDB: the Human Metabolome Database publication-title: Nucleic Acids Res. – volume: 6 start-page: e19194 year: 2011 article-title: Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats publication-title: PLoS One – volume: 122 start-page: 876 year: 2010 end-page: 883 article-title: Major dietary protein sources and risk of coronary heart disease in women publication-title: Circulation – volume: 56 start-page: 1638 year: 2013 end-page: 1648 article-title: Distinct patterns of tissue‐specific lipid accumulation during the induction of insulin resistance in mice by high‐fat feeding publication-title: Diabetologia – volume: 84 start-page: 283 year: 2012 end-page: 289 article-title: CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets publication-title: Anal. Chem – volume: 85 start-page: 522 year: 1990 end-page: 529 article-title: Intracellular glucose oxidation and glycogen synthase activity are reduced in non‐insulin‐dependent (type II) diabetes independent of impaired glucose uptake publication-title: J. Clin. Invest – volume: 77 start-page: 587 year: 2003 end-page: 593 article-title: Plasma lipids and lipoproteins in hypercholesterolemic men fed a lipid‐lowering diet containing lean beef, lean fish, or poultry publication-title: Am. J. Clin. Nutr – volume: 231 start-page: 456 year: 2013 end-page: 461 article-title: Gut microbiota metabolism of L‐carnitine and cardiovascular risk publication-title: Atherosclerosis – volume: 18 start-page: 1695 year: 2010 end-page: 1700 article-title: Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity publication-title: Obesity – volume: 85 start-page: 7109 year: 2013 end-page: 7116 article-title: Time‐saving design of experiment protocol for optimization of LC‐MS data processing in metabolomic approaches publication-title: Anal. Chem – volume: 124 start-page: 4204 year: 2014 end-page: 4211 article-title: The contributory role of gut microbiota in cardiovascular disease publication-title: J. Clin. Invest – volume: 35 start-page: 904 year: 2014 end-page: 910 article-title: Prognostic value of choline and betaine depends on intestinal microbiota‐generated metabolite trimethylamine‐N‐oxide publication-title: Eur. Heart J – volume: 108 start-page: 1455 year: 2012 end-page: 1465 article-title: Dietary inclusion of salmon, herring and pompano as oily fish reduces CVD risk markers in dyslipidaemic middle‐aged and elderly Chinese women publication-title: Brit. J. Nutr – volume: 2 start-page: 65 year: 2014 end-page: 75 article-title: Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome publication-title: Lancet Diabetes Endocrinol – volume: 221 start-page: R75 year: 2014 end-page: R85 article-title: Metabolic profiling in diabetes publication-title: J. Endocrinol – volume: 9 start-page: 22 year: 2015 article-title: Lactate is always the end product of glycolysis publication-title: Front. Neurosci – volume: 9 start-page: e112859 year: 2014 article-title: A mixture of cod and scallop protein reduces adiposity and improves glucose tolerance in high‐fat fed male C57BL/6J mice publication-title: PLoS One – volume: 405 start-page: 67 year: 1975 end-page: 71 article-title: Nτ‐Methylhistidine content of mixed proteins in various rat tissues publication-title: Biochim. Biophys. Acta – volume: 104 start-page: 12587 year: 2007 end-page: 12594 article-title: The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome publication-title: Proc. Natl. Acad. Sci. USA – volume: 125 start-page: 296 year: 1994 end-page: 308 article-title: Metabolism and excretion of methylamines in rats publication-title: Toxicol. Appl. Pharm – volume: 106 start-page: 2747 year: 2002 end-page: 2757 article-title: Fish consumption, fish oil, omega‐3 fatty acids, and cardiovascular disease publication-title: Circulation – volume: 102 start-page: 582 year: 2015 end-page: 592 article-title: Lean‐seafood intake reduces cardiovascular lipid risk factors in healthy subjects: results from a randomized controlled trial with a crossover design publication-title: Am. J. Clin. Nutr – volume: 61 start-page: 1200 year: 1997 end-page: 1202 article-title: Effects of sex hormones on the metabolism of tryptophan to niacin and to serotonin in male rats publication-title: Biosci. Biotechnol. Biochem – volume: 46 start-page: 460 year: 2007 end-page: 467 article-title: Impact of fish intake on oxidative stress when included into a moderate energy‐restricted program to treat obesity publication-title: Eur. J. Nutr – volume: 59 start-page: 509 year: 1980 end-page: 511 article-title: The effect of 3‐methylhistidine in food on its urinary excretion in man publication-title: Clin. Sci – volume: 62 start-page: 2689 year: 2013 end-page: 2698 article-title: Metabolite profiles during oral glucose challenge publication-title: Diabetes – volume: 22 start-page: 31 year: 2015 end-page: 53 article-title: NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus publication-title: Cell Metab – volume: 29 start-page: 99 year: 2007 end-page: 108 article-title: A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human publication-title: Physiol. Genomics – volume: 9 start-page: e89845 year: 2014 article-title: Consumption of lean fish reduces the risk of type 2 diabetes mellitus: a prospective population based cohort study of Norwegian Women publication-title: PLoS One – volume: 205 start-page: 297 year: 2002 end-page: 306 article-title: Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage publication-title: J. Exp. Biol. – volume: 173 start-page: 1328 year: 2013 end-page: 1335 article-title: Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: three cohorts of us men and women publication-title: JAMA Intern. Med – ident: e_1_2_7_29_1 doi: 10.1038/oby.2009.510 – ident: e_1_2_7_43_1 doi: 10.1038/ncomms7498 – ident: e_1_2_7_41_1 doi: 10.1158/1055-9965.EPI-11-0048 – ident: e_1_2_7_46_1 doi: 10.1006/taap.1994.1076 – ident: e_1_2_7_5_1 doi: 10.1017/S0007114511006866 – ident: e_1_2_7_15_1 doi: 10.1530/JOE-14-0024 – ident: e_1_2_7_18_1 doi: 10.1371/journal.pone.0112859 – ident: e_1_2_7_22_1 doi: 10.1021/ac300698c – ident: e_1_2_7_6_1 doi: 10.1161/01.CIR.0000038493.65177.94 – ident: e_1_2_7_10_1 doi: 10.1371/journal.pone.0089845 – ident: e_1_2_7_23_1 doi: 10.1271/bbb.61.1200 – ident: e_1_2_7_25_1 doi: 10.1172/JCI72331 – ident: e_1_2_7_27_1 doi: 10.1172/JCI114468 – ident: e_1_2_7_4_1 doi: 10.1001/jamainternmed.2013.6633 – ident: e_1_2_7_12_1 doi: 10.1002/mnfr.201200571 – ident: e_1_2_7_47_1 doi: 10.2337/db12-0754 – ident: e_1_2_7_14_1 doi: 10.1016/S2213-8587(13)70143-8 – ident: e_1_2_7_24_1 doi: 10.1042/cs0590509 – ident: e_1_2_7_16_1 doi: 10.1016/j.chroma.2011.08.086 – ident: e_1_2_7_39_1 doi: 10.1089/ars.2012.4508 – ident: e_1_2_7_19_1 doi: 10.1016/0005-2795(75)90315-3 – ident: e_1_2_7_37_1 doi: 10.1371/journal.pone.0019194 – ident: e_1_2_7_3_1 doi: 10.1161/CIRCULATIONAHA.109.915165 – ident: e_1_2_7_31_1 doi: 10.1093/ajcn/50.1.114 – ident: e_1_2_7_34_1 doi: 10.1021/pr400051s – ident: e_1_2_7_28_1 doi: 10.1073/pnas.0705408104 – ident: e_1_2_7_33_1 doi: 10.1007/s00125-013-2913-1 – ident: e_1_2_7_20_1 doi: 10.1021/ac4020325 – ident: e_1_2_7_2_1 – ident: e_1_2_7_11_1 doi: 10.3945/ajcn.115.112086 – ident: e_1_2_7_35_1 doi: 10.3389/fnins.2015.00022 – ident: e_1_2_7_8_1 doi: 10.2337/dc07-0273 – ident: e_1_2_7_13_1 doi: 10.1017/S0007114507450322 – ident: e_1_2_7_26_1 doi: 10.1093/eurheartj/ehu002 – ident: e_1_2_7_7_1 doi: 10.1093/ajcn/77.3.587 – ident: e_1_2_7_36_1 doi: 10.1016/j.cmet.2015.05.023 – ident: e_1_2_7_17_1 doi: 10.1093/nar/gkl923 – ident: e_1_2_7_45_1 doi: 10.1080/02652030902858921 – ident: e_1_2_7_30_1 doi: 10.1111/j.1365-2265.2011.04244.x – ident: e_1_2_7_38_1 doi: 10.1007/s00394-007-0686-3 – ident: e_1_2_7_9_1 doi: 10.1017/S0007114512001717 – ident: e_1_2_7_32_1 doi: 10.1152/physiolgenomics.00194.2006 – ident: e_1_2_7_44_1 doi: 10.1242/jeb.205.3.297 – ident: e_1_2_7_21_1 doi: 10.1021/ac202450g – ident: e_1_2_7_40_1 doi: 10.1093/ajcn/32.8.1617 – ident: e_1_2_7_42_1 doi: 10.1016/j.atherosclerosis.2013.10.013 |
SSID | ssj0031243 |
Score | 2.339528 |
Snippet | Scope
Proteins constitute an important part of the human diet, but understanding of the effects of different dietary protein sources on human metabolism is... Proteins constitute an important part of the human diet, but understanding of the effects of different dietary protein sources on human metabolism is sparse.... Scope Proteins constitute an important part of the human diet, but understanding of the effects of different dietary protein sources on human metabolism is... SCOPE: Proteins constitute an important part of the human diet, but understanding of the effects of different dietary protein sources on human metabolism is... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1661 |
SubjectTerms | Adolescent Adult Aged Biomarkers Biomarkers - urine Carnitine - urine Cross-Over Studies Diet Dietary protein Dietary Proteins - administration & dosage Energy Metabolism excretion Female Glycine - analogs & derivatives Glycine - urine Healthy Volunteers Humans Lipid Metabolism lipids Male Metabolism metabolites Metabolomics Methylamines - urine Methylhistidines - urine Middle Aged mitochondria Mitochondria - metabolism nuclear magnetic resonance spectroscopy protein sources proteins Pyridones - urine randomized clinical trials Seafood Urine Young Adult |
Title | Lean-seafood intake decreases urinary markers of mitochondrial lipid and energy metabolism in healthy subjects: Metabolomics results from a randomized crossover intervention study |
URI | https://api.istex.fr/ark:/67375/WNG-2M089HFM-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201500785 https://www.ncbi.nlm.nih.gov/pubmed/26873789 https://www.proquest.com/docview/1808671710 https://www.proquest.com/docview/1825424673 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1613-4125 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1613-4133 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031243 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JjtQwELXQcOHCvvSwqJDQcMpMNicONwQ0LUT6MGLE3CwntqVosozaiQRz4hP4GX6IL6HsdAKNWIS4JhVvqXI921XPhDzJRIyrkkh7UmapF0eSeSxm1AtRXGdZqWRg853zdbI6id-c0tMfsvhHfoh5w81ahpuvrYGLwhx9Jw1tWm35PBHQoJezWeZBRN057fHMHxWh83IR9uizvBhd-cTa6IdHu5_veKXLdoA__Apy7iJY54KW14iYGj9GnpwdDn1xWF78xOv4P727Tq5u8Sk8HxXqBrmk2ptk8bJSPRzAlkS0hvXE4X-LfHmrRPv102c0Gd11Eqq2F2cKpIOjRhmw2_nYDmhsINDGQKehwWkEp91WWu2HujqvJIhWgnKJiNCoHlWzrkyDpcGYqfkRzFDYPSPzDPLxvc2nNrBRZqh7AzZPBgSg65X44kJJcENtI1Rtm-bATnCEurfJyfLVuxcrb3sXhFcihvS9UrIwpVlQ4gJIxKHKZCoRyunCF2mqpS8UlWlaSBEWNI5jGgklAia10AgwU5pGd8he27XqHsEBKChThcYycHEcaFbKyC8jgVM_K2kSLYg36QIvt0Tp9r6Omo8UzyG3P4fPP2dBns7y5yNFyG8lD5xqzWI48DawLqX8_fo1D3OfZatlzpMFeTzpHkdzt2c4olXdYHjAfMtIiLjwTzK46g_RA2JX7o6KO9cYJgzrYxl20qnfX1rM8_Xy2N5hsP-P8vfJFXyYjIHND8hevxnUQ4RvffHImeg3nmZD_A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JjtQwELVg5gAX9qVZCwkNp8xkc8fhhhiaBjo5jGYEN8uJbSma7vSok5ZgTnwCP8MP8SVUOZ2gRixCnFPxWuV6tqueGXuaqhh3JZH1tE4TL4608EQsuBeiuE3T0uiA8p2zfDw9id9-4H00IeXCdPwQw4EbWYZbr8nA6UD64Adr6KK2ROiJiAbdHL_IdumSjmzz8GhgkIrQfbkYe_RaXozOvOdt9MOD7f-3_NIuDfHHX4HObQzrnNDkKiv65nexJ6f767bYL89_Ynb8r_5dY1c2EBVedDp1nV0w9Q02OqxMC3uw4RGdQ97T-N9kX2dG1d8-f0Grsculhqpu1akB7RBpYxqgE31sCCwoFmjVwNLCAlcSXHlrTQYA8-qs0qBqDcblIsLCtKid86pZYGnQJWt-gmZd0LFR8xyy7julVDewMs163jZAqTKgAL2vxg_nRoMbawpSpTYNsZ3gOHVvsZPJq-OXU2_zHIRXIoz0vVKLMOFpUOIeSMWhSXWiEc3ZwldJYrWvDNdJUmgVFjyOYx4powKhrbKIMROeRLfZTr2szV2GA1BwYQqLZeD-OLCi1JFfRgpXf1HycTRiXq8MstxwpdOTHXPZsTyHkiZHDpMzYs8G-bOOJeS3kntOtwYxHHiKrUu4fJ-_lmHmi3Q6yeR4xJ70yifR4ukaR9VmuW5kIHwiJURo-CcZ3PiH6ASxK3c6zR1qDMcC6xMpdtLp319aLLN8ckTPGNz7R_nH7NL0OJvJ2Zv83X12GQXGXZzzA7bTrtbmIaK5tnjk7PU7qipIGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELWglRAvlDvLdZBQeUqbmxOHN0QJCzQRqqjom-XEthQ1l9UmK5U-8Qn8DD_ElzBONoFFXIR49sSxnRnPGWfmmJAnkfAxKvG0JWUUWr4nmcV8Ri0XxXUU5Uo6pt45SYP5sf_mhJ78UMU_8ENMB27GMvr92hj4Qur976ShVa0NnycCGvRy9CLZ9gMMsQwsOpoIpDz0Xn2KPToty0dfPtI22u7-5vMbbmnbrPDZrzDnJoTtfVC8Q8Q4-iH15HRv1WV7-flPxI7_M72r5MoaoMLzQaOukQuqvk5mB4XqYBfWLKIlpCOJ_w3y5VCJ-uunz2gzumkkFHUnThXIHo-2qgVzno_jgMpkAi1baDRUuI_gvltLo_5QFotCgqglqL4SESrVoW6WRVthbzCUan6EdpWZQ6P2GSRDuymobmGp2lXZtWAKZUAA-l6JDedKQr_UJkXVjGnK7ISeUfcmOY5fvn8xt9aXQVg5gkjbyiVzQxo5OUZAwndVJEOJWE5ntghDLW2hqAzDTAo3o77vU08o4TCphUaEGdLQu0W26qZWdwguQEaZyjT2gdGxo1kuPTv3BO79LKeBNyPWqAs8XzOlmws7Sj5wPLvcfBw-fZwZeTrJLwaOkN9K7vaqNYnhwpvMupDyD-kr7iY2i-ZxwoMZeTzqHkd7Nz9xRK2aVcsdZhtKQgSGf5LBsN9FF4hTuT0o7vRGN2D4PhbhJHv1-8uIeZLGR-YSg7v_KP-IXHp3EPPD1-nbe-QytgdDkvN9stUtV-oBQrkue9hb6zemJkbH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lean-seafood+intake+decreases+urinary+markers+of+mitochondrial+lipid+and+energy+metabolism+in+healthy+subjects%3A+Metabolomics+results+from+a+randomized+crossover+intervention+study&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Schmedes%2C+Mette&rft.au=Aadland%2C+Eli+Kristin&rft.au=Sundekilde%2C+Ulrik+Kr%C3%A6mer&rft.au=Jacques%2C+H%C3%A9l%C3%A8ne&rft.date=2016-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=60&rft.issue=7&rft.spage=1661&rft.epage=1672&rft_id=info:doi/10.1002%2Fmnfr.201500785&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_2M089HFM_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon |