Prediction model of axillary lymph node status using automated breast ultrasound (ABUS) and ki-67 status in early-stage breast cancer

Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional...

Full description

Saved in:
Bibliographic Details
Published inBMC cancer Vol. 22; no. 1; pp. 1 - 11
Main Authors Wang, Qiucheng, Li, Bo, Liu, Zhao, Shang, Haitao, Jing, Hui, Shao, Hua, Chen, Kexin, Liang, Xiaoshuan, Cheng, Wen
Format Journal Article
LanguageEnglish
Published London BioMed Central 28.08.2022
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2407
1471-2407
DOI10.1186/s12885-022-10034-3

Cover

Abstract Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status. Methods A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard. Results Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis ( P  < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II ( P  < 0.001). Conclusion ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule.
AbstractList Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status. Methods A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard. Results Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (P < 0.001). Conclusion ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule.
Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status. Methods A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard. Results Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (P < 0.001). Conclusion ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule. Keywords: Automated breast ultrasound, Early-stage breast cancer, Axillary lymph node metastasis, Ki-67, Retraction phenomenon
Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status.BACKGROUNDAutomated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status.A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard.METHODSA total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard.Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (P < 0.001).RESULTSKi-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (P < 0.001).ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule.CONCLUSIONABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule.
Abstract Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status. Methods A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard. Results Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (P < 0.001). Conclusion ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule.
Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status. Methods A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard. Results Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis ( P  < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II ( P  < 0.001). Conclusion ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule.
Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status. A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard. Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (P < 0.001). ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule.
ArticleNumber 929
Audience Academic
Author Wang, Qiucheng
Liu, Zhao
Shao, Hua
Li, Bo
Liang, Xiaoshuan
Cheng, Wen
Shang, Haitao
Chen, Kexin
Jing, Hui
Author_xml – sequence: 1
  givenname: Qiucheng
  surname: Wang
  fullname: Wang, Qiucheng
  organization: Department of Ultrasound, Harbin Medical University Cancer Hospital
– sequence: 2
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  organization: Department of Ultrasound, Harbin Medical University Cancer Hospital
– sequence: 3
  givenname: Zhao
  surname: Liu
  fullname: Liu, Zhao
  organization: Department of Ultrasound, Harbin Medical University Cancer Hospital
– sequence: 4
  givenname: Haitao
  surname: Shang
  fullname: Shang, Haitao
  organization: Department of Ultrasound, Harbin Medical University Cancer Hospital
– sequence: 5
  givenname: Hui
  surname: Jing
  fullname: Jing, Hui
  organization: Department of Ultrasound, Harbin Medical University Cancer Hospital
– sequence: 6
  givenname: Hua
  surname: Shao
  fullname: Shao, Hua
  organization: Department of Ultrasound, Harbin Medical University Cancer Hospital
– sequence: 7
  givenname: Kexin
  surname: Chen
  fullname: Chen, Kexin
  organization: Department of Pathology, Harbin Medical University Cancer Hospital
– sequence: 8
  givenname: Xiaoshuan
  surname: Liang
  fullname: Liang, Xiaoshuan
  organization: Department of Breast Surgery, Harbin Medical University Cancer Hospital
– sequence: 9
  givenname: Wen
  surname: Cheng
  fullname: Cheng, Wen
  email: hrbchengwen@163.com
  organization: Department of Ultrasound, Harbin Medical University Cancer Hospital, Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital
BookMark eNqNkstu1DAUhiNURC_wAqwiIaF2keJLHDsbpFJxqVQJROnacmwn4-LYg51A5wF4b047Le1UqEJZxD75_t855_dusRVisEXxEqNDjEXzJmMiBKsQIRVGiNYVfVLs4JrjitSIb91bbxe7OV8ghLlA4lmxTRtEcYPITvH7S7LG6cnFUI7RWF_GvlSXznuVVqVfjctFGaBe5klNcy7n7MJQqnmKo5qsKbtkVZ7K2U9J5TgHU-4fvTs_OygVLL-7quG3ShdKq5JfVbAf7K1Qq6Btel487ZXP9sXNe684__D-2_Gn6vTzx5Pjo9NKN3U7VVpo0VKDsBFKUWQVZrpra0JaQzhvBNa8RRgrhWtSC1IbxijTjeB9Q5joMd0rTta-JqoLuUxuhC5lVE5eF2IapEqT097KBum-w13LGO9qQ3VXc9U3rK2t4dhwDl507TWHpVr9Ut7_NcRIXgUk1wFJCEheByQpqN6uVcu5G63RNsDg_MavbH4JbiGH-FNCm4iwBgz2bwxS_DHbPMnRZW0hr2DjnCXhiAsuGGeAvnqAXsQ5BRgwUJjVLYOx3FGDgrZd6COcq69M5RFQlFJWE6AO_0HBY-zoNNzL3kF9Q3CwIQBmspfToOac5cnZ10329T12YZWfFjn6-epW5k2QrEGdYs7J9v83cvFApB1cSfCGFpx_XHqTcYZzwmDT3QQfUf0BlbkbyA
CitedBy_id crossref_primary_10_1186_s12885_023_10743_3
crossref_primary_10_46268_jsu_2022_9_2_23
crossref_primary_10_1016_j_tice_2023_102244
crossref_primary_10_1007_s12029_024_01051_5
crossref_primary_10_1016_j_acra_2024_06_013
crossref_primary_10_1007_s10549_024_07375_x
crossref_primary_10_3389_fimmu_2025_1460673
crossref_primary_10_3892_ol_2024_14478
crossref_primary_10_1016_j_clbc_2024_02_003
crossref_primary_10_62347_KEPZ9726
crossref_primary_10_1007_s10549_024_07305_x
crossref_primary_10_1097_CEJ_0000000000000860
Cites_doi 10.1002/jum.15314
10.3389/fonc.2017.00110
10.3892/ol.2014.2333
10.1016/j.breast.2018.12.009
10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9
10.1038/srep21196
10.1016/j.rehab.2019.04.007
10.1056/NEJMoa0904832
10.1016/j.ultrasmedbio.2017.05.003
10.1002/jum.14469
10.1007/BF02967467
10.1016/j.ejrad.2016.11.032
10.1371/journal.pone.0114820
10.3390/ijerph18094420
10.5152/dir.2015.14515
10.1007/s00428-007-0435-2
10.1053/crad.1999.0333
10.7150/ijbs.21635
10.1016/j.ultrasmedbio.2019.08.016
10.1136/jcp.2011.089847
10.1245/s10434-016-5177-4
10.1146/annurev-nutr-112912-095300
10.1002/jum.14991
10.3348/kjr.2019.0176
10.2214/ajr.184.4.01841260
10.1016/j.acra.2018.02.014
10.1002/jum.14879
10.1002/ijc.30791
10.1001/jama.2013.277804
10.1007/s10549-013-2598-7
10.1007/s00330-014-3135-8
10.1177/0284185113488580
10.14366/usg.18055
10.1007/s12282-018-0863-7
10.1007/s10549-020-05625-2
10.1016/j.ultrasmedbio.2015.06.013
10.5858/134.6.907
10.1002/jum.14863
10.1093/jjco/hyq070
10.7863/jum.1996.15.3.241
10.1007/s11604-010-0424-2
10.1159/000334920
10.1016/j.ejrad.2015.07.028
10.1093/annonc/mdt303
10.1097/MD.0000000000003689
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
ISR
3V.
7TO
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12885-022-10034-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic





Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2407
EndPage 11
ExternalDocumentID oai_doaj_org_article_60cfb1b9557b4d3cb47af6594ed71d77
10.1186/s12885-022-10034-3
PMC9420256
A715333542
10_1186_s12885_022_10034_3
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ISR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
3V.
7TO
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
2VQ
4.4
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
LGEZI
LOTEE
NADUK
NXXTH
RIG
UNPAY
ID FETCH-LOGICAL-c649t-c8c893d01d8aa30ea15cb94229d277681c79011aa1424824d5535c687f6258f13
IEDL.DBID M48
ISSN 1471-2407
IngestDate Tue Oct 14 18:57:53 EDT 2025
Sun Oct 26 03:59:38 EDT 2025
Tue Sep 30 15:56:28 EDT 2025
Thu Sep 04 16:16:06 EDT 2025
Tue Oct 07 05:29:10 EDT 2025
Mon Oct 20 22:22:51 EDT 2025
Mon Oct 20 16:32:39 EDT 2025
Thu Oct 16 14:22:05 EDT 2025
Thu May 22 21:07:43 EDT 2025
Wed Oct 01 05:06:55 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
Sat Sep 06 07:18:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ki-67
Axillary lymph node metastasis
Retraction phenomenon
Early-stage breast cancer
Automated breast ultrasound
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c649t-c8c893d01d8aa30ea15cb94229d277681c79011aa1424824d5535c687f6258f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2715495625?pq-origsite=%requestingapplication%&accountid=15518
PMID 36031602
PQID 2715495625
PQPubID 44074
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_60cfb1b9557b4d3cb47af6594ed71d77
unpaywall_primary_10_1186_s12885_022_10034_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9420256
proquest_miscellaneous_2707878575
proquest_journals_2715495625
gale_infotracmisc_A715333542
gale_infotracacademiconefile_A715333542
gale_incontextgauss_ISR_A715333542
gale_healthsolutions_A715333542
crossref_primary_10_1186_s12885_022_10034_3
crossref_citationtrail_10_1186_s12885_022_10034_3
springer_journals_10_1186_s12885_022_10034_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-28
PublicationDateYYYYMMDD 2022-08-28
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC cancer
PublicationTitleAbbrev BMC Cancer
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References G Canavese (10034_CR1) 2016; 23
G Yun (10034_CR13) 2019; 38
JA Knight (10034_CR43) 2017; 141
AM Moorman (10034_CR46) 2015; 41
JW Li (10034_CR34) 2019; 38
M Jia (10034_CR15) 2020; 181
A Michelotti (10034_CR4) 2019; 44
H Hashimoto (10034_CR38) 2000; 7
J Jiang (10034_CR40) 2014; 24
F Çelebi (10034_CR33) 2015; 21
GV Dall (10034_CR45) 2017; 7
MY Kim (10034_CR35) 2013; 54
H Zhang (10034_CR9) 2019; 38
T Mitsuhiro (10034_CR12) 2010; 28
YS Sun (10034_CR44) 2017; 13
WT Yang (10034_CR6) 1996; 15
L Niu (10034_CR11) 2019; 38
ME Hammond (10034_CR21) 2010; 134
A de Sire (10034_CR5) 2020; 63
Z Li (10034_CR27) 2017; 10
IC LaraPalomo (10034_CR3) 2021; 18
M Sawaki (10034_CR17) 2014; 8
N Makarem (10034_CR42) 2013; 33
N Matsubara (10034_CR29) 2011; 81
D Park (10034_CR31) 2007; 451
P Akissue (10034_CR8) 2017; 43
R Rao (10034_CR2) 2013; 310
SH Kim (10034_CR18) 2020; 21
JMS Bartlett (10034_CR22) 2011; 64
AS Hong (10034_CR26) 2005; 184
FY Zheng (10034_CR14) 2017; 86
K Tamaki (10034_CR36) 2010; 40
GM Hortobagyi (10034_CR24) 2016
M Chung (10034_CR30) 2016; 95
PM Lamb (10034_CR37) 2000; 55
R Rella (10034_CR19) 2018; 25
AQ Zhu (10034_CR25) 2020; 39
M de Boer (10034_CR7) 2009; 361
A Goldhirsch (10034_CR23) 2013; 24
GM Rauch (10034_CR32) 2013; 139
NN Wang (10034_CR16) 2018; 25
F Zheng (10034_CR39) 2015; 84
SQ Qiu (10034_CR47) 2016; 6
T Scholzen (10034_CR28) 2000; 182
Q Guo (10034_CR10) 2018; 37
X Wen (10034_CR41) 2018; 40
L Zhang (10034_CR20) 2019; 45
References_xml – volume: 39
  start-page: 2059
  issue: 10
  year: 2020
  ident: 10034_CR25
  publication-title: J Ultrasound Med
  doi: 10.1002/jum.15314
– volume: 7
  start-page: 110
  year: 2017
  ident: 10034_CR45
  publication-title: Front Oncol
  doi: 10.3389/fonc.2017.00110
– volume: 8
  start-page: 1707
  issue: 4
  year: 2014
  ident: 10034_CR17
  publication-title: Oncol Lett
  doi: 10.3892/ol.2014.2333
– volume: 44
  start-page: 15
  year: 2019
  ident: 10034_CR4
  publication-title: Breast
  doi: 10.1016/j.breast.2018.12.009
– volume: 182
  start-page: 311
  issue: 3
  year: 2000
  ident: 10034_CR28
  publication-title: J Cell Physiol
  doi: 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9
– volume: 6
  start-page: 21196
  year: 2016
  ident: 10034_CR47
  publication-title: Sci Rep
  doi: 10.1038/srep21196
– volume: 63
  start-page: 365
  issue: 4
  year: 2020
  ident: 10034_CR5
  publication-title: Ann Phys Rehabil Med
  doi: 10.1016/j.rehab.2019.04.007
– volume: 361
  start-page: 653
  issue: 7
  year: 2009
  ident: 10034_CR7
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0904832
– volume: 43
  start-page: 1837
  issue: 9
  year: 2017
  ident: 10034_CR8
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2017.05.003
– volume: 37
  start-page: 1354
  issue: 6
  year: 2018
  ident: 10034_CR10
  publication-title: J Ultrasound Med
  doi: 10.1002/jum.14469
– volume: 7
  start-page: 241
  issue: 3
  year: 2000
  ident: 10034_CR38
  publication-title: Breast Cancer
  doi: 10.1007/BF02967467
– volume: 86
  start-page: 267
  year: 2017
  ident: 10034_CR14
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2016.11.032
– volume: 10
  issue: 3
  year: 2017
  ident: 10034_CR27
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0114820
– volume: 18
  start-page: 4420
  issue: 9
  year: 2021
  ident: 10034_CR3
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph18094420
– volume: 21
  start-page: 448
  issue: 6
  year: 2015
  ident: 10034_CR33
  publication-title: Diagnostic and interventional radiology (Ankara, Turkey)
  doi: 10.5152/dir.2015.14515
– volume: 451
  start-page: 11
  issue: 1
  year: 2007
  ident: 10034_CR31
  publication-title: Virchows Arch
  doi: 10.1007/s00428-007-0435-2
– volume: 55
  start-page: 40
  issue: 1
  year: 2000
  ident: 10034_CR37
  publication-title: Clin Radiol
  doi: 10.1053/crad.1999.0333
– volume: 13
  start-page: 1387
  issue: 11
  year: 2017
  ident: 10034_CR44
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.21635
– volume: 45
  start-page: 3137
  issue: 12
  year: 2019
  ident: 10034_CR20
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2019.08.016
– volume: 64
  start-page: 649
  issue: 8
  year: 2011
  ident: 10034_CR22
  publication-title: J Clin Pathol
  doi: 10.1136/jcp.2011.089847
– volume: 23
  start-page: 2494
  issue: 8
  year: 2016
  ident: 10034_CR1
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-016-5177-4
– volume: 33
  start-page: 319
  year: 2013
  ident: 10034_CR42
  publication-title: Annu Rev Nutr
  doi: 10.1146/annurev-nutr-112912-095300
– volume: 38
  start-page: 2871
  issue: 11
  year: 2019
  ident: 10034_CR11
  publication-title: J Ultrasound Med
  doi: 10.1002/jum.14991
– volume: 21
  start-page: 15
  issue: 1
  year: 2020
  ident: 10034_CR18
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2019.0176
– start-page: 589
  volume-title: AJCC cancer staging manual
  year: 2016
  ident: 10034_CR24
– volume: 184
  start-page: 1260
  issue: 4
  year: 2005
  ident: 10034_CR26
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/ajr.184.4.01841260
– volume: 25
  start-page: 1457
  issue: 22
  year: 2018
  ident: 10034_CR19
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2018.02.014
– volume: 38
  start-page: 1833
  issue: 7
  year: 2019
  ident: 10034_CR9
  publication-title: J Ultrasound Med
  doi: 10.1002/jum.14879
– volume: 141
  start-page: 916
  issue: 5
  year: 2017
  ident: 10034_CR43
  publication-title: Int J Cancer
  doi: 10.1002/ijc.30791
– volume: 310
  start-page: 1385
  issue: 13
  year: 2013
  ident: 10034_CR2
  publication-title: JAMA
  doi: 10.1001/jama.2013.277804
– volume: 139
  start-page: 639
  issue: 3
  year: 2013
  ident: 10034_CR32
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-013-2598-7
– volume: 24
  start-page: 1186
  issue: 6
  year: 2014
  ident: 10034_CR40
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3135-8
– volume: 54
  start-page: 889
  issue: 8
  year: 2013
  ident: 10034_CR35
  publication-title: Acta Radiol
  doi: 10.1177/0284185113488580
– volume: 38
  start-page: 264
  issue: 3
  year: 2019
  ident: 10034_CR13
  publication-title: Ultrasonography
  doi: 10.14366/usg.18055
– volume: 25
  start-page: 629
  issue: 6
  year: 2018
  ident: 10034_CR16
  publication-title: Breast Cancer
  doi: 10.1007/s12282-018-0863-7
– volume: 40
  start-page: 764
  issue: 6
  year: 2018
  ident: 10034_CR41
  publication-title: Ultraschall Med
– volume: 181
  start-page: 589
  issue: 3
  year: 2020
  ident: 10034_CR15
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-020-05625-2
– volume: 41
  start-page: 2842
  issue: 11
  year: 2015
  ident: 10034_CR46
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.06.013
– volume: 134
  start-page: 907
  issue: 6
  year: 2010
  ident: 10034_CR21
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/134.6.907
– volume: 38
  start-page: 1747
  issue: 7
  year: 2019
  ident: 10034_CR34
  publication-title: J Ultrasound Med
  doi: 10.1002/jum.14863
– volume: 40
  start-page: 905
  issue: 10
  year: 2010
  ident: 10034_CR36
  publication-title: Jpn J Clin Oncol
  doi: 10.1093/jjco/hyq070
– volume: 15
  start-page: 241
  issue: 3
  year: 1996
  ident: 10034_CR6
  publication-title: Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
  doi: 10.7863/jum.1996.15.3.241
– volume: 28
  start-page: 325
  issue: 4
  year: 2010
  ident: 10034_CR12
  publication-title: Jpn J Radiol
  doi: 10.1007/s11604-010-0424-2
– volume: 81
  start-page: 345
  issue: 5–6
  year: 2011
  ident: 10034_CR29
  publication-title: Oncology
  doi: 10.1159/000334920
– volume: 84
  start-page: 2123
  issue: 11
  year: 2015
  ident: 10034_CR39
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2015.07.028
– volume: 24
  start-page: 2206
  issue: 9
  year: 2013
  ident: 10034_CR23
  publication-title: Annals of oncology : official journal of the European Society for Medical Oncology
  doi: 10.1093/annonc/mdt303
– volume: 95
  issue: 20
  year: 2016
  ident: 10034_CR30
  publication-title: Medicine
  doi: 10.1097/MD.0000000000003689
SSID ssj0017808
Score 2.459757
Snippet Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting...
Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting...
Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical...
Abstract Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Automated breast ultrasound
Automation
Axillary lymph node metastasis
Biomedical and Life Sciences
Biomedicine
Biopsy
Body mass index
Breast
Breast cancer
Cancer Research
Care and treatment
Chemotherapy
Development and progression
Dissection
Early-stage breast cancer
Gene amplification
Health Promotion and Disease Prevention
Ki-67
Ki-67 antigen
Lymph nodes
Lymphatic metastasis
Lymphatic system
Lymphedema
Medicine/Public Health
Metastases
Metastasis
Multivariate analysis
Normal distribution
Oncology
Patients
Prediction models
Prevention
Radiation therapy
Regression analysis
Retraction phenomenon
Risk factors
Statistical analysis
Surgery
Surgical Oncology
Testing
Ultrasonic imaging
Ultrasound
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiKcIFDAICRCNmodfOW4RVUEqQpSVerMc29muiLLVZiPYH8D_ZiYvGlUqHLgl9liJPePxjDzzDSGvfMZz4RQGMfAiZBkrQjCOkhBOeg72ucpMW4vg-LM4mrNPp_z0QqkvjAnr4IG7hdsXkS3yOM84lzlzqc2ZNIXgGfNOxk62eeSRygZnqr8_kCpSQ4qMEvs1aGGFmcgJqJ0oZWE6OYZatP7LOvlynOR4WXqL3Giqc7P9Ycrywnl0eIfc7g1JOusmcJdc89U9cv24vyq_T359WeMzrjtty93QVUHNTywytN7ScgtcpBW0U0wpamqKAfALaprNCmxY72iO0eob2pTwTzXWXqJvZgfzk7fUwOP3ZSjkMHJZUY8wySG8L_ww0KI4rR-Q-eGHb--Pwr7mQmgFyzahVRYsGBfFThmTRt7E3OYZS5LMJRJck9hKTFY1BjPkVMIc5ym3QskCHClVxOlDslOtKv-I0FQIXwgmYpFZ5mRkfBrlXPrISc_yhAckHligbQ9IjnUxSt06Jkrojm0a2KZbtuk0IO_GMecdHMeV1AfI2ZESobTbBhAw3QuY_puABeQ5yoXu8lJHhaBnEk3llLMkIC9bCoTTqDBeZ2GautYfT75OiF73RMUKZmlNn_4Aa4UIXBPK3Qkl7Hc77R4EVPf6ptaJRKg9dGYD8mLsxpEYQ1f5VYM0YA5KrMgaEDkR7MkCTXuq5VmLOQ4igNZxQPaGLfDn41cxYG_cJv_Ar8f_g19PyM0EN3oEJ4DaJTubdeOfguG4yZ-1OuI36QploA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwELZGJ_HyAfEqAgMMQgLEouXFb_mAUIs2DaRV00alfbMc2-mqVUlpGkF_AP8bX5pkRJMqviXxWWny3J0v9d1zCL2zCU2ZEZDEQDOfJCTzXXAU-W6lpy4-F4mqexGcjNnxhHy_oBc7aNzWwkBaZesTa0dtCg3_kR9EHMjEIFz_svjpQ9co2F1tW2ioprWC-VxTjN1CuxEwYw3Q7uhwfHrW7StwEYi2dEawg9J5ZwEVypFzR0FM_Li3PNUs_jd99c38yW4T9R66U-ULtf6l5vN_1qmjB-h-E2Di4UYjHqIdmz9Ct0-aLfTH6M_pEo4BD1y3wcFFhtVvaD60XOP52qGLc3cdQ6lRVWJIjJ9iVa0KF9tag1PIYl_hau5-Uwk9mfCH4Why_hErd3g18xlvZ85ybIE-2XfnU9tO1KBmyydocnT44-ux3_Ri8DUjycrXQrvIxgShEUrFgVUh1WlCoigxEXefLKHmUMSqFFTOiYgYSmOqmeCZQ0xkYfwUDfIit88QjhmzGSMsZIkmhgfKxkFKuQ0MtySNqIfCFgKpG6Jy6Jcxl_UHi2ByA5t0sMkaNhl76FM3Z7Gh6dgqPQJkO0mg2K4vFMupbCxWskBnaZgmlPKUmFinhKuM0YRYw0PDuYdeg17ITb1q5yjkkEMIHVMSeehtLQE0Gznk8UxVVZby2_lZT-h9I5QV7im1asoi3LsCZq6e5F5P0vkB3R9uFVQ2fqiU11bjoTfdMMyE3LrcFhXIuDCRQ6dWD_GeYvdeUH8kn13WXOROBSBq9tB-awLXN98GwH5nJv-B1_Ptj_YC3Y3AhAPn88UeGqyWlX3pQsVV-qqx_78TB2Mb
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA96go8P4hOrp0YRVO6KfeTVj3vicQon4rlw30KapOtiaY_tFt0_wP_bmW5bLSeHfmubmXY388iEzPyGkBc-47lwCpMYeBGyjBUhBEdJCCs9h_hcZabrRXD8URzN2YdTftoXhTVDtvtwJNl56s6slXjTgCdVWE2cgOuIUhaml8kVjnBeoMXzZDaeHUgVqaE85q98kyWoQ-o_74_P50iOB6U3yLW2OjOb76Ys_1iLDm-Rm30QSWdbqd8ml3x1h1w97o_J75Kfn1Z4jXNOu1Y3tC6o-YENhlYbWm5AgrSC5xTLidqGYvL7gpp2XUP86h3NMVN9TdsSflODfZfoq9nB_OQ1NXD5bRkKOXAuK-oRIjmE-4UfGC2q0uoemR---_L2KOz7LYRWsGwdWmUhenFR7JQxaeRNzG2esSTJXCJhWxJbiYWqxmB1nEqY4zzlVihZwCZKFXF6n-xUdeUfEJoK4QvBRCwyy5yMjE-jnEsfOelZnvCAxIMItO3ByLEnRqm7TYkSeis2DWLTndh0GpC9kedsC8VxIfUBSnakRBjt7kG9WujeKrWIbJHHeca5zJlLbc6kKQTPmHcydlIG5Cnqhd7WpI7OQM8khskpZ0lAnncUCKVRYa7OwrRNo9-ffJ4QveyJihr-pTV96QPMFaJvTSh3J5Rg63Y6PCio7n1NoxOJMHu4kQ3Is3EYOTF_rvJ1izQQCkrsxhoQOVHsyQRNR6rl1w5vHFQAI-OA7A8m8PvjFwlgfzSTf5DXw_97-yNyPUGTjsDPq12ys161_jGEh-v8SecNfgG9rll7
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELZgK3E8cCMCBQxCAkSzzeEjedwiqoLUqqKs1D5ZjuMsqw1JlUOwvPO_8eSioagCibdsPLO7Hs-Mx_J8Mwi90CGNWBxAEgNNbBKSxDbBkWebnZ6a-DwIZdOLYP-A7c3Jh2N63OU_ARYm-gJfqXQxPQs_T1t0A3RP0MX2aZy0xh6w7dL41wAwxp5xKI5PbP8y2mDUxOUTtDE_OJydNPAi7sI1Au9RM39kHO1MTQH_8276fOrkcH96HV2ts1O5_irT9MwWtXsTrfrJtZkpq2ldRVP1_be6j_9n9rfQjS6SxbNW9W6jSzq7g67sd3f1d9GPwwKeYeFx028H5wmW36DLUbHG6dqoEc7MewyYprrEkIG_wLKuchNE6xhHkC5f4To1_62E5k_41WxnfvQaS_O4WtqM95zLDGuo02ybzwvdM7ZTvIfmu-8-vd2zu6YPtmIkrGwVKBNCxY4bB1L6jpYuVVFIPC-MPW7ORq7igJaVEiB6gUdiSn2qWMATc5ILEte_jyZZnukHCPuM6YQR5rJQkZg7UvtORLl2Yq5J5FELuf2CC9VVRIfGHKloTkYBE618hZGvaOQrfAu9GXhO23ogF1LvgB4NlFDLu3mRFwvRuQbBHJVEbhRSyiMS-yoiXCZGhYmOuRtzbqGnoIWiBcYOHknMOMTqPiWehZ43FFDPI4OEoYWsy1K8P_o4InrZESW5maWSHf7CyApKgI0oN0eUxuGo8XBvDqJzeKXwONT6g9O0hZ4Nw8AJSXyZzmugMfEoh5awFuIjMxoJaDySLT83Rc-NCkB4bqGt3uB-_fhFC7A1GOVfrNfDfyN_hK55YHuO2WyCTTSpilo_NjFqFT3pnM9PlQmG5Q
  priority: 102
  providerName: Unpaywall
Title Prediction model of axillary lymph node status using automated breast ultrasound (ABUS) and ki-67 status in early-stage breast cancer
URI https://link.springer.com/article/10.1186/s12885-022-10034-3
https://www.proquest.com/docview/2715495625
https://www.proquest.com/docview/2707878575
https://pubmed.ncbi.nlm.nih.gov/PMC9420256
https://bmccancer.biomedcentral.com/counter/pdf/10.1186/s12885-022-10034-3
https://doaj.org/article/60cfb1b9557b4d3cb47af6594ed71d77
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: M48
  dateStart: 20010801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2407
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017808
  issn: 1471-2407
  databaseCode: U2A
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2VeLjAfEpAqMYhMQDC-TDH8kDQm21aSC1qgqVxl4sx3FKRZWOthHrC387d2nSEW2qeGjU2Oe28X34XN_dj5A3NuaJSCMMYuCZy2KWueAcBS6s9Bz88yjWJRZBfyBOx-zLGT_bIzXcUTWByxu3dognNV7M3l_-Wn8Chf9YKnwkPizBxkaYZxyAUfFC5ob7pAUrVYxQDn12daogoxKhzgeDjKcKsk6iufEzGgtVWc__utW-Hkm5PU69S24X-YVe_9az2T8r1sl9cq9yNWlnIxsPyJ7NH5Jb_eow_RH5M1zge-QMLQFx6Dyj-hJhiBZrOlsDn2kO7RSTjoolxRD5CdXFag5erk1pgvHsK1rM4DctEZ2Janj9nLpC1kOmObVYQdmF-4mtRxiUtMVjMj45_tY7dSs4BtcIFq9cExlwblLPTyOtQ89qn5skZkEQp4GEXYtvJOaxao3Jc1HAUs5DbkQkM9hjRZkfPiEH-Ty3TwkNhbCZYMIXsWGp9LQNvYRL66XSsiTgDvHruVemqlWOkBkzVe5ZIqE2_FLAL1XyS4UOebcdc7Gp1LGTuoss3VJile2yYb6YqEpplfBMlvhJzLlMWBqahEmdCR4zm0o_ldIhL1Eg1CZldWsrVEeiFx1yFjjkdUmBlTZyDOWZ6GK5VJ-_jhpEbyuibA5PaXSVGQFzhcW5GpSHDUowBabZXUumqjVJBRKr8OE-1yGvtt04EsPrcjsvkAY8RYlgrQ6RDYluTFCzJ5_-KMuRgwig4-yQo1r2r758FwOOtvrxH_x6tvvJn5M7AequB2Y_OiQHq0VhX4C3uEraZF-eyTZpdY8HwxHc9USvXf7z0i6NA1xH3XO4jgNoaY0Hw873v09FZ48
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gJKIPxmusooxGo0YaeplbH4gBhYBcQoBNeBunM9OVuGlxuw3uD_Bv-duc022LDQnxhbdue2a37XfmnDM755wPoTc2oSkzApIYaOaThGS-C44i33l66uJzkaiai2D_gG0PyNdTejqH_rS1MJBW2drE2lCbQsN_5KsRh2ZiEK5_Ov_pA2sU7K62FBqqoVYwa3WLsaawY9dOL9wSrlzb-eLwfhtFW5snn7f9hmXA14wkE18L7Xy2CUIjlIoDq0Kq04REUWIi7oLxUHMoz1QKasJERAylMdVM8Mzdi8jC2H3vLbRAYpK4xd_CxubB4VG3j8FFINpSHcFWS-cNBFRER878BTHx4547rFkDrvqGq_ma3abtXbRY5edqeqFGo3_84tZ9dK8JaPH6TAMfoDmbP0S395st-0fo9-EYjgF_XNPu4CLD6heQHY2neDR12oRzdx5DaVNVYkjEH2JVTQoXS1uDU8ian-Bq5O6pBA4o_H59Y3D8ASt3-OPMZ7wdeZZjC-2affd5aNuBGtR6_BgNbgSVJ2g-L3L7FOGYMZsxwkKWaGJ4oGwcpJTbwHBL0oh6KGwhkLppjA78HCNZL5AEkzPYpINN1rDJ2EMfuzHns7Yg10pvALKdJLT0rk8U46FsLIRkgc7SME0o5SkxsU4JVxmjCbGGh4ZzDy2DXshZfWxnmOQ6h5A9piTy0OtaAtp65JA3NFRVWcqd46Oe0LtGKCvcU2rVlGG4dwWdwHqSSz1JZ3d0_3KroLKxe6W8nKUeetVdhpGQy5fbogIZF5ZyYIb1EO8pdu8F9a_kZ9_r3udOBSBK99BKOwUuf_w6AFa6afIfeD27_tGW0eL2yf6e3Ns52H2O7kQwnQPnb8QSmp-MK_vChamT9GVjCzD6dtPm5y8NjJ2p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdgSAM-IJ4iMJhBSIBYtDz8yseuUG3ApolRad8sx3ZKRZVUbSLoH8D_jS8vFg1N8C2J75LW9_BZvvsdQq9sQlNmBCQx0MwnCcl8FxxFvlvpqYvPRaLqXgTHJ-xwSj6e0_MLVfx1tnt3JNnUNABKU17uL03WmLhg-2vnVQVUFkfOjQQx8ePr6AZxqxv0MBizcX-OwEUgulKZv_INlqMatf-yb76cL9kfmt5GN6t8qTY_1GJxYV2a3EV32oASjxoNuIeu2fw-2j5uj8wfoF-nK7iG-cd12xtcZFj9hGZDqw1ebJw0ce6eYygtqtYYEuFnWFVl4WJZa3AKWeslrhbuN62hBxN-MzqYnr3Fyl1-n_uMd5zzHFuAS_bd_cx2jBrUavUQTScfvo4P_bb3gq8ZSUpfC-0iGROERigVB1aFVKcJiaLERNxtUULNoWhVKaiUExExlMZUM8Ezt6ESWRg_Qlt5kdvHCMeM2YwRFrJEE8MDZeMgpdwGhluSRtRDYScCqVtgcuiPsZD1BkUw2YhNOrHJWmwy9tC7nmfZwHJcSX0Aku0pAVK7flCsZrK1UMkCnaVhmlDKU2JinRKuMkYTYg0PDece2gW9kE19au8Y5IhDyBxTEnnoZU0BsBo55O3MVLVey6OzLwOi1y1RVrh_qVVbBuHmCpC4BpQ7A0pn93o43CmobP3OWkYcIPdgU-uhF_0wcEIuXW6LCmhcWMihM6uH-ECxBxM0HMnn32rscacCECV7aK8zgT8fv0oAe72Z_IO8nvzf23fR9un7ifx8dPLpKboVgXUHzv2LHbRVrir7zEWNZfq8dgy_AUBhYI0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELZgK3E8cCMCBQxCAkSzzeEjedwiqoLUqqKs1D5ZjuMsqw1JlUOwvPO_8eSioagCibdsPLO7Hs-Mx_J8Mwi90CGNWBxAEgNNbBKSxDbBkWebnZ6a-DwIZdOLYP-A7c3Jh2N63OU_ARYm-gJfqXQxPQs_T1t0A3RP0MX2aZy0xh6w7dL41wAwxp5xKI5PbP8y2mDUxOUTtDE_OJydNPAi7sI1Au9RM39kHO1MTQH_8276fOrkcH96HV2ts1O5_irT9MwWtXsTrfrJtZkpq2ldRVP1_be6j_9n9rfQjS6SxbNW9W6jSzq7g67sd3f1d9GPwwKeYeFx028H5wmW36DLUbHG6dqoEc7MewyYprrEkIG_wLKuchNE6xhHkC5f4To1_62E5k_41WxnfvQaS_O4WtqM95zLDGuo02ybzwvdM7ZTvIfmu-8-vd2zu6YPtmIkrGwVKBNCxY4bB1L6jpYuVVFIPC-MPW7ORq7igJaVEiB6gUdiSn2qWMATc5ILEte_jyZZnukHCPuM6YQR5rJQkZg7UvtORLl2Yq5J5FELuf2CC9VVRIfGHKloTkYBE618hZGvaOQrfAu9GXhO23ogF1LvgB4NlFDLu3mRFwvRuQbBHJVEbhRSyiMS-yoiXCZGhYmOuRtzbqGnoIWiBcYOHknMOMTqPiWehZ43FFDPI4OEoYWsy1K8P_o4InrZESW5maWSHf7CyApKgI0oN0eUxuGo8XBvDqJzeKXwONT6g9O0hZ4Nw8AJSXyZzmugMfEoh5awFuIjMxoJaDySLT83Rc-NCkB4bqGt3uB-_fhFC7A1GOVfrNfDfyN_hK55YHuO2WyCTTSpilo_NjFqFT3pnM9PlQmG5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+model+of+axillary+lymph+node+status+using+automated+breast+ultrasound+and+ki-67+status+in+early-stage+breast+cancer&rft.jtitle=BMC+cancer&rft.au=Wang%2C+Qiucheng&rft.au=Li%2C+Bo&rft.au=Liu%2C+Zhao&rft.au=Shang%2C+Haitao&rft.date=2022-08-28&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2407&rft.eissn=1471-2407&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12885-022-10034-3&rft.externalDocID=A715333542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2407&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2407&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2407&client=summon