Prediction model of axillary lymph node status using automated breast ultrasound (ABUS) and ki-67 status in early-stage breast cancer
Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional...
        Saved in:
      
    
          | Published in | BMC cancer Vol. 22; no. 1; pp. 1 - 11 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        28.08.2022
     BioMed Central Ltd Springer Nature B.V BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2407 1471-2407  | 
| DOI | 10.1186/s12885-022-10034-3 | 
Cover
| Abstract | Background
Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status.
Methods
A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard.
Results
Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (
P
 < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (
P
 < 0.001).
Conclusion
ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule. | 
    
|---|---|
| AbstractList | Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status. Methods A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard. Results Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (P < 0.001). Conclusion ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule. Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status. Methods A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard. Results Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (P < 0.001). Conclusion ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule. Keywords: Automated breast ultrasound, Early-stage breast cancer, Axillary lymph node metastasis, Ki-67, Retraction phenomenon Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status.BACKGROUNDAutomated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status.A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard.METHODSA total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard.Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (P < 0.001).RESULTSKi-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (P < 0.001).ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule.CONCLUSIONABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule. Abstract Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status. Methods A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard. Results Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (P < 0.001). Conclusion ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule. Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status. Methods A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard. Results Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis ( P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II ( P < 0.001). Conclusion ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule. Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical classification and deciding on the treatment of early-stage breast cancer (EBC) and could be the primary indicator of locoregional recurrence. We aimed to establish a prediction model using ABUS features of primary breast cancer to predict ALN status. A total of 469 lesions were divided into the axillary lymph node metastasis (ALNM) group and the no ALNM (NALNM) group. Univariate analysis and multivariate analysis were used to analyze the difference of clinical factors and ABUS features between the two groups, and a predictive model of ALNM was established. Pathological results were as the gold standard. Ki-67, maximum diameter (MD), posterior feature shadowing or enhancement and hyperechoic halo were significant risk factors for ALNM in multivariate logistic regression analysis (P < 0.05). The four risk factors were used to build the predictive model, and it achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.791 (95% CI: 0.751, 0.831). The accuracy, sensitivity and specificity of the prediction model were 72.5%, 69.1% and 75.26%. The positive predictive value (PPV) and negative predictive value (NPV) were 66.08% and 79.93%, respectively. Distance to skin, MD, margin, shape, internal echo pattern, orientation, posterior features, and hyperechoic halo showed significant differences between stage I and stage II (P < 0.001). ABUS features and Ki-67 can meaningfully predict ALNM in EBC and the prediction model may facilitate a more effective therapeutic schedule.  | 
    
| ArticleNumber | 929 | 
    
| Audience | Academic | 
    
| Author | Wang, Qiucheng Liu, Zhao Shao, Hua Li, Bo Liang, Xiaoshuan Cheng, Wen Shang, Haitao Chen, Kexin Jing, Hui  | 
    
| Author_xml | – sequence: 1 givenname: Qiucheng surname: Wang fullname: Wang, Qiucheng organization: Department of Ultrasound, Harbin Medical University Cancer Hospital – sequence: 2 givenname: Bo surname: Li fullname: Li, Bo organization: Department of Ultrasound, Harbin Medical University Cancer Hospital – sequence: 3 givenname: Zhao surname: Liu fullname: Liu, Zhao organization: Department of Ultrasound, Harbin Medical University Cancer Hospital – sequence: 4 givenname: Haitao surname: Shang fullname: Shang, Haitao organization: Department of Ultrasound, Harbin Medical University Cancer Hospital – sequence: 5 givenname: Hui surname: Jing fullname: Jing, Hui organization: Department of Ultrasound, Harbin Medical University Cancer Hospital – sequence: 6 givenname: Hua surname: Shao fullname: Shao, Hua organization: Department of Ultrasound, Harbin Medical University Cancer Hospital – sequence: 7 givenname: Kexin surname: Chen fullname: Chen, Kexin organization: Department of Pathology, Harbin Medical University Cancer Hospital – sequence: 8 givenname: Xiaoshuan surname: Liang fullname: Liang, Xiaoshuan organization: Department of Breast Surgery, Harbin Medical University Cancer Hospital – sequence: 9 givenname: Wen surname: Cheng fullname: Cheng, Wen email: hrbchengwen@163.com organization: Department of Ultrasound, Harbin Medical University Cancer Hospital, Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital  | 
    
| BookMark | eNqNkstu1DAUhiNURC_wAqwiIaF2keJLHDsbpFJxqVQJROnacmwn4-LYg51A5wF4b047Le1UqEJZxD75_t855_dusRVisEXxEqNDjEXzJmMiBKsQIRVGiNYVfVLs4JrjitSIb91bbxe7OV8ghLlA4lmxTRtEcYPITvH7S7LG6cnFUI7RWF_GvlSXznuVVqVfjctFGaBe5klNcy7n7MJQqnmKo5qsKbtkVZ7K2U9J5TgHU-4fvTs_OygVLL-7quG3ShdKq5JfVbAf7K1Qq6Btel487ZXP9sXNe684__D-2_Gn6vTzx5Pjo9NKN3U7VVpo0VKDsBFKUWQVZrpra0JaQzhvBNa8RRgrhWtSC1IbxijTjeB9Q5joMd0rTta-JqoLuUxuhC5lVE5eF2IapEqT097KBum-w13LGO9qQ3VXc9U3rK2t4dhwDl507TWHpVr9Ut7_NcRIXgUk1wFJCEheByQpqN6uVcu5G63RNsDg_MavbH4JbiGH-FNCm4iwBgz2bwxS_DHbPMnRZW0hr2DjnCXhiAsuGGeAvnqAXsQ5BRgwUJjVLYOx3FGDgrZd6COcq69M5RFQlFJWE6AO_0HBY-zoNNzL3kF9Q3CwIQBmspfToOac5cnZ10329T12YZWfFjn6-epW5k2QrEGdYs7J9v83cvFApB1cSfCGFpx_XHqTcYZzwmDT3QQfUf0BlbkbyA | 
    
| CitedBy_id | crossref_primary_10_1186_s12885_023_10743_3 crossref_primary_10_46268_jsu_2022_9_2_23 crossref_primary_10_1016_j_tice_2023_102244 crossref_primary_10_1007_s12029_024_01051_5 crossref_primary_10_1016_j_acra_2024_06_013 crossref_primary_10_1007_s10549_024_07375_x crossref_primary_10_3389_fimmu_2025_1460673 crossref_primary_10_3892_ol_2024_14478 crossref_primary_10_1016_j_clbc_2024_02_003 crossref_primary_10_62347_KEPZ9726 crossref_primary_10_1007_s10549_024_07305_x crossref_primary_10_1097_CEJ_0000000000000860  | 
    
| Cites_doi | 10.1002/jum.15314 10.3389/fonc.2017.00110 10.3892/ol.2014.2333 10.1016/j.breast.2018.12.009 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9 10.1038/srep21196 10.1016/j.rehab.2019.04.007 10.1056/NEJMoa0904832 10.1016/j.ultrasmedbio.2017.05.003 10.1002/jum.14469 10.1007/BF02967467 10.1016/j.ejrad.2016.11.032 10.1371/journal.pone.0114820 10.3390/ijerph18094420 10.5152/dir.2015.14515 10.1007/s00428-007-0435-2 10.1053/crad.1999.0333 10.7150/ijbs.21635 10.1016/j.ultrasmedbio.2019.08.016 10.1136/jcp.2011.089847 10.1245/s10434-016-5177-4 10.1146/annurev-nutr-112912-095300 10.1002/jum.14991 10.3348/kjr.2019.0176 10.2214/ajr.184.4.01841260 10.1016/j.acra.2018.02.014 10.1002/jum.14879 10.1002/ijc.30791 10.1001/jama.2013.277804 10.1007/s10549-013-2598-7 10.1007/s00330-014-3135-8 10.1177/0284185113488580 10.14366/usg.18055 10.1007/s12282-018-0863-7 10.1007/s10549-020-05625-2 10.1016/j.ultrasmedbio.2015.06.013 10.5858/134.6.907 10.1002/jum.14863 10.1093/jjco/hyq070 10.7863/jum.1996.15.3.241 10.1007/s11604-010-0424-2 10.1159/000334920 10.1016/j.ejrad.2015.07.028 10.1093/annonc/mdt303 10.1097/MD.0000000000003689  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2022 COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s).  | 
    
| Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s).  | 
    
| DBID | C6C AAYXX CITATION ISR 3V. 7TO 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s12885-022-10034-3 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1471-2407 | 
    
| EndPage | 11 | 
    
| ExternalDocumentID | oai_doaj_org_article_60cfb1b9557b4d3cb47af6594ed71d77 10.1186/s12885-022-10034-3 PMC9420256 A715333542 10_1186_s12885_022_10034_3  | 
    
| GeographicLocations | China United States--US  | 
    
| GeographicLocations_xml | – name: China – name: United States--US  | 
    
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW INH INR ISR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV 3V. 7TO 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM 2VQ 4.4 ADTOC AHSBF C1A EJD H13 IPNFZ LGEZI LOTEE NADUK NXXTH RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c649t-c8c893d01d8aa30ea15cb94229d277681c79011aa1424824d5535c687f6258f13 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2407 | 
    
| IngestDate | Tue Oct 14 18:57:53 EDT 2025 Sun Oct 26 03:59:38 EDT 2025 Tue Sep 30 15:56:28 EDT 2025 Thu Sep 04 16:16:06 EDT 2025 Tue Oct 07 05:29:10 EDT 2025 Mon Oct 20 22:22:51 EDT 2025 Mon Oct 20 16:32:39 EDT 2025 Thu Oct 16 14:22:05 EDT 2025 Thu May 22 21:07:43 EDT 2025 Wed Oct 01 05:06:55 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 Sat Sep 06 07:18:36 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Ki-67 Axillary lymph node metastasis Retraction phenomenon Early-stage breast cancer Automated breast ultrasound  | 
    
| Language | English | 
    
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c649t-c8c893d01d8aa30ea15cb94229d277681c79011aa1424824d5535c687f6258f13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2715495625?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PMID | 36031602 | 
    
| PQID | 2715495625 | 
    
| PQPubID | 44074 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_60cfb1b9557b4d3cb47af6594ed71d77 unpaywall_primary_10_1186_s12885_022_10034_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9420256 proquest_miscellaneous_2707878575 proquest_journals_2715495625 gale_infotracmisc_A715333542 gale_infotracacademiconefile_A715333542 gale_incontextgauss_ISR_A715333542 gale_healthsolutions_A715333542 crossref_primary_10_1186_s12885_022_10034_3 crossref_citationtrail_10_1186_s12885_022_10034_3 springer_journals_10_1186_s12885_022_10034_3  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-08-28 | 
    
| PublicationDateYYYYMMDD | 2022-08-28 | 
    
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-28 day: 28  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London | 
    
| PublicationTitle | BMC cancer | 
    
| PublicationTitleAbbrev | BMC Cancer | 
    
| PublicationYear | 2022 | 
    
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC  | 
    
| References | G Canavese (10034_CR1) 2016; 23 G Yun (10034_CR13) 2019; 38 JA Knight (10034_CR43) 2017; 141 AM Moorman (10034_CR46) 2015; 41 JW Li (10034_CR34) 2019; 38 M Jia (10034_CR15) 2020; 181 A Michelotti (10034_CR4) 2019; 44 H Hashimoto (10034_CR38) 2000; 7 J Jiang (10034_CR40) 2014; 24 F Çelebi (10034_CR33) 2015; 21 GV Dall (10034_CR45) 2017; 7 MY Kim (10034_CR35) 2013; 54 H Zhang (10034_CR9) 2019; 38 T Mitsuhiro (10034_CR12) 2010; 28 YS Sun (10034_CR44) 2017; 13 WT Yang (10034_CR6) 1996; 15 L Niu (10034_CR11) 2019; 38 ME Hammond (10034_CR21) 2010; 134 A de Sire (10034_CR5) 2020; 63 Z Li (10034_CR27) 2017; 10 IC LaraPalomo (10034_CR3) 2021; 18 M Sawaki (10034_CR17) 2014; 8 N Makarem (10034_CR42) 2013; 33 N Matsubara (10034_CR29) 2011; 81 D Park (10034_CR31) 2007; 451 P Akissue (10034_CR8) 2017; 43 R Rao (10034_CR2) 2013; 310 SH Kim (10034_CR18) 2020; 21 JMS Bartlett (10034_CR22) 2011; 64 AS Hong (10034_CR26) 2005; 184 FY Zheng (10034_CR14) 2017; 86 K Tamaki (10034_CR36) 2010; 40 GM Hortobagyi (10034_CR24) 2016 M Chung (10034_CR30) 2016; 95 PM Lamb (10034_CR37) 2000; 55 R Rella (10034_CR19) 2018; 25 AQ Zhu (10034_CR25) 2020; 39 M de Boer (10034_CR7) 2009; 361 A Goldhirsch (10034_CR23) 2013; 24 GM Rauch (10034_CR32) 2013; 139 NN Wang (10034_CR16) 2018; 25 F Zheng (10034_CR39) 2015; 84 SQ Qiu (10034_CR47) 2016; 6 T Scholzen (10034_CR28) 2000; 182 Q Guo (10034_CR10) 2018; 37 X Wen (10034_CR41) 2018; 40 L Zhang (10034_CR20) 2019; 45  | 
    
| References_xml | – volume: 39 start-page: 2059 issue: 10 year: 2020 ident: 10034_CR25 publication-title: J Ultrasound Med doi: 10.1002/jum.15314 – volume: 7 start-page: 110 year: 2017 ident: 10034_CR45 publication-title: Front Oncol doi: 10.3389/fonc.2017.00110 – volume: 8 start-page: 1707 issue: 4 year: 2014 ident: 10034_CR17 publication-title: Oncol Lett doi: 10.3892/ol.2014.2333 – volume: 44 start-page: 15 year: 2019 ident: 10034_CR4 publication-title: Breast doi: 10.1016/j.breast.2018.12.009 – volume: 182 start-page: 311 issue: 3 year: 2000 ident: 10034_CR28 publication-title: J Cell Physiol doi: 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9 – volume: 6 start-page: 21196 year: 2016 ident: 10034_CR47 publication-title: Sci Rep doi: 10.1038/srep21196 – volume: 63 start-page: 365 issue: 4 year: 2020 ident: 10034_CR5 publication-title: Ann Phys Rehabil Med doi: 10.1016/j.rehab.2019.04.007 – volume: 361 start-page: 653 issue: 7 year: 2009 ident: 10034_CR7 publication-title: N Engl J Med doi: 10.1056/NEJMoa0904832 – volume: 43 start-page: 1837 issue: 9 year: 2017 ident: 10034_CR8 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2017.05.003 – volume: 37 start-page: 1354 issue: 6 year: 2018 ident: 10034_CR10 publication-title: J Ultrasound Med doi: 10.1002/jum.14469 – volume: 7 start-page: 241 issue: 3 year: 2000 ident: 10034_CR38 publication-title: Breast Cancer doi: 10.1007/BF02967467 – volume: 86 start-page: 267 year: 2017 ident: 10034_CR14 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2016.11.032 – volume: 10 issue: 3 year: 2017 ident: 10034_CR27 publication-title: PLoS ONE doi: 10.1371/journal.pone.0114820 – volume: 18 start-page: 4420 issue: 9 year: 2021 ident: 10034_CR3 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph18094420 – volume: 21 start-page: 448 issue: 6 year: 2015 ident: 10034_CR33 publication-title: Diagnostic and interventional radiology (Ankara, Turkey) doi: 10.5152/dir.2015.14515 – volume: 451 start-page: 11 issue: 1 year: 2007 ident: 10034_CR31 publication-title: Virchows Arch doi: 10.1007/s00428-007-0435-2 – volume: 55 start-page: 40 issue: 1 year: 2000 ident: 10034_CR37 publication-title: Clin Radiol doi: 10.1053/crad.1999.0333 – volume: 13 start-page: 1387 issue: 11 year: 2017 ident: 10034_CR44 publication-title: Int J Biol Sci doi: 10.7150/ijbs.21635 – volume: 45 start-page: 3137 issue: 12 year: 2019 ident: 10034_CR20 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2019.08.016 – volume: 64 start-page: 649 issue: 8 year: 2011 ident: 10034_CR22 publication-title: J Clin Pathol doi: 10.1136/jcp.2011.089847 – volume: 23 start-page: 2494 issue: 8 year: 2016 ident: 10034_CR1 publication-title: Ann Surg Oncol doi: 10.1245/s10434-016-5177-4 – volume: 33 start-page: 319 year: 2013 ident: 10034_CR42 publication-title: Annu Rev Nutr doi: 10.1146/annurev-nutr-112912-095300 – volume: 38 start-page: 2871 issue: 11 year: 2019 ident: 10034_CR11 publication-title: J Ultrasound Med doi: 10.1002/jum.14991 – volume: 21 start-page: 15 issue: 1 year: 2020 ident: 10034_CR18 publication-title: Korean J Radiol doi: 10.3348/kjr.2019.0176 – start-page: 589 volume-title: AJCC cancer staging manual year: 2016 ident: 10034_CR24 – volume: 184 start-page: 1260 issue: 4 year: 2005 ident: 10034_CR26 publication-title: AJR Am J Roentgenol doi: 10.2214/ajr.184.4.01841260 – volume: 25 start-page: 1457 issue: 22 year: 2018 ident: 10034_CR19 publication-title: Acad Radiol doi: 10.1016/j.acra.2018.02.014 – volume: 38 start-page: 1833 issue: 7 year: 2019 ident: 10034_CR9 publication-title: J Ultrasound Med doi: 10.1002/jum.14879 – volume: 141 start-page: 916 issue: 5 year: 2017 ident: 10034_CR43 publication-title: Int J Cancer doi: 10.1002/ijc.30791 – volume: 310 start-page: 1385 issue: 13 year: 2013 ident: 10034_CR2 publication-title: JAMA doi: 10.1001/jama.2013.277804 – volume: 139 start-page: 639 issue: 3 year: 2013 ident: 10034_CR32 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-013-2598-7 – volume: 24 start-page: 1186 issue: 6 year: 2014 ident: 10034_CR40 publication-title: Eur Radiol doi: 10.1007/s00330-014-3135-8 – volume: 54 start-page: 889 issue: 8 year: 2013 ident: 10034_CR35 publication-title: Acta Radiol doi: 10.1177/0284185113488580 – volume: 38 start-page: 264 issue: 3 year: 2019 ident: 10034_CR13 publication-title: Ultrasonography doi: 10.14366/usg.18055 – volume: 25 start-page: 629 issue: 6 year: 2018 ident: 10034_CR16 publication-title: Breast Cancer doi: 10.1007/s12282-018-0863-7 – volume: 40 start-page: 764 issue: 6 year: 2018 ident: 10034_CR41 publication-title: Ultraschall Med – volume: 181 start-page: 589 issue: 3 year: 2020 ident: 10034_CR15 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-020-05625-2 – volume: 41 start-page: 2842 issue: 11 year: 2015 ident: 10034_CR46 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2015.06.013 – volume: 134 start-page: 907 issue: 6 year: 2010 ident: 10034_CR21 publication-title: Arch Pathol Lab Med doi: 10.5858/134.6.907 – volume: 38 start-page: 1747 issue: 7 year: 2019 ident: 10034_CR34 publication-title: J Ultrasound Med doi: 10.1002/jum.14863 – volume: 40 start-page: 905 issue: 10 year: 2010 ident: 10034_CR36 publication-title: Jpn J Clin Oncol doi: 10.1093/jjco/hyq070 – volume: 15 start-page: 241 issue: 3 year: 1996 ident: 10034_CR6 publication-title: Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine doi: 10.7863/jum.1996.15.3.241 – volume: 28 start-page: 325 issue: 4 year: 2010 ident: 10034_CR12 publication-title: Jpn J Radiol doi: 10.1007/s11604-010-0424-2 – volume: 81 start-page: 345 issue: 5–6 year: 2011 ident: 10034_CR29 publication-title: Oncology doi: 10.1159/000334920 – volume: 84 start-page: 2123 issue: 11 year: 2015 ident: 10034_CR39 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2015.07.028 – volume: 24 start-page: 2206 issue: 9 year: 2013 ident: 10034_CR23 publication-title: Annals of oncology : official journal of the European Society for Medical Oncology doi: 10.1093/annonc/mdt303 – volume: 95 issue: 20 year: 2016 ident: 10034_CR30 publication-title: Medicine doi: 10.1097/MD.0000000000003689  | 
    
| SSID | ssj0017808 | 
    
| Score | 2.459757 | 
    
| Snippet | Background
Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting... Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting... Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for predicting the clinical... Abstract Background Automated breast ultrasound (ABUS) is a useful choice in breast disease diagnosis. The axillary lymph node (ALN) status is crucial for...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Automated breast ultrasound Automation Axillary lymph node metastasis Biomedical and Life Sciences Biomedicine Biopsy Body mass index Breast Breast cancer Cancer Research Care and treatment Chemotherapy Development and progression Dissection Early-stage breast cancer Gene amplification Health Promotion and Disease Prevention Ki-67 Ki-67 antigen Lymph nodes Lymphatic metastasis Lymphatic system Lymphedema Medicine/Public Health Metastases Metastasis Multivariate analysis Normal distribution Oncology Patients Prediction models Prevention Radiation therapy Regression analysis Retraction phenomenon Risk factors Statistical analysis Surgery Surgical Oncology Testing Ultrasonic imaging Ultrasound Variables  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiKcIFDAICRCNmodfOW4RVUEqQpSVerMc29muiLLVZiPYH8D_ZiYvGlUqHLgl9liJPePxjDzzDSGvfMZz4RQGMfAiZBkrQjCOkhBOeg72ucpMW4vg-LM4mrNPp_z0QqkvjAnr4IG7hdsXkS3yOM84lzlzqc2ZNIXgGfNOxk62eeSRygZnqr8_kCpSQ4qMEvs1aGGFmcgJqJ0oZWE6OYZatP7LOvlynOR4WXqL3Giqc7P9Ycrywnl0eIfc7g1JOusmcJdc89U9cv24vyq_T359WeMzrjtty93QVUHNTywytN7ScgtcpBW0U0wpamqKAfALaprNCmxY72iO0eob2pTwTzXWXqJvZgfzk7fUwOP3ZSjkMHJZUY8wySG8L_ww0KI4rR-Q-eGHb--Pwr7mQmgFyzahVRYsGBfFThmTRt7E3OYZS5LMJRJck9hKTFY1BjPkVMIc5ym3QskCHClVxOlDslOtKv-I0FQIXwgmYpFZ5mRkfBrlXPrISc_yhAckHligbQ9IjnUxSt06Jkrojm0a2KZbtuk0IO_GMecdHMeV1AfI2ZESobTbBhAw3QuY_puABeQ5yoXu8lJHhaBnEk3llLMkIC9bCoTTqDBeZ2GautYfT75OiF73RMUKZmlNn_4Aa4UIXBPK3Qkl7Hc77R4EVPf6ptaJRKg9dGYD8mLsxpEYQ1f5VYM0YA5KrMgaEDkR7MkCTXuq5VmLOQ4igNZxQPaGLfDn41cxYG_cJv_Ar8f_g19PyM0EN3oEJ4DaJTubdeOfguG4yZ-1OuI36QploA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwELZGJ_HyAfEqAgMMQgLEouXFb_mAUIs2DaRV00alfbMc2-mqVUlpGkF_AP8bX5pkRJMqviXxWWny3J0v9d1zCL2zCU2ZEZDEQDOfJCTzXXAU-W6lpy4-F4mqexGcjNnxhHy_oBc7aNzWwkBaZesTa0dtCg3_kR9EHMjEIFz_svjpQ9co2F1tW2ioprWC-VxTjN1CuxEwYw3Q7uhwfHrW7StwEYi2dEawg9J5ZwEVypFzR0FM_Li3PNUs_jd99c38yW4T9R66U-ULtf6l5vN_1qmjB-h-E2Di4UYjHqIdmz9Ct0-aLfTH6M_pEo4BD1y3wcFFhtVvaD60XOP52qGLc3cdQ6lRVWJIjJ9iVa0KF9tag1PIYl_hau5-Uwk9mfCH4Why_hErd3g18xlvZ85ybIE-2XfnU9tO1KBmyydocnT44-ux3_Ri8DUjycrXQrvIxgShEUrFgVUh1WlCoigxEXefLKHmUMSqFFTOiYgYSmOqmeCZQ0xkYfwUDfIit88QjhmzGSMsZIkmhgfKxkFKuQ0MtySNqIfCFgKpG6Jy6Jcxl_UHi2ByA5t0sMkaNhl76FM3Z7Gh6dgqPQJkO0mg2K4vFMupbCxWskBnaZgmlPKUmFinhKuM0YRYw0PDuYdeg17ITb1q5yjkkEMIHVMSeehtLQE0Gznk8UxVVZby2_lZT-h9I5QV7im1asoi3LsCZq6e5F5P0vkB3R9uFVQ2fqiU11bjoTfdMMyE3LrcFhXIuDCRQ6dWD_GeYvdeUH8kn13WXOROBSBq9tB-awLXN98GwH5nJv-B1_Ptj_YC3Y3AhAPn88UeGqyWlX3pQsVV-qqx_78TB2Mb priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA96go8P4hOrp0YRVO6KfeTVj3vicQon4rlw30KapOtiaY_tFt0_wP_bmW5bLSeHfmubmXY388iEzPyGkBc-47lwCpMYeBGyjBUhBEdJCCs9h_hcZabrRXD8URzN2YdTftoXhTVDtvtwJNl56s6slXjTgCdVWE2cgOuIUhaml8kVjnBeoMXzZDaeHUgVqaE85q98kyWoQ-o_74_P50iOB6U3yLW2OjOb76Ys_1iLDm-Rm30QSWdbqd8ml3x1h1w97o_J75Kfn1Z4jXNOu1Y3tC6o-YENhlYbWm5AgrSC5xTLidqGYvL7gpp2XUP86h3NMVN9TdsSflODfZfoq9nB_OQ1NXD5bRkKOXAuK-oRIjmE-4UfGC2q0uoemR---_L2KOz7LYRWsGwdWmUhenFR7JQxaeRNzG2esSTJXCJhWxJbiYWqxmB1nEqY4zzlVihZwCZKFXF6n-xUdeUfEJoK4QvBRCwyy5yMjE-jnEsfOelZnvCAxIMItO3ByLEnRqm7TYkSeis2DWLTndh0GpC9kedsC8VxIfUBSnakRBjt7kG9WujeKrWIbJHHeca5zJlLbc6kKQTPmHcydlIG5Cnqhd7WpI7OQM8khskpZ0lAnncUCKVRYa7OwrRNo9-ffJ4QveyJihr-pTV96QPMFaJvTSh3J5Rg63Y6PCio7n1NoxOJMHu4kQ3Is3EYOTF_rvJ1izQQCkrsxhoQOVHsyQRNR6rl1w5vHFQAI-OA7A8m8PvjFwlgfzSTf5DXw_97-yNyPUGTjsDPq12ys161_jGEh-v8SecNfgG9rll7 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELZgK3E8cCMCBQxCAkSzzeEjedwiqoLUqqKs1D5ZjuMsqw1JlUOwvPO_8eSioagCibdsPLO7Hs-Mx_J8Mwi90CGNWBxAEgNNbBKSxDbBkWebnZ6a-DwIZdOLYP-A7c3Jh2N63OU_ARYm-gJfqXQxPQs_T1t0A3RP0MX2aZy0xh6w7dL41wAwxp5xKI5PbP8y2mDUxOUTtDE_OJydNPAi7sI1Au9RM39kHO1MTQH_8276fOrkcH96HV2ts1O5_irT9MwWtXsTrfrJtZkpq2ldRVP1_be6j_9n9rfQjS6SxbNW9W6jSzq7g67sd3f1d9GPwwKeYeFx028H5wmW36DLUbHG6dqoEc7MewyYprrEkIG_wLKuchNE6xhHkC5f4To1_62E5k_41WxnfvQaS_O4WtqM95zLDGuo02ybzwvdM7ZTvIfmu-8-vd2zu6YPtmIkrGwVKBNCxY4bB1L6jpYuVVFIPC-MPW7ORq7igJaVEiB6gUdiSn2qWMATc5ILEte_jyZZnukHCPuM6YQR5rJQkZg7UvtORLl2Yq5J5FELuf2CC9VVRIfGHKloTkYBE618hZGvaOQrfAu9GXhO23ogF1LvgB4NlFDLu3mRFwvRuQbBHJVEbhRSyiMS-yoiXCZGhYmOuRtzbqGnoIWiBcYOHknMOMTqPiWehZ43FFDPI4OEoYWsy1K8P_o4InrZESW5maWSHf7CyApKgI0oN0eUxuGo8XBvDqJzeKXwONT6g9O0hZ4Nw8AJSXyZzmugMfEoh5awFuIjMxoJaDySLT83Rc-NCkB4bqGt3uB-_fhFC7A1GOVfrNfDfyN_hK55YHuO2WyCTTSpilo_NjFqFT3pnM9PlQmG5Q priority: 102 providerName: Unpaywall  | 
    
| Title | Prediction model of axillary lymph node status using automated breast ultrasound (ABUS) and ki-67 status in early-stage breast cancer | 
    
| URI | https://link.springer.com/article/10.1186/s12885-022-10034-3 https://www.proquest.com/docview/2715495625 https://www.proquest.com/docview/2707878575 https://pubmed.ncbi.nlm.nih.gov/PMC9420256 https://bmccancer.biomedcentral.com/counter/pdf/10.1186/s12885-022-10034-3 https://doaj.org/article/60cfb1b9557b4d3cb47af6594ed71d77  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2407 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: M48 dateStart: 20010801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: AAJSJ dateStart: 20011201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: C6C dateStart: 20010112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2407 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017808 issn: 1471-2407 databaseCode: U2A dateStart: 20011201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2VeLjAfEpAqMYhMQDC-TDH8kDQm21aSC1qgqVxl4sx3FKRZWOthHrC387d2nSEW2qeGjU2Oe28X34XN_dj5A3NuaJSCMMYuCZy2KWueAcBS6s9Bz88yjWJRZBfyBOx-zLGT_bIzXcUTWByxu3dognNV7M3l_-Wn8Chf9YKnwkPizBxkaYZxyAUfFC5ob7pAUrVYxQDn12daogoxKhzgeDjKcKsk6iufEzGgtVWc__utW-Hkm5PU69S24X-YVe_9az2T8r1sl9cq9yNWlnIxsPyJ7NH5Jb_eow_RH5M1zge-QMLQFx6Dyj-hJhiBZrOlsDn2kO7RSTjoolxRD5CdXFag5erk1pgvHsK1rM4DctEZ2Janj9nLpC1kOmObVYQdmF-4mtRxiUtMVjMj45_tY7dSs4BtcIFq9cExlwblLPTyOtQ89qn5skZkEQp4GEXYtvJOaxao3Jc1HAUs5DbkQkM9hjRZkfPiEH-Ty3TwkNhbCZYMIXsWGp9LQNvYRL66XSsiTgDvHruVemqlWOkBkzVe5ZIqE2_FLAL1XyS4UOebcdc7Gp1LGTuoss3VJile2yYb6YqEpplfBMlvhJzLlMWBqahEmdCR4zm0o_ldIhL1Eg1CZldWsrVEeiFx1yFjjkdUmBlTZyDOWZ6GK5VJ-_jhpEbyuibA5PaXSVGQFzhcW5GpSHDUowBabZXUumqjVJBRKr8OE-1yGvtt04EsPrcjsvkAY8RYlgrQ6RDYluTFCzJ5_-KMuRgwig4-yQo1r2r758FwOOtvrxH_x6tvvJn5M7AequB2Y_OiQHq0VhX4C3uEraZF-eyTZpdY8HwxHc9USvXf7z0i6NA1xH3XO4jgNoaY0Hw873v09FZ48 | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gJKIPxmusooxGo0YaeplbH4gBhYBcQoBNeBunM9OVuGlxuw3uD_Bv-duc022LDQnxhbdue2a37XfmnDM755wPoTc2oSkzApIYaOaThGS-C44i33l66uJzkaiai2D_gG0PyNdTejqH_rS1MJBW2drE2lCbQsN_5KsRh2ZiEK5_Ov_pA2sU7K62FBqqoVYwa3WLsaawY9dOL9wSrlzb-eLwfhtFW5snn7f9hmXA14wkE18L7Xy2CUIjlIoDq0Kq04REUWIi7oLxUHMoz1QKasJERAylMdVM8Mzdi8jC2H3vLbRAYpK4xd_CxubB4VG3j8FFINpSHcFWS-cNBFRER878BTHx4547rFkDrvqGq_ma3abtXbRY5edqeqFGo3_84tZ9dK8JaPH6TAMfoDmbP0S395st-0fo9-EYjgF_XNPu4CLD6heQHY2neDR12oRzdx5DaVNVYkjEH2JVTQoXS1uDU8ian-Bq5O6pBA4o_H59Y3D8ASt3-OPMZ7wdeZZjC-2affd5aNuBGtR6_BgNbgSVJ2g-L3L7FOGYMZsxwkKWaGJ4oGwcpJTbwHBL0oh6KGwhkLppjA78HCNZL5AEkzPYpINN1rDJ2EMfuzHns7Yg10pvALKdJLT0rk8U46FsLIRkgc7SME0o5SkxsU4JVxmjCbGGh4ZzDy2DXshZfWxnmOQ6h5A9piTy0OtaAtp65JA3NFRVWcqd46Oe0LtGKCvcU2rVlGG4dwWdwHqSSz1JZ3d0_3KroLKxe6W8nKUeetVdhpGQy5fbogIZF5ZyYIb1EO8pdu8F9a_kZ9_r3udOBSBK99BKOwUuf_w6AFa6afIfeD27_tGW0eL2yf6e3Ns52H2O7kQwnQPnb8QSmp-MK_vChamT9GVjCzD6dtPm5y8NjJ2p | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdgSAM-IJ4iMJhBSIBYtDz8yseuUG3ApolRad8sx3ZKRZVUbSLoH8D_jS8vFg1N8C2J75LW9_BZvvsdQq9sQlNmBCQx0MwnCcl8FxxFvlvpqYvPRaLqXgTHJ-xwSj6e0_MLVfx1tnt3JNnUNABKU17uL03WmLhg-2vnVQVUFkfOjQQx8ePr6AZxqxv0MBizcX-OwEUgulKZv_INlqMatf-yb76cL9kfmt5GN6t8qTY_1GJxYV2a3EV32oASjxoNuIeu2fw-2j5uj8wfoF-nK7iG-cd12xtcZFj9hGZDqw1ebJw0ce6eYygtqtYYEuFnWFVl4WJZa3AKWeslrhbuN62hBxN-MzqYnr3Fyl1-n_uMd5zzHFuAS_bd_cx2jBrUavUQTScfvo4P_bb3gq8ZSUpfC-0iGROERigVB1aFVKcJiaLERNxtUULNoWhVKaiUExExlMZUM8Ezt6ESWRg_Qlt5kdvHCMeM2YwRFrJEE8MDZeMgpdwGhluSRtRDYScCqVtgcuiPsZD1BkUw2YhNOrHJWmwy9tC7nmfZwHJcSX0Aku0pAVK7flCsZrK1UMkCnaVhmlDKU2JinRKuMkYTYg0PDece2gW9kE19au8Y5IhDyBxTEnnoZU0BsBo55O3MVLVey6OzLwOi1y1RVrh_qVVbBuHmCpC4BpQ7A0pn93o43CmobP3OWkYcIPdgU-uhF_0wcEIuXW6LCmhcWMihM6uH-ECxBxM0HMnn32rscacCECV7aK8zgT8fv0oAe72Z_IO8nvzf23fR9un7ifx8dPLpKboVgXUHzv2LHbRVrir7zEWNZfq8dgy_AUBhYI0 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELZgK3E8cCMCBQxCAkSzzeEjedwiqoLUqqKs1D5ZjuMsqw1JlUOwvPO_8eSioagCibdsPLO7Hs-Mx_J8Mwi90CGNWBxAEgNNbBKSxDbBkWebnZ6a-DwIZdOLYP-A7c3Jh2N63OU_ARYm-gJfqXQxPQs_T1t0A3RP0MX2aZy0xh6w7dL41wAwxp5xKI5PbP8y2mDUxOUTtDE_OJydNPAi7sI1Au9RM39kHO1MTQH_8276fOrkcH96HV2ts1O5_irT9MwWtXsTrfrJtZkpq2ldRVP1_be6j_9n9rfQjS6SxbNW9W6jSzq7g67sd3f1d9GPwwKeYeFx028H5wmW36DLUbHG6dqoEc7MewyYprrEkIG_wLKuchNE6xhHkC5f4To1_62E5k_41WxnfvQaS_O4WtqM95zLDGuo02ybzwvdM7ZTvIfmu-8-vd2zu6YPtmIkrGwVKBNCxY4bB1L6jpYuVVFIPC-MPW7ORq7igJaVEiB6gUdiSn2qWMATc5ILEte_jyZZnukHCPuM6YQR5rJQkZg7UvtORLl2Yq5J5FELuf2CC9VVRIfGHKloTkYBE618hZGvaOQrfAu9GXhO23ogF1LvgB4NlFDLu3mRFwvRuQbBHJVEbhRSyiMS-yoiXCZGhYmOuRtzbqGnoIWiBcYOHknMOMTqPiWehZ43FFDPI4OEoYWsy1K8P_o4InrZESW5maWSHf7CyApKgI0oN0eUxuGo8XBvDqJzeKXwONT6g9O0hZ4Nw8AJSXyZzmugMfEoh5awFuIjMxoJaDySLT83Rc-NCkB4bqGt3uB-_fhFC7A1GOVfrNfDfyN_hK55YHuO2WyCTTSpilo_NjFqFT3pnM9PlQmG5Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+model+of+axillary+lymph+node+status+using+automated+breast+ultrasound+and+ki-67+status+in+early-stage+breast+cancer&rft.jtitle=BMC+cancer&rft.au=Wang%2C+Qiucheng&rft.au=Li%2C+Bo&rft.au=Liu%2C+Zhao&rft.au=Shang%2C+Haitao&rft.date=2022-08-28&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2407&rft.eissn=1471-2407&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12885-022-10034-3&rft.externalDocID=A715333542 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2407&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2407&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2407&client=summon |