Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice

Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a dete...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 11; pp. 4465 - 4470
Main Authors Lobsiger, Christian S, Boillee, Severine, McAlonis-Downes, Melissa, Khan, Amir M, Feltri, M. Laura, Yamanaka, Koji, Cleveland, Don W
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 17.03.2009
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.0813339106

Cover

Abstract Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1G³⁷R) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells.
AbstractList Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1 G37R ) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells.
Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1(G37R)) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells.
Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1G³⁷R) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells.
Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (${\rm{SOD1}}^{{\rm{G37R}}}$) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells.
Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1 super(G37R)) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells.
Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1...) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells. (ProQuest: ... denotes formulae/symbols omitted.)
Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1(G37R)) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells.Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1(G37R)) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells.
Author Lobsiger, Christian S
Yamanaka, Koji
Cleveland, Don W
Khan, Amir M
Feltri, M. Laura
Boillee, Severine
McAlonis-Downes, Melissa
Author_xml – sequence: 1
  fullname: Lobsiger, Christian S
– sequence: 2
  fullname: Boillee, Severine
– sequence: 3
  fullname: McAlonis-Downes, Melissa
– sequence: 4
  fullname: Khan, Amir M
– sequence: 5
  fullname: Feltri, M. Laura
– sequence: 6
  fullname: Yamanaka, Koji
– sequence: 7
  fullname: Cleveland, Don W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19251638$$D View this record in MEDLINE/PubMed
BookMark eNqF0s9v2yAUB3Br6rSm3c47bbN2mHZJ-zAYw6VS1W3dpEg9ZD0jjCElciAD3B___XCTNlsP7clCfN7X8HgHxZ7zThfFewRHCBp8vHYyHgFDGGOOgL4qJgg4mlLCYa-YAFTNlJGK7BcHMS4BgNcM3hT7iFc1ophNisVcXd1I50ql-z6W-nYddIzWLcrOxtWQZNSlVMle63JcuVTOL76hcnBZapV019-Vsfc3I9cjXge_uI_wrrSuPJ3Ny5VV-m3x2sg-6nfb72Fx-eP777Of09nF-a-z09lU5TOnKTXYMAoKdabmDBpFW9ohatqW67ZrO25UzYjCwBrOSdspUxGDuo5xMAiwxofFySZ3PbQr3SntUpC9WAe7kuFOeGnF_zvOXomFvxYVrRvMcQ74sg0I_s-gYxIrG8fmSKf9EAVtgFSMsRchoRWiqHk5sYIKNxQ3GX5-Apd-CC63KxuEgVZNndHHfy_4eLOHJ83geANU8DEGbXYExDg0YhwasRuaXFE_qVA2yZRfMHfI9s_Ufd0eZdzY_YUKhAQhtBZm6Pukb1Omn56nWXzYiGVMPjwSAoQghqtdgpFeyEWwUVzO79uCKDBMKf4LLK3yqA
CitedBy_id crossref_primary_10_1016_j_expneurol_2015_07_019
crossref_primary_10_1093_hmg_ddp550
crossref_primary_10_4061_2011_207230
crossref_primary_10_1016_j_neulet_2021_135911
crossref_primary_10_1016_j_pneurobio_2015_07_004
crossref_primary_10_1038_srep39297
crossref_primary_10_4103_NRR_NRR_D_23_01815
crossref_primary_10_7554_eLife_40811
crossref_primary_10_1007_s00401_015_1446_8
crossref_primary_10_1155_2011_718987
crossref_primary_10_1089_rej_2011_1292
crossref_primary_10_1210_endrev_bnz005
crossref_primary_10_1093_icb_icr116
crossref_primary_10_1038_nrneurol_2015_57
crossref_primary_10_3389_fnins_2014_00252
crossref_primary_10_1371_journal_pone_0052605
crossref_primary_10_3389_fnins_2019_00796
crossref_primary_10_1038_nrneurol_2011_152
crossref_primary_10_1172_JCI71601
crossref_primary_10_1371_journal_pone_0018778
crossref_primary_10_1155_2011_348765
crossref_primary_10_1016_j_expneurol_2014_05_015
crossref_primary_10_3389_fncel_2014_00131
crossref_primary_10_3389_fnmol_2017_00176
crossref_primary_10_1016_j_expneurol_2015_09_014
crossref_primary_10_1134_S1990747820030113
crossref_primary_10_1073_pnas_2306731120
crossref_primary_10_1523_JNEUROSCI_1748_18_2020
crossref_primary_10_1007_s00401_017_1708_8
crossref_primary_10_3389_fnins_2019_00601
crossref_primary_10_1002_cne_23848
crossref_primary_10_3390_ijms19020631
crossref_primary_10_1007_s00018_013_1429_7
crossref_primary_10_18632_genesandcancer_4
crossref_primary_10_1111_j_1365_2990_2010_01061_x
crossref_primary_10_3389_fncel_2015_00332
crossref_primary_10_1016_j_bbadis_2018_10_013
crossref_primary_10_4103_1673_5374_205000
crossref_primary_10_1111_jnc_12046
crossref_primary_10_1186_s40478_014_0181_z
crossref_primary_10_3390_ijms18102092
crossref_primary_10_3109_17482968_2010_489116
crossref_primary_10_3390_antiox11081606
crossref_primary_10_1534_g3_113_005850
crossref_primary_10_1002_glia_23768
crossref_primary_10_1016_j_ecl_2012_04_020
crossref_primary_10_1038_ncomms3906
crossref_primary_10_1016_j_expneurol_2016_02_002
crossref_primary_10_1051_medsci_2010263311
crossref_primary_10_7554_eLife_41973
crossref_primary_10_1016_j_nbd_2010_01_006
crossref_primary_10_1007_s11910_010_0160_0
crossref_primary_10_3389_fncel_2014_00117
crossref_primary_10_5607_en_2017_26_3_141
crossref_primary_10_3389_fnagi_2020_00191
crossref_primary_10_1002_bit_27083
crossref_primary_10_1017_S0317167100016516
crossref_primary_10_1038_s41593_020_00718_z
crossref_primary_10_1016_j_omtm_2021_01_006
crossref_primary_10_1007_s00702_010_0429_0
crossref_primary_10_1002_ana_25030
crossref_primary_10_1007_s00018_024_05164_9
crossref_primary_10_1016_j_nbd_2009_05_002
crossref_primary_10_1111_j_1471_4159_2010_06979_x
crossref_primary_10_2174_1570159X21666230824091601
crossref_primary_10_1007_s00335_011_9339_1
crossref_primary_10_1007_s00429_023_02728_6
crossref_primary_10_1002_glia_22654
crossref_primary_10_3389_fnmol_2023_1333745
crossref_primary_10_1093_hmg_dds215
crossref_primary_10_1007_s12035_013_8573_9
crossref_primary_10_1016_j_actbio_2024_10_017
crossref_primary_10_1016_j_nbd_2012_05_014
crossref_primary_10_1371_journal_pone_0087255
crossref_primary_10_1080_15548627_2017_1308985
crossref_primary_10_1172_JCI59130
crossref_primary_10_1007_s12031_022_02029_3
crossref_primary_10_1093_brain_awu312
crossref_primary_10_3390_biology11081191
crossref_primary_10_1002_glia_24666
crossref_primary_10_1083_jcb_200908164
crossref_primary_10_1007_s13311_022_01232_9
crossref_primary_10_1523_JNEUROSCI_1119_12_2013
crossref_primary_10_1172_JCI84505
crossref_primary_10_1093_hmg_ddq463
crossref_primary_10_1016_j_neuropharm_2015_10_026
crossref_primary_10_1523_ENEURO_0388_19_2020
crossref_primary_10_3390_v15091819
crossref_primary_10_1002_cm_21319
crossref_primary_10_31857_S0006302923010192
crossref_primary_10_1038_s41467_021_23224_7
crossref_primary_10_1089_ars_2011_4328
crossref_primary_10_1523_JNEUROSCI_1379_14_2015
crossref_primary_10_1111_j_1460_9568_2010_07260_x
crossref_primary_10_1002_bit_28083
crossref_primary_10_1093_brain_awt097
crossref_primary_10_1134_S0006350923010086
crossref_primary_10_1016_j_neuroscience_2009_08_031
crossref_primary_10_1016_j_tins_2021_04_008
crossref_primary_10_1016_j_pharmthera_2011_06_002
crossref_primary_10_3389_fnins_2019_00532
crossref_primary_10_3389_fnins_2021_736888
crossref_primary_10_1073_pnas_1318309110
crossref_primary_10_1002_glia_22903
crossref_primary_10_1007_s00401_017_1687_9
crossref_primary_10_1172_JCI38476
Cites_doi 10.1093/brain/awh005
10.1002/cne.20620
10.1126/science.281.5384.1851
10.1073/pnas.0503862102
10.1001/archneur.63.12.1681
10.1073/pnas.0712209105
10.1038/362020a0
10.1056/NEJM199205283262204
10.1073/pnas.0602046103
10.1002/glia.20723
10.1038/nn823
10.1016/j.molcel.2007.03.016
10.1146/annurev.neuro.30.051606.094337
10.1212/01.wnl.0000188760.53922.05
10.1111/j.1749-6632.1999.tb08574.x
10.1002/glia.20766
10.1016/S0006-8993(02)02827-5
10.1016/j.cmet.2008.09.002
10.1016/j.mcn.2006.03.002
10.1126/science.1086071
10.1038/nn1653
10.1073/pnas.0609411103
10.1096/fj.02-0251fje
10.1126/science.1123511
10.1038/ng0596-43
10.1523/JNEUROSCI.4385-04.2005
10.1083/jcb.118.1.139
10.1016/j.neuron.2006.09.018
10.1073/pnas.0702230104
10.1038/nn1885
10.1016/j.stem.2008.09.017
10.1038/nn1603
10.1101/gad.1640108
10.1126/science.1086137
10.1016/j.stem.2008.10.001
10.1016/j.neuron.2004.06.016
10.1172/JCI25424
10.1038/nn1876
10.1083/jcb.200109021
10.1083/jcb.200407021
10.1523/JNEUROSCI.2493-05.2005
10.1523/JNEUROSCI.23-05-01710.2003
10.1073/pnas.91.17.8292
10.1038/nn2047
10.1002/glia.20751
ContentType Journal Article
Copyright Copyright 1993-2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Mar 17, 2009
2009 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright 1993-2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Mar 17, 2009
– notice: 2009 by The National Academy of Sciences of the USA
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0813339106
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE

AGRICOLA

Neurosciences Abstracts
CrossRef
Virology and AIDS Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 4470
ExternalDocumentID PMC2657393
1664733781
19251638
10_1073_pnas_0813339106
106_11_4465
40441832
US201301608366
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS027036
– fundername: NINDS NIH HHS
  grantid: R01 NS045630
– fundername: NINDS NIH HHS
  grantid: R37 NS027036
– fundername: NINDS NIH HHS
  grantid: NS 27036
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c649t-6f3f860c1df59807c6b6d16fbb9ebdbd9fc584c3087994bdcf24f1dd890f103e3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:09:56 EDT 2025
Fri Sep 05 00:17:59 EDT 2025
Fri Sep 05 05:22:58 EDT 2025
Thu Sep 04 21:11:30 EDT 2025
Mon Jun 30 08:41:20 EDT 2025
Fri May 30 10:50:45 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
Tue Jul 01 02:39:13 EDT 2025
Thu May 30 08:50:54 EDT 2019
Wed Nov 11 00:29:06 EST 2020
Thu May 29 08:42:56 EDT 2025
Wed Dec 27 19:19:05 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c649t-6f3f860c1df59807c6b6d16fbb9ebdbd9fc584c3087994bdcf24f1dd890f103e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Contributed by Don W. Cleveland, December 30, 2008
Author contributions: C.S.L. and D.W.C. designed research; C.S.L., S.B., M.M.-D., A.M.K., and K.Y. performed research; M.L.F. and K.Y. contributed new reagents/analytic tools; C.S.L. and D.W.C. analyzed data; and C.S.L. and D.W.C. wrote the paper.
1Present address: Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Bunkyo, Tokyo 113-0033, Japan.
OpenAccessLink https://hdl.handle.net/2434/953373
PMID 19251638
PQID 201306275
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_106_11_4465_fulltext
proquest_miscellaneous_67042888
pubmed_primary_19251638
proquest_miscellaneous_20237637
crossref_primary_10_1073_pnas_0813339106
crossref_citationtrail_10_1073_pnas_0813339106
pnas_primary_106_11_4465
proquest_miscellaneous_46216173
fao_agris_US201301608366
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2657393
proquest_journals_201306275
jstor_primary_40441832
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-17
PublicationDateYYYYMMDD 2009-03-17
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-17
  day: 17
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
Sullivan KA (e_1_3_3_34_2) 2008; 21
Keller AF (e_1_3_3_49_2) 2008
e_1_3_3_17_2
Harraz MM (e_1_3_3_6_2) 2008; 118
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
Perrie WT (e_1_3_3_22_2) 1993; 39
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_37_2
  doi: 10.1093/brain/awh005
– ident: e_1_3_3_25_2
  doi: 10.1002/cne.20620
– ident: e_1_3_3_38_2
  doi: 10.1126/science.281.5384.1851
– ident: e_1_3_3_28_2
  doi: 10.1073/pnas.0503862102
– ident: e_1_3_3_17_2
  doi: 10.1001/archneur.63.12.1681
– ident: e_1_3_3_39_2
  doi: 10.1073/pnas.0712209105
– ident: e_1_3_3_2_2
  doi: 10.1038/362020a0
– ident: e_1_3_3_3_2
  doi: 10.1056/NEJM199205283262204
– ident: e_1_3_3_41_2
  doi: 10.1073/pnas.0602046103
– ident: e_1_3_3_18_2
  doi: 10.1002/glia.20723
– ident: e_1_3_3_44_2
  doi: 10.1038/nn823
– ident: e_1_3_3_45_2
  doi: 10.1016/j.molcel.2007.03.016
– ident: e_1_3_3_19_2
  doi: 10.1146/annurev.neuro.30.051606.094337
– ident: e_1_3_3_42_2
  doi: 10.1212/01.wnl.0000188760.53922.05
– ident: e_1_3_3_48_2
  doi: 10.1111/j.1749-6632.1999.tb08574.x
– ident: e_1_3_3_20_2
  doi: 10.1002/glia.20766
– ident: e_1_3_3_32_2
  doi: 10.1016/S0006-8993(02)02827-5
– ident: e_1_3_3_15_2
  doi: 10.1016/j.cmet.2008.09.002
– ident: e_1_3_3_23_2
  doi: 10.1016/j.mcn.2006.03.002
– ident: e_1_3_3_9_2
  doi: 10.1126/science.1086071
– ident: e_1_3_3_24_2
  doi: 10.1038/nn1653
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.0609411103
– ident: e_1_3_3_31_2
  doi: 10.1096/fj.02-0251fje
– ident: e_1_3_3_10_2
  doi: 10.1126/science.1123511
– ident: e_1_3_3_36_2
  doi: 10.1038/ng0596-43
– ident: e_1_3_3_40_2
  doi: 10.1523/JNEUROSCI.4385-04.2005
– ident: e_1_3_3_33_2
  doi: 10.1083/jcb.118.1.139
– ident: e_1_3_3_1_2
  doi: 10.1016/j.neuron.2006.09.018
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.0702230104
– ident: e_1_3_3_13_2
  doi: 10.1038/nn1885
– ident: e_1_3_3_12_2
  doi: 10.1016/j.stem.2008.09.017
– ident: e_1_3_3_5_2
  doi: 10.1038/nn1603
– ident: e_1_3_3_8_2
  doi: 10.1101/gad.1640108
– ident: e_1_3_3_46_2
  doi: 10.1126/science.1086137
– ident: e_1_3_3_7_2
  doi: 10.1016/j.stem.2008.10.001
– ident: e_1_3_3_4_2
  doi: 10.1016/j.neuron.2004.06.016
– year: 2008
  ident: e_1_3_3_49_2
  article-title: Live imaging of amyotrophic lateral sclerosis pathogenesis: Disease onset is characterized by marked induction of GFAP in Schwann cells
  publication-title: Glia
– ident: e_1_3_3_43_2
  doi: 10.1172/JCI25424
– volume: 118
  start-page: 659
  year: 2008
  ident: e_1_3_3_6_2
  article-title: SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model
  publication-title: J Clin Invest
– volume: 39
  start-page: 223
  year: 1993
  ident: e_1_3_3_22_2
  article-title: Changes in the myelinated axons of femoral nerve in amyotrophic lateral sclerosis
  publication-title: J Neural Transm Suppl
– ident: e_1_3_3_14_2
  doi: 10.1038/nn1876
– ident: e_1_3_3_26_2
  doi: 10.1083/jcb.200109021
– ident: e_1_3_3_47_2
  doi: 10.1083/jcb.200407021
– volume: 21
  start-page: 21
  year: 2008
  ident: e_1_3_3_34_2
  article-title: Insulin-like growth factors in the peripheral nervous system
  publication-title: Endocrinology
– ident: e_1_3_3_27_2
  doi: 10.1523/JNEUROSCI.2493-05.2005
– ident: e_1_3_3_30_2
  doi: 10.1523/JNEUROSCI.23-05-01710.2003
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.91.17.8292
– ident: e_1_3_3_11_2
  doi: 10.1038/nn2047
– ident: e_1_3_3_21_2
  doi: 10.1002/glia.20751
SSID ssj0009580
Score 2.3415766
Snippet Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4465
SubjectTerms Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - pathology
Amyotrophic Lateral Sclerosis - prevention & control
animal models
Animals
Astrocytes
Axons
Biological Sciences
Cells
disease course
Disease Models, Animal
Disease Progression
Down-Regulation
Gene expression
gene expression regulation
genes
Inactivation
insulin-like growth factor I
Insulin-Like Growth Factor I - biosynthesis
Mice
Motor neuron disease
Motor neurons
Mutants
Mutation
nerve tissue
Nervous system diseases
neurodegenerative diseases
Neuroglia
Neurons
Neurons - metabolism
Rodents
Schwann cells
Schwann Cells - metabolism
Sciatic nerve
Superoxide Dismutase - biosynthesis
Superoxide Dismutase - physiology
Superoxide Dismutase-1
Title Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice
URI https://www.jstor.org/stable/40441832
http://www.pnas.org/content/106/11/4465.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19251638
https://www.proquest.com/docview/201306275
https://www.proquest.com/docview/20237637
https://www.proquest.com/docview/46216173
https://www.proquest.com/docview/67042888
https://pubmed.ncbi.nlm.nih.gov/PMC2657393
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cIFUaDULY9F4lBkOawfWdvHiIIqKKVSWqk3y16vm0iJXdVJK_g1_FRmvOu1UzUScLES78OW5_Ps7HjmG0Leu0Way4JJxytGnoM8k04EhrUjRRCyQAgscozRFqf8-CL4ejm6HAx-96KWVstsKH49mFfyP1KFcyBXzJL9B8maSeEE_Ab5whEkDMe_kvFETO_SsrTR-14jWX8T1Ap7_3xWLzDYWnFl3Eob_5VLe_LjyLVXJdL6CzA15z_tel7dtV9pVLCWIupo_CAnE3uhY-NaA_bMLHh1G15w2voTx112ilYZte3YZ6ddreOTKqtnVzr3cGr0i_EJVJiZqJzi8rZJTOz8huM5qJ_aOarudHWB73IOqDHLyrep8uWOF7Mb7eNtvRkxhnOp5M2hVBoYDBiHB6qGqFHRjPex6PY0LhK-PbgUgO7C-sVlWg_B7PF9P9az9IBxvWiQAVbuCO3Sbk00kYpt0xZ55IVgnbX-IEPrHLGWMCr0P967WsNIq8avmT1bRVq18a9IqgujHtrg3I_T7Rk-50_JE71joWMFvx0ykOUzstMKmB5q4vIPz8mVxiNt8Eg7PFKDR6rwSBUeKeKR9vFIEY9U45H28EhnJQU8UsTjC3Lx5fP5p2NHF_JwBEhy6fDCLyLOhJsXozhioeAZz11eZFksszzL40KAHSyQnDKOgywXhRcUbp5HMStc5kt_l2yXVSn3CGV55mY5A8XD0iATfhbAjifNWShDLx_FnkWG7XNOhGa5x2Ir86SJtgj9BJ920snIIodmwLUieNncdQ8El6RX8HokFxMPP_q7HOndoWm3kaaZImCwz4DVEsY0s3RTc9h0J4hai7zb1JQUOvLLIgctLBKteOqkuTCyi1vkrWmFVQGFm5ayWmEXjHbzw809Au6ha8Pf3IOH6E-JIou8VDDs7lSD2iLhGkBNB-SsX28pZ9OGu97jI-Tg3N845wF53OmFV2R7ebOSr8HuX2ZvmlfvD__aBMk
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Schwann+cells+expressing+dismutase+active+mutant+SOD1+unexpectedly+slow+disease+progression+in+ALS+mice&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lobsiger%2C+Christian+S&rft.au=Boillee%2C+Severine&rft.au=McAlonis-Downes%2C+Melissa&rft.au=Khan%2C+Amir+M&rft.date=2009-03-17&rft.eissn=1091-6490&rft.volume=106&rft.issue=11&rft.spage=4465&rft_id=info:doi/10.1073%2Fpnas.0813339106&rft_id=info%3Apmid%2F19251638&rft.externalDocID=19251638
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F11.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F11.cover.gif