Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice
Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a dete...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 106; no. 11; pp. 4465 - 4470 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
17.03.2009
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.0813339106 |
Cover
Abstract | Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1G³⁷R) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells. |
---|---|
AbstractList | Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant
SOD1
gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1
G37R
) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells. Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1(G37R)) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells. Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1G³⁷R) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells. Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (${\rm{SOD1}}^{{\rm{G37R}}}$) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells. Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1 super(G37R)) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells. Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1...) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells. (ProQuest: ... denotes formulae/symbols omitted.) Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1(G37R)) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells.Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1(G37R)) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells. |
Author | Lobsiger, Christian S Yamanaka, Koji Cleveland, Don W Khan, Amir M Feltri, M. Laura Boillee, Severine McAlonis-Downes, Melissa |
Author_xml | – sequence: 1 fullname: Lobsiger, Christian S – sequence: 2 fullname: Boillee, Severine – sequence: 3 fullname: McAlonis-Downes, Melissa – sequence: 4 fullname: Khan, Amir M – sequence: 5 fullname: Feltri, M. Laura – sequence: 6 fullname: Yamanaka, Koji – sequence: 7 fullname: Cleveland, Don W |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19251638$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s9v2yAUB3Br6rSm3c47bbN2mHZJ-zAYw6VS1W3dpEg9ZD0jjCElciAD3B___XCTNlsP7clCfN7X8HgHxZ7zThfFewRHCBp8vHYyHgFDGGOOgL4qJgg4mlLCYa-YAFTNlJGK7BcHMS4BgNcM3hT7iFc1ophNisVcXd1I50ql-z6W-nYddIzWLcrOxtWQZNSlVMle63JcuVTOL76hcnBZapV019-Vsfc3I9cjXge_uI_wrrSuPJ3Ny5VV-m3x2sg-6nfb72Fx-eP777Of09nF-a-z09lU5TOnKTXYMAoKdabmDBpFW9ohatqW67ZrO25UzYjCwBrOSdspUxGDuo5xMAiwxofFySZ3PbQr3SntUpC9WAe7kuFOeGnF_zvOXomFvxYVrRvMcQ74sg0I_s-gYxIrG8fmSKf9EAVtgFSMsRchoRWiqHk5sYIKNxQ3GX5-Apd-CC63KxuEgVZNndHHfy_4eLOHJ83geANU8DEGbXYExDg0YhwasRuaXFE_qVA2yZRfMHfI9s_Ufd0eZdzY_YUKhAQhtBZm6Pukb1Omn56nWXzYiGVMPjwSAoQghqtdgpFeyEWwUVzO79uCKDBMKf4LLK3yqA |
CitedBy_id | crossref_primary_10_1016_j_expneurol_2015_07_019 crossref_primary_10_1093_hmg_ddp550 crossref_primary_10_4061_2011_207230 crossref_primary_10_1016_j_neulet_2021_135911 crossref_primary_10_1016_j_pneurobio_2015_07_004 crossref_primary_10_1038_srep39297 crossref_primary_10_4103_NRR_NRR_D_23_01815 crossref_primary_10_7554_eLife_40811 crossref_primary_10_1007_s00401_015_1446_8 crossref_primary_10_1155_2011_718987 crossref_primary_10_1089_rej_2011_1292 crossref_primary_10_1210_endrev_bnz005 crossref_primary_10_1093_icb_icr116 crossref_primary_10_1038_nrneurol_2015_57 crossref_primary_10_3389_fnins_2014_00252 crossref_primary_10_1371_journal_pone_0052605 crossref_primary_10_3389_fnins_2019_00796 crossref_primary_10_1038_nrneurol_2011_152 crossref_primary_10_1172_JCI71601 crossref_primary_10_1371_journal_pone_0018778 crossref_primary_10_1155_2011_348765 crossref_primary_10_1016_j_expneurol_2014_05_015 crossref_primary_10_3389_fncel_2014_00131 crossref_primary_10_3389_fnmol_2017_00176 crossref_primary_10_1016_j_expneurol_2015_09_014 crossref_primary_10_1134_S1990747820030113 crossref_primary_10_1073_pnas_2306731120 crossref_primary_10_1523_JNEUROSCI_1748_18_2020 crossref_primary_10_1007_s00401_017_1708_8 crossref_primary_10_3389_fnins_2019_00601 crossref_primary_10_1002_cne_23848 crossref_primary_10_3390_ijms19020631 crossref_primary_10_1007_s00018_013_1429_7 crossref_primary_10_18632_genesandcancer_4 crossref_primary_10_1111_j_1365_2990_2010_01061_x crossref_primary_10_3389_fncel_2015_00332 crossref_primary_10_1016_j_bbadis_2018_10_013 crossref_primary_10_4103_1673_5374_205000 crossref_primary_10_1111_jnc_12046 crossref_primary_10_1186_s40478_014_0181_z crossref_primary_10_3390_ijms18102092 crossref_primary_10_3109_17482968_2010_489116 crossref_primary_10_3390_antiox11081606 crossref_primary_10_1534_g3_113_005850 crossref_primary_10_1002_glia_23768 crossref_primary_10_1016_j_ecl_2012_04_020 crossref_primary_10_1038_ncomms3906 crossref_primary_10_1016_j_expneurol_2016_02_002 crossref_primary_10_1051_medsci_2010263311 crossref_primary_10_7554_eLife_41973 crossref_primary_10_1016_j_nbd_2010_01_006 crossref_primary_10_1007_s11910_010_0160_0 crossref_primary_10_3389_fncel_2014_00117 crossref_primary_10_5607_en_2017_26_3_141 crossref_primary_10_3389_fnagi_2020_00191 crossref_primary_10_1002_bit_27083 crossref_primary_10_1017_S0317167100016516 crossref_primary_10_1038_s41593_020_00718_z crossref_primary_10_1016_j_omtm_2021_01_006 crossref_primary_10_1007_s00702_010_0429_0 crossref_primary_10_1002_ana_25030 crossref_primary_10_1007_s00018_024_05164_9 crossref_primary_10_1016_j_nbd_2009_05_002 crossref_primary_10_1111_j_1471_4159_2010_06979_x crossref_primary_10_2174_1570159X21666230824091601 crossref_primary_10_1007_s00335_011_9339_1 crossref_primary_10_1007_s00429_023_02728_6 crossref_primary_10_1002_glia_22654 crossref_primary_10_3389_fnmol_2023_1333745 crossref_primary_10_1093_hmg_dds215 crossref_primary_10_1007_s12035_013_8573_9 crossref_primary_10_1016_j_actbio_2024_10_017 crossref_primary_10_1016_j_nbd_2012_05_014 crossref_primary_10_1371_journal_pone_0087255 crossref_primary_10_1080_15548627_2017_1308985 crossref_primary_10_1172_JCI59130 crossref_primary_10_1007_s12031_022_02029_3 crossref_primary_10_1093_brain_awu312 crossref_primary_10_3390_biology11081191 crossref_primary_10_1002_glia_24666 crossref_primary_10_1083_jcb_200908164 crossref_primary_10_1007_s13311_022_01232_9 crossref_primary_10_1523_JNEUROSCI_1119_12_2013 crossref_primary_10_1172_JCI84505 crossref_primary_10_1093_hmg_ddq463 crossref_primary_10_1016_j_neuropharm_2015_10_026 crossref_primary_10_1523_ENEURO_0388_19_2020 crossref_primary_10_3390_v15091819 crossref_primary_10_1002_cm_21319 crossref_primary_10_31857_S0006302923010192 crossref_primary_10_1038_s41467_021_23224_7 crossref_primary_10_1089_ars_2011_4328 crossref_primary_10_1523_JNEUROSCI_1379_14_2015 crossref_primary_10_1111_j_1460_9568_2010_07260_x crossref_primary_10_1002_bit_28083 crossref_primary_10_1093_brain_awt097 crossref_primary_10_1134_S0006350923010086 crossref_primary_10_1016_j_neuroscience_2009_08_031 crossref_primary_10_1016_j_tins_2021_04_008 crossref_primary_10_1016_j_pharmthera_2011_06_002 crossref_primary_10_3389_fnins_2019_00532 crossref_primary_10_3389_fnins_2021_736888 crossref_primary_10_1073_pnas_1318309110 crossref_primary_10_1002_glia_22903 crossref_primary_10_1007_s00401_017_1687_9 crossref_primary_10_1172_JCI38476 |
Cites_doi | 10.1093/brain/awh005 10.1002/cne.20620 10.1126/science.281.5384.1851 10.1073/pnas.0503862102 10.1001/archneur.63.12.1681 10.1073/pnas.0712209105 10.1038/362020a0 10.1056/NEJM199205283262204 10.1073/pnas.0602046103 10.1002/glia.20723 10.1038/nn823 10.1016/j.molcel.2007.03.016 10.1146/annurev.neuro.30.051606.094337 10.1212/01.wnl.0000188760.53922.05 10.1111/j.1749-6632.1999.tb08574.x 10.1002/glia.20766 10.1016/S0006-8993(02)02827-5 10.1016/j.cmet.2008.09.002 10.1016/j.mcn.2006.03.002 10.1126/science.1086071 10.1038/nn1653 10.1073/pnas.0609411103 10.1096/fj.02-0251fje 10.1126/science.1123511 10.1038/ng0596-43 10.1523/JNEUROSCI.4385-04.2005 10.1083/jcb.118.1.139 10.1016/j.neuron.2006.09.018 10.1073/pnas.0702230104 10.1038/nn1885 10.1016/j.stem.2008.09.017 10.1038/nn1603 10.1101/gad.1640108 10.1126/science.1086137 10.1016/j.stem.2008.10.001 10.1016/j.neuron.2004.06.016 10.1172/JCI25424 10.1038/nn1876 10.1083/jcb.200109021 10.1083/jcb.200407021 10.1523/JNEUROSCI.2493-05.2005 10.1523/JNEUROSCI.23-05-01710.2003 10.1073/pnas.91.17.8292 10.1038/nn2047 10.1002/glia.20751 |
ContentType | Journal Article |
Copyright | Copyright 1993-2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Mar 17, 2009 2009 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 1993-2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Mar 17, 2009 – notice: 2009 by The National Academy of Sciences of the USA |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0813339106 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE AGRICOLA Neurosciences Abstracts CrossRef Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 4470 |
ExternalDocumentID | PMC2657393 1664733781 19251638 10_1073_pnas_0813339106 106_11_4465 40441832 US201301608366 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS027036 – fundername: NINDS NIH HHS grantid: R01 NS045630 – fundername: NINDS NIH HHS grantid: R37 NS027036 – fundername: NINDS NIH HHS grantid: NS 27036 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c649t-6f3f860c1df59807c6b6d16fbb9ebdbd9fc584c3087994bdcf24f1dd890f103e3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:09:56 EDT 2025 Fri Sep 05 00:17:59 EDT 2025 Fri Sep 05 05:22:58 EDT 2025 Thu Sep 04 21:11:30 EDT 2025 Mon Jun 30 08:41:20 EDT 2025 Fri May 30 10:50:45 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 Tue Jul 01 02:39:13 EDT 2025 Thu May 30 08:50:54 EDT 2019 Wed Nov 11 00:29:06 EST 2020 Thu May 29 08:42:56 EDT 2025 Wed Dec 27 19:19:05 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c649t-6f3f860c1df59807c6b6d16fbb9ebdbd9fc584c3087994bdcf24f1dd890f103e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Contributed by Don W. Cleveland, December 30, 2008 Author contributions: C.S.L. and D.W.C. designed research; C.S.L., S.B., M.M.-D., A.M.K., and K.Y. performed research; M.L.F. and K.Y. contributed new reagents/analytic tools; C.S.L. and D.W.C. analyzed data; and C.S.L. and D.W.C. wrote the paper. 1Present address: Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Bunkyo, Tokyo 113-0033, Japan. |
OpenAccessLink | https://hdl.handle.net/2434/953373 |
PMID | 19251638 |
PQID | 201306275 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_106_11_4465_fulltext proquest_miscellaneous_67042888 pubmed_primary_19251638 proquest_miscellaneous_20237637 crossref_primary_10_1073_pnas_0813339106 crossref_citationtrail_10_1073_pnas_0813339106 pnas_primary_106_11_4465 proquest_miscellaneous_46216173 fao_agris_US201301608366 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2657393 proquest_journals_201306275 jstor_primary_40441832 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-03-17 |
PublicationDateYYYYMMDD | 2009-03-17 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-17 day: 17 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2009 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 Sullivan KA (e_1_3_3_34_2) 2008; 21 Keller AF (e_1_3_3_49_2) 2008 e_1_3_3_17_2 Harraz MM (e_1_3_3_6_2) 2008; 118 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 Perrie WT (e_1_3_3_22_2) 1993; 39 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_37_2 doi: 10.1093/brain/awh005 – ident: e_1_3_3_25_2 doi: 10.1002/cne.20620 – ident: e_1_3_3_38_2 doi: 10.1126/science.281.5384.1851 – ident: e_1_3_3_28_2 doi: 10.1073/pnas.0503862102 – ident: e_1_3_3_17_2 doi: 10.1001/archneur.63.12.1681 – ident: e_1_3_3_39_2 doi: 10.1073/pnas.0712209105 – ident: e_1_3_3_2_2 doi: 10.1038/362020a0 – ident: e_1_3_3_3_2 doi: 10.1056/NEJM199205283262204 – ident: e_1_3_3_41_2 doi: 10.1073/pnas.0602046103 – ident: e_1_3_3_18_2 doi: 10.1002/glia.20723 – ident: e_1_3_3_44_2 doi: 10.1038/nn823 – ident: e_1_3_3_45_2 doi: 10.1016/j.molcel.2007.03.016 – ident: e_1_3_3_19_2 doi: 10.1146/annurev.neuro.30.051606.094337 – ident: e_1_3_3_42_2 doi: 10.1212/01.wnl.0000188760.53922.05 – ident: e_1_3_3_48_2 doi: 10.1111/j.1749-6632.1999.tb08574.x – ident: e_1_3_3_20_2 doi: 10.1002/glia.20766 – ident: e_1_3_3_32_2 doi: 10.1016/S0006-8993(02)02827-5 – ident: e_1_3_3_15_2 doi: 10.1016/j.cmet.2008.09.002 – ident: e_1_3_3_23_2 doi: 10.1016/j.mcn.2006.03.002 – ident: e_1_3_3_9_2 doi: 10.1126/science.1086071 – ident: e_1_3_3_24_2 doi: 10.1038/nn1653 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.0609411103 – ident: e_1_3_3_31_2 doi: 10.1096/fj.02-0251fje – ident: e_1_3_3_10_2 doi: 10.1126/science.1123511 – ident: e_1_3_3_36_2 doi: 10.1038/ng0596-43 – ident: e_1_3_3_40_2 doi: 10.1523/JNEUROSCI.4385-04.2005 – ident: e_1_3_3_33_2 doi: 10.1083/jcb.118.1.139 – ident: e_1_3_3_1_2 doi: 10.1016/j.neuron.2006.09.018 – ident: e_1_3_3_29_2 doi: 10.1073/pnas.0702230104 – ident: e_1_3_3_13_2 doi: 10.1038/nn1885 – ident: e_1_3_3_12_2 doi: 10.1016/j.stem.2008.09.017 – ident: e_1_3_3_5_2 doi: 10.1038/nn1603 – ident: e_1_3_3_8_2 doi: 10.1101/gad.1640108 – ident: e_1_3_3_46_2 doi: 10.1126/science.1086137 – ident: e_1_3_3_7_2 doi: 10.1016/j.stem.2008.10.001 – ident: e_1_3_3_4_2 doi: 10.1016/j.neuron.2004.06.016 – year: 2008 ident: e_1_3_3_49_2 article-title: Live imaging of amyotrophic lateral sclerosis pathogenesis: Disease onset is characterized by marked induction of GFAP in Schwann cells publication-title: Glia – ident: e_1_3_3_43_2 doi: 10.1172/JCI25424 – volume: 118 start-page: 659 year: 2008 ident: e_1_3_3_6_2 article-title: SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model publication-title: J Clin Invest – volume: 39 start-page: 223 year: 1993 ident: e_1_3_3_22_2 article-title: Changes in the myelinated axons of femoral nerve in amyotrophic lateral sclerosis publication-title: J Neural Transm Suppl – ident: e_1_3_3_14_2 doi: 10.1038/nn1876 – ident: e_1_3_3_26_2 doi: 10.1083/jcb.200109021 – ident: e_1_3_3_47_2 doi: 10.1083/jcb.200407021 – volume: 21 start-page: 21 year: 2008 ident: e_1_3_3_34_2 article-title: Insulin-like growth factors in the peripheral nervous system publication-title: Endocrinology – ident: e_1_3_3_27_2 doi: 10.1523/JNEUROSCI.2493-05.2005 – ident: e_1_3_3_30_2 doi: 10.1523/JNEUROSCI.23-05-01710.2003 – ident: e_1_3_3_35_2 doi: 10.1073/pnas.91.17.8292 – ident: e_1_3_3_11_2 doi: 10.1038/nn2047 – ident: e_1_3_3_21_2 doi: 10.1002/glia.20751 |
SSID | ssj0009580 |
Score | 2.3415766 |
Snippet | Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4465 |
SubjectTerms | Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - pathology Amyotrophic Lateral Sclerosis - prevention & control animal models Animals Astrocytes Axons Biological Sciences Cells disease course Disease Models, Animal Disease Progression Down-Regulation Gene expression gene expression regulation genes Inactivation insulin-like growth factor I Insulin-Like Growth Factor I - biosynthesis Mice Motor neuron disease Motor neurons Mutants Mutation nerve tissue Nervous system diseases neurodegenerative diseases Neuroglia Neurons Neurons - metabolism Rodents Schwann cells Schwann Cells - metabolism Sciatic nerve Superoxide Dismutase - biosynthesis Superoxide Dismutase - physiology Superoxide Dismutase-1 |
Title | Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice |
URI | https://www.jstor.org/stable/40441832 http://www.pnas.org/content/106/11/4465.abstract https://www.ncbi.nlm.nih.gov/pubmed/19251638 https://www.proquest.com/docview/201306275 https://www.proquest.com/docview/20237637 https://www.proquest.com/docview/46216173 https://www.proquest.com/docview/67042888 https://pubmed.ncbi.nlm.nih.gov/PMC2657393 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cIFUaDULY9F4lBkOawfWdvHiIIqKKVSWqk3y16vm0iJXdVJK_g1_FRmvOu1UzUScLES78OW5_Ps7HjmG0Leu0Way4JJxytGnoM8k04EhrUjRRCyQAgscozRFqf8-CL4ejm6HAx-96KWVstsKH49mFfyP1KFcyBXzJL9B8maSeEE_Ab5whEkDMe_kvFETO_SsrTR-14jWX8T1Ap7_3xWLzDYWnFl3Eob_5VLe_LjyLVXJdL6CzA15z_tel7dtV9pVLCWIupo_CAnE3uhY-NaA_bMLHh1G15w2voTx112ilYZte3YZ6ddreOTKqtnVzr3cGr0i_EJVJiZqJzi8rZJTOz8huM5qJ_aOarudHWB73IOqDHLyrep8uWOF7Mb7eNtvRkxhnOp5M2hVBoYDBiHB6qGqFHRjPex6PY0LhK-PbgUgO7C-sVlWg_B7PF9P9az9IBxvWiQAVbuCO3Sbk00kYpt0xZ55IVgnbX-IEPrHLGWMCr0P967WsNIq8avmT1bRVq18a9IqgujHtrg3I_T7Rk-50_JE71joWMFvx0ykOUzstMKmB5q4vIPz8mVxiNt8Eg7PFKDR6rwSBUeKeKR9vFIEY9U45H28EhnJQU8UsTjC3Lx5fP5p2NHF_JwBEhy6fDCLyLOhJsXozhioeAZz11eZFksszzL40KAHSyQnDKOgywXhRcUbp5HMStc5kt_l2yXVSn3CGV55mY5A8XD0iATfhbAjifNWShDLx_FnkWG7XNOhGa5x2Ir86SJtgj9BJ920snIIodmwLUieNncdQ8El6RX8HokFxMPP_q7HOndoWm3kaaZImCwz4DVEsY0s3RTc9h0J4hai7zb1JQUOvLLIgctLBKteOqkuTCyi1vkrWmFVQGFm5ayWmEXjHbzw809Au6ha8Pf3IOH6E-JIou8VDDs7lSD2iLhGkBNB-SsX28pZ9OGu97jI-Tg3N845wF53OmFV2R7ebOSr8HuX2ZvmlfvD__aBMk |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Schwann+cells+expressing+dismutase+active+mutant+SOD1+unexpectedly+slow+disease+progression+in+ALS+mice&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lobsiger%2C+Christian+S&rft.au=Boillee%2C+Severine&rft.au=McAlonis-Downes%2C+Melissa&rft.au=Khan%2C+Amir+M&rft.date=2009-03-17&rft.eissn=1091-6490&rft.volume=106&rft.issue=11&rft.spage=4465&rft_id=info:doi/10.1073%2Fpnas.0813339106&rft_id=info%3Apmid%2F19251638&rft.externalDocID=19251638 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F11.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F11.cover.gif |