An EMG-driven model to estimate muscle forces and joint moments in stroke patients
Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculos...
Saved in:
Published in | Computers in biology and medicine Vol. 39; no. 12; pp. 1083 - 1088 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.12.2009
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4825 1879-0534 1879-0534 |
DOI | 10.1016/j.compbiomed.2009.09.002 |
Cover
Abstract | Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average
R
2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention. |
---|---|
AbstractList | Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R(2) value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention.Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R(2) value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention. Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model’s ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R 2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention. Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention. Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R 2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention. Abstract Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention. Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R(2) value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention. Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R super(2) value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention. |
Author | Bassett, Daniel N. Manal, Kurt Buchanan, Thomas S. Shao, Qi |
Author_xml | – sequence: 1 givenname: Qi surname: Shao fullname: Shao, Qi – sequence: 2 givenname: Daniel N. surname: Bassett fullname: Bassett, Daniel N. – sequence: 3 givenname: Kurt surname: Manal fullname: Manal, Kurt – sequence: 4 givenname: Thomas S. surname: Buchanan fullname: Buchanan, Thomas S. email: buchanan@udel.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19818436$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkmtrFDEUhoNU7Lb6FyQg6KdZTy5zyZdiLbUKFcHL55DJnNFsZ5JtMrvQf2-G1q4uqIVAQvLmObf3iBz44JEQymDJgFWvV0sbxnXrwojdkgOo5byAPyIL1tSqgFLIA7IAYFDIhpeH5CilFQBIEPCEHDLVsEaKakE-n3p6_vGi6KLboqdj6HCgU6CYJjeaCem4SXZA2odoMVHjO7oKzk9ZOaKfEnWepimGK6RrM7n56il53Jsh4bO7_Zh8e3f-9ex9cfnp4sPZ6WVhK6mmouy6kpuK9aqXyHklmWlaFK2wDJWFthcW-6ZUlQHTSqEEt1JaxVnd9Kase3FMTm65602b-2Bz7GgGvY458Xijg3H6zxfvfujvYat53UhWqwx4dQeI4XqTK9ajSxaHwXgMm6RrIZkUTcmy8uU_lZxBKcsSsvDFnnAVNtHnNmgGQgCXspoDP_898_uUf41lV5qNIaWIvbZuyu0NcyFuyCw9-0Cv9M4HevaBnhfwDGj2APcx_v_17e1XzLPbOow62TxXi52LaCfdBfcQyMkexA7OO2uGK7zBtGuKTlyD_jI7dTYqqHyqpMyAN38HPCyHnxQC_qw |
CODEN | CBMDAW |
CitedBy_id | crossref_primary_10_1109_TNSRE_2016_2583464 crossref_primary_10_1016_j_clinbiomech_2019_04_005 crossref_primary_10_1109_TNSRE_2017_2703586 crossref_primary_10_1115_1_4034060 crossref_primary_10_1109_JBHI_2023_3347672 crossref_primary_10_1109_TIE_2014_2387337 crossref_primary_10_1371_journal_pone_0052618 crossref_primary_10_1109_MCI_2014_2307224 crossref_primary_10_3390_app12083772 crossref_primary_10_1016_j_medengphy_2018_01_006 crossref_primary_10_1016_j_jbiomech_2023_111581 crossref_primary_10_1088_1361_6579_ad7776 crossref_primary_10_3389_fnbot_2018_00016 crossref_primary_10_1186_1475_925X_13_134 crossref_primary_10_3390_app10196791 crossref_primary_10_3233_THC_199005 crossref_primary_10_1007_s12541_012_0016_4 crossref_primary_10_1016_j_pmrj_2013_12_017 crossref_primary_10_3389_fnins_2017_00528 crossref_primary_10_1002_jor_23476 crossref_primary_10_3390_app8122345 crossref_primary_10_1115_1_4023457 crossref_primary_10_1088_1741_2552_aae26b crossref_primary_10_1007_s00521_024_10813_y crossref_primary_10_1093_comjnl_bxaa160 crossref_primary_10_1088_2057_1976_2_4_045019 crossref_primary_10_3390_act11030068 crossref_primary_10_1186_s12984_024_01490_y crossref_primary_10_1007_s10237_020_01367_8 crossref_primary_10_1109_TBCAS_2021_3130090 crossref_primary_10_1142_S0219519414500407 crossref_primary_10_1186_s12938_019_0653_2 crossref_primary_10_1038_s41598_017_13766_6 crossref_primary_10_1016_j_cobme_2021_100313 crossref_primary_10_1007_s12541_012_0220_2 crossref_primary_10_1016_j_bspc_2020_102074 crossref_primary_10_1016_j_neucom_2011_05_033 crossref_primary_10_1109_TBME_2012_2206389 crossref_primary_10_1038_s41598_024_68232_x crossref_primary_10_1016_j_gaitpost_2024_07_008 crossref_primary_10_1123_jab_2018_0136 crossref_primary_10_3389_fnins_2021_709422 crossref_primary_10_1109_JSEN_2015_2393883 crossref_primary_10_1088_1742_6596_1240_1_012153 crossref_primary_10_1007_s11044_015_9469_4 crossref_primary_10_1142_S0219843616500055 crossref_primary_10_1016_j_jbiomech_2014_10_009 crossref_primary_10_1115_1_4063899 crossref_primary_10_1186_s40648_017_0082_6 crossref_primary_10_1016_j_bspc_2022_104216 crossref_primary_10_1007_s11831_022_09757_0 crossref_primary_10_1109_JBHI_2016_2608720 crossref_primary_10_1109_JSEN_2020_3048983 crossref_primary_10_2139_ssrn_4183379 crossref_primary_10_1007_s10439_011_0481_4 crossref_primary_10_1016_j_chaos_2022_112965 crossref_primary_10_1051_sm_2012026 crossref_primary_10_1155_2021_1985741 crossref_primary_10_1109_TBME_2017_2704085 crossref_primary_10_1115_1_4051718 crossref_primary_10_1142_S0219519419500404 crossref_primary_10_22141_1608_1706_3_24_2023_955 crossref_primary_10_3390_app11073163 crossref_primary_10_3390_s16122018 crossref_primary_10_1249_MSS_0b013e31824d2783 crossref_primary_10_1016_j_jbiomech_2023_111668 crossref_primary_10_1115_1_4038199 crossref_primary_10_3390_s24092906 crossref_primary_10_1109_TBME_2022_3228070 crossref_primary_10_1109_TNSRE_2023_3323516 crossref_primary_10_3390_app11041450 crossref_primary_10_1109_TBME_2016_2538296 crossref_primary_10_1016_j_compbiomed_2014_06_010 crossref_primary_10_1016_j_compbiomed_2018_10_027 crossref_primary_10_1007_s11517_023_02823_0 crossref_primary_10_3390_biomed2040032 crossref_primary_10_1080_10255842_2014_916698 crossref_primary_10_1109_TBME_2024_3352556 crossref_primary_10_3390_app15052644 crossref_primary_10_1152_jn_00989_2014 crossref_primary_10_1016_j_compbiomed_2017_05_007 crossref_primary_10_1007_s40846_020_00539_2 crossref_primary_10_1007_s13246_019_00783_0 crossref_primary_10_3389_fbioe_2020_588925 crossref_primary_10_1016_j_piutam_2011_04_014 crossref_primary_10_1016_j_jbiomech_2017_12_028 crossref_primary_10_1016_j_compbiomed_2015_04_035 crossref_primary_10_3389_fnbot_2019_00048 crossref_primary_10_3389_fphys_2023_1160261 crossref_primary_10_3390_s19030657 crossref_primary_10_1016_j_jelekin_2024_102910 crossref_primary_10_1109_TFUZZ_2022_3158727 crossref_primary_10_3390_e19110624 crossref_primary_10_1109_JSEN_2024_3503689 crossref_primary_10_3389_fbioe_2022_962959 crossref_primary_10_1016_j_jneumeth_2019_108464 crossref_primary_10_1007_s10846_020_01221_0 crossref_primary_10_3389_fncom_2020_588943 crossref_primary_10_1098_rsfs_2014_0094 crossref_primary_10_1589_rika_36_813 crossref_primary_10_1177_1071100712464214 crossref_primary_10_1016_j_clinbiomech_2011_09_006 crossref_primary_10_3390_app11052037 crossref_primary_10_1115_1_4033673 crossref_primary_10_1142_S0218957716300015 crossref_primary_10_1590_2446_4740_01717 |
Cites_doi | 10.1016/0021-9290(81)90035-X 10.1016/S0021-9290(01)00105-1 10.1016/S0966-6362(02)00165-0 10.1115/1.2796019 10.1016/0022-510X(91)90117-P 10.1109/TNSRE.2005.851768 10.1186/1743-0003-3-17 10.1016/S0010-4825(01)00024-5 10.1249/01.mss.0000176684.24008.6f 10.1109/10.102791 10.1016/1350-4533(95)00005-8 10.1016/S1350-4533(01)00061-3 10.1242/jeb.193.1.49 10.1016/0021-9290(94)00072-C 10.1123/jab.20.4.367 10.1016/S0021-9290(03)00010-1 10.1016/j.jbiomech.2005.02.010 10.1016/j.jbiomech.2004.08.010 10.1076/ejom.34.1.47.13157 10.1002/jor.1100080310 10.1098/rspb.1938.0050 10.1115/1.2796044 10.1016/0021-9290(93)90016-8 10.1016/0021-9290(91)90361-P 10.1016/S0003-9993(97)90003-4 10.1016/S0021-9290(03)00152-0 10.1109/86.242425 10.1016/0021-9290(94)90263-1 10.1113/jphysiol.1966.sp007909 10.1016/j.gaitpost.2006.04.007 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd Elsevier Ltd |
Copyright_xml | – notice: 2009 Elsevier Ltd – notice: Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7QO 7X8 5PM |
DOI | 10.1016/j.compbiomed.2009.09.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Biotechnology Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 1088 |
ExternalDocumentID | PMC2784179 2733449251 19818436 10_1016_j_compbiomed_2009_09_002 S0010482509001644 1_s2_0_S0010482509001644 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD038582 – fundername: NIAMS NIH HHS grantid: R01-AR46386 – fundername: NICHD NIH HHS grantid: R01-HD38582 – fundername: NIAMS NIH HHS grantid: R01 AR046386 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 77I 7QO ACLOT ~HD 7X8 5PM |
ID | FETCH-LOGICAL-c649t-5dd52a61f9f4e22641a8be3b3c1e9c0bf3cef8596a0ab43932c44c92178fa57f3 |
IEDL.DBID | 8FG |
ISSN | 0010-4825 1879-0534 |
IngestDate | Thu Aug 21 18:22:43 EDT 2025 Sun Sep 28 05:55:05 EDT 2025 Sun Sep 28 06:23:34 EDT 2025 Sat Aug 23 13:26:55 EDT 2025 Mon Jul 21 05:59:08 EDT 2025 Tue Jul 01 03:28:16 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Fri Feb 23 02:32:58 EST 2024 Sun Feb 23 10:19:13 EST 2025 Tue Aug 26 17:03:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Stroke Musculoskeletal model Hill-type muscle model EMG Joint moment |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c649t-5dd52a61f9f4e22641a8be3b3c1e9c0bf3cef8596a0ab43932c44c92178fa57f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Undefined-1 ObjectType-Feature-3 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://doi.org/10.1016/j.compbiomed.2009.09.002 |
PMID | 19818436 |
PQID | 1033024469 |
PQPubID | 1226355 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2784179 proquest_miscellaneous_734143851 proquest_miscellaneous_21054550 proquest_journals_1033024469 pubmed_primary_19818436 crossref_citationtrail_10_1016_j_compbiomed_2009_09_002 crossref_primary_10_1016_j_compbiomed_2009_09_002 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2009_09_002 elsevier_clinicalkeyesjournals_1_s2_0_S0010482509001644 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2009_09_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-12-01 |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2009 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Epstein, Herzog (bib21) 1998 Thelen, Anderson (bib6) 2006; 39 Higginson, Neptune, Anderson (bib29) 2005; 38 Kadaba, Ramakrishnan, Wootten (bib37) 1990; 8 Crowninshield, Brand (bib3) 1981; 14 Burridge, Wood, Taylor, McLellan (bib33) 2001; 23 Mulroy, Gronley, Weiss, Newsam, Perry (bib1) 2003; 18 Huijing (bib26) 1996; 34 Schutte, Rodgers, Zajac, Glaser (bib23) 1993; 1 K. Manal, S. Cohen, T.S. Buchanan, Testing an EMG-driven model to estimate ankle moments and muscle forces during walking, in: 2nd International Ankle Symposium, 2004. Scott, Winter (bib24) 1991; 24 L.M. Schutte, Using musculoskeletal models to explore strategies for improving performance in electrical stimulation-induced leg cycle ergometry, Ph.D. Thesis, Stanford University, 1992. Collins (bib4) 1995; 28 Den Otter, Geurts, Mulder, Duysens (bib12) 2007; 25 Buchanan (bib27) 1995; 17 Jakobsson, Edstrom, Grimby, Thornell (bib38) 1991; 105 Gordon, Huxley, Julian (bib18) 1966; 184 Neptune, Kautz, Zajac (bib5) 2001; 34 Manal, Gonzalez, Lloyd, Buchanan (bib9) 2002; 32 Buchanan, Moniz, Dewald, Zev Rymer (bib8) 1993; 26 Manal, Buchanan (bib17) 2003; 36 Hull, Hawkins (bib30) 1990 Neckel, Pelliccio, Nichols, Hidler (bib2) 2006; 3 Hachisuka, Umezu, Ogata (bib39) 1997; 78 Delp, Loan, Hoy, Zajac, Topp, Rosen (bib13) 1990; 37 Thelen, Schultz, Fassois, Ashton-Miller (bib15) 1994; 27 Yamaguchi, Sawa, Moran, Fessler, Winters (bib28) 1990 Bogey, Perry, Gitter (bib34) 2005; 13 Buchanan, Lloyd, Manal, Besier (bib11) 2004; 20 Woods, Bigland-Ritchie (bib16) 1983; 62 Lloyd, Buchanan (bib14) 1996; 118 Buchanan, Shreeve (bib7) 1996; 118 Lloyd, Besier (bib10) 2003; 36 Guimaraes, Herzog, Hulliger, Zhang, Day (bib25) 1994; 193 Buchanan, Lloyd, Manal, Besier (bib35) 2005; 37 Perry (bib31) 1992 Knutsson (bib32) 1981; 13 Zajac (bib20) 1989; 17 Hill (bib19) 1938; 126 Gordon (10.1016/j.compbiomed.2009.09.002_bib18) 1966; 184 Huijing (10.1016/j.compbiomed.2009.09.002_bib26) 1996; 34 Kadaba (10.1016/j.compbiomed.2009.09.002_bib37) 1990; 8 Delp (10.1016/j.compbiomed.2009.09.002_bib13) 1990; 37 Guimaraes (10.1016/j.compbiomed.2009.09.002_bib25) 1994; 193 Scott (10.1016/j.compbiomed.2009.09.002_bib24) 1991; 24 Neptune (10.1016/j.compbiomed.2009.09.002_bib5) 2001; 34 Hachisuka (10.1016/j.compbiomed.2009.09.002_bib39) 1997; 78 Manal (10.1016/j.compbiomed.2009.09.002_bib17) 2003; 36 10.1016/j.compbiomed.2009.09.002_bib36 Hill (10.1016/j.compbiomed.2009.09.002_bib19) 1938; 126 Thelen (10.1016/j.compbiomed.2009.09.002_bib6) 2006; 39 Yamaguchi (10.1016/j.compbiomed.2009.09.002_bib28) 1990 Jakobsson (10.1016/j.compbiomed.2009.09.002_bib38) 1991; 105 Buchanan (10.1016/j.compbiomed.2009.09.002_bib11) 2004; 20 Burridge (10.1016/j.compbiomed.2009.09.002_bib33) 2001; 23 Lloyd (10.1016/j.compbiomed.2009.09.002_bib14) 1996; 118 Zajac (10.1016/j.compbiomed.2009.09.002_bib20) 1989; 17 Collins (10.1016/j.compbiomed.2009.09.002_bib4) 1995; 28 Neckel (10.1016/j.compbiomed.2009.09.002_bib2) 2006; 3 Buchanan (10.1016/j.compbiomed.2009.09.002_bib27) 1995; 17 Schutte (10.1016/j.compbiomed.2009.09.002_bib23) 1993; 1 Bogey (10.1016/j.compbiomed.2009.09.002_bib34) 2005; 13 Crowninshield (10.1016/j.compbiomed.2009.09.002_bib3) 1981; 14 Higginson (10.1016/j.compbiomed.2009.09.002_bib29) 2005; 38 Epstein (10.1016/j.compbiomed.2009.09.002_bib21) 1998 Buchanan (10.1016/j.compbiomed.2009.09.002_bib7) 1996; 118 10.1016/j.compbiomed.2009.09.002_bib22 Buchanan (10.1016/j.compbiomed.2009.09.002_bib35) 2005; 37 Thelen (10.1016/j.compbiomed.2009.09.002_bib15) 1994; 27 Knutsson (10.1016/j.compbiomed.2009.09.002_bib32) 1981; 13 Manal (10.1016/j.compbiomed.2009.09.002_bib9) 2002; 32 Mulroy (10.1016/j.compbiomed.2009.09.002_bib1) 2003; 18 Buchanan (10.1016/j.compbiomed.2009.09.002_bib8) 1993; 26 Perry (10.1016/j.compbiomed.2009.09.002_bib31) 1992 Woods (10.1016/j.compbiomed.2009.09.002_bib16) 1983; 62 Lloyd (10.1016/j.compbiomed.2009.09.002_bib10) 2003; 36 Den Otter (10.1016/j.compbiomed.2009.09.002_bib12) 2007; 25 Hull (10.1016/j.compbiomed.2009.09.002_bib30) 1990 |
References_xml | – reference: K. Manal, S. Cohen, T.S. Buchanan, Testing an EMG-driven model to estimate ankle moments and muscle forces during walking, in: 2nd International Ankle Symposium, 2004. – volume: 13 start-page: 101 year: 1981 end-page: 108 ident: bib32 article-title: Gait control in hemiparesis publication-title: Scand. J. Rehabil. Med. – volume: 13 start-page: 302 year: 2005 end-page: 310 ident: bib34 article-title: An EMG-to-force processing approach for determining ankle muscle forces during normal human gait publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng. – year: 1998 ident: bib21 article-title: Theoretical Models of Skeletal Muscle – volume: 62 start-page: 287 year: 1983 end-page: 299 ident: bib16 article-title: Linear and non-linear surface EMG/force relationships in human muscles. An anatomical/functional argument for the existence of both publication-title: Am. J. Phys. Med. – volume: 34 start-page: 47 year: 1996 end-page: 54 ident: bib26 article-title: Important experimental factors for skeletal muscle modelling: non-linear changes of muscle length force characteristics as a function of degree of activity publication-title: Eur. J. Morphol. – volume: 78 start-page: 13 year: 1997 end-page: 18 ident: bib39 article-title: Disuse muscle atrophy of lower limbs in hemiplegic patients publication-title: Arch. Phys. Med. Rehabil. – start-page: 621 year: 1990 end-page: 638 ident: bib30 article-title: Analysis of muscular work in multisegmental movements: application to cycling publication-title: Multiple Muscle Systems: Biomechanics and Movement Organization – volume: 118 start-page: 367 year: 1996 end-page: 376 ident: bib14 article-title: A model of load sharing between muscles and soft tissues at the human knee during static tasks publication-title: J. Biomech. Eng. – volume: 25 start-page: 342 year: 2007 end-page: 352 ident: bib12 article-title: Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait publication-title: Gait Posture – volume: 126 start-page: 136 year: 1938 end-page: 195 ident: bib19 article-title: The heat of shortening and the dynamic constants of muscle publication-title: Proc. R. Soc. London Ser. B—Biol. Sci. – volume: 26 start-page: 547 year: 1993 end-page: 560 ident: bib8 article-title: Estimation of muscle forces about the wrist joint during isometric tasks using an EMG coefficient method publication-title: J. Biomech. – volume: 17 start-page: 359 year: 1989 end-page: 411 ident: bib20 article-title: Muscle and tendon: properties models scaling and application to biomechanics and motor control publication-title: Crit. Rev. Biomed. Eng. – volume: 28 start-page: 251 year: 1995 end-page: 267 ident: bib4 article-title: The redundant nature of locomotor optimization laws publication-title: J. Biomech. – volume: 20 start-page: 367 year: 2004 end-page: 395 ident: bib11 article-title: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command publication-title: J. Appl. Biomech. – volume: 37 start-page: 757 year: 1990 end-page: 767 ident: bib13 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 383 year: 1990 end-page: 392 ident: bib37 article-title: Measurement of lower extremity kinematics during level walking publication-title: J. Orthop. Res. – volume: 34 start-page: 1387 year: 2001 end-page: 1398 ident: bib5 article-title: Contributions of the individual ankle plantar flexors to support forward progression and swing initiation during walking publication-title: J. Biomech. – volume: 36 start-page: 765 year: 2003 end-page: 776 ident: bib10 article-title: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo publication-title: J. Biomech. – volume: 24 start-page: 163 year: 1991 end-page: 167 ident: bib24 article-title: A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force publication-title: J. Biomech. – volume: 193 start-page: 49 year: 1994 end-page: 64 ident: bib25 article-title: Effects of muscle length on the EMG-force relationship of the cat soleus muscle studied using non-periodic stimulation of ventral root filaments publication-title: J. Exp. Biol. – volume: 184 start-page: 170 year: 1966 end-page: 192 ident: bib18 article-title: The variation in isometric tension with sarcomere length in vertebrate muscle fibres publication-title: J. Physiol. – volume: 105 start-page: 49 year: 1991 end-page: 56 ident: bib38 article-title: Disuse of anterior tibial muscle during locomotion and increased proportion of type II fibres in hemiplegia publication-title: J. Neurol. Sci. – volume: 37 start-page: 1911 year: 2005 end-page: 1916 ident: bib35 article-title: Estimation of muscle forces and joint moments using a forward-inverse dynamics model publication-title: Med. Sci. Sports Exerc. – reference: L.M. Schutte, Using musculoskeletal models to explore strategies for improving performance in electrical stimulation-induced leg cycle ergometry, Ph.D. Thesis, Stanford University, 1992. – volume: 36 start-page: 1197 year: 2003 end-page: 1202 ident: bib17 article-title: A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms publication-title: J. Biomech. – volume: 1 start-page: 109 year: 1993 end-page: 125 ident: bib23 article-title: Improving the efficacy of electrical stimulation induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model publication-title: IEEE Trans. Rehabil. Eng. – volume: 32 start-page: 25 year: 2002 end-page: 36 ident: bib9 article-title: A real-time EMG-driven virtual arm publication-title: Comput. Biol. Med. – volume: 17 start-page: 529 year: 1995 end-page: 536 ident: bib27 article-title: Evidence that maximum muscle stress is not a constant: differences in specific tension in elbow flexors and extensors publication-title: Med. Eng. Phys. – year: 1992 ident: bib31 article-title: Gait Analysis: Normal and Pathological Function – volume: 3 start-page: 17 year: 2006 ident: bib2 article-title: Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke publication-title: J. Neuroeng. Rehabil. – volume: 14 start-page: 793 year: 1981 end-page: 801 ident: bib3 article-title: A physiologically based criterion of muscle force prediction in locomotion publication-title: J. Biomech. – volume: 27 start-page: 907 year: 1994 end-page: 919 ident: bib15 article-title: Identification of dynamic myoelectric signal-to-force models during isometric lumbar muscle contractions publication-title: J. Biomech. – start-page: 717 year: 1990 end-page: 773 ident: bib28 article-title: A survey of human musculotendon actuator parameters publication-title: Multiple Muscle Systems: Biomechanics and Movement Organization – volume: 118 start-page: 565 year: 1996 end-page: 574 ident: bib7 article-title: An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks publication-title: J. Biomech. Eng. – volume: 38 start-page: 1938 year: 2005 end-page: 1942 ident: bib29 article-title: Simulated parallel annealing within a neighborhood for optimization of biomechanical systems publication-title: J. Biomech. – volume: 39 start-page: 1107 year: 2006 end-page: 1115 ident: bib6 article-title: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data publication-title: J. Biomech. – volume: 23 start-page: 427 year: 2001 end-page: 434 ident: bib33 article-title: Indices to describe different muscle activation patterns identified during treadmill walking in people with spastic drop-foot publication-title: Med. Eng. Phys. – volume: 18 start-page: 114 year: 2003 end-page: 125 ident: bib1 article-title: Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke publication-title: Gait Posture – start-page: 717 year: 1990 ident: 10.1016/j.compbiomed.2009.09.002_bib28 article-title: A survey of human musculotendon actuator parameters – volume: 14 start-page: 793 year: 1981 ident: 10.1016/j.compbiomed.2009.09.002_bib3 article-title: A physiologically based criterion of muscle force prediction in locomotion publication-title: J. Biomech. doi: 10.1016/0021-9290(81)90035-X – volume: 34 start-page: 1387 year: 2001 ident: 10.1016/j.compbiomed.2009.09.002_bib5 article-title: Contributions of the individual ankle plantar flexors to support forward progression and swing initiation during walking publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00105-1 – volume: 18 start-page: 114 year: 2003 ident: 10.1016/j.compbiomed.2009.09.002_bib1 article-title: Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke publication-title: Gait Posture doi: 10.1016/S0966-6362(02)00165-0 – volume: 118 start-page: 367 year: 1996 ident: 10.1016/j.compbiomed.2009.09.002_bib14 article-title: A model of load sharing between muscles and soft tissues at the human knee during static tasks publication-title: J. Biomech. Eng. doi: 10.1115/1.2796019 – year: 1992 ident: 10.1016/j.compbiomed.2009.09.002_bib31 – volume: 62 start-page: 287 year: 1983 ident: 10.1016/j.compbiomed.2009.09.002_bib16 article-title: Linear and non-linear surface EMG/force relationships in human muscles. An anatomical/functional argument for the existence of both publication-title: Am. J. Phys. Med. – volume: 105 start-page: 49 year: 1991 ident: 10.1016/j.compbiomed.2009.09.002_bib38 article-title: Disuse of anterior tibial muscle during locomotion and increased proportion of type II fibres in hemiplegia publication-title: J. Neurol. Sci. doi: 10.1016/0022-510X(91)90117-P – volume: 13 start-page: 302 year: 2005 ident: 10.1016/j.compbiomed.2009.09.002_bib34 article-title: An EMG-to-force processing approach for determining ankle muscle forces during normal human gait publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2005.851768 – volume: 3 start-page: 17 year: 2006 ident: 10.1016/j.compbiomed.2009.09.002_bib2 article-title: Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-3-17 – volume: 32 start-page: 25 year: 2002 ident: 10.1016/j.compbiomed.2009.09.002_bib9 article-title: A real-time EMG-driven virtual arm publication-title: Comput. Biol. Med. doi: 10.1016/S0010-4825(01)00024-5 – volume: 37 start-page: 1911 year: 2005 ident: 10.1016/j.compbiomed.2009.09.002_bib35 article-title: Estimation of muscle forces and joint moments using a forward-inverse dynamics model publication-title: Med. Sci. Sports Exerc. doi: 10.1249/01.mss.0000176684.24008.6f – ident: 10.1016/j.compbiomed.2009.09.002_bib36 – volume: 37 start-page: 757 year: 1990 ident: 10.1016/j.compbiomed.2009.09.002_bib13 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.102791 – volume: 17 start-page: 529 year: 1995 ident: 10.1016/j.compbiomed.2009.09.002_bib27 article-title: Evidence that maximum muscle stress is not a constant: differences in specific tension in elbow flexors and extensors publication-title: Med. Eng. Phys. doi: 10.1016/1350-4533(95)00005-8 – volume: 23 start-page: 427 year: 2001 ident: 10.1016/j.compbiomed.2009.09.002_bib33 article-title: Indices to describe different muscle activation patterns identified during treadmill walking in people with spastic drop-foot publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(01)00061-3 – volume: 193 start-page: 49 year: 1994 ident: 10.1016/j.compbiomed.2009.09.002_bib25 article-title: Effects of muscle length on the EMG-force relationship of the cat soleus muscle studied using non-periodic stimulation of ventral root filaments publication-title: J. Exp. Biol. doi: 10.1242/jeb.193.1.49 – volume: 28 start-page: 251 year: 1995 ident: 10.1016/j.compbiomed.2009.09.002_bib4 article-title: The redundant nature of locomotor optimization laws publication-title: J. Biomech. doi: 10.1016/0021-9290(94)00072-C – volume: 20 start-page: 367 year: 2004 ident: 10.1016/j.compbiomed.2009.09.002_bib11 article-title: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command publication-title: J. Appl. Biomech. doi: 10.1123/jab.20.4.367 – volume: 36 start-page: 765 year: 2003 ident: 10.1016/j.compbiomed.2009.09.002_bib10 article-title: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00010-1 – year: 1998 ident: 10.1016/j.compbiomed.2009.09.002_bib21 – volume: 39 start-page: 1107 year: 2006 ident: 10.1016/j.compbiomed.2009.09.002_bib6 article-title: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.02.010 – volume: 38 start-page: 1938 year: 2005 ident: 10.1016/j.compbiomed.2009.09.002_bib29 article-title: Simulated parallel annealing within a neighborhood for optimization of biomechanical systems publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.08.010 – volume: 17 start-page: 359 year: 1989 ident: 10.1016/j.compbiomed.2009.09.002_bib20 article-title: Muscle and tendon: properties models scaling and application to biomechanics and motor control publication-title: Crit. Rev. Biomed. Eng. – volume: 34 start-page: 47 year: 1996 ident: 10.1016/j.compbiomed.2009.09.002_bib26 article-title: Important experimental factors for skeletal muscle modelling: non-linear changes of muscle length force characteristics as a function of degree of activity publication-title: Eur. J. Morphol. doi: 10.1076/ejom.34.1.47.13157 – ident: 10.1016/j.compbiomed.2009.09.002_bib22 – volume: 8 start-page: 383 year: 1990 ident: 10.1016/j.compbiomed.2009.09.002_bib37 article-title: Measurement of lower extremity kinematics during level walking publication-title: J. Orthop. Res. doi: 10.1002/jor.1100080310 – volume: 126 start-page: 136 year: 1938 ident: 10.1016/j.compbiomed.2009.09.002_bib19 article-title: The heat of shortening and the dynamic constants of muscle publication-title: Proc. R. Soc. London Ser. B—Biol. Sci. doi: 10.1098/rspb.1938.0050 – start-page: 621 year: 1990 ident: 10.1016/j.compbiomed.2009.09.002_bib30 article-title: Analysis of muscular work in multisegmental movements: application to cycling – volume: 118 start-page: 565 year: 1996 ident: 10.1016/j.compbiomed.2009.09.002_bib7 article-title: An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks publication-title: J. Biomech. Eng. doi: 10.1115/1.2796044 – volume: 26 start-page: 547 year: 1993 ident: 10.1016/j.compbiomed.2009.09.002_bib8 article-title: Estimation of muscle forces about the wrist joint during isometric tasks using an EMG coefficient method publication-title: J. Biomech. doi: 10.1016/0021-9290(93)90016-8 – volume: 24 start-page: 163 year: 1991 ident: 10.1016/j.compbiomed.2009.09.002_bib24 article-title: A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force publication-title: J. Biomech. doi: 10.1016/0021-9290(91)90361-P – volume: 13 start-page: 101 year: 1981 ident: 10.1016/j.compbiomed.2009.09.002_bib32 article-title: Gait control in hemiparesis publication-title: Scand. J. Rehabil. Med. – volume: 78 start-page: 13 year: 1997 ident: 10.1016/j.compbiomed.2009.09.002_bib39 article-title: Disuse muscle atrophy of lower limbs in hemiplegic patients publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/S0003-9993(97)90003-4 – volume: 36 start-page: 1197 year: 2003 ident: 10.1016/j.compbiomed.2009.09.002_bib17 article-title: A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00152-0 – volume: 1 start-page: 109 year: 1993 ident: 10.1016/j.compbiomed.2009.09.002_bib23 article-title: Improving the efficacy of electrical stimulation induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.242425 – volume: 27 start-page: 907 year: 1994 ident: 10.1016/j.compbiomed.2009.09.002_bib15 article-title: Identification of dynamic myoelectric signal-to-force models during isometric lumbar muscle contractions publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90263-1 – volume: 184 start-page: 170 year: 1966 ident: 10.1016/j.compbiomed.2009.09.002_bib18 article-title: The variation in isometric tension with sarcomere length in vertebrate muscle fibres publication-title: J. Physiol. doi: 10.1113/jphysiol.1966.sp007909 – volume: 25 start-page: 342 year: 2007 ident: 10.1016/j.compbiomed.2009.09.002_bib12 article-title: Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.04.007 |
SSID | ssj0004030 |
Score | 2.2904108 |
Snippet | Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which... Abstract Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1083 |
SubjectTerms | Ankle Joint - physiopathology Biomechanical Phenomena Biomechanics Computer Simulation Electromyography - statistics & numerical data EMG Gait - physiology Gait Disorders, Neurologic - etiology Gait Disorders, Neurologic - physiopathology Hill-type muscle model Humans Internal Medicine Joint moment Leg Models, Anatomic Models, Biological Muscle Contraction - physiology Muscle, Skeletal - physiopathology Muscular system Musculoskeletal model Musculoskeletal system Optimization techniques Other Stroke Stroke - complications Stroke - physiopathology Stroke Rehabilitation Studies |
SummonAdditionalLinks | – databaseName: ScienceDirect Journal Collection dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb5wwEB2lG6nqpWr6SZqmPvSKAtgGrJxWUdJNq82haqTcLBuMStqaaGH_f8dg2G6TSCtV4gQeAcN4_AbPmwH4pLVw2TNlaBRNQow3WKhYQcOc5RVPNRVl6XZ0l1fp4pp9ueE3e3A2cmFcWqX3_YNP7721P3PitXlyV9eO44uhBAY4kejrRLEnsJ_gap_PYH9--XVxtaFHRnRgoqDLcQI-oWdI83KZ2wPT3RevFNM_lgdWqfso9N9kyr9Wp4sX8NzDSjIfnvwA9ox9CU-XfuP8FXybW3K-_ByWK-fdSN__hnQNcTU2ELMa8nvdoiBBCIuOgyhbktumth2O7DlwpLak7VbNT0N8Jdb2NVxfnH8_W4S-nUJYpEx0IS9Lnqg0rkTFjOPPxirXhmpaxEYUka5oYaqci1RFSiNOoUnBWCEwZskrxbOKvoGZbax5B0QhrMBIjFJULYs1F1HBFC-1SqnhXMcBZKP6ZOFrjbuWF7_kmFR2KzeKd60whXRHlAQQT5J3Q72NHWTE-IXkyCdFDyhxUdhBNntI1rR-Krcylm0iI3nP3AI4nSS3LHbH-x6NpiQ3t4ooRczEUhHAx-kyzne3iaOsadatxBCdOyZ6AOSRERl-EkYRSQfwdjDNjSZF7vr7pPjWW0Y7DXDFxrev2PpHX3S836DOxOF_vfV7eJb4_htRfASzbrU2HxDUdfrYT9o_yrZMnw priority: 102 providerName: Elsevier |
Title | An EMG-driven model to estimate muscle forces and joint moments in stroke patients |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482509001644 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482509001644 https://dx.doi.org/10.1016/j.compbiomed.2009.09.002 https://www.ncbi.nlm.nih.gov/pubmed/19818436 https://www.proquest.com/docview/1033024469 https://www.proquest.com/docview/21054550 https://www.proquest.com/docview/734143851 https://pubmed.ncbi.nlm.nih.gov/PMC2784179 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj5QwEJ94d4nxxfgteq598BVDaQs0PpjV7N6q2Y05vWTfmhZK3FPhXNhX_3anUFhPT3MJgQc6Acp05jedL4AXxkgXPVOEVrM4RHuDh5rnLMx4VorEMFkUzqO7XCWLM_5-LdZ-w63xYZWDTOwEdVHnbo8cVzda3qiLEvn64kfoukY576pvoXEARzRGXesyxecn-7zIiPUpKChrOJpCPpKnj-9yIdt9iruvWinHzZUr1NPf8PPPKMrf1NL8Dtz2eJJMewa4CzdsdQ9uLr3H_D6cTisyW56ExdaJNdI1viFtTVxxDQSrlnzfNUhIELuixCC6Ksh5valaHNklv5FNRZp2W3-1xJdgbR7A2Xz2-e0i9H0Uwjzhsg1FUYhYJ7SUJbcucZbqzFhmWE6tzCNTstyWmZCJjrRBgMLinPNcorGSlVqkJXsIh1Vd2cdANOIJNMEYw6nl1AgZ5VyLwuiEWSEMDSAdpk_lvsi463XxTQ3RZOdqP_GuB6ZU7ojiAOhIedEX2rgGjRz-kBoSSVH0KdQG16BNr6K1jV_DjaKqiVWkPnUljJB7ItnVI-MBvBopPUzp4cc1n3s8sJLaP2pk7gCej7dxoTvvja5svWsU2ubCpaAHQP4xIsVfwhlC6AAe9ay5n0mZucY-CX71JaYdB7gq45fvVJsvXbXxzjOdyif_f--ncCv2nTUiegyH7XZnnyFca80EDl7-pHhO1-mkW58TOJq--7BY4fXNbPXx9BfkR0T2 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEJ8jsA8_wGOkJHbSWGhCAzo6tlZobNLejO04ogOS0aRC_HP8bZwTJ2UwUF8m9S2-pj2f737n-wJ4phS32TOZbySNfPQ3mC-Zpn7K0jxOFOVZZiO6k2kyPmXvzuKzNfjZ1cLYtMpOJzaKOiu1vSPH042eN9qihL-8-ObbqVE2utqN0JButEK227QYc4Udh-bHd3Thqt2DN7jfz6Nof3Tyeuy7KQO-Thiv_TjL4kgmYc5zZmxZaShTZaiiOjRcByqn2uRpzBMZSIXmm0aaMc0Ryqe5jIc5xe-9AevMXqAMYP3VaPr-eFmZGdC2CAa1HUNnzOUStRlmNmm8LbJ3fTN5f71zhYH8GwD_mcf5m2Hcvwt3HKIle60I3oM1U9yHmxMXs38Ax3sFGU3e-tncKlbSjN4hdUlsew-Ey4Z8XVRISBA9o84issjIeTkralzZlN-RWUGqel5-NsQ1ga0ewum18PgRDIqyMI-BSEQ06ARSiqxloYp5oJmMMyUTauJYhR4MO_YJ7dqc22kbX0SXz3Yuloy3Uzi5sJ8g8iDsKS_aVh8r0PBuh0RXyorKV6A9WoF2eBWtqZwWqUQoqkgE4kPTRAmlJ-BNRzTmwYue0gGlFgCt-N7NTpTE8lX98fJgp3-MqsbGj2RhykUlIsTitgjeA_KPFUPcEkYRxHuw0YrmkpM8taOFEvzXl4S2X2D7nF9-Usw-Nf3Om9j4kD_5_-_egVvjk8mRODqYHj6F25Gb8xGEmzCo5wuzheCxVtvuhBL4eN1K4RdTlIP2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8ChfoAx4gktpNYCKGKdttStkJApd6M7ThiCyRlkxXir_HrGCdOlkJBe6mUWzyb7Hg8803mBfBEa-GyZ4rQKpqE6G-wUDFDw5zlJU81FUXhIrrTo3T_mL0-4Sdr8HOohXFplYNO7BR1URv3jRxPN3reaItS8az0aRFvdyYvz76FboKUi7QO4zR6ETm0P76j-9a8ONjBvX6aJJPdD6_2Qz9hIDQpE23Ii4InKo1LUTLrSkpjlWtLNTWxFSbSJTW2zLlIVaQ0mm6aGMaMQBifl4pnJcXfvQJXM4rnxFWpT_aWNZkR7ctfUM8xdMN8FlGfW-bSxfvyet8xU4wfdi4wjX9D3z8zOH8ziZMbcN1jWbLdC99NWLPVLdiY-mj9bXi3XZHd6V5YzJ1KJd3QHdLWxDX2QKBsyddFg4QEcTNqK6KqgpzWs6rFlV3hHZlVpGnn9WdLfPvX5g4cXwqH78J6VVf2PhCFWAbdP0qRtSzWXESGKV5olVLLuY4DyAb2SeMbnLs5G1_kkMl2KpeMd_M3hXRXlAQQj5RnfZOPFWjEsENyKGJFtSvREq1Am11EaxuvPxoZyyaRkXzftU9C6YlE1wuNBfB8pPQQqYc-Kz53cxAluXzUeLAC2Bpvo5JxkSNV2XrRyARRuCt_D4D8Y0WGW8IowvcA7vWiueSkyN1QoRT_9TmhHRe4Dufn71SzT12n8y4qnokH_3_vLdhAVSDfHBwdPoRriR_wEcWbsN7OF_YRosZWP-6OJ4GPl60PfgHJ_IGS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EMG-driven+model+to+estimate+muscle+forces+and+joint+moments+in+stroke+patients&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Shao%2C+Qi&rft.au=Bassett%2C+Daniel+N&rft.au=Manal%2C+Kurt&rft.au=Buchanan%2C+Thomas+S&rft.date=2009-12-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=39&rft.issue=12&rft.spage=1083&rft_id=info:doi/10.1016%2Fj.compbiomed.2009.09.002&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2733449251 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482509X00132%2Fcov150h.gif |