An EMG-driven model to estimate muscle forces and joint moments in stroke patients

Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculos...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 39; no. 12; pp. 1083 - 1088
Main Authors Shao, Qi, Bassett, Daniel N., Manal, Kurt, Buchanan, Thomas S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2009
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2009.09.002

Cover

Abstract Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R 2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention.
AbstractList Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R(2) value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention.Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R(2) value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention.
Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model’s ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R 2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention.
Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention.
Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R 2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention.
Abstract Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention.
Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R(2) value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention.
Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R super(2) value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention.
Author Bassett, Daniel N.
Manal, Kurt
Buchanan, Thomas S.
Shao, Qi
Author_xml – sequence: 1
  givenname: Qi
  surname: Shao
  fullname: Shao, Qi
– sequence: 2
  givenname: Daniel N.
  surname: Bassett
  fullname: Bassett, Daniel N.
– sequence: 3
  givenname: Kurt
  surname: Manal
  fullname: Manal, Kurt
– sequence: 4
  givenname: Thomas S.
  surname: Buchanan
  fullname: Buchanan, Thomas S.
  email: buchanan@udel.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19818436$$D View this record in MEDLINE/PubMed
BookMark eNqNkmtrFDEUhoNU7Lb6FyQg6KdZTy5zyZdiLbUKFcHL55DJnNFsZ5JtMrvQf2-G1q4uqIVAQvLmObf3iBz44JEQymDJgFWvV0sbxnXrwojdkgOo5byAPyIL1tSqgFLIA7IAYFDIhpeH5CilFQBIEPCEHDLVsEaKakE-n3p6_vGi6KLboqdj6HCgU6CYJjeaCem4SXZA2odoMVHjO7oKzk9ZOaKfEnWepimGK6RrM7n56il53Jsh4bO7_Zh8e3f-9ex9cfnp4sPZ6WVhK6mmouy6kpuK9aqXyHklmWlaFK2wDJWFthcW-6ZUlQHTSqEEt1JaxVnd9Kase3FMTm65602b-2Bz7GgGvY458Xijg3H6zxfvfujvYat53UhWqwx4dQeI4XqTK9ajSxaHwXgMm6RrIZkUTcmy8uU_lZxBKcsSsvDFnnAVNtHnNmgGQgCXspoDP_898_uUf41lV5qNIaWIvbZuyu0NcyFuyCw9-0Cv9M4HevaBnhfwDGj2APcx_v_17e1XzLPbOow62TxXi52LaCfdBfcQyMkexA7OO2uGK7zBtGuKTlyD_jI7dTYqqHyqpMyAN38HPCyHnxQC_qw
CODEN CBMDAW
CitedBy_id crossref_primary_10_1109_TNSRE_2016_2583464
crossref_primary_10_1016_j_clinbiomech_2019_04_005
crossref_primary_10_1109_TNSRE_2017_2703586
crossref_primary_10_1115_1_4034060
crossref_primary_10_1109_JBHI_2023_3347672
crossref_primary_10_1109_TIE_2014_2387337
crossref_primary_10_1371_journal_pone_0052618
crossref_primary_10_1109_MCI_2014_2307224
crossref_primary_10_3390_app12083772
crossref_primary_10_1016_j_medengphy_2018_01_006
crossref_primary_10_1016_j_jbiomech_2023_111581
crossref_primary_10_1088_1361_6579_ad7776
crossref_primary_10_3389_fnbot_2018_00016
crossref_primary_10_1186_1475_925X_13_134
crossref_primary_10_3390_app10196791
crossref_primary_10_3233_THC_199005
crossref_primary_10_1007_s12541_012_0016_4
crossref_primary_10_1016_j_pmrj_2013_12_017
crossref_primary_10_3389_fnins_2017_00528
crossref_primary_10_1002_jor_23476
crossref_primary_10_3390_app8122345
crossref_primary_10_1115_1_4023457
crossref_primary_10_1088_1741_2552_aae26b
crossref_primary_10_1007_s00521_024_10813_y
crossref_primary_10_1093_comjnl_bxaa160
crossref_primary_10_1088_2057_1976_2_4_045019
crossref_primary_10_3390_act11030068
crossref_primary_10_1186_s12984_024_01490_y
crossref_primary_10_1007_s10237_020_01367_8
crossref_primary_10_1109_TBCAS_2021_3130090
crossref_primary_10_1142_S0219519414500407
crossref_primary_10_1186_s12938_019_0653_2
crossref_primary_10_1038_s41598_017_13766_6
crossref_primary_10_1016_j_cobme_2021_100313
crossref_primary_10_1007_s12541_012_0220_2
crossref_primary_10_1016_j_bspc_2020_102074
crossref_primary_10_1016_j_neucom_2011_05_033
crossref_primary_10_1109_TBME_2012_2206389
crossref_primary_10_1038_s41598_024_68232_x
crossref_primary_10_1016_j_gaitpost_2024_07_008
crossref_primary_10_1123_jab_2018_0136
crossref_primary_10_3389_fnins_2021_709422
crossref_primary_10_1109_JSEN_2015_2393883
crossref_primary_10_1088_1742_6596_1240_1_012153
crossref_primary_10_1007_s11044_015_9469_4
crossref_primary_10_1142_S0219843616500055
crossref_primary_10_1016_j_jbiomech_2014_10_009
crossref_primary_10_1115_1_4063899
crossref_primary_10_1186_s40648_017_0082_6
crossref_primary_10_1016_j_bspc_2022_104216
crossref_primary_10_1007_s11831_022_09757_0
crossref_primary_10_1109_JBHI_2016_2608720
crossref_primary_10_1109_JSEN_2020_3048983
crossref_primary_10_2139_ssrn_4183379
crossref_primary_10_1007_s10439_011_0481_4
crossref_primary_10_1016_j_chaos_2022_112965
crossref_primary_10_1051_sm_2012026
crossref_primary_10_1155_2021_1985741
crossref_primary_10_1109_TBME_2017_2704085
crossref_primary_10_1115_1_4051718
crossref_primary_10_1142_S0219519419500404
crossref_primary_10_22141_1608_1706_3_24_2023_955
crossref_primary_10_3390_app11073163
crossref_primary_10_3390_s16122018
crossref_primary_10_1249_MSS_0b013e31824d2783
crossref_primary_10_1016_j_jbiomech_2023_111668
crossref_primary_10_1115_1_4038199
crossref_primary_10_3390_s24092906
crossref_primary_10_1109_TBME_2022_3228070
crossref_primary_10_1109_TNSRE_2023_3323516
crossref_primary_10_3390_app11041450
crossref_primary_10_1109_TBME_2016_2538296
crossref_primary_10_1016_j_compbiomed_2014_06_010
crossref_primary_10_1016_j_compbiomed_2018_10_027
crossref_primary_10_1007_s11517_023_02823_0
crossref_primary_10_3390_biomed2040032
crossref_primary_10_1080_10255842_2014_916698
crossref_primary_10_1109_TBME_2024_3352556
crossref_primary_10_3390_app15052644
crossref_primary_10_1152_jn_00989_2014
crossref_primary_10_1016_j_compbiomed_2017_05_007
crossref_primary_10_1007_s40846_020_00539_2
crossref_primary_10_1007_s13246_019_00783_0
crossref_primary_10_3389_fbioe_2020_588925
crossref_primary_10_1016_j_piutam_2011_04_014
crossref_primary_10_1016_j_jbiomech_2017_12_028
crossref_primary_10_1016_j_compbiomed_2015_04_035
crossref_primary_10_3389_fnbot_2019_00048
crossref_primary_10_3389_fphys_2023_1160261
crossref_primary_10_3390_s19030657
crossref_primary_10_1016_j_jelekin_2024_102910
crossref_primary_10_1109_TFUZZ_2022_3158727
crossref_primary_10_3390_e19110624
crossref_primary_10_1109_JSEN_2024_3503689
crossref_primary_10_3389_fbioe_2022_962959
crossref_primary_10_1016_j_jneumeth_2019_108464
crossref_primary_10_1007_s10846_020_01221_0
crossref_primary_10_3389_fncom_2020_588943
crossref_primary_10_1098_rsfs_2014_0094
crossref_primary_10_1589_rika_36_813
crossref_primary_10_1177_1071100712464214
crossref_primary_10_1016_j_clinbiomech_2011_09_006
crossref_primary_10_3390_app11052037
crossref_primary_10_1115_1_4033673
crossref_primary_10_1142_S0218957716300015
crossref_primary_10_1590_2446_4740_01717
Cites_doi 10.1016/0021-9290(81)90035-X
10.1016/S0021-9290(01)00105-1
10.1016/S0966-6362(02)00165-0
10.1115/1.2796019
10.1016/0022-510X(91)90117-P
10.1109/TNSRE.2005.851768
10.1186/1743-0003-3-17
10.1016/S0010-4825(01)00024-5
10.1249/01.mss.0000176684.24008.6f
10.1109/10.102791
10.1016/1350-4533(95)00005-8
10.1016/S1350-4533(01)00061-3
10.1242/jeb.193.1.49
10.1016/0021-9290(94)00072-C
10.1123/jab.20.4.367
10.1016/S0021-9290(03)00010-1
10.1016/j.jbiomech.2005.02.010
10.1016/j.jbiomech.2004.08.010
10.1076/ejom.34.1.47.13157
10.1002/jor.1100080310
10.1098/rspb.1938.0050
10.1115/1.2796044
10.1016/0021-9290(93)90016-8
10.1016/0021-9290(91)90361-P
10.1016/S0003-9993(97)90003-4
10.1016/S0021-9290(03)00152-0
10.1109/86.242425
10.1016/0021-9290(94)90263-1
10.1113/jphysiol.1966.sp007909
10.1016/j.gaitpost.2006.04.007
ContentType Journal Article
Copyright 2009 Elsevier Ltd
Elsevier Ltd
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7QO
7X8
5PM
DOI 10.1016/j.compbiomed.2009.09.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Research Library Prep



MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 1088
ExternalDocumentID PMC2784179
2733449251
19818436
10_1016_j_compbiomed_2009_09_002
S0010482509001644
1_s2_0_S0010482509001644
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD038582
– fundername: NIAMS NIH HHS
  grantid: R01-AR46386
– fundername: NICHD NIH HHS
  grantid: R01-HD38582
– fundername: NIAMS NIH HHS
  grantid: R01 AR046386
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
77I
7QO
ACLOT
~HD
7X8
5PM
ID FETCH-LOGICAL-c649t-5dd52a61f9f4e22641a8be3b3c1e9c0bf3cef8596a0ab43932c44c92178fa57f3
IEDL.DBID 8FG
ISSN 0010-4825
1879-0534
IngestDate Thu Aug 21 18:22:43 EDT 2025
Sun Sep 28 05:55:05 EDT 2025
Sun Sep 28 06:23:34 EDT 2025
Sat Aug 23 13:26:55 EDT 2025
Mon Jul 21 05:59:08 EDT 2025
Tue Jul 01 03:28:16 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Fri Feb 23 02:32:58 EST 2024
Sun Feb 23 10:19:13 EST 2025
Tue Aug 26 17:03:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Stroke
Musculoskeletal model
Hill-type muscle model
EMG
Joint moment
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c649t-5dd52a61f9f4e22641a8be3b3c1e9c0bf3cef8596a0ab43932c44c92178fa57f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://doi.org/10.1016/j.compbiomed.2009.09.002
PMID 19818436
PQID 1033024469
PQPubID 1226355
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2784179
proquest_miscellaneous_734143851
proquest_miscellaneous_21054550
proquest_journals_1033024469
pubmed_primary_19818436
crossref_citationtrail_10_1016_j_compbiomed_2009_09_002
crossref_primary_10_1016_j_compbiomed_2009_09_002
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2009_09_002
elsevier_clinicalkeyesjournals_1_s2_0_S0010482509001644
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2009_09_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Epstein, Herzog (bib21) 1998
Thelen, Anderson (bib6) 2006; 39
Higginson, Neptune, Anderson (bib29) 2005; 38
Kadaba, Ramakrishnan, Wootten (bib37) 1990; 8
Crowninshield, Brand (bib3) 1981; 14
Burridge, Wood, Taylor, McLellan (bib33) 2001; 23
Mulroy, Gronley, Weiss, Newsam, Perry (bib1) 2003; 18
Huijing (bib26) 1996; 34
Schutte, Rodgers, Zajac, Glaser (bib23) 1993; 1
K. Manal, S. Cohen, T.S. Buchanan, Testing an EMG-driven model to estimate ankle moments and muscle forces during walking, in: 2nd International Ankle Symposium, 2004.
Scott, Winter (bib24) 1991; 24
L.M. Schutte, Using musculoskeletal models to explore strategies for improving performance in electrical stimulation-induced leg cycle ergometry, Ph.D. Thesis, Stanford University, 1992.
Collins (bib4) 1995; 28
Den Otter, Geurts, Mulder, Duysens (bib12) 2007; 25
Buchanan (bib27) 1995; 17
Jakobsson, Edstrom, Grimby, Thornell (bib38) 1991; 105
Gordon, Huxley, Julian (bib18) 1966; 184
Neptune, Kautz, Zajac (bib5) 2001; 34
Manal, Gonzalez, Lloyd, Buchanan (bib9) 2002; 32
Buchanan, Moniz, Dewald, Zev Rymer (bib8) 1993; 26
Manal, Buchanan (bib17) 2003; 36
Hull, Hawkins (bib30) 1990
Neckel, Pelliccio, Nichols, Hidler (bib2) 2006; 3
Hachisuka, Umezu, Ogata (bib39) 1997; 78
Delp, Loan, Hoy, Zajac, Topp, Rosen (bib13) 1990; 37
Thelen, Schultz, Fassois, Ashton-Miller (bib15) 1994; 27
Yamaguchi, Sawa, Moran, Fessler, Winters (bib28) 1990
Bogey, Perry, Gitter (bib34) 2005; 13
Buchanan, Lloyd, Manal, Besier (bib11) 2004; 20
Woods, Bigland-Ritchie (bib16) 1983; 62
Lloyd, Buchanan (bib14) 1996; 118
Buchanan, Shreeve (bib7) 1996; 118
Lloyd, Besier (bib10) 2003; 36
Guimaraes, Herzog, Hulliger, Zhang, Day (bib25) 1994; 193
Buchanan, Lloyd, Manal, Besier (bib35) 2005; 37
Perry (bib31) 1992
Knutsson (bib32) 1981; 13
Zajac (bib20) 1989; 17
Hill (bib19) 1938; 126
Gordon (10.1016/j.compbiomed.2009.09.002_bib18) 1966; 184
Huijing (10.1016/j.compbiomed.2009.09.002_bib26) 1996; 34
Kadaba (10.1016/j.compbiomed.2009.09.002_bib37) 1990; 8
Delp (10.1016/j.compbiomed.2009.09.002_bib13) 1990; 37
Guimaraes (10.1016/j.compbiomed.2009.09.002_bib25) 1994; 193
Scott (10.1016/j.compbiomed.2009.09.002_bib24) 1991; 24
Neptune (10.1016/j.compbiomed.2009.09.002_bib5) 2001; 34
Hachisuka (10.1016/j.compbiomed.2009.09.002_bib39) 1997; 78
Manal (10.1016/j.compbiomed.2009.09.002_bib17) 2003; 36
10.1016/j.compbiomed.2009.09.002_bib36
Hill (10.1016/j.compbiomed.2009.09.002_bib19) 1938; 126
Thelen (10.1016/j.compbiomed.2009.09.002_bib6) 2006; 39
Yamaguchi (10.1016/j.compbiomed.2009.09.002_bib28) 1990
Jakobsson (10.1016/j.compbiomed.2009.09.002_bib38) 1991; 105
Buchanan (10.1016/j.compbiomed.2009.09.002_bib11) 2004; 20
Burridge (10.1016/j.compbiomed.2009.09.002_bib33) 2001; 23
Lloyd (10.1016/j.compbiomed.2009.09.002_bib14) 1996; 118
Zajac (10.1016/j.compbiomed.2009.09.002_bib20) 1989; 17
Collins (10.1016/j.compbiomed.2009.09.002_bib4) 1995; 28
Neckel (10.1016/j.compbiomed.2009.09.002_bib2) 2006; 3
Buchanan (10.1016/j.compbiomed.2009.09.002_bib27) 1995; 17
Schutte (10.1016/j.compbiomed.2009.09.002_bib23) 1993; 1
Bogey (10.1016/j.compbiomed.2009.09.002_bib34) 2005; 13
Crowninshield (10.1016/j.compbiomed.2009.09.002_bib3) 1981; 14
Higginson (10.1016/j.compbiomed.2009.09.002_bib29) 2005; 38
Epstein (10.1016/j.compbiomed.2009.09.002_bib21) 1998
Buchanan (10.1016/j.compbiomed.2009.09.002_bib7) 1996; 118
10.1016/j.compbiomed.2009.09.002_bib22
Buchanan (10.1016/j.compbiomed.2009.09.002_bib35) 2005; 37
Thelen (10.1016/j.compbiomed.2009.09.002_bib15) 1994; 27
Knutsson (10.1016/j.compbiomed.2009.09.002_bib32) 1981; 13
Manal (10.1016/j.compbiomed.2009.09.002_bib9) 2002; 32
Mulroy (10.1016/j.compbiomed.2009.09.002_bib1) 2003; 18
Buchanan (10.1016/j.compbiomed.2009.09.002_bib8) 1993; 26
Perry (10.1016/j.compbiomed.2009.09.002_bib31) 1992
Woods (10.1016/j.compbiomed.2009.09.002_bib16) 1983; 62
Lloyd (10.1016/j.compbiomed.2009.09.002_bib10) 2003; 36
Den Otter (10.1016/j.compbiomed.2009.09.002_bib12) 2007; 25
Hull (10.1016/j.compbiomed.2009.09.002_bib30) 1990
References_xml – reference: K. Manal, S. Cohen, T.S. Buchanan, Testing an EMG-driven model to estimate ankle moments and muscle forces during walking, in: 2nd International Ankle Symposium, 2004.
– volume: 13
  start-page: 101
  year: 1981
  end-page: 108
  ident: bib32
  article-title: Gait control in hemiparesis
  publication-title: Scand. J. Rehabil. Med.
– volume: 13
  start-page: 302
  year: 2005
  end-page: 310
  ident: bib34
  article-title: An EMG-to-force processing approach for determining ankle muscle forces during normal human gait
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
– year: 1998
  ident: bib21
  article-title: Theoretical Models of Skeletal Muscle
– volume: 62
  start-page: 287
  year: 1983
  end-page: 299
  ident: bib16
  article-title: Linear and non-linear surface EMG/force relationships in human muscles. An anatomical/functional argument for the existence of both
  publication-title: Am. J. Phys. Med.
– volume: 34
  start-page: 47
  year: 1996
  end-page: 54
  ident: bib26
  article-title: Important experimental factors for skeletal muscle modelling: non-linear changes of muscle length force characteristics as a function of degree of activity
  publication-title: Eur. J. Morphol.
– volume: 78
  start-page: 13
  year: 1997
  end-page: 18
  ident: bib39
  article-title: Disuse muscle atrophy of lower limbs in hemiplegic patients
  publication-title: Arch. Phys. Med. Rehabil.
– start-page: 621
  year: 1990
  end-page: 638
  ident: bib30
  article-title: Analysis of muscular work in multisegmental movements: application to cycling
  publication-title: Multiple Muscle Systems: Biomechanics and Movement Organization
– volume: 118
  start-page: 367
  year: 1996
  end-page: 376
  ident: bib14
  article-title: A model of load sharing between muscles and soft tissues at the human knee during static tasks
  publication-title: J. Biomech. Eng.
– volume: 25
  start-page: 342
  year: 2007
  end-page: 352
  ident: bib12
  article-title: Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait
  publication-title: Gait Posture
– volume: 126
  start-page: 136
  year: 1938
  end-page: 195
  ident: bib19
  article-title: The heat of shortening and the dynamic constants of muscle
  publication-title: Proc. R. Soc. London Ser. B—Biol. Sci.
– volume: 26
  start-page: 547
  year: 1993
  end-page: 560
  ident: bib8
  article-title: Estimation of muscle forces about the wrist joint during isometric tasks using an EMG coefficient method
  publication-title: J. Biomech.
– volume: 17
  start-page: 359
  year: 1989
  end-page: 411
  ident: bib20
  article-title: Muscle and tendon: properties models scaling and application to biomechanics and motor control
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 28
  start-page: 251
  year: 1995
  end-page: 267
  ident: bib4
  article-title: The redundant nature of locomotor optimization laws
  publication-title: J. Biomech.
– volume: 20
  start-page: 367
  year: 2004
  end-page: 395
  ident: bib11
  article-title: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command
  publication-title: J. Appl. Biomech.
– volume: 37
  start-page: 757
  year: 1990
  end-page: 767
  ident: bib13
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 383
  year: 1990
  end-page: 392
  ident: bib37
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: J. Orthop. Res.
– volume: 34
  start-page: 1387
  year: 2001
  end-page: 1398
  ident: bib5
  article-title: Contributions of the individual ankle plantar flexors to support forward progression and swing initiation during walking
  publication-title: J. Biomech.
– volume: 36
  start-page: 765
  year: 2003
  end-page: 776
  ident: bib10
  article-title: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo
  publication-title: J. Biomech.
– volume: 24
  start-page: 163
  year: 1991
  end-page: 167
  ident: bib24
  article-title: A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force
  publication-title: J. Biomech.
– volume: 193
  start-page: 49
  year: 1994
  end-page: 64
  ident: bib25
  article-title: Effects of muscle length on the EMG-force relationship of the cat soleus muscle studied using non-periodic stimulation of ventral root filaments
  publication-title: J. Exp. Biol.
– volume: 184
  start-page: 170
  year: 1966
  end-page: 192
  ident: bib18
  article-title: The variation in isometric tension with sarcomere length in vertebrate muscle fibres
  publication-title: J. Physiol.
– volume: 105
  start-page: 49
  year: 1991
  end-page: 56
  ident: bib38
  article-title: Disuse of anterior tibial muscle during locomotion and increased proportion of type II fibres in hemiplegia
  publication-title: J. Neurol. Sci.
– volume: 37
  start-page: 1911
  year: 2005
  end-page: 1916
  ident: bib35
  article-title: Estimation of muscle forces and joint moments using a forward-inverse dynamics model
  publication-title: Med. Sci. Sports Exerc.
– reference: L.M. Schutte, Using musculoskeletal models to explore strategies for improving performance in electrical stimulation-induced leg cycle ergometry, Ph.D. Thesis, Stanford University, 1992.
– volume: 36
  start-page: 1197
  year: 2003
  end-page: 1202
  ident: bib17
  article-title: A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms
  publication-title: J. Biomech.
– volume: 1
  start-page: 109
  year: 1993
  end-page: 125
  ident: bib23
  article-title: Improving the efficacy of electrical stimulation induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 32
  start-page: 25
  year: 2002
  end-page: 36
  ident: bib9
  article-title: A real-time EMG-driven virtual arm
  publication-title: Comput. Biol. Med.
– volume: 17
  start-page: 529
  year: 1995
  end-page: 536
  ident: bib27
  article-title: Evidence that maximum muscle stress is not a constant: differences in specific tension in elbow flexors and extensors
  publication-title: Med. Eng. Phys.
– year: 1992
  ident: bib31
  article-title: Gait Analysis: Normal and Pathological Function
– volume: 3
  start-page: 17
  year: 2006
  ident: bib2
  article-title: Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke
  publication-title: J. Neuroeng. Rehabil.
– volume: 14
  start-page: 793
  year: 1981
  end-page: 801
  ident: bib3
  article-title: A physiologically based criterion of muscle force prediction in locomotion
  publication-title: J. Biomech.
– volume: 27
  start-page: 907
  year: 1994
  end-page: 919
  ident: bib15
  article-title: Identification of dynamic myoelectric signal-to-force models during isometric lumbar muscle contractions
  publication-title: J. Biomech.
– start-page: 717
  year: 1990
  end-page: 773
  ident: bib28
  article-title: A survey of human musculotendon actuator parameters
  publication-title: Multiple Muscle Systems: Biomechanics and Movement Organization
– volume: 118
  start-page: 565
  year: 1996
  end-page: 574
  ident: bib7
  article-title: An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks
  publication-title: J. Biomech. Eng.
– volume: 38
  start-page: 1938
  year: 2005
  end-page: 1942
  ident: bib29
  article-title: Simulated parallel annealing within a neighborhood for optimization of biomechanical systems
  publication-title: J. Biomech.
– volume: 39
  start-page: 1107
  year: 2006
  end-page: 1115
  ident: bib6
  article-title: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data
  publication-title: J. Biomech.
– volume: 23
  start-page: 427
  year: 2001
  end-page: 434
  ident: bib33
  article-title: Indices to describe different muscle activation patterns identified during treadmill walking in people with spastic drop-foot
  publication-title: Med. Eng. Phys.
– volume: 18
  start-page: 114
  year: 2003
  end-page: 125
  ident: bib1
  article-title: Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke
  publication-title: Gait Posture
– start-page: 717
  year: 1990
  ident: 10.1016/j.compbiomed.2009.09.002_bib28
  article-title: A survey of human musculotendon actuator parameters
– volume: 14
  start-page: 793
  year: 1981
  ident: 10.1016/j.compbiomed.2009.09.002_bib3
  article-title: A physiologically based criterion of muscle force prediction in locomotion
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(81)90035-X
– volume: 34
  start-page: 1387
  year: 2001
  ident: 10.1016/j.compbiomed.2009.09.002_bib5
  article-title: Contributions of the individual ankle plantar flexors to support forward progression and swing initiation during walking
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00105-1
– volume: 18
  start-page: 114
  year: 2003
  ident: 10.1016/j.compbiomed.2009.09.002_bib1
  article-title: Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(02)00165-0
– volume: 118
  start-page: 367
  year: 1996
  ident: 10.1016/j.compbiomed.2009.09.002_bib14
  article-title: A model of load sharing between muscles and soft tissues at the human knee during static tasks
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2796019
– year: 1992
  ident: 10.1016/j.compbiomed.2009.09.002_bib31
– volume: 62
  start-page: 287
  year: 1983
  ident: 10.1016/j.compbiomed.2009.09.002_bib16
  article-title: Linear and non-linear surface EMG/force relationships in human muscles. An anatomical/functional argument for the existence of both
  publication-title: Am. J. Phys. Med.
– volume: 105
  start-page: 49
  year: 1991
  ident: 10.1016/j.compbiomed.2009.09.002_bib38
  article-title: Disuse of anterior tibial muscle during locomotion and increased proportion of type II fibres in hemiplegia
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(91)90117-P
– volume: 13
  start-page: 302
  year: 2005
  ident: 10.1016/j.compbiomed.2009.09.002_bib34
  article-title: An EMG-to-force processing approach for determining ankle muscle forces during normal human gait
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2005.851768
– volume: 3
  start-page: 17
  year: 2006
  ident: 10.1016/j.compbiomed.2009.09.002_bib2
  article-title: Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-3-17
– volume: 32
  start-page: 25
  year: 2002
  ident: 10.1016/j.compbiomed.2009.09.002_bib9
  article-title: A real-time EMG-driven virtual arm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/S0010-4825(01)00024-5
– volume: 37
  start-page: 1911
  year: 2005
  ident: 10.1016/j.compbiomed.2009.09.002_bib35
  article-title: Estimation of muscle forces and joint moments using a forward-inverse dynamics model
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/01.mss.0000176684.24008.6f
– ident: 10.1016/j.compbiomed.2009.09.002_bib36
– volume: 37
  start-page: 757
  year: 1990
  ident: 10.1016/j.compbiomed.2009.09.002_bib13
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.102791
– volume: 17
  start-page: 529
  year: 1995
  ident: 10.1016/j.compbiomed.2009.09.002_bib27
  article-title: Evidence that maximum muscle stress is not a constant: differences in specific tension in elbow flexors and extensors
  publication-title: Med. Eng. Phys.
  doi: 10.1016/1350-4533(95)00005-8
– volume: 23
  start-page: 427
  year: 2001
  ident: 10.1016/j.compbiomed.2009.09.002_bib33
  article-title: Indices to describe different muscle activation patterns identified during treadmill walking in people with spastic drop-foot
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(01)00061-3
– volume: 193
  start-page: 49
  year: 1994
  ident: 10.1016/j.compbiomed.2009.09.002_bib25
  article-title: Effects of muscle length on the EMG-force relationship of the cat soleus muscle studied using non-periodic stimulation of ventral root filaments
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.193.1.49
– volume: 28
  start-page: 251
  year: 1995
  ident: 10.1016/j.compbiomed.2009.09.002_bib4
  article-title: The redundant nature of locomotor optimization laws
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)00072-C
– volume: 20
  start-page: 367
  year: 2004
  ident: 10.1016/j.compbiomed.2009.09.002_bib11
  article-title: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.20.4.367
– volume: 36
  start-page: 765
  year: 2003
  ident: 10.1016/j.compbiomed.2009.09.002_bib10
  article-title: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00010-1
– year: 1998
  ident: 10.1016/j.compbiomed.2009.09.002_bib21
– volume: 39
  start-page: 1107
  year: 2006
  ident: 10.1016/j.compbiomed.2009.09.002_bib6
  article-title: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.02.010
– volume: 38
  start-page: 1938
  year: 2005
  ident: 10.1016/j.compbiomed.2009.09.002_bib29
  article-title: Simulated parallel annealing within a neighborhood for optimization of biomechanical systems
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.08.010
– volume: 17
  start-page: 359
  year: 1989
  ident: 10.1016/j.compbiomed.2009.09.002_bib20
  article-title: Muscle and tendon: properties models scaling and application to biomechanics and motor control
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 34
  start-page: 47
  year: 1996
  ident: 10.1016/j.compbiomed.2009.09.002_bib26
  article-title: Important experimental factors for skeletal muscle modelling: non-linear changes of muscle length force characteristics as a function of degree of activity
  publication-title: Eur. J. Morphol.
  doi: 10.1076/ejom.34.1.47.13157
– ident: 10.1016/j.compbiomed.2009.09.002_bib22
– volume: 8
  start-page: 383
  year: 1990
  ident: 10.1016/j.compbiomed.2009.09.002_bib37
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100080310
– volume: 126
  start-page: 136
  year: 1938
  ident: 10.1016/j.compbiomed.2009.09.002_bib19
  article-title: The heat of shortening and the dynamic constants of muscle
  publication-title: Proc. R. Soc. London Ser. B—Biol. Sci.
  doi: 10.1098/rspb.1938.0050
– start-page: 621
  year: 1990
  ident: 10.1016/j.compbiomed.2009.09.002_bib30
  article-title: Analysis of muscular work in multisegmental movements: application to cycling
– volume: 118
  start-page: 565
  year: 1996
  ident: 10.1016/j.compbiomed.2009.09.002_bib7
  article-title: An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2796044
– volume: 26
  start-page: 547
  year: 1993
  ident: 10.1016/j.compbiomed.2009.09.002_bib8
  article-title: Estimation of muscle forces about the wrist joint during isometric tasks using an EMG coefficient method
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(93)90016-8
– volume: 24
  start-page: 163
  year: 1991
  ident: 10.1016/j.compbiomed.2009.09.002_bib24
  article-title: A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(91)90361-P
– volume: 13
  start-page: 101
  year: 1981
  ident: 10.1016/j.compbiomed.2009.09.002_bib32
  article-title: Gait control in hemiparesis
  publication-title: Scand. J. Rehabil. Med.
– volume: 78
  start-page: 13
  year: 1997
  ident: 10.1016/j.compbiomed.2009.09.002_bib39
  article-title: Disuse muscle atrophy of lower limbs in hemiplegic patients
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/S0003-9993(97)90003-4
– volume: 36
  start-page: 1197
  year: 2003
  ident: 10.1016/j.compbiomed.2009.09.002_bib17
  article-title: A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00152-0
– volume: 1
  start-page: 109
  year: 1993
  ident: 10.1016/j.compbiomed.2009.09.002_bib23
  article-title: Improving the efficacy of electrical stimulation induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.242425
– volume: 27
  start-page: 907
  year: 1994
  ident: 10.1016/j.compbiomed.2009.09.002_bib15
  article-title: Identification of dynamic myoelectric signal-to-force models during isometric lumbar muscle contractions
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90263-1
– volume: 184
  start-page: 170
  year: 1966
  ident: 10.1016/j.compbiomed.2009.09.002_bib18
  article-title: The variation in isometric tension with sarcomere length in vertebrate muscle fibres
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1966.sp007909
– volume: 25
  start-page: 342
  year: 2007
  ident: 10.1016/j.compbiomed.2009.09.002_bib12
  article-title: Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.04.007
SSID ssj0004030
Score 2.2904108
Snippet Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which...
Abstract Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1083
SubjectTerms Ankle Joint - physiopathology
Biomechanical Phenomena
Biomechanics
Computer Simulation
Electromyography - statistics & numerical data
EMG
Gait - physiology
Gait Disorders, Neurologic - etiology
Gait Disorders, Neurologic - physiopathology
Hill-type muscle model
Humans
Internal Medicine
Joint moment
Leg
Models, Anatomic
Models, Biological
Muscle Contraction - physiology
Muscle, Skeletal - physiopathology
Muscular system
Musculoskeletal model
Musculoskeletal system
Optimization techniques
Other
Stroke
Stroke - complications
Stroke - physiopathology
Stroke Rehabilitation
Studies
SummonAdditionalLinks – databaseName: ScienceDirect Journal Collection
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb5wwEB2lG6nqpWr6SZqmPvSKAtgGrJxWUdJNq82haqTcLBuMStqaaGH_f8dg2G6TSCtV4gQeAcN4_AbPmwH4pLVw2TNlaBRNQow3WKhYQcOc5RVPNRVl6XZ0l1fp4pp9ueE3e3A2cmFcWqX3_YNP7721P3PitXlyV9eO44uhBAY4kejrRLEnsJ_gap_PYH9--XVxtaFHRnRgoqDLcQI-oWdI83KZ2wPT3RevFNM_lgdWqfso9N9kyr9Wp4sX8NzDSjIfnvwA9ox9CU-XfuP8FXybW3K-_ByWK-fdSN__hnQNcTU2ELMa8nvdoiBBCIuOgyhbktumth2O7DlwpLak7VbNT0N8Jdb2NVxfnH8_W4S-nUJYpEx0IS9Lnqg0rkTFjOPPxirXhmpaxEYUka5oYaqci1RFSiNOoUnBWCEwZskrxbOKvoGZbax5B0QhrMBIjFJULYs1F1HBFC-1SqnhXMcBZKP6ZOFrjbuWF7_kmFR2KzeKd60whXRHlAQQT5J3Q72NHWTE-IXkyCdFDyhxUdhBNntI1rR-Krcylm0iI3nP3AI4nSS3LHbH-x6NpiQ3t4ooRczEUhHAx-kyzne3iaOsadatxBCdOyZ6AOSRERl-EkYRSQfwdjDNjSZF7vr7pPjWW0Y7DXDFxrev2PpHX3S836DOxOF_vfV7eJb4_htRfASzbrU2HxDUdfrYT9o_yrZMnw
  priority: 102
  providerName: Elsevier
Title An EMG-driven model to estimate muscle forces and joint moments in stroke patients
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482509001644
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482509001644
https://dx.doi.org/10.1016/j.compbiomed.2009.09.002
https://www.ncbi.nlm.nih.gov/pubmed/19818436
https://www.proquest.com/docview/1033024469
https://www.proquest.com/docview/21054550
https://www.proquest.com/docview/734143851
https://pubmed.ncbi.nlm.nih.gov/PMC2784179
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj5QwEJ94d4nxxfgteq598BVDaQs0PpjV7N6q2Y05vWTfmhZK3FPhXNhX_3anUFhPT3MJgQc6Acp05jedL4AXxkgXPVOEVrM4RHuDh5rnLMx4VorEMFkUzqO7XCWLM_5-LdZ-w63xYZWDTOwEdVHnbo8cVzda3qiLEvn64kfoukY576pvoXEARzRGXesyxecn-7zIiPUpKChrOJpCPpKnj-9yIdt9iruvWinHzZUr1NPf8PPPKMrf1NL8Dtz2eJJMewa4CzdsdQ9uLr3H_D6cTisyW56ExdaJNdI1viFtTVxxDQSrlnzfNUhIELuixCC6Ksh5valaHNklv5FNRZp2W3-1xJdgbR7A2Xz2-e0i9H0Uwjzhsg1FUYhYJ7SUJbcucZbqzFhmWE6tzCNTstyWmZCJjrRBgMLinPNcorGSlVqkJXsIh1Vd2cdANOIJNMEYw6nl1AgZ5VyLwuiEWSEMDSAdpk_lvsi463XxTQ3RZOdqP_GuB6ZU7ojiAOhIedEX2rgGjRz-kBoSSVH0KdQG16BNr6K1jV_DjaKqiVWkPnUljJB7ItnVI-MBvBopPUzp4cc1n3s8sJLaP2pk7gCej7dxoTvvja5svWsU2ubCpaAHQP4xIsVfwhlC6AAe9ay5n0mZucY-CX71JaYdB7gq45fvVJsvXbXxzjOdyif_f--ncCv2nTUiegyH7XZnnyFca80EDl7-pHhO1-mkW58TOJq--7BY4fXNbPXx9BfkR0T2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEJ8jsA8_wGOkJHbSWGhCAzo6tlZobNLejO04ogOS0aRC_HP8bZwTJ2UwUF8m9S2-pj2f737n-wJ4phS32TOZbySNfPQ3mC-Zpn7K0jxOFOVZZiO6k2kyPmXvzuKzNfjZ1cLYtMpOJzaKOiu1vSPH042eN9qihL-8-ObbqVE2utqN0JButEK227QYc4Udh-bHd3Thqt2DN7jfz6Nof3Tyeuy7KQO-Thiv_TjL4kgmYc5zZmxZaShTZaiiOjRcByqn2uRpzBMZSIXmm0aaMc0Ryqe5jIc5xe-9AevMXqAMYP3VaPr-eFmZGdC2CAa1HUNnzOUStRlmNmm8LbJ3fTN5f71zhYH8GwD_mcf5m2Hcvwt3HKIle60I3oM1U9yHmxMXs38Ax3sFGU3e-tncKlbSjN4hdUlsew-Ey4Z8XVRISBA9o84issjIeTkralzZlN-RWUGqel5-NsQ1ga0ewum18PgRDIqyMI-BSEQ06ARSiqxloYp5oJmMMyUTauJYhR4MO_YJ7dqc22kbX0SXz3Yuloy3Uzi5sJ8g8iDsKS_aVh8r0PBuh0RXyorKV6A9WoF2eBWtqZwWqUQoqkgE4kPTRAmlJ-BNRzTmwYue0gGlFgCt-N7NTpTE8lX98fJgp3-MqsbGj2RhykUlIsTitgjeA_KPFUPcEkYRxHuw0YrmkpM8taOFEvzXl4S2X2D7nF9-Usw-Nf3Om9j4kD_5_-_egVvjk8mRODqYHj6F25Gb8xGEmzCo5wuzheCxVtvuhBL4eN1K4RdTlIP2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8ChfoAx4gktpNYCKGKdttStkJApd6M7ThiCyRlkxXir_HrGCdOlkJBe6mUWzyb7Hg8803mBfBEa-GyZ4rQKpqE6G-wUDFDw5zlJU81FUXhIrrTo3T_mL0-4Sdr8HOohXFplYNO7BR1URv3jRxPN3reaItS8az0aRFvdyYvz76FboKUi7QO4zR6ETm0P76j-9a8ONjBvX6aJJPdD6_2Qz9hIDQpE23Ii4InKo1LUTLrSkpjlWtLNTWxFSbSJTW2zLlIVaQ0mm6aGMaMQBifl4pnJcXfvQJXM4rnxFWpT_aWNZkR7ctfUM8xdMN8FlGfW-bSxfvyet8xU4wfdi4wjX9D3z8zOH8ziZMbcN1jWbLdC99NWLPVLdiY-mj9bXi3XZHd6V5YzJ1KJd3QHdLWxDX2QKBsyddFg4QEcTNqK6KqgpzWs6rFlV3hHZlVpGnn9WdLfPvX5g4cXwqH78J6VVf2PhCFWAbdP0qRtSzWXESGKV5olVLLuY4DyAb2SeMbnLs5G1_kkMl2KpeMd_M3hXRXlAQQj5RnfZOPFWjEsENyKGJFtSvREq1Am11EaxuvPxoZyyaRkXzftU9C6YlE1wuNBfB8pPQQqYc-Kz53cxAluXzUeLAC2Bpvo5JxkSNV2XrRyARRuCt_D4D8Y0WGW8IowvcA7vWiueSkyN1QoRT_9TmhHRe4Dufn71SzT12n8y4qnokH_3_vLdhAVSDfHBwdPoRriR_wEcWbsN7OF_YRosZWP-6OJ4GPl60PfgHJ_IGS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EMG-driven+model+to+estimate+muscle+forces+and+joint+moments+in+stroke+patients&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Shao%2C+Qi&rft.au=Bassett%2C+Daniel+N&rft.au=Manal%2C+Kurt&rft.au=Buchanan%2C+Thomas+S&rft.date=2009-12-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=39&rft.issue=12&rft.spage=1083&rft_id=info:doi/10.1016%2Fj.compbiomed.2009.09.002&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2733449251
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482509X00132%2Fcov150h.gif