doepipeline: a systematic approach to optimizing multi-level and multi-step data processing workflows
Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make t...
Saved in:
| Published in | BMC bioinformatics Vol. 20; no. 1; pp. 498 - 13 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
15.10.2019
BioMed Central Ltd BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-019-3091-z |
Cover
| Abstract | Background
Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed.
Results
We present
doepipeline
, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling.
Doepipeline
was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases,
doepipeline
found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package
doepipeline
.
Conclusions
Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in
doepipeline
makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of
doepipeline
is available at
https://github.com/clicumu/doepipeline
and it can be installed through conda-forge. |
|---|---|
| AbstractList | Background: Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed.
Results: We present doepipeline , a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline .
Conclusions: Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge. Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed.BACKGROUNDSelecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed.We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline.RESULTSWe present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline.Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge.CONCLUSIONSOur proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge. Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline. Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge. Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. Results We present doepipeline , a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline . Conclusions Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge. Abstract Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. Results We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline. Conclusions Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge. Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. Results We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline. Conclusions Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at Keywords: Design of Experiments, Optimization, Sequencing, Nanopore, MinION, Assembly, Classification, Scaffolding, Variant calling Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline. Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge. |
| ArticleNumber | 498 |
| Audience | Academic |
| Author | Sjödin, Andreas Svensson, Daniel Sundell, David Sjögren, Rickard Trygg, Johan |
| Author_xml | – sequence: 1 givenname: Daniel surname: Svensson fullname: Svensson, Daniel organization: Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University – sequence: 2 givenname: Rickard surname: Sjögren fullname: Sjögren, Rickard organization: Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Corporate Research, Sartorius AG – sequence: 3 givenname: David surname: Sundell fullname: Sundell, David organization: Division of CBRN Security and Defence, FOI - Swedish Defence Research Agency – sequence: 4 givenname: Andreas surname: Sjödin fullname: Sjödin, Andreas organization: Division of CBRN Security and Defence, FOI - Swedish Defence Research Agency – sequence: 5 givenname: Johan orcidid: 0000-0003-3799-6094 surname: Trygg fullname: Trygg, Johan email: johan.trygg@umu.se organization: Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Corporate Research, Sartorius AG |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31615395$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-164986$$DView record from Swedish Publication Index |
| BookMark | eNqNkluL1DAYhousuAf9Ad5IwRu96JqkadJ6IQzraWBB8HQb0hy6GdOmNumOM7_edDsuW5FFSmmaPu-b73v7nSZHnetUkjyF4BzCkrzyEJVFlQFYZTmoYLZ_kJxATGGGICiO7qyPk1PvNwBAWoLiUXKcQwKLvCpOEiWd6k2vrOnU65SnfueDankwIuV9PzgurtLgUtcH05q96Zq0HW0wmVXXyqa8k4f3qOpTyQNPo0go7yd064Yf2rqtf5w81Nx69eTwPEu-vX_39eJjdvnpw_pidZkJgmnINMZaAiQLWEFJMYcg57lWiAoOclXnCOO8BhjEpjnWtMQE0JpKKut4V5rkZ8l69pWOb1g_mJYPO-a4YTcbbmgYH2JvVjGhSy1qpIkuJa6l4kSUpUQaSUi04DJ6odlr7Hq-23Jrbw0hYFP-bM6fxfzZlD_bR1E2i_xW9WO9KOGt-b66KWFsRwYJrsqp4DczH-FWSaG6MHC7kC2_dOaKNe6aEVphmtNo8OJgMLifo_KBtcYLZS3vlBs9QzkgCOYYTWc9n9GGx_5Np110FBPOVgSgMs4DAZE6_wcVL6laI-L8aRP3F4KXC0FkgvoVGj56z9ZfPi_ZZ3fbve3zzzxGAM6AGJz3g9L_lTn9SyNMiBPspsSMvVd5-MU-ntI1amAbNw5dnNB7RL8B-r8WKQ |
| CitedBy_id | crossref_primary_10_3390_s22228931 crossref_primary_10_3390_app11209648 |
| Cites_doi | 10.1080/00224065.1980.11980968 10.1186/gb-2014-15-3-r46 10.1093/bioinformatics/btt310 10.1101/gr.214346.116 10.1093/bioinformatics/bty191 10.1186/1471-2105-15-211 10.1186/2047-217X-2-10 10.1186/s12859-015-0714-x 10.1038/s41598-018-36177-7 10.1093/bioinformatics/bts480 10.1093/bib/bbx120 10.1038/nbt.2835 10.12968/S2514-9768(23)90107-9 10.1038/ng.806 10.1007/10968987_3 10.1093/bioinformatics/bty646 10.1101/270157 10.1101/gr.107524.110 10.1038/nbt.3820 10.1093/bioinformatics/btp324 10.1093/bib/bbx039 10.1101/gr.210500.116 10.1038/s41592-018-0046-7 10.1186/s13059-018-1568-0 10.1101/281006 10.1101/gr.074492.107 10.1021/acs.analchem.7b00506 10.1002/0471250953.bi1110s43 10.1021/ac301482k 10.1128/JB.01040-12 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2019 COPYRIGHT 2019 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s). 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM ADHXS ADTPV AOWAS D8T D93 ZZAVC ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-019-3091-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Umeå universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Umeå universitet SwePub Articles full text Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_cf8fcb2f6f8d4bdea6c88d2f2d16fcad 10.1186/s12859-019-3091-z oai_DiVA_org_umu_164986 PMC6794737 A602839560 31615395 10_1186_s12859_019_3091_z |
| Genre | Journal Article |
| GeographicLocations | Sweden |
| GeographicLocations_xml | – name: Sweden |
| GrantInformation_xml | – fundername: Vetenskapsrådet grantid: 2016‐04376 funderid: http://dx.doi.org/10.13039/501100004359 – fundername: Myndigheten för Samhällsskydd och Beredskap grantid: B4662 funderid: http://dx.doi.org/10.13039/100009527 – fundername: Knut och Alice Wallenbergs Stiftelse grantid: 2011.0042 funderid: http://dx.doi.org/10.13039/501100004063 – fundername: Knut och Alice Wallenbergs Stiftelse grantid: 2011.0042 – fundername: Vetenskapsrådet grantid: 2016-04376 – fundername: Myndigheten för Samhällsskydd och Beredskap grantid: B4662 – fundername: ; grantid: 2016‐04376 – fundername: ; grantid: 2011.0042 – fundername: ; grantid: B4662 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF M0N NPM 7X8 5PM 123 2VQ 4.4 ADHXS ADRAZ ADTPV AHSBF AOWAS C1A D8T D93 EJD H13 IPNFZ RIG ZZAVC ADTOC UNPAY |
| ID | FETCH-LOGICAL-c647t-f44fd02d5191d74a103a3fe27ca03eb32443b040859a4f784607b7d7dbd7d9f63 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:52:32 EDT 2025 Sun Oct 26 04:09:19 EDT 2025 Wed Sep 10 00:06:26 EDT 2025 Tue Sep 30 16:56:14 EDT 2025 Thu Oct 02 06:16:54 EDT 2025 Mon Oct 20 22:02:52 EDT 2025 Mon Oct 20 16:08:36 EDT 2025 Thu Oct 16 15:24:18 EDT 2025 Wed Feb 19 02:13:25 EST 2025 Wed Oct 01 04:15:33 EDT 2025 Thu Apr 24 22:51:19 EDT 2025 Sat Sep 06 07:27:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Design of Experiments Scaffolding Classification MinION Nanopore Sequencing Optimization Assembly Variant calling |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c647t-f44fd02d5191d74a103a3fe27ca03eb32443b040859a4f784607b7d7dbd7d9f63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3799-6094 |
| OpenAccessLink | https://doaj.org/article/cf8fcb2f6f8d4bdea6c88d2f2d16fcad |
| PMID | 31615395 |
| PQID | 2306213426 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cf8fcb2f6f8d4bdea6c88d2f2d16fcad unpaywall_primary_10_1186_s12859_019_3091_z swepub_primary_oai_DiVA_org_umu_164986 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6794737 proquest_miscellaneous_2306213426 gale_infotracmisc_A602839560 gale_infotracacademiconefile_A602839560 gale_incontextgauss_ISR_A602839560 pubmed_primary_31615395 crossref_primary_10_1186_s12859_019_3091_z crossref_citationtrail_10_1186_s12859_019_3091_z springer_journals_10_1186_s12859_019_3091_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-15 |
| PublicationDateYYYYMMDD | 2019-10-15 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2019 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | 3091_CR31 3091_CR30 3091_CR15 3091_CR37 3091_CR9 3091_CR14 3091_CR36 3091_CR17 3091_CR39 3091_CR16 3091_CR38 3091_CR11 3091_CR33 3091_CR10 3091_CR32 RA Fisher (3091_CR4) 1935 3091_CR13 3091_CR35 3091_CR12 3091_CR34 MA Eberle (3091_CR25) 2017; 27 3091_CR29 3091_CR40 3091_CR20 3091_CR41 GEP Box (3091_CR6) 1978 3091_CR26 3091_CR48 3091_CR47 3091_CR28 3091_CR27 3091_CR22 3091_CR44 3091_CR21 3091_CR43 3091_CR24 3091_CR46 3091_CR23 3091_CR45 3091_CR2 3091_CR1 L Eriksson (3091_CR5) 2008 3091_CR3 3091_CR19 3091_CR18 I Surowiec (3091_CR8) 2017; 89 J Bergstra (3091_CR42) 2012; 13 C Dismuke (3091_CR7) 2006; 93 |
| References_xml | – ident: 3091_CR10 doi: 10.1080/00224065.1980.11980968 – ident: 3091_CR22 doi: 10.1186/gb-2014-15-3-r46 – volume-title: The design of experiments year: 1935 ident: 3091_CR4 – start-page: 0277 volume-title: Wiley series in probability and mathematical statistics year: 1978 ident: 3091_CR6 – ident: 3091_CR41 doi: 10.1093/bioinformatics/btt310 – ident: 3091_CR15 doi: 10.1101/gr.214346.116 – ident: 3091_CR3 doi: 10.1093/bioinformatics/bty191 – ident: 3091_CR20 doi: 10.1186/1471-2105-15-211 – ident: 3091_CR17 doi: 10.1186/2047-217X-2-10 – ident: 3091_CR47 doi: 10.1186/s12859-015-0714-x – ident: 3091_CR24 doi: 10.1038/s41598-018-36177-7 – ident: 3091_CR43 – ident: 3091_CR45 doi: 10.1093/bioinformatics/bts480 – ident: 3091_CR21 doi: 10.1093/bib/bbx120 – ident: 3091_CR26 doi: 10.1038/nbt.2835 – ident: 3091_CR35 doi: 10.12968/S2514-9768(23)90107-9 – ident: 3091_CR1 doi: 10.1038/ng.806 – ident: 3091_CR39 – ident: 3091_CR38 doi: 10.1007/10968987_3 – ident: 3091_CR48 doi: 10.1093/bioinformatics/bty646 – ident: 3091_CR28 doi: 10.1101/270157 – ident: 3091_CR18 – ident: 3091_CR37 – ident: 3091_CR12 – ident: 3091_CR33 doi: 10.1101/gr.107524.110 – ident: 3091_CR14 – ident: 3091_CR16 – volume: 13 start-page: 281 year: 2012 ident: 3091_CR42 publication-title: J Mach Learn Res [Internet] – ident: 3091_CR46 doi: 10.1038/nbt.3820 – ident: 3091_CR29 – ident: 3091_CR31 doi: 10.1093/bioinformatics/btp324 – ident: 3091_CR44 doi: 10.1093/bib/bbx039 – volume-title: Design of experiments : principles and applications [Internet] year: 2008 ident: 3091_CR5 – volume: 27 start-page: 157 issue: 1 year: 2017 ident: 3091_CR25 publication-title: Genome Res doi: 10.1101/gr.210500.116 – ident: 3091_CR13 doi: 10.1038/s41592-018-0046-7 – ident: 3091_CR23 doi: 10.1186/s13059-018-1568-0 – volume: 93 start-page: 93 year: 2006 ident: 3091_CR7 publication-title: Methods Des Outcomes Res – ident: 3091_CR27 doi: 10.1101/281006 – ident: 3091_CR40 doi: 10.1101/gr.074492.107 – volume: 89 start-page: 6491 issue: 12 year: 2017 ident: 3091_CR8 publication-title: Anal Chem doi: 10.1021/acs.analchem.7b00506 – ident: 3091_CR2 doi: 10.1002/0471250953.bi1110s43 – ident: 3091_CR9 doi: 10.1021/ac301482k – ident: 3091_CR11 doi: 10.1128/JB.01040-12 – ident: 3091_CR34 – ident: 3091_CR19 – ident: 3091_CR36 – ident: 3091_CR30 – ident: 3091_CR32 |
| SSID | ssj0017805 |
| Score | 2.3176749 |
| Snippet | Background
Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on... Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome,... Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on... Background: Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on... Abstract Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual... |
| SourceID | doaj unpaywall swepub pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 498 |
| SubjectTerms | Algorithms Analysis Assembly Bioinformatics Biomedical and Life Sciences Classification Computational biology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data processing Design of Experiments Francisella tularensis - genetics Genome, Bacterial Genomics Genomics - methods Life Sciences Methodology Methodology Article Methods Microarrays MinION Nanopore Nanopores Optimization Optimization theory Parameter estimation Scaffolding Scientific software Sequence analysis Sequence Analysis, DNA - methods Sequencing Setting (Literature) Software Technology Time Variant calling |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcEO8GCjIIgUQVNQ-vnXBbHlVBggNQ1Jvl-AErpUlENqq6v54Z58EGpPbCIYfEEyWeGY9nNONvCHmuCpFnKjdhxCyHACW1oVLchlYvYPtzmbK-D9mnz_zomH08WZxstfrCmrAeHrhn3IF2mdNF4rjLDCuMVVxnmUlcYmLutDJofaMsH4OpIX-ASP1DDjPO-EEbI04bhM2Y58_jcDPbhTxY_78meWtP-rteckqaTgCjN8i1rmrU-Zkqy60N6vAWuTl4lnTZz-g2uWKrO-Rq32vy_C6xprbNqsHj5_Y1VfQPhDMdccXpuqY1mJDT1QY-S32tYVhiVRFVlRnu4a2GYl0pbfozBkiK1V2urM_ae-T48P23t0fh0GMh1JyJdegYcyZKDDhysRFMxVGqUmcToRXIrQB3i6VF5GHQFHMCvJVIFMIIU8CVO57eJztVXdldQvMEYyVw8EBQmI3L8fiJToRJOWexigMSjTyXegAgxz4YpfSBSMZlLyYJYpIoJrkJyKvplaZH37iI-A0KciJE4Gz_ANRJDuokL1OngDxDNZAIjVFh7c0P1bWt_PD1i1xy9MUwngzIy4HI1TADrYajDMAHRNOaUe7NKGHt6tnw01HbJA5hwVtl666VGBki2F7CA_Kg175pYqn30vNFQMRML2czn49Uq58eOpyD-RWpCMj-qMFysFntRYx90Sv57APvVt-XnrXdaSch6M4z-NX9aRFcLq-H_0Nej8j1BJc11hgt9sjO-ldnH4ObuC6eeIvwGwznZ0c priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAEHxKslUJBBCCSqiLzWTrgthaogwQEo6s1y_KArpUlENqq6v54Zxxs2gIo45JB4rNieGc-MZvyZkGey5EUuCx1GmWEQoKQmlJKZ0KgZmD-bS-PuIfv4iR0eZR-OZ8ceLBrPwmzm7-OcvepiRFiDgBcz9EUcri6TK2CjmMvLsv0xYYDQ_D5p-dduE7Pj0Pn_3IM3jNDvBZJjlnREFL1BrvV1K8_PZFVtWKSDW-SmdyXpfOD9bXLJ1HfI1eFyyfO7xOjGtIsWz5ub11TSX5jNdA0kTpcNbWDPOF2s4LfUFReGFZYRUVlr_w69WoqFpLQdDhUgKZZz2ao56-6Ro4N3X_cPQ3-pQqhYxpehzTKro0SD5xZrnsk4SmVqTcKVBEaV4F9laRk53DOZWQ7uScRLrrku4SksS7fJVt3U5j6hRYLBEXh0uc4w_VbgeROVcJ0ylsUyDki0XnOhPOI4XnxRCRd55EwMbBLAJoFsEquAvBy7tAPcxkXEb5CRIyEiZbsPIEDCK55QNreqTCyzMMpSG8lUnuvEJjpmVkkdkKcoBgKxMGostvku-64T7798FnOGzhcGkAF54YlsAzNQ0p9dgHVA-KwJ5e6EEpRVTZqfrKVNYBNWuNWm6TuBoSCi6yUsIDuD9I0TS51bXswCwidyOZn5tKVenDiscAb7LU95QPbWEiz8JtVdtLDPByGf_ODt4tvcLW1_2guIsoschro3KsG_-fXgvwbxkFxPUH-xemi2S7aWP3rzCBzAZfnYqf5Pze9UpA priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3pa9RAFH_ULaJ-8D6iVaKIgiXbXDuT-G09ShWsoq7UT8Nkjro0m4RmQ-n-9c7L5aZKRfBDYLPzhmRe3sm89xuApzyhccRj6bihIiZBCZTDOVGOEhPj_nTEVX0O2Yd9sjcL3x9MDjbgY9cLkyxEMs9b0FAEKh6vt6Gnte02P8TRTiF1o_IR2Sk9xGEzaTHu48ees7oAm2RigvMRbM72P02_1z1G1HNMgjNp9zb_OG_gnWoQ_99N9ZqvOltH2W-m9sCjV-BSlRX89ISn6Zrj2r0GRbfkpl7laFwtk7FYnUGD_I88uQ5X2yDXnjZSeQM2VHYTLjbHXp7eAiVzVcwL7IRXL21u_0KTtjuIc3uZ27mxZov5yqzUrssenRQLnGyeyfbezCpsLHG1i6bdAUmx0Eyn-Ul5G2a7b7--3nPa4x4cQUK6dHQYaun60sSUnqQh99yAB1r5VHAjQomJ_MIgcWtENh5qagInlyZUUpmYK9YkuAOjLM_UPbBjH9M2E2tGMsSNwRg7YYRPZUBI6HHPArf7zEy0WOh4JEfK6pwoIqzhHjPcY8g9trLgRT-laIBAziN-hbLTEyKGd_1HfnzIWpPAhI60SHxNtHnLRCpORBRJX_vSI1pwacETlDyGKB0ZlgEd8qos2bsvn9mUYFiIqa0Fz1sinaMM8LarwvABgb0GlFsDSmNGxGD4cSfgDIew9i5TeVUyTFIR988nFtxtBL5fWFAnDPHEAjpQhcHKhyPZ_EeNYk6MJ6ABtWC7UxrWms_yPMY-a_Rq8IA382_TmrXVomIm_48j86rbvd79_Xvd_yfqB3DZR7XCuqbJFoyWx5V6aELTZfKoNTc_AXrEi2I priority: 102 providerName: Unpaywall |
| Title | doepipeline: a systematic approach to optimizing multi-level and multi-step data processing workflows |
| URI | https://link.springer.com/article/10.1186/s12859-019-3091-z https://www.ncbi.nlm.nih.gov/pubmed/31615395 https://www.proquest.com/docview/2306213426 https://pubmed.ncbi.nlm.nih.gov/PMC6794737 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-164986 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-019-3091-z https://doaj.org/article/cf8fcb2f6f8d4bdea6c88d2f2d16fcad |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9MwELf2EAI-IN4ERhUQAokpkFftBAmhrGyMSqumjaLyyXJie1TqktCHRvvXc-ek3QJT-dBUjS9NfA_7Lj7_jpBXImVxJGLpuKGiEKAEyhGCKkdlbZj-dCSUqUN21KOH_bA7aA82yLK8Vc3AybWhHdaT6o9H737_mn8Cg_9oDD6i7yceorBBUIyr-LHnLDbJNkxUMVZyOAovFxUQvt9sNmKeA5FOu17kvPYvGtOUQfP_d8y-Mmn9nVC5WlVdIZDeJjdneSnmF2I0ujKDHdwld2rX004qXblHNlR-n9yoilHOHxAlC1UOS9yfrj7Ywr7EeLaXwOP2tLALGGPOhwu4rW2SEZ0Rph3ZIpf1b7iqtDHx1C6rTQhIiulfelRcTB6S_sH-t86hUxdhcDIasqmjw1BL15fg6XmShcJzAxFo5bNMgGBT8MfCIHUNTpoINQN3xmUpk0ym8Ik1DR6RrbzI1RNixz4GU-ABRjLE5boY96dkPpMBpaEnPIu4S57zrEYox0IZI24ilYjySkwcxMRRTHxhkberS8oKnmMd8R4KckWIyNrmRDE-47Wh8kxHOkt9TTU8ZSqVoFkUSV_70qM6E9IiL1ENOGJn5JiccyZmkwn_enrCE4rOGgacFnlTE-kCepCJeq8D8AHhthqUOw1KMO6s0fxiqW0cmzAjLlfFbMIxdEQ0Pp9a5HGlfauOBcaNj9sWYQ29bPS82ZIPfxpscQrjMwuYRXaXGsyXNrmOsa8rJW_c4PPwe2JYOzufcYjK4wgedXdlBP-X19P1vHlGbvlosJhe1N4hW9PxTD0HD3GatsgmGzA4RgdfWmQ7SbqnXfje2-8dn8DZDu20zLuXlhkfoKXfO05-_AG682jY |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFSocEG8CBQxCIFFF5LV2wm15VNul7YG2qDfL8aOslCZRs1HV_fV4HCc0gIo45JB4rNieh2c0488IveY5zVKeST9IFDEBSqx8zonylZiY7U-nXNl7yPb2yewomR9Pjt057qavdu9TktZSW7VOyfsmBKw1E_pCrj4L_dV1tA41VkYb16fT-cF8SB4ATL9LYP6142gLskj9f9rjSxvS78WSQ8Z0QBe9hTbasuYX57woLu1O23fQbedW4mknB3fRNVXeQze6iyYv7iMlK1Uvajh7rj5gjn_hN-MeVBwvK1wZ-3G6WJnfYlto6BdQUoR5Kd276VVjKCrFdXfAAEihtEsX1XnzAB1tfzn8NPPdBQu-IAld-jpJtAwiaby4UNKEh0HMY60iKrhhWm58rSTOA4uBxhNNjasS0JxKKnPzZJrED9FaWZXqMcJZBIGS8e5SmUAqLoOzJyKiMiYkCXnooaBfcyYc-jhcglEwG4WkhHVsYoZNDNjEVh56N3SpO-iNq4g_AiMHQkDNth-qsxPmlJAJnWqRR5poM8pcKk5EmspIRzIkWnDpoVcgBgxwMUoovDnhbdOwnYNvbErAEYNg0kNvHZGuzAwEd-cYzDoAlNaIcnNEaRRXjJpf9tLGoAmq3UpVtQ2DsBCQ9iLioUed9A0Ti62Lnk08REdyOZr5uKVc_LC44cTYXhpTD231EsycwWquWtg3nZCPfvB58X1ql7Y9bZmJuLPUDHVrUIJ_8-vJfw3iBdqYHe7tst2d_a9P0c0IdBmqiiabaG151qpnxjFc5s-dIfgJdRRc_Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagiOsBcRMoYBACiSpqDq-d8LZsqVqOCgFFfbMcH2WlbRI1G1XdX89MLhpARTzkIfFYsT1je0Yz8w0hL1Qm0kSlxg-Y5WCgxNZXilvf6glcfy5RtqlD9mmP7-yz9weTg67OadVHu_cuyTanAVGa8uVmaVy7xRO-WYWIuwZmMPrt09BfXSSXGFxuWMJgxmeDGwEB-ztX5l-7jS6jBrP_z5P5zNX0e9jk4DsdcEavk6t1XqrTE7VYnLmntm-SG52CSaetRNwiF2x-m1xuS06e3iHWFLacl5iFbt9QRX8hOdMeXpwuC1rASXI0X8FvaRNy6C8wuIiq3HTv0KukGF5KyzbVAEkxyMstipPqLtnffvdttuN3pRZ8zZlY-o4xZ4LIgD4XGsFUGMQqdjYSWgH7MtC6WJwFDRqaYk6A0hKITBhhMnhSx-N7ZC0vcvuA0DRCkwn0vMQwdMqlmIWiI2FizlmoQo8E_ZpL3eGQYzmMhWzskYTLlk0S2CSRTXLlkddDl7IF4TiP-C0yciBE_OzmQ3F8KLvtKLVLnM4ixx2MMjNWcZ0kJnKRCbnTynjkOYqBRISMHENwDlVdVXL36xc55aiSoVnpkVcdkStgBlp1GQ2wDgiqNaJcH1HCFtaj5me9tElswri33BZ1JdFARMy9iHvkfit9w8TiRllPJx4RI7kczXzcks9_NAjiHE5hEQuPbPQSLLujqzpvYV-2Qj76wdb8-7RZ2vqolmB7pwkMdWPYBP_m18P_GsRTcuXz1rb8uLv34RG5FuFWxvCiyTpZWx7X9jFoiMvsSXMK_AS62F_a |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3pa9RAFH_ULaJ-8D6iVaKIgiXbXDuT-G09ShWsoq7UT8Nkjro0m4RmQ-n-9c7L5aZKRfBDYLPzhmRe3sm89xuApzyhccRj6bihIiZBCZTDOVGOEhPj_nTEVX0O2Yd9sjcL3x9MDjbgY9cLkyxEMs9b0FAEKh6vt6Gnte02P8TRTiF1o_IR2Sk9xGEzaTHu48ees7oAm2RigvMRbM72P02_1z1G1HNMgjNp9zb_OG_gnWoQ_99N9ZqvOltH2W-m9sCjV-BSlRX89ISn6Zrj2r0GRbfkpl7laFwtk7FYnUGD_I88uQ5X2yDXnjZSeQM2VHYTLjbHXp7eAiVzVcwL7IRXL21u_0KTtjuIc3uZ27mxZov5yqzUrssenRQLnGyeyfbezCpsLHG1i6bdAUmx0Eyn-Ul5G2a7b7--3nPa4x4cQUK6dHQYaun60sSUnqQh99yAB1r5VHAjQomJ_MIgcWtENh5qagInlyZUUpmYK9YkuAOjLM_UPbBjH9M2E2tGMsSNwRg7YYRPZUBI6HHPArf7zEy0WOh4JEfK6pwoIqzhHjPcY8g9trLgRT-laIBAziN-hbLTEyKGd_1HfnzIWpPAhI60SHxNtHnLRCpORBRJX_vSI1pwacETlDyGKB0ZlgEd8qos2bsvn9mUYFiIqa0Fz1sinaMM8LarwvABgb0GlFsDSmNGxGD4cSfgDIew9i5TeVUyTFIR988nFtxtBL5fWFAnDPHEAjpQhcHKhyPZ_EeNYk6MJ6ABtWC7UxrWms_yPMY-a_Rq8IA382_TmrXVomIm_48j86rbvd79_Xvd_yfqB3DZR7XCuqbJFoyWx5V6aELTZfKoNTc_AXrEi2I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=doepipeline%3A+a+systematic+approach+to+optimizing+multi-level+and+multi-step+data+processing+workflows&rft.jtitle=BMC+bioinformatics&rft.au=Svensson%2C+Daniel&rft.au=Sj%C3%B6gren%2C+Rickard&rft.au=Sundell%2C+David&rft.au=Sj%C3%B6din%2C+Andreas&rft.date=2019-10-15&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-019-3091-z&rft.externalDocID=A602839560 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |