doepipeline: a systematic approach to optimizing multi-level and multi-step data processing workflows

Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make t...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 20; no. 1; pp. 498 - 13
Main Authors Svensson, Daniel, Sjögren, Rickard, Sundell, David, Sjödin, Andreas, Trygg, Johan
Format Journal Article
LanguageEnglish
Published London BioMed Central 15.10.2019
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-019-3091-z

Cover

Abstract Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. Results We present doepipeline , a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline . Conclusions Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge.
AbstractList Background: Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. Results: We present  doepipeline , a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling.  Doepipeline  was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases,  doepipeline  found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package  doepipeline . Conclusions: Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in  doepipeline  makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of  doepipeline  is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge.
Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed.BACKGROUNDSelecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed.We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline.RESULTSWe present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline.Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge.CONCLUSIONSOur proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge.
Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline. Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge.
Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. Results We present doepipeline , a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline . Conclusions Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge.
Abstract Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. Results We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline. Conclusions Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge.
Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. Results We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline. Conclusions Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at Keywords: Design of Experiments, Optimization, Sequencing, Nanopore, MinION, Assembly, Classification, Scaffolding, Variant calling
Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline. Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge.
ArticleNumber 498
Audience Academic
Author Sjödin, Andreas
Svensson, Daniel
Sundell, David
Sjögren, Rickard
Trygg, Johan
Author_xml – sequence: 1
  givenname: Daniel
  surname: Svensson
  fullname: Svensson, Daniel
  organization: Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University
– sequence: 2
  givenname: Rickard
  surname: Sjögren
  fullname: Sjögren, Rickard
  organization: Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Corporate Research, Sartorius AG
– sequence: 3
  givenname: David
  surname: Sundell
  fullname: Sundell, David
  organization: Division of CBRN Security and Defence, FOI - Swedish Defence Research Agency
– sequence: 4
  givenname: Andreas
  surname: Sjödin
  fullname: Sjödin, Andreas
  organization: Division of CBRN Security and Defence, FOI - Swedish Defence Research Agency
– sequence: 5
  givenname: Johan
  orcidid: 0000-0003-3799-6094
  surname: Trygg
  fullname: Trygg, Johan
  email: johan.trygg@umu.se
  organization: Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Corporate Research, Sartorius AG
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31615395$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-164986$$DView record from Swedish Publication Index
BookMark eNqNkluL1DAYhousuAf9Ad5IwRu96JqkadJ6IQzraWBB8HQb0hy6GdOmNumOM7_edDsuW5FFSmmaPu-b73v7nSZHnetUkjyF4BzCkrzyEJVFlQFYZTmoYLZ_kJxATGGGICiO7qyPk1PvNwBAWoLiUXKcQwKLvCpOEiWd6k2vrOnU65SnfueDankwIuV9PzgurtLgUtcH05q96Zq0HW0wmVXXyqa8k4f3qOpTyQNPo0go7yd064Yf2rqtf5w81Nx69eTwPEu-vX_39eJjdvnpw_pidZkJgmnINMZaAiQLWEFJMYcg57lWiAoOclXnCOO8BhjEpjnWtMQE0JpKKut4V5rkZ8l69pWOb1g_mJYPO-a4YTcbbmgYH2JvVjGhSy1qpIkuJa6l4kSUpUQaSUi04DJ6odlr7Hq-23Jrbw0hYFP-bM6fxfzZlD_bR1E2i_xW9WO9KOGt-b66KWFsRwYJrsqp4DczH-FWSaG6MHC7kC2_dOaKNe6aEVphmtNo8OJgMLifo_KBtcYLZS3vlBs9QzkgCOYYTWc9n9GGx_5Np110FBPOVgSgMs4DAZE6_wcVL6laI-L8aRP3F4KXC0FkgvoVGj56z9ZfPi_ZZ3fbve3zzzxGAM6AGJz3g9L_lTn9SyNMiBPspsSMvVd5-MU-ntI1amAbNw5dnNB7RL8B-r8WKQ
CitedBy_id crossref_primary_10_3390_s22228931
crossref_primary_10_3390_app11209648
Cites_doi 10.1080/00224065.1980.11980968
10.1186/gb-2014-15-3-r46
10.1093/bioinformatics/btt310
10.1101/gr.214346.116
10.1093/bioinformatics/bty191
10.1186/1471-2105-15-211
10.1186/2047-217X-2-10
10.1186/s12859-015-0714-x
10.1038/s41598-018-36177-7
10.1093/bioinformatics/bts480
10.1093/bib/bbx120
10.1038/nbt.2835
10.12968/S2514-9768(23)90107-9
10.1038/ng.806
10.1007/10968987_3
10.1093/bioinformatics/bty646
10.1101/270157
10.1101/gr.107524.110
10.1038/nbt.3820
10.1093/bioinformatics/btp324
10.1093/bib/bbx039
10.1101/gr.210500.116
10.1038/s41592-018-0046-7
10.1186/s13059-018-1568-0
10.1101/281006
10.1101/gr.074492.107
10.1021/acs.analchem.7b00506
10.1002/0471250953.bi1110s43
10.1021/ac301482k
10.1128/JB.01040-12
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-019-3091-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic





MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 13
ExternalDocumentID oai_doaj_org_article_cf8fcb2f6f8d4bdea6c88d2f2d16fcad
10.1186/s12859-019-3091-z
oai_DiVA_org_umu_164986
PMC6794737
A602839560
31615395
10_1186_s12859_019_3091_z
Genre Journal Article
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GrantInformation_xml – fundername: Vetenskapsrådet
  grantid: 2016‐04376
  funderid: http://dx.doi.org/10.13039/501100004359
– fundername: Myndigheten för Samhällsskydd och Beredskap
  grantid: B4662
  funderid: http://dx.doi.org/10.13039/100009527
– fundername: Knut och Alice Wallenbergs Stiftelse
  grantid: 2011.0042
  funderid: http://dx.doi.org/10.13039/501100004063
– fundername: Knut och Alice Wallenbergs Stiftelse
  grantid: 2011.0042
– fundername: Vetenskapsrådet
  grantid: 2016-04376
– fundername: Myndigheten för Samhällsskydd och Beredskap
  grantid: B4662
– fundername: ;
  grantid: 2016‐04376
– fundername: ;
  grantid: 2011.0042
– fundername: ;
  grantid: B4662
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7X8
5PM
123
2VQ
4.4
ADHXS
ADRAZ
ADTPV
AHSBF
AOWAS
C1A
D8T
D93
EJD
H13
IPNFZ
RIG
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c647t-f44fd02d5191d74a103a3fe27ca03eb32443b040859a4f784607b7d7dbd7d9f63
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:52:32 EDT 2025
Sun Oct 26 04:09:19 EDT 2025
Wed Sep 10 00:06:26 EDT 2025
Tue Sep 30 16:56:14 EDT 2025
Thu Oct 02 06:16:54 EDT 2025
Mon Oct 20 22:02:52 EDT 2025
Mon Oct 20 16:08:36 EDT 2025
Thu Oct 16 15:24:18 EDT 2025
Wed Feb 19 02:13:25 EST 2025
Wed Oct 01 04:15:33 EDT 2025
Thu Apr 24 22:51:19 EDT 2025
Sat Sep 06 07:27:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Design of Experiments
Scaffolding
Classification
MinION
Nanopore
Sequencing
Optimization
Assembly
Variant calling
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c647t-f44fd02d5191d74a103a3fe27ca03eb32443b040859a4f784607b7d7dbd7d9f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3799-6094
OpenAccessLink https://doaj.org/article/cf8fcb2f6f8d4bdea6c88d2f2d16fcad
PMID 31615395
PQID 2306213426
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_cf8fcb2f6f8d4bdea6c88d2f2d16fcad
unpaywall_primary_10_1186_s12859_019_3091_z
swepub_primary_oai_DiVA_org_umu_164986
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6794737
proquest_miscellaneous_2306213426
gale_infotracmisc_A602839560
gale_infotracacademiconefile_A602839560
gale_incontextgauss_ISR_A602839560
pubmed_primary_31615395
crossref_primary_10_1186_s12859_019_3091_z
crossref_citationtrail_10_1186_s12859_019_3091_z
springer_journals_10_1186_s12859_019_3091_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References 3091_CR31
3091_CR30
3091_CR15
3091_CR37
3091_CR9
3091_CR14
3091_CR36
3091_CR17
3091_CR39
3091_CR16
3091_CR38
3091_CR11
3091_CR33
3091_CR10
3091_CR32
RA Fisher (3091_CR4) 1935
3091_CR13
3091_CR35
3091_CR12
3091_CR34
MA Eberle (3091_CR25) 2017; 27
3091_CR29
3091_CR40
3091_CR20
3091_CR41
GEP Box (3091_CR6) 1978
3091_CR26
3091_CR48
3091_CR47
3091_CR28
3091_CR27
3091_CR22
3091_CR44
3091_CR21
3091_CR43
3091_CR24
3091_CR46
3091_CR23
3091_CR45
3091_CR2
3091_CR1
L Eriksson (3091_CR5) 2008
3091_CR3
3091_CR19
3091_CR18
I Surowiec (3091_CR8) 2017; 89
J Bergstra (3091_CR42) 2012; 13
C Dismuke (3091_CR7) 2006; 93
References_xml – ident: 3091_CR10
  doi: 10.1080/00224065.1980.11980968
– ident: 3091_CR22
  doi: 10.1186/gb-2014-15-3-r46
– volume-title: The design of experiments
  year: 1935
  ident: 3091_CR4
– start-page: 0277
  volume-title: Wiley series in probability and mathematical statistics
  year: 1978
  ident: 3091_CR6
– ident: 3091_CR41
  doi: 10.1093/bioinformatics/btt310
– ident: 3091_CR15
  doi: 10.1101/gr.214346.116
– ident: 3091_CR3
  doi: 10.1093/bioinformatics/bty191
– ident: 3091_CR20
  doi: 10.1186/1471-2105-15-211
– ident: 3091_CR17
  doi: 10.1186/2047-217X-2-10
– ident: 3091_CR47
  doi: 10.1186/s12859-015-0714-x
– ident: 3091_CR24
  doi: 10.1038/s41598-018-36177-7
– ident: 3091_CR43
– ident: 3091_CR45
  doi: 10.1093/bioinformatics/bts480
– ident: 3091_CR21
  doi: 10.1093/bib/bbx120
– ident: 3091_CR26
  doi: 10.1038/nbt.2835
– ident: 3091_CR35
  doi: 10.12968/S2514-9768(23)90107-9
– ident: 3091_CR1
  doi: 10.1038/ng.806
– ident: 3091_CR39
– ident: 3091_CR38
  doi: 10.1007/10968987_3
– ident: 3091_CR48
  doi: 10.1093/bioinformatics/bty646
– ident: 3091_CR28
  doi: 10.1101/270157
– ident: 3091_CR18
– ident: 3091_CR37
– ident: 3091_CR12
– ident: 3091_CR33
  doi: 10.1101/gr.107524.110
– ident: 3091_CR14
– ident: 3091_CR16
– volume: 13
  start-page: 281
  year: 2012
  ident: 3091_CR42
  publication-title: J Mach Learn Res [Internet]
– ident: 3091_CR46
  doi: 10.1038/nbt.3820
– ident: 3091_CR29
– ident: 3091_CR31
  doi: 10.1093/bioinformatics/btp324
– ident: 3091_CR44
  doi: 10.1093/bib/bbx039
– volume-title: Design of experiments : principles and applications [Internet]
  year: 2008
  ident: 3091_CR5
– volume: 27
  start-page: 157
  issue: 1
  year: 2017
  ident: 3091_CR25
  publication-title: Genome Res
  doi: 10.1101/gr.210500.116
– ident: 3091_CR13
  doi: 10.1038/s41592-018-0046-7
– ident: 3091_CR23
  doi: 10.1186/s13059-018-1568-0
– volume: 93
  start-page: 93
  year: 2006
  ident: 3091_CR7
  publication-title: Methods Des Outcomes Res
– ident: 3091_CR27
  doi: 10.1101/281006
– ident: 3091_CR40
  doi: 10.1101/gr.074492.107
– volume: 89
  start-page: 6491
  issue: 12
  year: 2017
  ident: 3091_CR8
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.7b00506
– ident: 3091_CR2
  doi: 10.1002/0471250953.bi1110s43
– ident: 3091_CR9
  doi: 10.1021/ac301482k
– ident: 3091_CR11
  doi: 10.1128/JB.01040-12
– ident: 3091_CR34
– ident: 3091_CR19
– ident: 3091_CR36
– ident: 3091_CR30
– ident: 3091_CR32
SSID ssj0017805
Score 2.3176749
Snippet Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on...
Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome,...
Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on...
Background: Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on...
Abstract Background Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual...
SourceID doaj
unpaywall
swepub
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 498
SubjectTerms Algorithms
Analysis
Assembly
Bioinformatics
Biomedical and Life Sciences
Classification
Computational biology
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data processing
Design of Experiments
Francisella tularensis - genetics
Genome, Bacterial
Genomics
Genomics - methods
Life Sciences
Methodology
Methodology Article
Methods
Microarrays
MinION
Nanopore
Nanopores
Optimization
Optimization theory
Parameter estimation
Scaffolding
Scientific software
Sequence analysis
Sequence Analysis, DNA - methods
Sequencing
Setting (Literature)
Software
Technology
Time
Variant calling
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcEO8GCjIIgUQVNQ-vnXBbHlVBggNQ1Jvl-AErpUlENqq6v54Z58EGpPbCIYfEEyWeGY9nNONvCHmuCpFnKjdhxCyHACW1oVLchlYvYPtzmbK-D9mnz_zomH08WZxstfrCmrAeHrhn3IF2mdNF4rjLDCuMVVxnmUlcYmLutDJofaMsH4OpIX-ASP1DDjPO-EEbI04bhM2Y58_jcDPbhTxY_78meWtP-rteckqaTgCjN8i1rmrU-Zkqy60N6vAWuTl4lnTZz-g2uWKrO-Rq32vy_C6xprbNqsHj5_Y1VfQPhDMdccXpuqY1mJDT1QY-S32tYVhiVRFVlRnu4a2GYl0pbfozBkiK1V2urM_ae-T48P23t0fh0GMh1JyJdegYcyZKDDhysRFMxVGqUmcToRXIrQB3i6VF5GHQFHMCvJVIFMIIU8CVO57eJztVXdldQvMEYyVw8EBQmI3L8fiJToRJOWexigMSjTyXegAgxz4YpfSBSMZlLyYJYpIoJrkJyKvplaZH37iI-A0KciJE4Gz_ANRJDuokL1OngDxDNZAIjVFh7c0P1bWt_PD1i1xy9MUwngzIy4HI1TADrYajDMAHRNOaUe7NKGHt6tnw01HbJA5hwVtl666VGBki2F7CA_Kg175pYqn30vNFQMRML2czn49Uq58eOpyD-RWpCMj-qMFysFntRYx90Sv57APvVt-XnrXdaSch6M4z-NX9aRFcLq-H_0Nej8j1BJc11hgt9sjO-ldnH4ObuC6eeIvwGwznZ0c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAEHxKslUJBBCCSqiLzWTrgthaogwQEo6s1y_KArpUlENqq6v54Zxxs2gIo45JB4rNieGc-MZvyZkGey5EUuCx1GmWEQoKQmlJKZ0KgZmD-bS-PuIfv4iR0eZR-OZ8ceLBrPwmzm7-OcvepiRFiDgBcz9EUcri6TK2CjmMvLsv0xYYDQ_D5p-dduE7Pj0Pn_3IM3jNDvBZJjlnREFL1BrvV1K8_PZFVtWKSDW-SmdyXpfOD9bXLJ1HfI1eFyyfO7xOjGtIsWz5ub11TSX5jNdA0kTpcNbWDPOF2s4LfUFReGFZYRUVlr_w69WoqFpLQdDhUgKZZz2ao56-6Ro4N3X_cPQ3-pQqhYxpehzTKro0SD5xZrnsk4SmVqTcKVBEaV4F9laRk53DOZWQ7uScRLrrku4SksS7fJVt3U5j6hRYLBEXh0uc4w_VbgeROVcJ0ylsUyDki0XnOhPOI4XnxRCRd55EwMbBLAJoFsEquAvBy7tAPcxkXEb5CRIyEiZbsPIEDCK55QNreqTCyzMMpSG8lUnuvEJjpmVkkdkKcoBgKxMGostvku-64T7798FnOGzhcGkAF54YlsAzNQ0p9dgHVA-KwJ5e6EEpRVTZqfrKVNYBNWuNWm6TuBoSCi6yUsIDuD9I0TS51bXswCwidyOZn5tKVenDiscAb7LU95QPbWEiz8JtVdtLDPByGf_ODt4tvcLW1_2guIsoschro3KsG_-fXgvwbxkFxPUH-xemi2S7aWP3rzCBzAZfnYqf5Pze9UpA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3pa9RAFH_ULaJ-8D6iVaKIgiXbXDuT-G09ShWsoq7UT8Nkjro0m4RmQ-n-9c7L5aZKRfBDYLPzhmRe3sm89xuApzyhccRj6bihIiZBCZTDOVGOEhPj_nTEVX0O2Yd9sjcL3x9MDjbgY9cLkyxEMs9b0FAEKh6vt6Gnte02P8TRTiF1o_IR2Sk9xGEzaTHu48ees7oAm2RigvMRbM72P02_1z1G1HNMgjNp9zb_OG_gnWoQ_99N9ZqvOltH2W-m9sCjV-BSlRX89ISn6Zrj2r0GRbfkpl7laFwtk7FYnUGD_I88uQ5X2yDXnjZSeQM2VHYTLjbHXp7eAiVzVcwL7IRXL21u_0KTtjuIc3uZ27mxZov5yqzUrssenRQLnGyeyfbezCpsLHG1i6bdAUmx0Eyn-Ul5G2a7b7--3nPa4x4cQUK6dHQYaun60sSUnqQh99yAB1r5VHAjQomJ_MIgcWtENh5qagInlyZUUpmYK9YkuAOjLM_UPbBjH9M2E2tGMsSNwRg7YYRPZUBI6HHPArf7zEy0WOh4JEfK6pwoIqzhHjPcY8g9trLgRT-laIBAziN-hbLTEyKGd_1HfnzIWpPAhI60SHxNtHnLRCpORBRJX_vSI1pwacETlDyGKB0ZlgEd8qos2bsvn9mUYFiIqa0Fz1sinaMM8LarwvABgb0GlFsDSmNGxGD4cSfgDIew9i5TeVUyTFIR988nFtxtBL5fWFAnDPHEAjpQhcHKhyPZ_EeNYk6MJ6ABtWC7UxrWms_yPMY-a_Rq8IA382_TmrXVomIm_48j86rbvd79_Xvd_yfqB3DZR7XCuqbJFoyWx5V6aELTZfKoNTc_AXrEi2I
  priority: 102
  providerName: Unpaywall
Title doepipeline: a systematic approach to optimizing multi-level and multi-step data processing workflows
URI https://link.springer.com/article/10.1186/s12859-019-3091-z
https://www.ncbi.nlm.nih.gov/pubmed/31615395
https://www.proquest.com/docview/2306213426
https://pubmed.ncbi.nlm.nih.gov/PMC6794737
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-164986
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-019-3091-z
https://doaj.org/article/cf8fcb2f6f8d4bdea6c88d2f2d16fcad
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9MwELf2EAI-IN4ERhUQAokpkFftBAmhrGyMSqumjaLyyXJie1TqktCHRvvXc-ek3QJT-dBUjS9NfA_7Lj7_jpBXImVxJGLpuKGiEKAEyhGCKkdlbZj-dCSUqUN21KOH_bA7aA82yLK8Vc3AybWhHdaT6o9H737_mn8Cg_9oDD6i7yceorBBUIyr-LHnLDbJNkxUMVZyOAovFxUQvt9sNmKeA5FOu17kvPYvGtOUQfP_d8y-Mmn9nVC5WlVdIZDeJjdneSnmF2I0ujKDHdwld2rX004qXblHNlR-n9yoilHOHxAlC1UOS9yfrj7Ywr7EeLaXwOP2tLALGGPOhwu4rW2SEZ0Rph3ZIpf1b7iqtDHx1C6rTQhIiulfelRcTB6S_sH-t86hUxdhcDIasqmjw1BL15fg6XmShcJzAxFo5bNMgGBT8MfCIHUNTpoINQN3xmUpk0ym8Ik1DR6RrbzI1RNixz4GU-ABRjLE5boY96dkPpMBpaEnPIu4S57zrEYox0IZI24ilYjySkwcxMRRTHxhkberS8oKnmMd8R4KckWIyNrmRDE-47Wh8kxHOkt9TTU8ZSqVoFkUSV_70qM6E9IiL1ENOGJn5JiccyZmkwn_enrCE4rOGgacFnlTE-kCepCJeq8D8AHhthqUOw1KMO6s0fxiqW0cmzAjLlfFbMIxdEQ0Pp9a5HGlfauOBcaNj9sWYQ29bPS82ZIPfxpscQrjMwuYRXaXGsyXNrmOsa8rJW_c4PPwe2JYOzufcYjK4wgedXdlBP-X19P1vHlGbvlosJhe1N4hW9PxTD0HD3GatsgmGzA4RgdfWmQ7SbqnXfje2-8dn8DZDu20zLuXlhkfoKXfO05-_AG682jY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFSocEG8CBQxCIFFF5LV2wm15VNul7YG2qDfL8aOslCZRs1HV_fV4HCc0gIo45JB4rNieh2c0488IveY5zVKeST9IFDEBSqx8zonylZiY7U-nXNl7yPb2yewomR9Pjt057qavdu9TktZSW7VOyfsmBKw1E_pCrj4L_dV1tA41VkYb16fT-cF8SB4ATL9LYP6142gLskj9f9rjSxvS78WSQ8Z0QBe9hTbasuYX57woLu1O23fQbedW4mknB3fRNVXeQze6iyYv7iMlK1Uvajh7rj5gjn_hN-MeVBwvK1wZ-3G6WJnfYlto6BdQUoR5Kd276VVjKCrFdXfAAEihtEsX1XnzAB1tfzn8NPPdBQu-IAld-jpJtAwiaby4UNKEh0HMY60iKrhhWm58rSTOA4uBxhNNjasS0JxKKnPzZJrED9FaWZXqMcJZBIGS8e5SmUAqLoOzJyKiMiYkCXnooaBfcyYc-jhcglEwG4WkhHVsYoZNDNjEVh56N3SpO-iNq4g_AiMHQkDNth-qsxPmlJAJnWqRR5poM8pcKk5EmspIRzIkWnDpoVcgBgxwMUoovDnhbdOwnYNvbErAEYNg0kNvHZGuzAwEd-cYzDoAlNaIcnNEaRRXjJpf9tLGoAmq3UpVtQ2DsBCQ9iLioUed9A0Ti62Lnk08REdyOZr5uKVc_LC44cTYXhpTD231EsycwWquWtg3nZCPfvB58X1ql7Y9bZmJuLPUDHVrUIJ_8-vJfw3iBdqYHe7tst2d_a9P0c0IdBmqiiabaG151qpnxjFc5s-dIfgJdRRc_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagiOsBcRMoYBACiSpqDq-d8LZsqVqOCgFFfbMcH2WlbRI1G1XdX89MLhpARTzkIfFYsT1je0Yz8w0hL1Qm0kSlxg-Y5WCgxNZXilvf6glcfy5RtqlD9mmP7-yz9weTg67OadVHu_cuyTanAVGa8uVmaVy7xRO-WYWIuwZmMPrt09BfXSSXGFxuWMJgxmeDGwEB-ztX5l-7jS6jBrP_z5P5zNX0e9jk4DsdcEavk6t1XqrTE7VYnLmntm-SG52CSaetRNwiF2x-m1xuS06e3iHWFLacl5iFbt9QRX8hOdMeXpwuC1rASXI0X8FvaRNy6C8wuIiq3HTv0KukGF5KyzbVAEkxyMstipPqLtnffvdttuN3pRZ8zZlY-o4xZ4LIgD4XGsFUGMQqdjYSWgH7MtC6WJwFDRqaYk6A0hKITBhhMnhSx-N7ZC0vcvuA0DRCkwn0vMQwdMqlmIWiI2FizlmoQo8E_ZpL3eGQYzmMhWzskYTLlk0S2CSRTXLlkddDl7IF4TiP-C0yciBE_OzmQ3F8KLvtKLVLnM4ixx2MMjNWcZ0kJnKRCbnTynjkOYqBRISMHENwDlVdVXL36xc55aiSoVnpkVcdkStgBlp1GQ2wDgiqNaJcH1HCFtaj5me9tElswri33BZ1JdFARMy9iHvkfit9w8TiRllPJx4RI7kczXzcks9_NAjiHE5hEQuPbPQSLLujqzpvYV-2Qj76wdb8-7RZ2vqolmB7pwkMdWPYBP_m18P_GsRTcuXz1rb8uLv34RG5FuFWxvCiyTpZWx7X9jFoiMvsSXMK_AS62F_a
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3pa9RAFH_ULaJ-8D6iVaKIgiXbXDuT-G09ShWsoq7UT8Nkjro0m4RmQ-n-9c7L5aZKRfBDYLPzhmRe3sm89xuApzyhccRj6bihIiZBCZTDOVGOEhPj_nTEVX0O2Yd9sjcL3x9MDjbgY9cLkyxEMs9b0FAEKh6vt6Gnte02P8TRTiF1o_IR2Sk9xGEzaTHu48ees7oAm2RigvMRbM72P02_1z1G1HNMgjNp9zb_OG_gnWoQ_99N9ZqvOltH2W-m9sCjV-BSlRX89ISn6Zrj2r0GRbfkpl7laFwtk7FYnUGD_I88uQ5X2yDXnjZSeQM2VHYTLjbHXp7eAiVzVcwL7IRXL21u_0KTtjuIc3uZ27mxZov5yqzUrssenRQLnGyeyfbezCpsLHG1i6bdAUmx0Eyn-Ul5G2a7b7--3nPa4x4cQUK6dHQYaun60sSUnqQh99yAB1r5VHAjQomJ_MIgcWtENh5qagInlyZUUpmYK9YkuAOjLM_UPbBjH9M2E2tGMsSNwRg7YYRPZUBI6HHPArf7zEy0WOh4JEfK6pwoIqzhHjPcY8g9trLgRT-laIBAziN-hbLTEyKGd_1HfnzIWpPAhI60SHxNtHnLRCpORBRJX_vSI1pwacETlDyGKB0ZlgEd8qos2bsvn9mUYFiIqa0Fz1sinaMM8LarwvABgb0GlFsDSmNGxGD4cSfgDIew9i5TeVUyTFIR988nFtxtBL5fWFAnDPHEAjpQhcHKhyPZ_EeNYk6MJ6ABtWC7UxrWms_yPMY-a_Rq8IA382_TmrXVomIm_48j86rbvd79_Xvd_yfqB3DZR7XCuqbJFoyWx5V6aELTZfKoNTc_AXrEi2I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=doepipeline%3A+a+systematic+approach+to+optimizing+multi-level+and+multi-step+data+processing+workflows&rft.jtitle=BMC+bioinformatics&rft.au=Svensson%2C+Daniel&rft.au=Sj%C3%B6gren%2C+Rickard&rft.au=Sundell%2C+David&rft.au=Sj%C3%B6din%2C+Andreas&rft.date=2019-10-15&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-019-3091-z&rft.externalDocID=A602839560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon