Empirical evaluation of scoring functions for Bayesian network model selection

In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The sub...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 13; no. Suppl 15; p. S14
Main Authors Liu, Zhifa, Malone, Brandon, Yuan, Changhe
Format Journal Article
LanguageEnglish
Published London BioMed Central 2012
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-13-S15-S14

Cover

Abstract In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm.
AbstractList In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm.
In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm.In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm.
Doc number: S14 Abstract: In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm.
Abstract In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm.
ArticleNumber S14
Author Liu, Zhifa
Yuan, Changhe
Malone, Brandon
AuthorAffiliation 1 Department of Computer Science and Engineering, Mississippi State University, Mississippi State, MS 39762, USA
3 Department of Computer Science, Helsinki Institute for Information Technology, Fin-00014 University of Helsinki, Finland
2 Department of Epidemiology and Public Health, School of Medicine, Yale University, New Haven, CT 06511, USA
4 Department of Computer Science, Queens College/City University of New York, Flushing, NY 11367, USA
AuthorAffiliation_xml – name: 4 Department of Computer Science, Queens College/City University of New York, Flushing, NY 11367, USA
– name: 2 Department of Epidemiology and Public Health, School of Medicine, Yale University, New Haven, CT 06511, USA
– name: 1 Department of Computer Science and Engineering, Mississippi State University, Mississippi State, MS 39762, USA
– name: 3 Department of Computer Science, Helsinki Institute for Information Technology, Fin-00014 University of Helsinki, Finland
Author_xml – sequence: 1
  givenname: Zhifa
  surname: Liu
  fullname: Liu, Zhifa
  organization: Department of Computer Science and Engineering, Mississippi State University, Department of Epidemiology and Public Health, School of Medicine, Yale University
– sequence: 2
  givenname: Brandon
  surname: Malone
  fullname: Malone, Brandon
  organization: Department of Computer Science and Engineering, Mississippi State University, Department of Computer Science, Helsinki Institute for Information Technology
– sequence: 3
  givenname: Changhe
  surname: Yuan
  fullname: Yuan, Changhe
  email: changhe.yuan@qc.cuny.edu
  organization: Department of Computer Science and Engineering, Mississippi State University, Department of Computer Science, Queens College/City University of New York
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23046392$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQjVAR_YB_gFAkLlwCHttxEg5IpSpQqYIDvVuOM1m8OPZiJ6323-PsLsu2QuUwsjV-783M85xmR847zLKXQN4C1OId8AoKCqQsgBXfoUzBn2Qn-_TRwf04O41xSQhUNSmfZceUES5YQ0-yr5fDygSjlc3xVtlJjca73Pd51D4Yt8j7yek5F_Peh_yjWmM0yuUOxzsffuaD79DmES1uUM-zp72yEV_szrPs5tPlzcWX4vrb56uL8-tCC16Nhe5QAAhKoO3LviO1aGlXU80YoqJIawYKASjFhiqmBOd1U7GmqpBTLVp2ll1tZTuvlnIVzKDCWnpl5Cbhw0KqMBptUbadEj1hgrccONGiZozzHlvWUcCmEkmr3GpNbqXWd8ravSAQOVstZx_l7KMEJiOUKXjifdjyVlM7YKfRjUHZe83cf3Hmh1z4W8l4mgTmwm92AsH_mjCOcjBRo7XKoZ9iKg1UVA2Q5v9QIhpoatbM0NcPoEs_BZc-I6FY3XCoaZVQrw6b33f9ZzES4P0WoIOPMWAvtRk3y5FmMfbf1qQtTDFbwx-QH3X0L233E3E1rx6Gw9Yf4f0Gp2Dtew
CitedBy_id crossref_primary_10_1061_JTEPBS_TEENG_7805
crossref_primary_10_1111_nyas_13218
crossref_primary_10_1109_JBHI_2013_2274643
crossref_primary_10_1016_j_renene_2020_07_062
crossref_primary_10_1186_1471_2105_13_S15_S1
crossref_primary_10_1007_s10994_022_06145_4
crossref_primary_10_1080_10705511_2022_2112199
crossref_primary_10_1142_S0218001419590055
crossref_primary_10_3390_mca25020037
crossref_primary_10_1016_j_envint_2024_108930
crossref_primary_10_1109_ACCESS_2024_3451626
crossref_primary_10_1145_2953887
crossref_primary_10_1109_TII_2018_2874462
crossref_primary_10_3390_jpm12081325
crossref_primary_10_1186_s13634_024_01165_9
crossref_primary_10_1080_13588265_2024_2406607
crossref_primary_10_1186_1471_2105_14_S17_A3
crossref_primary_10_1007_s44248_025_00022_w
crossref_primary_10_1016_j_ijar_2018_02_004
crossref_primary_10_1016_j_engappai_2018_09_016
crossref_primary_10_1007_s10115_023_01858_x
crossref_primary_10_1093_jamia_ocaa303
crossref_primary_10_1109_ACCESS_2022_3201641
crossref_primary_10_1007_s10458_016_9341_9
crossref_primary_10_1016_j_procs_2022_09_090
crossref_primary_10_1038_s41467_024_49144_w
crossref_primary_10_1186_s12859_016_1235_y
crossref_primary_10_1007_s10489_021_03090_y
crossref_primary_10_1093_bib_bbac191
crossref_primary_10_1016_j_bbagrm_2016_09_003
crossref_primary_10_1177_11786469211041376
crossref_primary_10_1021_acs_jcim_4c01981
crossref_primary_10_3389_fneur_2018_00699
crossref_primary_10_3390_w14152307
crossref_primary_10_1016_j_jhydrol_2023_129091
crossref_primary_10_1016_j_petrol_2018_06_075
crossref_primary_10_1007_s10707_019_00347_0
crossref_primary_10_1109_TEM_2018_2870326
crossref_primary_10_1186_s12911_017_0471_z
crossref_primary_10_3389_fcvm_2023_1128022
crossref_primary_10_1080_14488353_2025_2465102
crossref_primary_10_4216_jpssj_50_0_71
Cites_doi 10.1111/j.1467-8640.1994.tb00166.x
10.1287/inte.20.4.74
10.1109/TSMC.1979.4310090
10.1007/BF02294361
10.1007/s10994-006-6889-7
10.1145/1553374.1553389
10.1016/j.ipl.2007.04.003
10.1007/978-1-4612-2404-4_12
ContentType Journal Article
Copyright Liu et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2012 Liu et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2012 Liu et al.; licensee BioMed Central Ltd. 2012 Liu et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Liu et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: 2012 Liu et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2012 Liu et al.; licensee BioMed Central Ltd. 2012 Liu et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-13-S15-S14
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Engineering Research Database
MEDLINE - Academic
CrossRef
Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage S14
ExternalDocumentID oai_doaj_org_article_bda6f0364b4140c683344feb3d21e976
10.1186/1471-2105-13-s15-s14
PMC3439716
2757382551
23046392
10_1186_1471_2105_13_S15_S14
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Comparative Study
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
-A0
123
3V.
ACRMQ
ADINQ
ALIPV
C1A
C24
CGR
CUY
CVF
ECM
EIF
H13
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c647t-cde6116201bf5fd086b2d82c33eea2e2831ae1122e92a3a6448973977e42c6b3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:38:21 EDT 2025
Sun Oct 26 04:14:02 EDT 2025
Tue Sep 30 16:58:45 EDT 2025
Fri Sep 05 13:29:52 EDT 2025
Mon Oct 06 18:01:34 EDT 2025
Tue Oct 07 05:17:59 EDT 2025
Wed Feb 19 01:55:49 EST 2025
Wed Oct 01 04:15:21 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
Sat Sep 06 07:27:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 15
Keywords Bayesian Information Criterion
Minimum Description Length
Penalty Term
Equivalent Network
Bayesian Network
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c647t-cde6116201bf5fd086b2d82c33eea2e2831ae1122e92a3a6448973977e42c6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Conference-3
SourceType-Conference Papers & Proceedings-2
OpenAccessLink https://doaj.org/article/bda6f0364b4140c683344feb3d21e976
PMID 23046392
PQID 1038941827
PQPubID 44065
ParticipantIDs doaj_primary_oai_doaj_org_article_bda6f0364b4140c683344feb3d21e976
unpaywall_primary_10_1186_1471_2105_13_s15_s14
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3439716
proquest_miscellaneous_1112679109
proquest_miscellaneous_1069198399
proquest_journals_1038941827
pubmed_primary_23046392
crossref_citationtrail_10_1186_1471_2105_13_S15_S14
crossref_primary_10_1186_1471_2105_13_S15_S14
springer_journals_10_1186_1471_2105_13_S15_S14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-00-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012-00-00
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2012
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References D Dash (5357_CR27) 2003
DM Chickering (5357_CR29) 2002; 2
D Heckerman (5357_CR6) 1995
AM Carvalho (5357_CR9) 2011; 12
T Silander (5357_CR7) 2008
J Suzuki (5357_CR33) 1999
CP de Campos (5357_CR32) 2011; 12
C Yuan (5357_CR19) 2011
B Malone (5357_CR17) 2011
A Moore (5357_CR12) 2003
I Tsamardinos (5357_CR41) 2006; 65
G Schwarz (5357_CR3) 1978
T Silander (5357_CR16) 2006
H Bozdogan (5357_CR34) 1987; 52
N Friedman (5357_CR14) 1999
M Henrion (5357_CR40) 1988
GF Cooper (5357_CR1) 1992; 9
M Koivisto (5357_CR15) 2004
LM de Campos (5357_CR8) 2006
JK Dixon (5357_CR39) 1979; 9
T Van Allen (5357_CR26) 2000
T Jaakkola (5357_CR22) 2010
W Buntine (5357_CR5) 1991
D Heckerman (5357_CR11) 1998
H Akaike (5357_CR4) 1973
DM Chickering (5357_CR28) 1995
W Lam (5357_CR2) 1994; 10
CP de Campos (5357_CR18) 2009
S Yang (5357_CR24) 1996; 3
F Glover (5357_CR13) 1990; 20
P Kontkanen (5357_CR36) 2007; 103
UM Fayyad (5357_CR38) 1993
J Cussens (5357_CR23) 2011
B Malone (5357_CR20) 2011
C Yuan (5357_CR21) 2012
A Frank (5357_CR37) 2010
S Ott (5357_CR30) 2004
T Silander (5357_CR35) 2007
DM Chickering (5357_CR10) 1996
A Singh (5357_CR31) 2005
M de Jongh (5357_CR25) 2009
14992533 - Pac Symp Biocomput. 2004;:557-67
References_xml – start-page: 360
  volume-title: Proceedings of the Twenty-Third Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-07)
  year: 2007
  ident: 5357_CR35
– volume-title: UCI Machine Learning Repository
  year: 2010
  ident: 5357_CR37
– start-page: 2149
  volume-title: A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests
  year: 2006
  ident: 5357_CR8
– volume: 12
  start-page: 663
  year: 2011
  ident: 5357_CR32
  publication-title: Journal of Machine Learning Research
– start-page: 443
  volume-title: Recent Advances in Intelligent Information Systems, Challenging Problems of Science, Computer Science series
  year: 2009
  ident: 5357_CR25
– volume: 10
  start-page: 269
  year: 1994
  ident: 5357_CR2
  publication-title: Computational Intelligence
  doi: 10.1111/j.1467-8640.1994.tb00166.x
– start-page: 52
  volume-title: Proceedings of the seventh conference (1991) on Uncertainty in artificial intelligence
  year: 1991
  ident: 5357_CR5
– start-page: 479
  volume-title: Proceedings of the Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)
  year: 2011
  ident: 5357_CR20
– start-page: 557
  volume-title: Pac Symp Biocomput
  year: 2004
  ident: 5357_CR30
– volume: 20
  start-page: 74
  issue: 4
  year: 1990
  ident: 5357_CR13
  publication-title: Interfaces
  doi: 10.1287/inte.20.4.74
– volume: 9
  start-page: 617
  issue: 10
  year: 1979
  ident: 5357_CR39
  publication-title: Systems, Man and Cybernetics, IEEE Transactions on
  doi: 10.1109/TSMC.1979.4310090
– start-page: 197
  volume-title: Learning Bayesian networks: The combination of knowledge and statistical data
  year: 1995
  ident: 5357_CR6
– start-page: 549
  volume-title: Journal of Machine Learning Research
  year: 2004
  ident: 5357_CR15
– start-page: 87
  volume-title: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
  year: 1995
  ident: 5357_CR28
– volume: 52
  start-page: 345
  year: 1987
  ident: 5357_CR34
  publication-title: Psychometrika
  doi: 10.1007/BF02294361
– volume: 2
  start-page: 445
  year: 2002
  ident: 5357_CR29
  publication-title: J Mach Learn Res
– start-page: 206
  volume-title: Proceedings of UAI-13
  year: 1999
  ident: 5357_CR14
– volume: 9
  start-page: 309
  year: 1992
  ident: 5357_CR1
  publication-title: Mach Learn
– volume-title: Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence (UAI-12), Catalina Island, California, USA
  year: 2012
  ident: 5357_CR21
– start-page: 167
  volume-title: UAI
  year: 2003
  ident: 5357_CR27
– start-page: 149
  volume-title: Uncertainty in Artificial Intelligence 2 Annual Conference on Uncertainty in Artificial Intelligence (UAI-86)
  year: 1988
  ident: 5357_CR40
– volume: 3
  start-page: 2155
  year: 1996
  ident: 5357_CR24
  publication-title: Systems, Man, and Cybernetics, 1996., IEEE International Conference on Volume 3
– volume: 65
  start-page: 31
  year: 2006
  ident: 5357_CR41
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-6889-7
– start-page: 461
  volume-title: Estimating the Dimension of a Model
  year: 1978
  ident: 5357_CR3
– start-page: 257
  volume-title: Proceedings of the 4th European Workshop on Probabilistic Graphical Models (PGM-08)
  year: 2008
  ident: 5357_CR7
– volume: 12
  start-page: 2181
  year: 2011
  ident: 5357_CR9
  publication-title: Journal of Machine Learning Research
– start-page: 33
  volume-title: Innovations in Bayesian Networks, Volume 156 of Studies in Computational Intelligence
  year: 1998
  ident: 5357_CR11
– volume-title: Finding Optimal Bayesian Networks by Dynamic Programming
  year: 2005
  ident: 5357_CR31
– volume-title: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS)
  year: 2010
  ident: 5357_CR22
– start-page: 153
  volume-title: Proceedings of the Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)
  year: 2011
  ident: 5357_CR23
– start-page: 1047
  volume-title: In ICML'00
  year: 2000
  ident: 5357_CR26
– start-page: 1022
  volume-title: Proceedings of the Thirteenth Internation Joint Conference on Artificial Intelligence
  year: 1993
  ident: 5357_CR38
– start-page: 113
  volume-title: Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09
  year: 2009
  ident: 5357_CR18
  doi: 10.1145/1553374.1553389
– start-page: 552
  volume-title: Intl Conf on Machine Learning
  year: 2003
  ident: 5357_CR12
– start-page: 2186
  volume-title: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11), Helsinki, Finland
  year: 2011
  ident: 5357_CR19
– start-page: 267
  volume-title: Proceedings of the Second International Symposium on Information Theory
  year: 1973
  ident: 5357_CR4
– volume: 103
  start-page: 227
  year: 2007
  ident: 5357_CR36
  publication-title: Inf Process Lett
  doi: 10.1016/j.ipl.2007.04.003
– start-page: 121
  volume-title: Learning from Data: Artificial Intelli-gence and Statistics V
  year: 1996
  ident: 5357_CR10
  doi: 10.1007/978-1-4612-2404-4_12
– start-page: 1057
  volume-title: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI-11), San Francisco, CA
  year: 2011
  ident: 5357_CR17
– start-page: 356
  volume-title: Learning Bayesian Belief Networks Based on the Minimum Description Length Principle: Basic Properties
  year: 1999
  ident: 5357_CR33
– volume-title: Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-06)
  year: 2006
  ident: 5357_CR16
– reference: 14992533 - Pac Symp Biocomput. 2004;:557-67
SSID ssj0017805
Score 2.3805258
Snippet In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar...
Doc number: S14 Abstract: In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying...
Abstract In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures....
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S14
SubjectTerms Algorithms
Bayes Theorem
Bayesian analysis
Bioinformatics
Biomedical and Life Sciences
Climbing
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer programs
Conferences
Data processing
Experimental design
Heuristic
Learning
Learning algorithms
Life Sciences
Likelihood Functions
Mathematical models
Microarrays
Models, Statistical
Proceedings
Reproducibility of Results
Sample Size
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEPVB_Ha1SgRf0zYfm49HKy1FsC9W6FtIslksnHtH9w65_96Z7N56h3J98WE5yM5CdmZy85ud5DeEfGwDkpa5xKzMmqnGRBZltsy0Bn7qKHTCiu7XS33xXX25rq-3Wn3hnrCBHnhQ3HFsgm6xWBYV5AJJWymVaiEFbATPEEvx3_fEuk0yNdYPkKm_nCsynEFSU4-H5rjVx9MY45J94zVcaicoFe7-fwHOv_dNTsXTR-TBqluE9a8wm23Fp_Mn5PEILOmn4YWeknu5e0buD60m18_J5dnPxU2hA6F_CL7pvKV9KlvwKAa44oMUYCw9DeuMxytpN2wTp6VjDu1L1xyQekGuzs-uPl-wsZcCS1qZJUtN1pxrCPexrdsGEpkoGiuSlDkHkQFk8JABe4nsRJABszZnEBxmJZKO8iU56OZdfk1onUQUtcwn2tYqhmCDNEFb1zjIFWG8InKjS59GnnFsdzHzJd-w2qMFPFrAc-nBAnCpirDpqcXAs3GH_CmaaZJFluwyAL7jR9_xd_lORQ43Rvbj0u09MsY7BWmXqciH6TYsOqykhC7PVyijHXeALd0eGTycZQCNgcyrwW-m2YpC1OZERcyOR-28zu6d7uZHIf-WiCA5TP1o43vbU9-nsKPJQ_druIcHeq7e_A8NvyUPweXE8M3qkBwsb1f5HaC4ZXxfFuxvRt089g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9QwEA_nHqI-iN9XPSWCr7kzH02bBxFX9jgEF9ET7q0kaaoHa7t33UX2v3cm_bhblPWhFNIJpJlJ8ptM8htC3lQWScuMZ7kMmqkyc8zJkLOsyuCVOqE9RnQ_z_Xpd_XpPD3fI_PhLgweqxzmxDhRl43HPfJjJPI2CtBw9n55yTBrFEZXhxQatk-tUL6LFGO3yL5AZqwJ2Z_O5l--jnEFZPDvL9DxXB9zmJoZyKWMS_aNp_CorQUq8vj_C3z-fYZyDKTeI3fW9dJuftvF4sZadfKA3O9BJv3QWcVDshfqR-R2l3Zy85jMZ7-WF5EahF6TfdOmoq2Px_EoLnbRHilAWjq1m4BXLWndHRmnMXsObWMGHZB6Qs5OZmcfT1mfV4F5rbIV82XQnGtY-l2VViU4NU6UufBShmBFAMDBbQAcJoIRVlr04EyGQDEo4bWTT8mkbupwQGjqhROpDG91nipnbW5lZnVuSgN-I5QnRA59WfiecxxTXyyK6HvkukANFKiBgssCNACPSggbay07zo3_yE9RTaMsMmbHgubqR9EPwMKVVlcYdHUKfEqvcymVqoKTpeABMFlCDgclF_0wbotro0vI6_EzDECMqtg6NGuU0YYbwJlmhwxe1MoAmYHMs85uxtaKSNpmREKyLYva-p3tL_XFz0gELhFNcmj60WB7N5u-q8OORgvd3cMtVGi5er67c16Qu2BMotuZOiST1dU6vASstnKv-gH4B9FvOXw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgQcKt6EtshIHHHBjzj2kVatKiR6oUi9WbbjiEpLdkV2Ve2_79jJhl0Bi3qIIiVjxfGMM99k7G8A3jcukZaZQLWIisq68tSLqGnVVHgqPVchZXS_Xqjz7_LLVXm1Ax9We2HW8_dMq48MP54Uw5KSMkG_sRIPeQ_uo5tSOTWrTsacQWLnHzbH_avlhvPJHP1_A5Z_ro8ck6SP4eGinbnljZtM1vzQ2RPYGwAk-dxr_CnsxPYZPOhLSi6fw8Xpz9l1pv0gv4m8ybQhXchL7UhyZNnWCMJVcuyWMW2jJG2_HJzkyjiky9VxUOoFXJ6dXp6c06FmAg1KVnMa6qgYU-jWfVM2NQYsnteaByFidDwimGAuIsbi0XAnXIrOTJVAYJQ8KC9ewm47beNrIGXgnpciflK6lN457UTllDa1wZgQrxcgVmNpw8AnnspaTGyOK7SySQM2acAyYVEDeMgC6Nhq1vNp_Ef-OKlplE1s2PkCGokdJpf1tVNNSqh6ifFiUFoIKZvoRc1ZRLxVwMFKyXaYop1NzPBGYnhVFfBuvI2TK2VMXBuniySjDDOIIc0WmbQJq0LUhTKversZe8szIZvhBVQbFrXxOpt32usfmeRbJKTIsOtHK9tb7_q2ATsaLXT7CHfYoGPyzV2fsA-P0Lx4_x_qAHbnvxbxEJHZ3L_NE_IWiTUsrg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTojxwDcjMJCReHWHP-IkjxvaNCFRIdFJ4ymyHQcquqRqG6Hy13N20tAyVITEgxUpOUvO5c7-Xez7HcCbUnvSsszSVDhFZZEYaoRLaVImeIkNV9bv6H4YqYtL-f4qvtqD8ToXxlxbM6k70lBPVDzcTEOftlkOvoqCmx_PirJ1-lQdM5xkKYYvMWWCfmIxNnkL9lWMCH0A-5ejjyefQ6JRJ9Zl0d3ousCuCya3VqlA5v8nBHrzIGW_m3oX7jTVTK--6-l0Y8E6vw_N-lXbcyrfhs3SDO2P31gg_7cuHsC9DuGSk9YkH8Keqx7B7bbm5eoxjM6uZ5PAS0J-MY2TuiQLG84CEr_SBmcgOCJyqlfO53mSqj2vTkLpHrII5XtQ6gmMz8_G7y5oV9SBWiWTJbWFU4wpxB2mjMsCIyrDi5RbIZzT3CHaYdohCOQu41poHz5miUepTnKrjHgKg6qu3DMgseWGx8K9VWksjdapFolWaVZkGLTi_QjE-hvmtiM893U3pnkIfFKVe0XlXlE5EzkqCpuMgPa9Zi3hx1_kT7159LKerjvcqOdf8s77c1NoVfodXyMxoLUqFULK0hlRcOYQEEZwtDauvJtDFrmnrs8kxn9JBK_7x-j9fktHV65uvIzKWIYgN9sh47PEEoSFKHPY2ms_Wh4Y4zIeQbJlyVuvs_2kmnwNLOTCQ1mGQx-ubX5z6LsUNuw9Y7eG0Rexyef_2uEFHKB58fZH2REMlvPGvUTouDSvupngJ9UTZgM
  priority: 102
  providerName: Unpaywall
Title Empirical evaluation of scoring functions for Bayesian network model selection
URI https://link.springer.com/article/10.1186/1471-2105-13-S15-S14
https://www.ncbi.nlm.nih.gov/pubmed/23046392
https://www.proquest.com/docview/1038941827
https://www.proquest.com/docview/1069198399
https://www.proquest.com/docview/1112679109
https://pubmed.ncbi.nlm.nih.gov/PMC3439716
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-13-S15-S14
https://doaj.org/article/bda6f0364b4140c683344feb3d21e976
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (ASU) - EBSCO
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (ODIN)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ2EWI8IK6jMCojId5c8CV2_IBQW7VMlVZNbJXKU2QnDkwqadeLoP-eYyfNVjEKD0kk-yRyfI7j7-TY30HobW48aZlOScydJCJTlljuYqJyBZfIMpn6iO7ZUJ6OxGAcjffQJtBedeDiTtfO55MazSetX9frTzDgP4YBH8v3FD6wBFyXiFBOLmgEh3g3uyY-tZQPwVZ5NvbRIUxf2ud3OBM3oQZP6h-2IFUPqfbX_e3BW_NXoPm_C5v-ucSyjrM-QPdXxcysf5rJ5NZU1n-EHlYYFLdLo3mM9lzxBN0rs1Kun6Jh78fsKjCH4BsucDzN8SINq_WwnwuDuWJAvLhj1s7vxMRFuaIch-Q6eBES7IDUM3TZ7112T0mVdoGkUqglSTMnKZWADGwe5Rn4PJZlMUs5d84wB3iEGgcwjTnNDDfewdPK40gnWCotf44OimnhXiAcpcyyiLsPMo6ENSY2XBkZ60yDWwnlDcQ3fZmkFSW5z4wxSYJrEsvEayDxGkgoT0ADcIgGIvVds5KS4x_yHa-mWtYTaoeC6fxbUo3PxGZG5j4mawW4nKmMORcid5ZnjDqAbA10slFysjHSxJPLawEemmqgN3U1jE8fdDGFm668jNRUAwzVO2T8Pi4FwA1kjku7qVvLAqebZg2ktixq63W2a4qr74EnnHuwSaHprY3t3W76rg5r1Ra6u4cXcMOCipf_8fav0BFYFCv_Xp2gg-V85V4DnlvaJtpXYwXnuP-5iQ7b7cHFAK6d3vD8C5R2ZbcZ_pQ0w7iFmtHwvP31N5KPSlw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8WChgJjm7xI05yQIhCqy1t98Ii9WbZjgOVluzS7KraH8V_ZMZ5tCvQcuohipRMImde_iZjzxDyprRYtCz3LJNBM1WkjjkZMpaWKZwSJ7THjO7JSA-_qS-nyekG-d3thcFllZ1PjI66mHr8R76LhbxzBWg4_TD7xbBrFGZXuxYajVocheUFhGz1-8PPIN-3Qhzsjz8NWdtVgHmt0jnzRdCca5j4XJmUBUB6J4pMeClDsCLAdMttABQiQi6stBi_5CnCpKCE107Ca2-Qm0qCKwHzSU_7-I5je4B2dx7P9C4Hv88gokoYl-wrT-BQK7NfbBLwL2T79wLNPkt7h2wtqpldXtjJ5MpEeHCP3G0RLP3YqNx9shGqB-RW09Ny-ZCM9n_OzmLdEXpZSZxOS1r7uNaP4kwalZ0CXqZ7dhlwHyetmvXoNLbmoXVszwNUj8j4Otj7mGxW0yo8JTTxwolEhnc6S5SzNrMytTrLixyCUrg-ILLjpfFtQXPsqzExMbDJtEEJGJSA4dKABOBQA8L6p2ZNQY__0O-hmHpaLMcdL0zPv5vWuo0rrC4xo-sUBKxeZ1IqVQYnC8EDAL4B2e6EbFofUZtLjR6Q1_1tsG5M2dgqTBdIo3OeA4jN19DgLrAUYB_QPGn0ph-tiBXhcjEg6YpGrXzO6p3q7EesMi4RqnIY-k6ne1eHvo5hO72GrudwDQ_UXD1bz5xXZGs4Pjk2x4ejo-fkNiiWaH6BbZPN-fkivABQOHcvoylSYq7Z9P8AJmxuVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgEa8D4k1gASNxNbt-xImPbNlqeVVILNLeLNtxYKWSVptWqP-eGScNrYAiDlGlZKy6npnONxn7G0Je1g5Jy0xgpYyaqarwzMtYsqIu4CP3Qges6H6c6JMv6t1ZfrZxFibtdl-XJLszDcjS1CwO5lXduXipDzj8pTJIVnLGJfvMc7jUZXJFQXzDLgYjPRoqCcjZ3x-Z-9vIrZCUmPv_BDd_3zU5lE5vkuvLZu5WP9x0uhGdxrfJrR5W0tedHdwhl2Jzl1ztGk2u7pHJ8ff5eSIDob_ovemspm1IG_AohrdkgRRALD1yq4iHK2nTbRKnqV8ObVPPHJC6T07Hx6ejE9Z3UmBBq2LBQhU15xqCva_zuoI0xouqFEHKGJ2IADG4i4C8RDTCSYc5mykQGkYlgvbyAdlrZk18RGgehBe5jIe6zJV3rnSycLo0lYFMEe5nRK7X0oaeZRybXUxtyjZKbVEDFjVgubSgAbhURtgwat6xbPxD_gjVNMgiR3a6Mbv4anuXs75yusYyq1eQRQZdSqlUHb2sBI-AwjKyv1ay7R23tcgXbxQkXUVGXgyPweWwjuKaOFuijDbcALI0O2TwaFYBWAxkHnZ2M8xWJJo2IzJSbFnU1s_ZftKcf0vU3xLxI4epDz6yOfVdC_ZqsNDdK9zCgJarx__7Dc_JtU9vxvbD28n7J-QGWJroXlTtk73FxTI-Bei28M-Sb_4EPD035A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTojxwDcjMJCReHWHP-IkjxvaNCFRIdFJ4ymyHQcquqRqG6Hy13N20tAyVITEgxUpOUvO5c7-Xez7HcCbUnvSsszSVDhFZZEYaoRLaVImeIkNV9bv6H4YqYtL-f4qvtqD8ToXxlxbM6k70lBPVDzcTEOftlkOvoqCmx_PirJ1-lQdM5xkKYYvMWWCfmIxNnkL9lWMCH0A-5ejjyefQ6JRJ9Zl0d3ousCuCya3VqlA5v8nBHrzIGW_m3oX7jTVTK--6-l0Y8E6vw_N-lXbcyrfhs3SDO2P31gg_7cuHsC9DuGSk9YkH8Keqx7B7bbm5eoxjM6uZ5PAS0J-MY2TuiQLG84CEr_SBmcgOCJyqlfO53mSqj2vTkLpHrII5XtQ6gmMz8_G7y5oV9SBWiWTJbWFU4wpxB2mjMsCIyrDi5RbIZzT3CHaYdohCOQu41poHz5miUepTnKrjHgKg6qu3DMgseWGx8K9VWksjdapFolWaVZkGLTi_QjE-hvmtiM893U3pnkIfFKVe0XlXlE5EzkqCpuMgPa9Zi3hx1_kT7159LKerjvcqOdf8s77c1NoVfodXyMxoLUqFULK0hlRcOYQEEZwtDauvJtDFrmnrs8kxn9JBK_7x-j9fktHV65uvIzKWIYgN9sh47PEEoSFKHPY2ms_Wh4Y4zIeQbJlyVuvs_2kmnwNLOTCQ1mGQx-ubX5z6LsUNuw9Y7eG0Rexyef_2uEFHKB58fZH2REMlvPGvUTouDSvupngJ9UTZgM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+evaluation+of+scoring+functions+for+Bayesian+network+model+selection&rft.jtitle=BMC+bioinformatics&rft.au=Liu%2C+Zhifa&rft.au=Malone%2C+Brandon&rft.au=Yuan%2C+Changhe&rft.date=2012&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=13&rft.issue=Suppl+15&rft.spage=S14&rft.epage=S14&rft_id=info:doi/10.1186%2F1471-2105-13-S15-S14&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon