Empirical evaluation of scoring functions for Bayesian network model selection
In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The sub...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 13; no. Suppl 15; p. S14 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        2012
     Springer Nature B.V BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/1471-2105-13-S15-S14 | 
Cover
| Abstract | In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm. | 
    
|---|---|
| AbstractList | In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm. In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm.In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm. Doc number: S14 Abstract: In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm. Abstract In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm.  | 
    
| ArticleNumber | S14 | 
    
| Author | Liu, Zhifa Yuan, Changhe Malone, Brandon  | 
    
| AuthorAffiliation | 1 Department of Computer Science and Engineering, Mississippi State University, Mississippi State, MS 39762, USA 3 Department of Computer Science, Helsinki Institute for Information Technology, Fin-00014 University of Helsinki, Finland 2 Department of Epidemiology and Public Health, School of Medicine, Yale University, New Haven, CT 06511, USA 4 Department of Computer Science, Queens College/City University of New York, Flushing, NY 11367, USA  | 
    
| AuthorAffiliation_xml | – name: 4 Department of Computer Science, Queens College/City University of New York, Flushing, NY 11367, USA – name: 2 Department of Epidemiology and Public Health, School of Medicine, Yale University, New Haven, CT 06511, USA – name: 1 Department of Computer Science and Engineering, Mississippi State University, Mississippi State, MS 39762, USA – name: 3 Department of Computer Science, Helsinki Institute for Information Technology, Fin-00014 University of Helsinki, Finland  | 
    
| Author_xml | – sequence: 1 givenname: Zhifa surname: Liu fullname: Liu, Zhifa organization: Department of Computer Science and Engineering, Mississippi State University, Department of Epidemiology and Public Health, School of Medicine, Yale University – sequence: 2 givenname: Brandon surname: Malone fullname: Malone, Brandon organization: Department of Computer Science and Engineering, Mississippi State University, Department of Computer Science, Helsinki Institute for Information Technology – sequence: 3 givenname: Changhe surname: Yuan fullname: Yuan, Changhe email: changhe.yuan@qc.cuny.edu organization: Department of Computer Science and Engineering, Mississippi State University, Department of Computer Science, Queens College/City University of New York  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23046392$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFUk1v1DAQjVAR_YB_gFAkLlwCHttxEg5IpSpQqYIDvVuOM1m8OPZiJ6323-PsLsu2QuUwsjV-783M85xmR847zLKXQN4C1OId8AoKCqQsgBXfoUzBn2Qn-_TRwf04O41xSQhUNSmfZceUES5YQ0-yr5fDygSjlc3xVtlJjca73Pd51D4Yt8j7yek5F_Peh_yjWmM0yuUOxzsffuaD79DmES1uUM-zp72yEV_szrPs5tPlzcWX4vrb56uL8-tCC16Nhe5QAAhKoO3LviO1aGlXU80YoqJIawYKASjFhiqmBOd1U7GmqpBTLVp2ll1tZTuvlnIVzKDCWnpl5Cbhw0KqMBptUbadEj1hgrccONGiZozzHlvWUcCmEkmr3GpNbqXWd8ravSAQOVstZx_l7KMEJiOUKXjifdjyVlM7YKfRjUHZe83cf3Hmh1z4W8l4mgTmwm92AsH_mjCOcjBRo7XKoZ9iKg1UVA2Q5v9QIhpoatbM0NcPoEs_BZc-I6FY3XCoaZVQrw6b33f9ZzES4P0WoIOPMWAvtRk3y5FmMfbf1qQtTDFbwx-QH3X0L233E3E1rx6Gw9Yf4f0Gp2Dtew | 
    
| CitedBy_id | crossref_primary_10_1061_JTEPBS_TEENG_7805 crossref_primary_10_1111_nyas_13218 crossref_primary_10_1109_JBHI_2013_2274643 crossref_primary_10_1016_j_renene_2020_07_062 crossref_primary_10_1186_1471_2105_13_S15_S1 crossref_primary_10_1007_s10994_022_06145_4 crossref_primary_10_1080_10705511_2022_2112199 crossref_primary_10_1142_S0218001419590055 crossref_primary_10_3390_mca25020037 crossref_primary_10_1016_j_envint_2024_108930 crossref_primary_10_1109_ACCESS_2024_3451626 crossref_primary_10_1145_2953887 crossref_primary_10_1109_TII_2018_2874462 crossref_primary_10_3390_jpm12081325 crossref_primary_10_1186_s13634_024_01165_9 crossref_primary_10_1080_13588265_2024_2406607 crossref_primary_10_1186_1471_2105_14_S17_A3 crossref_primary_10_1007_s44248_025_00022_w crossref_primary_10_1016_j_ijar_2018_02_004 crossref_primary_10_1016_j_engappai_2018_09_016 crossref_primary_10_1007_s10115_023_01858_x crossref_primary_10_1093_jamia_ocaa303 crossref_primary_10_1109_ACCESS_2022_3201641 crossref_primary_10_1007_s10458_016_9341_9 crossref_primary_10_1016_j_procs_2022_09_090 crossref_primary_10_1038_s41467_024_49144_w crossref_primary_10_1186_s12859_016_1235_y crossref_primary_10_1007_s10489_021_03090_y crossref_primary_10_1093_bib_bbac191 crossref_primary_10_1016_j_bbagrm_2016_09_003 crossref_primary_10_1177_11786469211041376 crossref_primary_10_1021_acs_jcim_4c01981 crossref_primary_10_3389_fneur_2018_00699 crossref_primary_10_3390_w14152307 crossref_primary_10_1016_j_jhydrol_2023_129091 crossref_primary_10_1016_j_petrol_2018_06_075 crossref_primary_10_1007_s10707_019_00347_0 crossref_primary_10_1109_TEM_2018_2870326 crossref_primary_10_1186_s12911_017_0471_z crossref_primary_10_3389_fcvm_2023_1128022 crossref_primary_10_1080_14488353_2025_2465102 crossref_primary_10_4216_jpssj_50_0_71  | 
    
| Cites_doi | 10.1111/j.1467-8640.1994.tb00166.x 10.1287/inte.20.4.74 10.1109/TSMC.1979.4310090 10.1007/BF02294361 10.1007/s10994-006-6889-7 10.1145/1553374.1553389 10.1016/j.ipl.2007.04.003 10.1007/978-1-4612-2404-4_12  | 
    
| ContentType | Journal Article | 
    
| Copyright | Liu et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 2012 Liu et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2012 Liu et al.; licensee BioMed Central Ltd. 2012 Liu et al.; licensee BioMed Central Ltd.  | 
    
| Copyright_xml | – notice: Liu et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: 2012 Liu et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2012 Liu et al.; licensee BioMed Central Ltd. 2012 Liu et al.; licensee BioMed Central Ltd.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/1471-2105-13-S15-S14 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Engineering Research Database MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| EndPage | S14 | 
    
| ExternalDocumentID | oai_doaj_org_article_bda6f0364b4140c683344feb3d21e976 10.1186/1471-2105-13-s15-s14 PMC3439716 2757382551 23046392 10_1186_1471_2105_13_S15_S14  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Comparative Study  | 
    
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR IPNFZ ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION -A0 123 3V. ACRMQ ADINQ ALIPV C1A C24 CGR CUY CVF ECM EIF H13 M0N NPM 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c647t-cde6116201bf5fd086b2d82c33eea2e2831ae1122e92a3a6448973977e42c6b3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Fri Oct 03 12:38:21 EDT 2025 Sun Oct 26 04:14:02 EDT 2025 Tue Sep 30 16:58:45 EDT 2025 Fri Sep 05 13:29:52 EDT 2025 Mon Oct 06 18:01:34 EDT 2025 Tue Oct 07 05:17:59 EDT 2025 Wed Feb 19 01:55:49 EST 2025 Wed Oct 01 04:15:21 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 Sat Sep 06 07:27:14 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | Suppl 15 | 
    
| Keywords | Bayesian Information Criterion Minimum Description Length Penalty Term Equivalent Network Bayesian Network  | 
    
| Language | English | 
    
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c647t-cde6116201bf5fd086b2d82c33eea2e2831ae1122e92a3a6448973977e42c6b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Conference-3 SourceType-Conference Papers & Proceedings-2  | 
    
| OpenAccessLink | https://doaj.org/article/bda6f0364b4140c683344feb3d21e976 | 
    
| PMID | 23046392 | 
    
| PQID | 1038941827 | 
    
| PQPubID | 44065 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bda6f0364b4140c683344feb3d21e976 unpaywall_primary_10_1186_1471_2105_13_s15_s14 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3439716 proquest_miscellaneous_1112679109 proquest_miscellaneous_1069198399 proquest_journals_1038941827 pubmed_primary_23046392 crossref_citationtrail_10_1186_1471_2105_13_S15_S14 crossref_primary_10_1186_1471_2105_13_S15_S14 springer_journals_10_1186_1471_2105_13_S15_S14  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-00-00 | 
    
| PublicationDateYYYYMMDD | 2012-01-01 | 
    
| PublicationDate_xml | – year: 2012 text: 2012-00-00  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAbbrev | BMC Bioinformatics | 
    
| PublicationTitleAlternate | BMC Bioinformatics | 
    
| PublicationYear | 2012 | 
    
| Publisher | BioMed Central Springer Nature B.V BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC  | 
    
| References | D Dash (5357_CR27) 2003 DM Chickering (5357_CR29) 2002; 2 D Heckerman (5357_CR6) 1995 AM Carvalho (5357_CR9) 2011; 12 T Silander (5357_CR7) 2008 J Suzuki (5357_CR33) 1999 CP de Campos (5357_CR32) 2011; 12 C Yuan (5357_CR19) 2011 B Malone (5357_CR17) 2011 A Moore (5357_CR12) 2003 I Tsamardinos (5357_CR41) 2006; 65 G Schwarz (5357_CR3) 1978 T Silander (5357_CR16) 2006 H Bozdogan (5357_CR34) 1987; 52 N Friedman (5357_CR14) 1999 M Henrion (5357_CR40) 1988 GF Cooper (5357_CR1) 1992; 9 M Koivisto (5357_CR15) 2004 LM de Campos (5357_CR8) 2006 JK Dixon (5357_CR39) 1979; 9 T Van Allen (5357_CR26) 2000 T Jaakkola (5357_CR22) 2010 W Buntine (5357_CR5) 1991 D Heckerman (5357_CR11) 1998 H Akaike (5357_CR4) 1973 DM Chickering (5357_CR28) 1995 W Lam (5357_CR2) 1994; 10 CP de Campos (5357_CR18) 2009 S Yang (5357_CR24) 1996; 3 F Glover (5357_CR13) 1990; 20 P Kontkanen (5357_CR36) 2007; 103 UM Fayyad (5357_CR38) 1993 J Cussens (5357_CR23) 2011 B Malone (5357_CR20) 2011 C Yuan (5357_CR21) 2012 A Frank (5357_CR37) 2010 S Ott (5357_CR30) 2004 T Silander (5357_CR35) 2007 DM Chickering (5357_CR10) 1996 A Singh (5357_CR31) 2005 M de Jongh (5357_CR25) 2009 14992533 - Pac Symp Biocomput. 2004;:557-67  | 
    
| References_xml | – start-page: 360 volume-title: Proceedings of the Twenty-Third Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-07) year: 2007 ident: 5357_CR35 – volume-title: UCI Machine Learning Repository year: 2010 ident: 5357_CR37 – start-page: 2149 volume-title: A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests year: 2006 ident: 5357_CR8 – volume: 12 start-page: 663 year: 2011 ident: 5357_CR32 publication-title: Journal of Machine Learning Research – start-page: 443 volume-title: Recent Advances in Intelligent Information Systems, Challenging Problems of Science, Computer Science series year: 2009 ident: 5357_CR25 – volume: 10 start-page: 269 year: 1994 ident: 5357_CR2 publication-title: Computational Intelligence doi: 10.1111/j.1467-8640.1994.tb00166.x – start-page: 52 volume-title: Proceedings of the seventh conference (1991) on Uncertainty in artificial intelligence year: 1991 ident: 5357_CR5 – start-page: 479 volume-title: Proceedings of the Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11) year: 2011 ident: 5357_CR20 – start-page: 557 volume-title: Pac Symp Biocomput year: 2004 ident: 5357_CR30 – volume: 20 start-page: 74 issue: 4 year: 1990 ident: 5357_CR13 publication-title: Interfaces doi: 10.1287/inte.20.4.74 – volume: 9 start-page: 617 issue: 10 year: 1979 ident: 5357_CR39 publication-title: Systems, Man and Cybernetics, IEEE Transactions on doi: 10.1109/TSMC.1979.4310090 – start-page: 197 volume-title: Learning Bayesian networks: The combination of knowledge and statistical data year: 1995 ident: 5357_CR6 – start-page: 549 volume-title: Journal of Machine Learning Research year: 2004 ident: 5357_CR15 – start-page: 87 volume-title: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence year: 1995 ident: 5357_CR28 – volume: 52 start-page: 345 year: 1987 ident: 5357_CR34 publication-title: Psychometrika doi: 10.1007/BF02294361 – volume: 2 start-page: 445 year: 2002 ident: 5357_CR29 publication-title: J Mach Learn Res – start-page: 206 volume-title: Proceedings of UAI-13 year: 1999 ident: 5357_CR14 – volume: 9 start-page: 309 year: 1992 ident: 5357_CR1 publication-title: Mach Learn – volume-title: Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence (UAI-12), Catalina Island, California, USA year: 2012 ident: 5357_CR21 – start-page: 167 volume-title: UAI year: 2003 ident: 5357_CR27 – start-page: 149 volume-title: Uncertainty in Artificial Intelligence 2 Annual Conference on Uncertainty in Artificial Intelligence (UAI-86) year: 1988 ident: 5357_CR40 – volume: 3 start-page: 2155 year: 1996 ident: 5357_CR24 publication-title: Systems, Man, and Cybernetics, 1996., IEEE International Conference on Volume 3 – volume: 65 start-page: 31 year: 2006 ident: 5357_CR41 publication-title: Machine Learning doi: 10.1007/s10994-006-6889-7 – start-page: 461 volume-title: Estimating the Dimension of a Model year: 1978 ident: 5357_CR3 – start-page: 257 volume-title: Proceedings of the 4th European Workshop on Probabilistic Graphical Models (PGM-08) year: 2008 ident: 5357_CR7 – volume: 12 start-page: 2181 year: 2011 ident: 5357_CR9 publication-title: Journal of Machine Learning Research – start-page: 33 volume-title: Innovations in Bayesian Networks, Volume 156 of Studies in Computational Intelligence year: 1998 ident: 5357_CR11 – volume-title: Finding Optimal Bayesian Networks by Dynamic Programming year: 2005 ident: 5357_CR31 – volume-title: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS) year: 2010 ident: 5357_CR22 – start-page: 153 volume-title: Proceedings of the Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11) year: 2011 ident: 5357_CR23 – start-page: 1047 volume-title: In ICML'00 year: 2000 ident: 5357_CR26 – start-page: 1022 volume-title: Proceedings of the Thirteenth Internation Joint Conference on Artificial Intelligence year: 1993 ident: 5357_CR38 – start-page: 113 volume-title: Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09 year: 2009 ident: 5357_CR18 doi: 10.1145/1553374.1553389 – start-page: 552 volume-title: Intl Conf on Machine Learning year: 2003 ident: 5357_CR12 – start-page: 2186 volume-title: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11), Helsinki, Finland year: 2011 ident: 5357_CR19 – start-page: 267 volume-title: Proceedings of the Second International Symposium on Information Theory year: 1973 ident: 5357_CR4 – volume: 103 start-page: 227 year: 2007 ident: 5357_CR36 publication-title: Inf Process Lett doi: 10.1016/j.ipl.2007.04.003 – start-page: 121 volume-title: Learning from Data: Artificial Intelli-gence and Statistics V year: 1996 ident: 5357_CR10 doi: 10.1007/978-1-4612-2404-4_12 – start-page: 1057 volume-title: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI-11), San Francisco, CA year: 2011 ident: 5357_CR17 – start-page: 356 volume-title: Learning Bayesian Belief Networks Based on the Minimum Description Length Principle: Basic Properties year: 1999 ident: 5357_CR33 – volume-title: Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) year: 2006 ident: 5357_CR16 – reference: 14992533 - Pac Symp Biocomput. 2004;:557-67  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.3805258 | 
    
| Snippet | In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar... Doc number: S14 Abstract: In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying... Abstract In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures....  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | S14 | 
    
| SubjectTerms | Algorithms Bayes Theorem Bayesian analysis Bioinformatics Biomedical and Life Sciences Climbing Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer programs Conferences Data processing Experimental design Heuristic Learning Learning algorithms Life Sciences Likelihood Functions Mathematical models Microarrays Models, Statistical Proceedings Reproducibility of Results Sample Size Studies  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEPVB_Ha1SgRf0zYfm49HKy1FsC9W6FtIslksnHtH9w65_96Z7N56h3J98WE5yM5CdmZy85ud5DeEfGwDkpa5xKzMmqnGRBZltsy0Bn7qKHTCiu7XS33xXX25rq-3Wn3hnrCBHnhQ3HFsgm6xWBYV5AJJWymVaiEFbATPEEvx3_fEuk0yNdYPkKm_nCsynEFSU4-H5rjVx9MY45J94zVcaicoFe7-fwHOv_dNTsXTR-TBqluE9a8wm23Fp_Mn5PEILOmn4YWeknu5e0buD60m18_J5dnPxU2hA6F_CL7pvKV9KlvwKAa44oMUYCw9DeuMxytpN2wTp6VjDu1L1xyQekGuzs-uPl-wsZcCS1qZJUtN1pxrCPexrdsGEpkoGiuSlDkHkQFk8JABe4nsRJABszZnEBxmJZKO8iU56OZdfk1onUQUtcwn2tYqhmCDNEFb1zjIFWG8InKjS59GnnFsdzHzJd-w2qMFPFrAc-nBAnCpirDpqcXAs3GH_CmaaZJFluwyAL7jR9_xd_lORQ43Rvbj0u09MsY7BWmXqciH6TYsOqykhC7PVyijHXeALd0eGTycZQCNgcyrwW-m2YpC1OZERcyOR-28zu6d7uZHIf-WiCA5TP1o43vbU9-nsKPJQ_druIcHeq7e_A8NvyUPweXE8M3qkBwsb1f5HaC4ZXxfFuxvRt089g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9QwEA_nHqI-iN9XPSWCr7kzH02bBxFX9jgEF9ET7q0kaaoHa7t33UX2v3cm_bhblPWhFNIJpJlJ8ptM8htC3lQWScuMZ7kMmqkyc8zJkLOsyuCVOqE9RnQ_z_Xpd_XpPD3fI_PhLgweqxzmxDhRl43HPfJjJPI2CtBw9n55yTBrFEZXhxQatk-tUL6LFGO3yL5AZqwJ2Z_O5l--jnEFZPDvL9DxXB9zmJoZyKWMS_aNp_CorQUq8vj_C3z-fYZyDKTeI3fW9dJuftvF4sZadfKA3O9BJv3QWcVDshfqR-R2l3Zy85jMZ7-WF5EahF6TfdOmoq2Px_EoLnbRHilAWjq1m4BXLWndHRmnMXsObWMGHZB6Qs5OZmcfT1mfV4F5rbIV82XQnGtY-l2VViU4NU6UufBShmBFAMDBbQAcJoIRVlr04EyGQDEo4bWTT8mkbupwQGjqhROpDG91nipnbW5lZnVuSgN-I5QnRA59WfiecxxTXyyK6HvkukANFKiBgssCNACPSggbay07zo3_yE9RTaMsMmbHgubqR9EPwMKVVlcYdHUKfEqvcymVqoKTpeABMFlCDgclF_0wbotro0vI6_EzDECMqtg6NGuU0YYbwJlmhwxe1MoAmYHMs85uxtaKSNpmREKyLYva-p3tL_XFz0gELhFNcmj60WB7N5u-q8OORgvd3cMtVGi5er67c16Qu2BMotuZOiST1dU6vASstnKv-gH4B9FvOXw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgQcKt6EtshIHHHBjzj2kVatKiR6oUi9WbbjiEpLdkV2Ve2_79jJhl0Bi3qIIiVjxfGMM99k7G8A3jcukZaZQLWIisq68tSLqGnVVHgqPVchZXS_Xqjz7_LLVXm1Ax9We2HW8_dMq48MP54Uw5KSMkG_sRIPeQ_uo5tSOTWrTsacQWLnHzbH_avlhvPJHP1_A5Z_ro8ck6SP4eGinbnljZtM1vzQ2RPYGwAk-dxr_CnsxPYZPOhLSi6fw8Xpz9l1pv0gv4m8ybQhXchL7UhyZNnWCMJVcuyWMW2jJG2_HJzkyjiky9VxUOoFXJ6dXp6c06FmAg1KVnMa6qgYU-jWfVM2NQYsnteaByFidDwimGAuIsbi0XAnXIrOTJVAYJQ8KC9ewm47beNrIGXgnpciflK6lN457UTllDa1wZgQrxcgVmNpw8AnnspaTGyOK7SySQM2acAyYVEDeMgC6Nhq1vNp_Ef-OKlplE1s2PkCGokdJpf1tVNNSqh6ifFiUFoIKZvoRc1ZRLxVwMFKyXaYop1NzPBGYnhVFfBuvI2TK2VMXBuniySjDDOIIc0WmbQJq0LUhTKversZe8szIZvhBVQbFrXxOpt32usfmeRbJKTIsOtHK9tb7_q2ATsaLXT7CHfYoGPyzV2fsA-P0Lx4_x_qAHbnvxbxEJHZ3L_NE_IWiTUsrg priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTojxwDcjMJCReHWHP-IkjxvaNCFRIdFJ4ymyHQcquqRqG6Hy13N20tAyVITEgxUpOUvO5c7-Xez7HcCbUnvSsszSVDhFZZEYaoRLaVImeIkNV9bv6H4YqYtL-f4qvtqD8ToXxlxbM6k70lBPVDzcTEOftlkOvoqCmx_PirJ1-lQdM5xkKYYvMWWCfmIxNnkL9lWMCH0A-5ejjyefQ6JRJ9Zl0d3ousCuCya3VqlA5v8nBHrzIGW_m3oX7jTVTK--6-l0Y8E6vw_N-lXbcyrfhs3SDO2P31gg_7cuHsC9DuGSk9YkH8Keqx7B7bbm5eoxjM6uZ5PAS0J-MY2TuiQLG84CEr_SBmcgOCJyqlfO53mSqj2vTkLpHrII5XtQ6gmMz8_G7y5oV9SBWiWTJbWFU4wpxB2mjMsCIyrDi5RbIZzT3CHaYdohCOQu41poHz5miUepTnKrjHgKg6qu3DMgseWGx8K9VWksjdapFolWaVZkGLTi_QjE-hvmtiM893U3pnkIfFKVe0XlXlE5EzkqCpuMgPa9Zi3hx1_kT7159LKerjvcqOdf8s77c1NoVfodXyMxoLUqFULK0hlRcOYQEEZwtDauvJtDFrmnrs8kxn9JBK_7x-j9fktHV65uvIzKWIYgN9sh47PEEoSFKHPY2ms_Wh4Y4zIeQbJlyVuvs_2kmnwNLOTCQ1mGQx-ubX5z6LsUNuw9Y7eG0Rexyef_2uEFHKB58fZH2REMlvPGvUTouDSvupngJ9UTZgM priority: 102 providerName: Unpaywall  | 
    
| Title | Empirical evaluation of scoring functions for Bayesian network model selection | 
    
| URI | https://link.springer.com/article/10.1186/1471-2105-13-S15-S14 https://www.ncbi.nlm.nih.gov/pubmed/23046392 https://www.proquest.com/docview/1038941827 https://www.proquest.com/docview/1069198399 https://www.proquest.com/docview/1112679109 https://pubmed.ncbi.nlm.nih.gov/PMC3439716 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-13-S15-S14 https://doaj.org/article/bda6f0364b4140c683344feb3d21e976  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (ASU) - EBSCO customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (ODIN) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ2EWI8IK6jMCojId5c8CV2_IBQW7VMlVZNbJXKU2QnDkwqadeLoP-eYyfNVjEKD0kk-yRyfI7j7-TY30HobW48aZlOScydJCJTlljuYqJyBZfIMpn6iO7ZUJ6OxGAcjffQJtBedeDiTtfO55MazSetX9frTzDgP4YBH8v3FD6wBFyXiFBOLmgEh3g3uyY-tZQPwVZ5NvbRIUxf2ud3OBM3oQZP6h-2IFUPqfbX_e3BW_NXoPm_C5v-ucSyjrM-QPdXxcysf5rJ5NZU1n-EHlYYFLdLo3mM9lzxBN0rs1Kun6Jh78fsKjCH4BsucDzN8SINq_WwnwuDuWJAvLhj1s7vxMRFuaIch-Q6eBES7IDUM3TZ7112T0mVdoGkUqglSTMnKZWADGwe5Rn4PJZlMUs5d84wB3iEGgcwjTnNDDfewdPK40gnWCotf44OimnhXiAcpcyyiLsPMo6ENSY2XBkZ60yDWwnlDcQ3fZmkFSW5z4wxSYJrEsvEayDxGkgoT0ADcIgGIvVds5KS4x_yHa-mWtYTaoeC6fxbUo3PxGZG5j4mawW4nKmMORcid5ZnjDqAbA10slFysjHSxJPLawEemmqgN3U1jE8fdDGFm668jNRUAwzVO2T8Pi4FwA1kjku7qVvLAqebZg2ktixq63W2a4qr74EnnHuwSaHprY3t3W76rg5r1Ra6u4cXcMOCipf_8fav0BFYFCv_Xp2gg-V85V4DnlvaJtpXYwXnuP-5iQ7b7cHFAK6d3vD8C5R2ZbcZ_pQ0w7iFmtHwvP31N5KPSlw | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8WChgJjm7xI05yQIhCqy1t98Ii9WbZjgOVluzS7KraH8V_ZMZ5tCvQcuohipRMImde_iZjzxDyprRYtCz3LJNBM1WkjjkZMpaWKZwSJ7THjO7JSA-_qS-nyekG-d3thcFllZ1PjI66mHr8R76LhbxzBWg4_TD7xbBrFGZXuxYajVocheUFhGz1-8PPIN-3Qhzsjz8NWdtVgHmt0jnzRdCca5j4XJmUBUB6J4pMeClDsCLAdMttABQiQi6stBi_5CnCpKCE107Ca2-Qm0qCKwHzSU_7-I5je4B2dx7P9C4Hv88gokoYl-wrT-BQK7NfbBLwL2T79wLNPkt7h2wtqpldXtjJ5MpEeHCP3G0RLP3YqNx9shGqB-RW09Ny-ZCM9n_OzmLdEXpZSZxOS1r7uNaP4kwalZ0CXqZ7dhlwHyetmvXoNLbmoXVszwNUj8j4Otj7mGxW0yo8JTTxwolEhnc6S5SzNrMytTrLixyCUrg-ILLjpfFtQXPsqzExMbDJtEEJGJSA4dKABOBQA8L6p2ZNQY__0O-hmHpaLMcdL0zPv5vWuo0rrC4xo-sUBKxeZ1IqVQYnC8EDAL4B2e6EbFofUZtLjR6Q1_1tsG5M2dgqTBdIo3OeA4jN19DgLrAUYB_QPGn0ph-tiBXhcjEg6YpGrXzO6p3q7EesMi4RqnIY-k6ne1eHvo5hO72GrudwDQ_UXD1bz5xXZGs4Pjk2x4ejo-fkNiiWaH6BbZPN-fkivABQOHcvoylSYq7Z9P8AJmxuVw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgEa8D4k1gASNxNbt-xImPbNlqeVVILNLeLNtxYKWSVptWqP-eGScNrYAiDlGlZKy6npnONxn7G0Je1g5Jy0xgpYyaqarwzMtYsqIu4CP3Qges6H6c6JMv6t1ZfrZxFibtdl-XJLszDcjS1CwO5lXduXipDzj8pTJIVnLGJfvMc7jUZXJFQXzDLgYjPRoqCcjZ3x-Z-9vIrZCUmPv_BDd_3zU5lE5vkuvLZu5WP9x0uhGdxrfJrR5W0tedHdwhl2Jzl1ztGk2u7pHJ8ff5eSIDob_ovemspm1IG_AohrdkgRRALD1yq4iHK2nTbRKnqV8ObVPPHJC6T07Hx6ejE9Z3UmBBq2LBQhU15xqCva_zuoI0xouqFEHKGJ2IADG4i4C8RDTCSYc5mykQGkYlgvbyAdlrZk18RGgehBe5jIe6zJV3rnSycLo0lYFMEe5nRK7X0oaeZRybXUxtyjZKbVEDFjVgubSgAbhURtgwat6xbPxD_gjVNMgiR3a6Mbv4anuXs75yusYyq1eQRQZdSqlUHb2sBI-AwjKyv1ay7R23tcgXbxQkXUVGXgyPweWwjuKaOFuijDbcALI0O2TwaFYBWAxkHnZ2M8xWJJo2IzJSbFnU1s_ZftKcf0vU3xLxI4epDz6yOfVdC_ZqsNDdK9zCgJarx__7Dc_JtU9vxvbD28n7J-QGWJroXlTtk73FxTI-Bei28M-Sb_4EPD035A | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTojxwDcjMJCReHWHP-IkjxvaNCFRIdFJ4ymyHQcquqRqG6Hy13N20tAyVITEgxUpOUvO5c7-Xez7HcCbUnvSsszSVDhFZZEYaoRLaVImeIkNV9bv6H4YqYtL-f4qvtqD8ToXxlxbM6k70lBPVDzcTEOftlkOvoqCmx_PirJ1-lQdM5xkKYYvMWWCfmIxNnkL9lWMCH0A-5ejjyefQ6JRJ9Zl0d3ousCuCya3VqlA5v8nBHrzIGW_m3oX7jTVTK--6-l0Y8E6vw_N-lXbcyrfhs3SDO2P31gg_7cuHsC9DuGSk9YkH8Keqx7B7bbm5eoxjM6uZ5PAS0J-MY2TuiQLG84CEr_SBmcgOCJyqlfO53mSqj2vTkLpHrII5XtQ6gmMz8_G7y5oV9SBWiWTJbWFU4wpxB2mjMsCIyrDi5RbIZzT3CHaYdohCOQu41poHz5miUepTnKrjHgKg6qu3DMgseWGx8K9VWksjdapFolWaVZkGLTi_QjE-hvmtiM893U3pnkIfFKVe0XlXlE5EzkqCpuMgPa9Zi3hx1_kT7159LKerjvcqOdf8s77c1NoVfodXyMxoLUqFULK0hlRcOYQEEZwtDauvJtDFrmnrs8kxn9JBK_7x-j9fktHV65uvIzKWIYgN9sh47PEEoSFKHPY2ms_Wh4Y4zIeQbJlyVuvs_2kmnwNLOTCQ1mGQx-ubX5z6LsUNuw9Y7eG0Rexyef_2uEFHKB58fZH2REMlvPGvUTouDSvupngJ9UTZgM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+evaluation+of+scoring+functions+for+Bayesian+network+model+selection&rft.jtitle=BMC+bioinformatics&rft.au=Liu%2C+Zhifa&rft.au=Malone%2C+Brandon&rft.au=Yuan%2C+Changhe&rft.date=2012&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=13&rft.issue=Suppl+15&rft.spage=S14&rft.epage=S14&rft_id=info:doi/10.1186%2F1471-2105-13-S15-S14&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |