Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics
Background Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In t...
        Saved in:
      
    
          | Published in | Progress in orthodontics Vol. 20; no. 1; pp. 1 - 10 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        15.11.2019
     Springer Nature B.V SpringerOpen  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2196-1042 1723-7785 2196-1042  | 
| DOI | 10.1186/s40510-019-0295-8 | 
Cover
| Abstract | Background
Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In this study, we aimed to determine cervical vertebrae stages (CVS) for growth and development periods by the frequently used seven artificial intelligence classifiers, and to compare the performance of these algorithms with each other.
Methods
Cephalometric radiographs, that were obtained from 300 individuals aged between 8 and 17 years were included in our study. Nineteen reference points were defined on second, third, and 4th cervical vertebrae, and 20 different linear measurements were taken. Seven algorithms of artificial intelligence that are frequently used in the field of classification were selected and compared. These algorithms are k-nearest neighbors (k-NN), Naive Bayes (NB), decision tree (Tree), artificial neural networks (ANN), support vector machine (SVM), random forest (RF), and logistic regression (Log.Regr.) algorithms.
Results
According to confusion matrices decision tree, CSV1 (97.1%)–CSV2 (90.5%), SVM: CVS3 (73.2%)–CVS4 (58.5%), and kNN: CVS 5 (60.9%)–CVS 6 (78.7%) were the algorithms with the highest accuracy in determining cervical vertebrae stages. The ANN algorithm was observed to have the second-highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in determining all stages except CVS5 (47.4% third highest accuracy value). According to the average rank of the algorithms in predicting the CSV classes, ANN was the most stable algorithm with its 2.17 average rank.
Conclusion
In our experimental study, kNN and Log.Regr. algorithms had the lowest accuracy values. SVM-RF-Tree and NB algorithms had varying accuracy values. ANN could be the preferred method for determining CVS. | 
    
|---|---|
| AbstractList | Abstract Background Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In this study, we aimed to determine cervical vertebrae stages (CVS) for growth and development periods by the frequently used seven artificial intelligence classifiers, and to compare the performance of these algorithms with each other. Methods Cephalometric radiographs, that were obtained from 300 individuals aged between 8 and 17 years were included in our study. Nineteen reference points were defined on second, third, and 4th cervical vertebrae, and 20 different linear measurements were taken. Seven algorithms of artificial intelligence that are frequently used in the field of classification were selected and compared. These algorithms are k-nearest neighbors (k-NN), Naive Bayes (NB), decision tree (Tree), artificial neural networks (ANN), support vector machine (SVM), random forest (RF), and logistic regression (Log.Regr.) algorithms. Results According to confusion matrices decision tree, CSV1 (97.1%)–CSV2 (90.5%), SVM: CVS3 (73.2%)–CVS4 (58.5%), and kNN: CVS 5 (60.9%)–CVS 6 (78.7%) were the algorithms with the highest accuracy in determining cervical vertebrae stages. The ANN algorithm was observed to have the second-highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in determining all stages except CVS5 (47.4% third highest accuracy value). According to the average rank of the algorithms in predicting the CSV classes, ANN was the most stable algorithm with its 2.17 average rank. Conclusion In our experimental study, kNN and Log.Regr. algorithms had the lowest accuracy values. SVM-RF-Tree and NB algorithms had varying accuracy values. ANN could be the preferred method for determining CVS. Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In this study, we aimed to determine cervical vertebrae stages (CVS) for growth and development periods by the frequently used seven artificial intelligence classifiers, and to compare the performance of these algorithms with each other.BACKGROUNDGrowth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In this study, we aimed to determine cervical vertebrae stages (CVS) for growth and development periods by the frequently used seven artificial intelligence classifiers, and to compare the performance of these algorithms with each other.Cephalometric radiographs, that were obtained from 300 individuals aged between 8 and 17 years were included in our study. Nineteen reference points were defined on second, third, and 4th cervical vertebrae, and 20 different linear measurements were taken. Seven algorithms of artificial intelligence that are frequently used in the field of classification were selected and compared. These algorithms are k-nearest neighbors (k-NN), Naive Bayes (NB), decision tree (Tree), artificial neural networks (ANN), support vector machine (SVM), random forest (RF), and logistic regression (Log.Regr.) algorithms.METHODSCephalometric radiographs, that were obtained from 300 individuals aged between 8 and 17 years were included in our study. Nineteen reference points were defined on second, third, and 4th cervical vertebrae, and 20 different linear measurements were taken. Seven algorithms of artificial intelligence that are frequently used in the field of classification were selected and compared. These algorithms are k-nearest neighbors (k-NN), Naive Bayes (NB), decision tree (Tree), artificial neural networks (ANN), support vector machine (SVM), random forest (RF), and logistic regression (Log.Regr.) algorithms.According to confusion matrices decision tree, CSV1 (97.1%)-CSV2 (90.5%), SVM: CVS3 (73.2%)-CVS4 (58.5%), and kNN: CVS 5 (60.9%)-CVS 6 (78.7%) were the algorithms with the highest accuracy in determining cervical vertebrae stages. The ANN algorithm was observed to have the second-highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in determining all stages except CVS5 (47.4% third highest accuracy value). According to the average rank of the algorithms in predicting the CSV classes, ANN was the most stable algorithm with its 2.17 average rank.RESULTSAccording to confusion matrices decision tree, CSV1 (97.1%)-CSV2 (90.5%), SVM: CVS3 (73.2%)-CVS4 (58.5%), and kNN: CVS 5 (60.9%)-CVS 6 (78.7%) were the algorithms with the highest accuracy in determining cervical vertebrae stages. The ANN algorithm was observed to have the second-highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in determining all stages except CVS5 (47.4% third highest accuracy value). According to the average rank of the algorithms in predicting the CSV classes, ANN was the most stable algorithm with its 2.17 average rank.In our experimental study, kNN and Log.Regr. algorithms had the lowest accuracy values. SVM-RF-Tree and NB algorithms had varying accuracy values. ANN could be the preferred method for determining CVS.CONCLUSIONIn our experimental study, kNN and Log.Regr. algorithms had the lowest accuracy values. SVM-RF-Tree and NB algorithms had varying accuracy values. ANN could be the preferred method for determining CVS. Background Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In this study, we aimed to determine cervical vertebrae stages (CVS) for growth and development periods by the frequently used seven artificial intelligence classifiers, and to compare the performance of these algorithms with each other. Methods Cephalometric radiographs, that were obtained from 300 individuals aged between 8 and 17 years were included in our study. Nineteen reference points were defined on second, third, and 4th cervical vertebrae, and 20 different linear measurements were taken. Seven algorithms of artificial intelligence that are frequently used in the field of classification were selected and compared. These algorithms are k-nearest neighbors (k-NN), Naive Bayes (NB), decision tree (Tree), artificial neural networks (ANN), support vector machine (SVM), random forest (RF), and logistic regression (Log.Regr.) algorithms. Results According to confusion matrices decision tree, CSV1 (97.1%)–CSV2 (90.5%), SVM: CVS3 (73.2%)–CVS4 (58.5%), and kNN: CVS 5 (60.9%)–CVS 6 (78.7%) were the algorithms with the highest accuracy in determining cervical vertebrae stages. The ANN algorithm was observed to have the second-highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in determining all stages except CVS5 (47.4% third highest accuracy value). According to the average rank of the algorithms in predicting the CSV classes, ANN was the most stable algorithm with its 2.17 average rank. Conclusion In our experimental study, kNN and Log.Regr. algorithms had the lowest accuracy values. SVM-RF-Tree and NB algorithms had varying accuracy values. ANN could be the preferred method for determining CVS. BackgroundGrowth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In this study, we aimed to determine cervical vertebrae stages (CVS) for growth and development periods by the frequently used seven artificial intelligence classifiers, and to compare the performance of these algorithms with each other.MethodsCephalometric radiographs, that were obtained from 300 individuals aged between 8 and 17 years were included in our study. Nineteen reference points were defined on second, third, and 4th cervical vertebrae, and 20 different linear measurements were taken. Seven algorithms of artificial intelligence that are frequently used in the field of classification were selected and compared. These algorithms are k-nearest neighbors (k-NN), Naive Bayes (NB), decision tree (Tree), artificial neural networks (ANN), support vector machine (SVM), random forest (RF), and logistic regression (Log.Regr.) algorithms.ResultsAccording to confusion matrices decision tree, CSV1 (97.1%)–CSV2 (90.5%), SVM: CVS3 (73.2%)–CVS4 (58.5%), and kNN: CVS 5 (60.9%)–CVS 6 (78.7%) were the algorithms with the highest accuracy in determining cervical vertebrae stages. The ANN algorithm was observed to have the second-highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in determining all stages except CVS5 (47.4% third highest accuracy value). According to the average rank of the algorithms in predicting the CSV classes, ANN was the most stable algorithm with its 2.17 average rank.ConclusionIn our experimental study, kNN and Log.Regr. algorithms had the lowest accuracy values. SVM-RF-Tree and NB algorithms had varying accuracy values. ANN could be the preferred method for determining CVS.  | 
    
| ArticleNumber | 41 | 
    
| Author | Kök, Hatice Acilar, Ayse Merve İzgi, Mehmet Said  | 
    
| Author_xml | – sequence: 1 givenname: Hatice orcidid: 0000-0002-5874-9474 surname: Kök fullname: Kök, Hatice email: hatice.kok@selcuk.edu.tr organization: Faculty of Dentistry, Department of Orthodontics, Selçuk University [SÜ] – sequence: 2 givenname: Ayse Merve surname: Acilar fullname: Acilar, Ayse Merve organization: Engineering and Architecture Faculty, Department of Computer Engineering, Necmettin Erbakan University [NEÜ] – sequence: 3 givenname: Mehmet Said surname: İzgi fullname: İzgi, Mehmet Said organization: Private Practice  | 
    
| BookMark | eNqNUcuOFCEUrZgxzkM_wB2JGzelQAEFGxMz8THJJG6cNaGoW9V0qqAFuif9HfPD0l0ddSbRyAYC53E557I688FDVb0m-B0hUrxPDHOCa0xUjanitXxWXVCiRE0wo2d_nM-ry5TWGJNWMfyiOm9IS2Xbiovq4S6ZEZDxPbJh3pjoUvAoDMjE7AZnnZmQ8xmmyY3gbUFOY4gur-aEhhBRDxni7LzJbuGNMdzn1VGwhx1MYTODz6jbIwtx52zR20HM0EUDKOVinooBCjGvQh98dja9rJ4PZkrw6rRfVXefP32__lrffvtyc_3xtraCiVxTJWwrmaG2h7IU72SLe2ZEwwbJpcFDTzDBjQElSdt1nKnOdlYBoxRzQ5ur6mbR7YNZ6010s4l7HYzTx4sQR31IwU6gFWDMVWup4YoVM2NxzwUVhONGDKIrWnTR2vqN2d-bafolSLA-tKWXtnRpSx_a0rKQPiykzbabobclqGimR5M8fvFupcew00IWc86KwNuTQAw_tpCynl2ypSzjIWyTpk0ZUEmqDl5vnkDXYRt9yfeIYqRp6SGSdkHZGFKKMGjr8rHb4u-mf_6FPGH-z_9PoaWC9SPE3zP9nfQTOlLtiw | 
    
| CitedBy_id | crossref_primary_10_12677_ACM_2022_127974 crossref_primary_10_1016_j_jds_2020_05_022 crossref_primary_10_1007_s00056_023_00459_1 crossref_primary_10_35339_ekm_2023_92_4_kuk crossref_primary_10_1016_j_identj_2024_11_009 crossref_primary_10_1016_j_jormas_2023_101524 crossref_primary_10_3390_app13063850 crossref_primary_10_3390_diagnostics11122200 crossref_primary_10_3390_app122211864 crossref_primary_10_4103_jpbs_jpbs_1341_24 crossref_primary_10_1111_ocr_12492 crossref_primary_10_25259_APOS_73_2024 crossref_primary_10_3390_jcm13144047 crossref_primary_10_1016_j_ejwf_2023_10_001 crossref_primary_10_3390_bioengineering11121267 crossref_primary_10_1007_s11548_021_02550_7 crossref_primary_10_1055_a_1993_2371 crossref_primary_10_1016_j_jdent_2024_105442 crossref_primary_10_3390_jimaging10110278 crossref_primary_10_1371_journal_pone_0269198 crossref_primary_10_1111_ocr_12764 crossref_primary_10_1016_j_jdent_2023_104727 crossref_primary_10_3390_diagnostics13243677 crossref_primary_10_1016_j_jebdp_2023_101928 crossref_primary_10_1109_JBHI_2022_3179619 crossref_primary_10_3390_diagnostics13162640 crossref_primary_10_4321_s0213_12852022000400005 crossref_primary_10_3390_jcm10225400 crossref_primary_10_2319_032923_225_1 crossref_primary_10_3390_jcm10163591 crossref_primary_10_1007_s11517_023_02919_7 crossref_primary_10_1177_03015742241240607 crossref_primary_10_1007_s13246_024_01432_x crossref_primary_10_1038_s41598_024_60410_1 crossref_primary_10_4103_ijdr_ijdr_955_21 crossref_primary_10_3390_healthcare10112188 crossref_primary_10_7759_cureus_62045 crossref_primary_10_3390_diagnostics15030257 crossref_primary_10_53064_jrad_2023_14_1_310 crossref_primary_10_31616_asj_2020_0147 crossref_primary_10_3390_healthcare11202760 crossref_primary_10_1016_j_jds_2020_06_019 crossref_primary_10_1007_s11282_023_00678_7 crossref_primary_10_1038_s41598_022_13595_2 crossref_primary_10_15311_selcukdentj_1032041 crossref_primary_10_1016_j_jobcr_2023_08_005 crossref_primary_10_1016_j_procs_2022_10_134 crossref_primary_10_25259_APOS_60_2021 crossref_primary_10_1016_j_sdentj_2023_05_014 crossref_primary_10_2319_031022_210_1 crossref_primary_10_1016_j_bas_2022_101666 crossref_primary_10_1016_j_ajodo_2021_02_013 crossref_primary_10_1016_j_sdentj_2024_03_008 crossref_primary_10_1111_ocr_12615 crossref_primary_10_1177_0022034520969115 crossref_primary_10_1186_s40510_024_00523_5 crossref_primary_10_1186_s40510_024_00527_1 crossref_primary_10_3390_app11073160 crossref_primary_10_5005_jp_journals_10005_2971 crossref_primary_10_1186_s40510_021_00361_9 crossref_primary_10_3390_diagnostics14242804 crossref_primary_10_4041_kjod_2022_52_2_112 crossref_primary_10_14260_jemds_2021_431 crossref_primary_10_5662_wjm_v15_i3_100598 crossref_primary_10_3390_app13169114 crossref_primary_10_51754_cusbed_1058830 crossref_primary_10_1111_ocr_12443 crossref_primary_10_1016_j_heliyon_2024_e35742 crossref_primary_10_1186_s12903_023_03266_7 crossref_primary_10_3390_fractalfract9030148 crossref_primary_10_1016_j_jds_2023_05_001 crossref_primary_10_3390_diagnostics13121995 crossref_primary_10_33262_anatomiadigital_v6i1_2_2515 crossref_primary_10_36283_ziun_pjmd13_4_021 crossref_primary_10_1186_s12903_025_05482_9 crossref_primary_10_1111_ocr_12517 crossref_primary_10_4041_kjod21_255 crossref_primary_10_1080_19424396_2023_2202444 crossref_primary_10_7717_peerj_11451 crossref_primary_10_3390_diagnostics13132134 crossref_primary_10_3390_healthcare12131311 crossref_primary_10_1186_s12903_023_03844_9 crossref_primary_10_1111_adj_12812 crossref_primary_10_1111_ocr_12514 crossref_primary_10_1111_ocr_12634 crossref_primary_10_7126_cumudj_991480 crossref_primary_10_54527_jdir_2020_39_4_48 crossref_primary_10_7759_cureus_38711 crossref_primary_10_3390_jcm14030778 crossref_primary_10_3390_jcm13020344 crossref_primary_10_1186_s40510_024_00535_1 crossref_primary_10_3390_bioengineering11050431 crossref_primary_10_3390_jpm11010032 crossref_primary_10_1109_MITP_2020_3001238 crossref_primary_10_3390_dj11010001 crossref_primary_10_1007_s00056_023_00510_1 crossref_primary_10_1016_j_dental_2023_03_006 crossref_primary_10_1111_ocr_12501 crossref_primary_10_3390_computers11110154 crossref_primary_10_1016_j_jjimei_2022_100144 crossref_primary_10_1111_ocr_12584 crossref_primary_10_1186_s40510_020_00338_0  | 
    
| Cites_doi | 10.1023/A:1010933404324 10.1016/j.patcog.2018.06.004 10.1016/j.compmedimag.2008.08.005 10.2319/0003-3219(2008)078[0591:CBCACV]2.0.CO;2 10.1016/S0300-5712(97)00027-4 10.1109/72.896805 10.1016/j.ajodo.2013.07.015 10.1016/j.ijom.2007.07.024 10.1016/j.ajodo.2005.01.031 10.3109/00016358009004718 10.1016/0002-9416(75)90038-X 10.1007/978-1-60327-241-4_13 10.1016/j.ajodo.2015.07.030 10.1067/mod.2002.126896 10.1590/S1806-83242007000400009 10.1016/j.ajodo.2008.01.018 10.1177/00220345630420014701 10.1016/j.ijom.2008.12.005 10.1016/j.ijom.2010.03.026 10.1590/S1806-83242010000100020 10.1016/S0889-5406(95)70157-5 10.1016/0002-9416(82)90464-X 10.1067/mod.2000.107009 10.1016/j.ajodo.2011.04.013  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s). 2019 Progress in Orthodontics is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s). 2019 – notice: Progress in Orthodontics is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s40510-019-0295-8 | 
    
| DatabaseName | Springer Nature Open Access Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic ProQuest Central Student  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Dentistry  | 
    
| EISSN | 2196-1042 | 
    
| EndPage | 10 | 
    
| ExternalDocumentID | oai_doaj_org_article_9e00597c2a594eeeac0d562615036f6b 10.1186/s40510-019-0295-8 PMC6856254 10_1186_s40510_019_0295_8  | 
    
| GroupedDBID | --- -A0 0R~ 123 1B1 1OC 34H 3V. 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKKN ABEEZ ABUWG ACACY ACGFS ACGOD ACPRK ACULB ADBBV ADFRT ADINQ ADRAZ AFGXO AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ASPBG AVWKF AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BPHCQ BVXVI C24 C6C CCPQU CS3 DIK DWQXO EBS EJD F5P FDB FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR IPNFZ ITC KQ8 LK8 M1P M2P M41 M48 M7P O9- OK1 PGMZT PQQKQ PROAC PSQYO RBZ RNS RPM RSV SEL SOJ UKHRP XH2 YFH YUY AASML AAYXX CITATION EBLON PUEGO 7XB 8FK K9. PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM --K 31~ 4.4 8-1 AAEDT AALRI AAXUO ACXQS ADTOC AFZJQ AHSBF AITUG AJAOE AZFZN BFHJK CAG COF HZ~ RIG ROL SES UNPAY  | 
    
| ID | FETCH-LOGICAL-c646t-296c784a2cdeeee95b870d4a634f858a0fd10103ae9817bb549bcbc9e42205a23 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2196-1042 1723-7785  | 
    
| IngestDate | Tue Oct 14 18:46:53 EDT 2025 Sun Oct 26 03:32:49 EDT 2025 Tue Sep 30 16:44:04 EDT 2025 Thu Oct 02 11:43:07 EDT 2025 Sat Oct 18 22:45:00 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Wed Oct 01 05:05:25 EDT 2025 Fri Feb 21 02:29:10 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Growth and development Algorithms Artificial intelligence Cervical vertebrae Orthodontics  | 
    
| Language | English | 
    
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c646t-296c784a2cdeeee95b870d4a634f858a0fd10103ae9817bb549bcbc9e42205a23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-5874-9474 | 
    
| OpenAccessLink | https://doaj.org/article/9e00597c2a594eeeac0d562615036f6b | 
    
| PMID | 31728776 | 
    
| PQID | 2315413722 | 
    
| PQPubID | 2034673 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9e00597c2a594eeeac0d562615036f6b unpaywall_primary_10_1186_s40510_019_0295_8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856254 proquest_miscellaneous_2315098298 proquest_journals_2315413722 crossref_citationtrail_10_1186_s40510_019_0295_8 crossref_primary_10_1186_s40510_019_0295_8 springer_journals_10_1186_s40510_019_0295_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20191115 | 
    
| PublicationDateYYYYMMDD | 2019-11-15 | 
    
| PublicationDate_xml | – month: 11 year: 2019 text: 20191115 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | Progress in orthodontics | 
    
| PublicationTitleAbbrev | Prog Orthod | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen  | 
    
| References | Chen, Liu, Xu, Long, Lin (CR10) 2010; 39 Marsan, Oztas, Kuvat (CR2) 2009; 38 Caldas, Ambrosano, Haiter (CR27) 2007; 21 Franchi, Baccetti, McNamara (CR7) 2000; 118 Flores-Mir, Nebbe, Major (CR9) 2004; 74 Yang, Loog (CR24) 2018; 83 Jung, Kim (CR17) 2016; 149 Hagg, Taranger (CR8) 1980; 38 Nestman, Marshall, Qian, Holton, Franciscus, Southard (CR33) 2011; 140 Liu, Qi, Liu, Ning, Luo (CR37) 2008; 32 Hassel, Farman (CR18) 1995; 107 Gabriel, Southard, Qian, Marshall, Franciscus, Southard (CR34) 2009; 136 Fudalej, Bollen (CR11) 2010; 137 Alkhal, Wong, Rabie (CR28) 2008; 78 Giordano, Leonardi, Maiorana, Scarciofalo, Spampinato (CR36) 2007 Ben-Hur, Weston (CR20) 2010; 609 Hunter (CR5) 1966; 36 Alhadlaq, Al-Maflehi (CR31) 2013; 4 Breiman (CR22) 2001; 45 Mitchell (CR19) 1997 Lamparski (CR13) 1975; 67 Cortes, Vapnik (CR21) 1995; 20 Beit, Peltomaki, Schätzle, Signorelli, Patcas (CR32) 2013; 144 Mackin, Sims-Williams, Stephens (CR15) 1991; 18 CR23 Su, Chang (CR14) 2001; 12 Hagg, Taranger (CR6) 1982; 82 Mito, Sato, Mitani (CR26) 2002; 122 Baccetti, Franchi, McNamara (CR1) 2002; 72 Uysal, Ramoglu, Basciftci, Sari (CR25) 2006; 130 Caldas, Ambrosano, Haiter Neto (CR30) 2010; 24 Chang, Hsieh, Jong, Tiu (CR35) 2003; 16 Brickley, Shepherd, Armstrong (CR16) 1998; 26 Baidas (CR29) 2012; 3 Björk (CR4) 1963; 42 Nicodemo, Pereira, Ferreira (CR3) 2008; 37 Grave, Townsend (CR12) 2003; 19 A Ben-Hur (295_CR20) 2010; 609 L Breiman (295_CR22) 2001; 45 U Hagg (295_CR6) 1982; 82 L Franchi (295_CR7) 2000; 118 295_CR23 J Liu (295_CR37) 2008; 32 C Flores-Mir (295_CR9) 2004; 74 TM Mitchell (295_CR19) 1997 A Björk (295_CR4) 1963; 42 D Giordano (295_CR36) 2007 N Mackin (295_CR15) 1991; 18 L Baidas (295_CR29) 2012; 3 L Chen (295_CR10) 2010; 39 C Cortes (295_CR21) 1995; 20 G Marsan (295_CR2) 2009; 38 AM Alhadlaq (295_CR31) 2013; 4 P Beit (295_CR32) 2013; 144 T Uysal (295_CR25) 2006; 130 U Hagg (295_CR8) 1980; 38 MR Brickley (295_CR16) 1998; 26 CJ Hunter (295_CR5) 1966; 36 MC Su (295_CR14) 2001; 12 MDP Caldas (295_CR27) 2007; 21 B Hassel (295_CR18) 1995; 107 Y Yang (295_CR24) 2018; 83 TS Nestman (295_CR33) 2011; 140 SK Jung (295_CR17) 2016; 149 D Nicodemo (295_CR3) 2008; 37 K Grave (295_CR12) 2003; 19 MDP Caldas (295_CR30) 2010; 24 CH Chang (295_CR35) 2003; 16 T Mito (295_CR26) 2002; 122 T Baccetti (295_CR1) 2002; 72 DG Lamparski (295_CR13) 1975; 67 HA Alkhal (295_CR28) 2008; 78 P Fudalej (295_CR11) 2010; 137 DB Gabriel (295_CR34) 2009; 136  | 
    
| References_xml | – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR22 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 72 start-page: 316 issue: 4 year: 2002 end-page: 323 ident: CR1 article-title: An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth publication-title: Angle Orthod – volume: 83 start-page: 401 year: 2018 end-page: 415 ident: CR24 article-title: A benchmark and comparison of active learning for logistic regression publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.06.004 – volume: 3 start-page: 21 issue: 1 year: 2012 end-page: 26 ident: CR29 article-title: Correlation between cervical vertebrae morphology and chronological age in Saudi adolescents publication-title: King Saud Univ J Dent Sci – volume: 32 start-page: 678 issue: 8 year: 2008 end-page: 684 ident: CR37 article-title: Automatic bone age assessment based on intelligent algorithms and comparison with TW3 method publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2008.08.005 – start-page: 52,81,231 year: 1997 ident: CR19 publication-title: Machine learning – volume: 78 start-page: 591 issue: 4 year: 2008 end-page: 596 ident: CR28 article-title: Correlation between chronological age, cervical vertebral maturation and Fishman’s skeletal maturity indicators in southern Chinese publication-title: Angle Orthod doi: 10.2319/0003-3219(2008)078[0591:CBCACV]2.0.CO;2 – volume: 26 start-page: 305 issue: 4 year: 1998 end-page: 309 ident: CR16 article-title: Neural networks: a new technique for development of decision support systems in dentistry publication-title: J Dent doi: 10.1016/S0300-5712(97)00027-4 – volume: 12 start-page: 153 issue: 1 year: 2001 end-page: 158 ident: CR14 article-title: A new model of self-organizing neural networks and its application in data projection publication-title: IEEE Trans Neural Netw doi: 10.1109/72.896805 – volume: 144 start-page: 838 issue: 6 year: 2013 end-page: 847 ident: CR32 article-title: Evaluating the agreement of skeletal age assessment based on hand–wrist and cervical vertebrae radiography publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/j.ajodo.2013.07.015 – volume: 16 start-page: 463 year: 2003 end-page: 468 ident: CR35 article-title: A fully automatic computerized bone age assessment procedure based on phalange ossification analysis publication-title: Proc IPPR – start-page: 6551 year: 2007 end-page: 6556 ident: CR36 publication-title: Epiphysis and metaphysis extraction and classification by adaptive thresholding and DoG filtering for automated skeletal bone age analysis – volume: 37 start-page: 131 issue: 2 year: 2008 end-page: 134 ident: CR3 article-title: Effect of orthognathic surgery for class III correction on quality of life as measured by SF-36 publication-title: Int J Oral Maxillofac Surg doi: 10.1016/j.ijom.2007.07.024 – ident: CR23 – volume: 130 start-page: 622 issue: 5 year: 2006 end-page: 628 ident: CR25 article-title: Chronologic age and skeletal maturation of the cervical vertebrae and hand-wrist: is there a relationship? publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/j.ajodo.2005.01.031 – volume: 38 start-page: 179 issue: 3 year: 1980 end-page: 186 ident: CR8 article-title: Menarche and voice changes as indicators of the pubertal growth spurt publication-title: Acta Odontol Scand doi: 10.3109/00016358009004718 – volume: 67 start-page: 458 issue: 4 year: 1975 end-page: 459 ident: CR13 article-title: Skeletal age assessment utilizing cervical vertebrae publication-title: Am J Orthod doi: 10.1016/0002-9416(75)90038-X – volume: 609 start-page: 223 year: 2010 end-page: 239 ident: CR20 article-title: A user's guide to support vector machines publication-title: Methods Mol Biol doi: 10.1007/978-1-60327-241-4_13 – volume: 18 start-page: 341 issue: 8 year: 1991 end-page: 343 ident: CR15 article-title: Artificial intelligence in the dental surgery: an orthodontic expert system, a dental tool of tomorrow publication-title: Dent Update – volume: 149 start-page: 127 issue: 1 year: 2016 end-page: 133 ident: CR17 article-title: New approach for the diagnosis of extractions with neural network machine learning publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/j.ajodo.2015.07.030 – volume: 122 start-page: 380 issue: 4 year: 2002 end-page: 385 ident: CR26 article-title: Cervical vertebral bone age in girls publication-title: Am J Orthod Dentofac Orthop doi: 10.1067/mod.2002.126896 – volume: 21 start-page: 330 issue: 4 year: 2007 end-page: 335 ident: CR27 article-title: New formula to objectively evaluate skeletal maturation using lateral cephalometric radiographs publication-title: Braz Oral Res doi: 10.1590/S1806-83242007000400009 – volume: 137 start-page: 59 issue: 1 year: 2010 end-page: 65 ident: CR11 article-title: Effectiveness of the cervical vertebral maturation method to predict postpeak circumpubertal growth of craniofacial structures publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/j.ajodo.2008.01.018 – volume: 42 start-page: 400 issue: 1 year: 1963 end-page: 411 ident: CR4 article-title: Variations in the growth pattern of the human mandible: longitudinal radiographic study by the implant method publication-title: J Dent Res doi: 10.1177/00220345630420014701 – volume: 36 start-page: 44 issue: 1 year: 1966 end-page: 54 ident: CR5 article-title: The correlation of facial growth with body height and skeletal maturation at adolescence publication-title: Angle Orthod – volume: 136 start-page: 478.e1 year: 2009 end-page: 478.e7 ident: CR34 article-title: Cervical vertebrae maturation method: poor reproducibility publication-title: Am J Orthod Dentofac Orthop – volume: 38 start-page: 236 issue: 3 year: 2009 end-page: 240 ident: CR2 article-title: Changes in soft tissue profile after mandibular setback surgery in class III subjects publication-title: Int J Oral Maxillofac Surg doi: 10.1016/j.ijom.2008.12.005 – volume: 39 start-page: 653 issue: 7 year: 2010 end-page: 659 ident: CR10 article-title: Quantitative skeletal evaluation based on cervical vertebral maturation: a longitudinal study of adolescents with normal occlusion publication-title: Int J Oral Maxillofac Surg doi: 10.1016/j.ijom.2010.03.026 – volume: 19 start-page: 25 issue: 1 year: 2003 end-page: 32 ident: CR12 article-title: Cervical vertebral maturation as a predictor of the adolescent growth spurt publication-title: Aust Orthod J – volume: 24 start-page: 120 issue: 1 year: 2010 end-page: 126 ident: CR30 article-title: Computer assisted analysis of cervical vertebral bone age using cephalometric radiographs in Brazilian subjects publication-title: Braz Oral Res doi: 10.1590/S1806-83242010000100020 – volume: 107 start-page: 58 issue: 1 year: 1995 end-page: 66 ident: CR18 article-title: Skeletal maturation evaluation using cervical vertebrae publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/S0889-5406(95)70157-5 – volume: 4 start-page: 1 issue: 1 year: 2013 end-page: 5 ident: CR31 article-title: New model for cervical vertebral bone age estimation in boys publication-title: King Saud Univ J Dent Sci – volume: 82 start-page: 299 issue: 4 year: 1982 end-page: 309 ident: CR6 article-title: Maturation indicators and the pubertal growth spurt publication-title: Am J Orthod doi: 10.1016/0002-9416(82)90464-X – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: CR21 article-title: Support-vector networks publication-title: Mach Learn – volume: 118 start-page: 335 issue: 3 year: 2000 end-page: 340 ident: CR7 article-title: Mandibular growth as related to cervical vertebral maturation and body height publication-title: Am J Orthod Dentofac Orthop doi: 10.1067/mod.2000.107009 – volume: 74 start-page: 118 issue: 1 year: 2004 end-page: 124 ident: CR9 article-title: Use of skeletal maturation based on hand-wrist radiographic analysis as a predictor of facial growth: a systematic review publication-title: Angle Orthod – volume: 140 start-page: 182 year: 2011 end-page: 188 ident: CR33 article-title: Cervical vertebrae maturation method morphologic criteria: poor reproducibility publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/j.ajodo.2011.04.013 – volume: 83 start-page: 401 year: 2018 ident: 295_CR24 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.06.004 – volume: 19 start-page: 25 issue: 1 year: 2003 ident: 295_CR12 publication-title: Aust Orthod J – volume: 144 start-page: 838 issue: 6 year: 2013 ident: 295_CR32 publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/j.ajodo.2013.07.015 – volume: 78 start-page: 591 issue: 4 year: 2008 ident: 295_CR28 publication-title: Angle Orthod doi: 10.2319/0003-3219(2008)078[0591:CBCACV]2.0.CO;2 – start-page: 52,81,231 volume-title: Machine learning year: 1997 ident: 295_CR19 – start-page: 6551 volume-title: Epiphysis and metaphysis extraction and classification by adaptive thresholding and DoG filtering for automated skeletal bone age analysis year: 2007 ident: 295_CR36 – volume: 18 start-page: 341 issue: 8 year: 1991 ident: 295_CR15 publication-title: Dent Update – volume: 36 start-page: 44 issue: 1 year: 1966 ident: 295_CR5 publication-title: Angle Orthod – volume: 38 start-page: 179 issue: 3 year: 1980 ident: 295_CR8 publication-title: Acta Odontol Scand doi: 10.3109/00016358009004718 – volume: 140 start-page: 182 year: 2011 ident: 295_CR33 publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/j.ajodo.2011.04.013 – volume: 72 start-page: 316 issue: 4 year: 2002 ident: 295_CR1 publication-title: Angle Orthod – volume: 137 start-page: 59 issue: 1 year: 2010 ident: 295_CR11 publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/j.ajodo.2008.01.018 – volume: 130 start-page: 622 issue: 5 year: 2006 ident: 295_CR25 publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/j.ajodo.2005.01.031 – volume: 21 start-page: 330 issue: 4 year: 2007 ident: 295_CR27 publication-title: Braz Oral Res doi: 10.1590/S1806-83242007000400009 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 295_CR22 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 136 start-page: 478.e1 year: 2009 ident: 295_CR34 publication-title: Am J Orthod Dentofac Orthop – ident: 295_CR23 – volume: 122 start-page: 380 issue: 4 year: 2002 ident: 295_CR26 publication-title: Am J Orthod Dentofac Orthop doi: 10.1067/mod.2002.126896 – volume: 74 start-page: 118 issue: 1 year: 2004 ident: 295_CR9 publication-title: Angle Orthod – volume: 39 start-page: 653 issue: 7 year: 2010 ident: 295_CR10 publication-title: Int J Oral Maxillofac Surg doi: 10.1016/j.ijom.2010.03.026 – volume: 12 start-page: 153 issue: 1 year: 2001 ident: 295_CR14 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.896805 – volume: 4 start-page: 1 issue: 1 year: 2013 ident: 295_CR31 publication-title: King Saud Univ J Dent Sci – volume: 609 start-page: 223 year: 2010 ident: 295_CR20 publication-title: Methods Mol Biol doi: 10.1007/978-1-60327-241-4_13 – volume: 24 start-page: 120 issue: 1 year: 2010 ident: 295_CR30 publication-title: Braz Oral Res doi: 10.1590/S1806-83242010000100020 – volume: 67 start-page: 458 issue: 4 year: 1975 ident: 295_CR13 publication-title: Am J Orthod doi: 10.1016/0002-9416(75)90038-X – volume: 26 start-page: 305 issue: 4 year: 1998 ident: 295_CR16 publication-title: J Dent doi: 10.1016/S0300-5712(97)00027-4 – volume: 149 start-page: 127 issue: 1 year: 2016 ident: 295_CR17 publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/j.ajodo.2015.07.030 – volume: 20 start-page: 273 year: 1995 ident: 295_CR21 publication-title: Mach Learn – volume: 82 start-page: 299 issue: 4 year: 1982 ident: 295_CR6 publication-title: Am J Orthod doi: 10.1016/0002-9416(82)90464-X – volume: 32 start-page: 678 issue: 8 year: 2008 ident: 295_CR37 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2008.08.005 – volume: 16 start-page: 463 year: 2003 ident: 295_CR35 publication-title: Proc IPPR – volume: 3 start-page: 21 issue: 1 year: 2012 ident: 295_CR29 publication-title: King Saud Univ J Dent Sci – volume: 107 start-page: 58 issue: 1 year: 1995 ident: 295_CR18 publication-title: Am J Orthod Dentofac Orthop doi: 10.1016/S0889-5406(95)70157-5 – volume: 38 start-page: 236 issue: 3 year: 2009 ident: 295_CR2 publication-title: Int J Oral Maxillofac Surg doi: 10.1016/j.ijom.2008.12.005 – volume: 42 start-page: 400 issue: 1 year: 1963 ident: 295_CR4 publication-title: J Dent Res doi: 10.1177/00220345630420014701 – volume: 118 start-page: 335 issue: 3 year: 2000 ident: 295_CR7 publication-title: Am J Orthod Dentofac Orthop doi: 10.1067/mod.2000.107009 – volume: 37 start-page: 131 issue: 2 year: 2008 ident: 295_CR3 publication-title: Int J Oral Maxillofac Surg doi: 10.1016/j.ijom.2007.07.024  | 
    
| SSID | ssj0017940 | 
    
| Score | 2.4738917 | 
    
| Snippet | Background
Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has... BackgroundGrowth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has... Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the... Abstract Background Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Accuracy Algorithms Artificial intelligence Bayesian analysis Cervical vertebrae Classification Dentistry Developmental stages Growth and development Medicine Neural networks Orthodontics Radiography Vertebrae  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELbK9lA4IJ5qSkFG4kQVNXEcxz4gRKFVhcQKIVbqLfIru5WWZNvNCvV38IeZyWsbDkuOiZPYmRl7JjP-PkLescQW2kJ0ogRTEKBEUagj7sKMeaYFrDGy4Vj6NhWXM_71Kr3aI9N-LwyWVfZzYjNRu8riP_JT8ENSmHAzxj6ubkJkjcLsak-hoTtqBfehgRh7QPYZImNNyP7Z-fT7jyGvANrX5zZjKU7XHHUSwmkVRkyloRytTg2I_8jz_LduckiePiIHm3Kl737r5fLe-nTxhDzuHEv6qdWEp2TPl8_IwRcsBkI-t-fkzwxryKguHbUD-SCtCorK0-JI0Ot7AJ1UL-fwAerFrzUFz5a6vnAGRYn3zSGCrxfNA9229IiaO2qbCQieh2TPmJn2FJzQuV_DCygmiiAWLhEf-gWZXZz__HwZdpQMoRVc1CFTAgTLNbPOw6FSA_buuBYJL2QqdVS4GJkjtFcyzoyB6NNYY5XnuKFXs-QlmZRV6Q8J1VI6nhbCOxfz2ArjM-OUcXGsZRLZKCBRL4rcdnjlSJuxzJu4RYq8lV4O0stRerkMyPvhllUL1rGr8RnKd2iIONvNiep2nndmmyuPu3Mzy3SqOAxY28iBx4go-okohAnIca8deWf863yrqgF5O1wGs8VcjC59tWnbREoyBf3IRlo16tD4Snm9aADAhcSwlQfkpNe_7ct3jPdkUNH_f52j3QN7RR4ytBqsh0yPyaS-3fjX4J3V5k1ncn8B3WQ7Wg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKORQOiKdIKchInKgCieM49gEhXlWFVE6s1FvkV3ZXCknZzars7-APM5PXNqgqF_aY2Hl4vlnPaCbfR8grlthCW8hOlGAKEpQoCnXEXZgxz7SAPUa2Gktn38TpjH89T8_3yCBv1S_g-trUDvWkZqvyza-f2_fg8O9ah5fi7ZojsiApVmHEVBrKW-Q2bFQKlRzO-K6oANAbCpvXTptsTS2D_yTs_Ltpcqyc3iUHm-pCby91WV7ZnE7uk3t9VEk_dDB4QPZ89ZAcfMZOIBRze0R-z7CBjOrKUTsqD9K6oIicjkSCLq-wc1JdzuvVsln8WFMIa6kbumbQjjhvDul7s2gv6HZ9R9RsqW3_feB6qPSMZWlPIQKd-zXcgGKVCBLhCsmhH5PZyZfvn07DXo8htIKLJmRKgFW5ZtZ5-KnUgLM7rkXCC5lKHRUuRtkI7ZWMM2Mg9TTWWOU5fs2rWfKE7Fd15Z8SqqV0PC2Edy7msRXGZ8Yp4-JYyySyUUCiwRS57cnKUTOjzNukRYq8s14O1svRerkMyOtxykXH1HHT4I9o33Egkmy3B-rVPO99NlceP83NLNOp4vDC2kYOwkWk0E9EIUxAjgZ05ANwc4iXUwgMMsYC8nI8DT6LhRhd-XrTjYmUZAqeI5ugavJA0zPVctGyfwuJOSsPyPGAv93Nb3jf4xGi_16dw_-xOs_IHYa-hS2T6RHZb1Yb_xwCuMa8aN3yD5XXRMA priority: 102 providerName: Scholars Portal – databaseName: Springer Nature Open Access Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSBQOCAqIQEFG4kQV4TiOYx-hUFVI5cRKvVl-ZXelJVt1s6r6O_qHmcmrG4SKyDGxncfMZGb0jb8h5APPfWU9ZCdacg0JCmOpZSKkJY_cSvAxqu2xdPZDns7E9_PivCeLxr0wu_h9puSnjUCtgYRXp4zrIlX3yQPwUbLFZeXxCBiAWg2g5V-nTdxOy84_CSn_LIgcUdHHZH9bX9jrK7ta7Tiek6fkSR8x0s-diJ-Re7E-IPtfscoHG7UdkIdnPT7-nNzMsE6M2jpQPzYYpOuKooJ0XBF0uUPCSe1qvr5cNotfGwrRKw1DcQyKC-fNIUtvFu2C4ba8iLpr6tufDKyHDZ0RfY4UAs153MANKIJBkO_WyAH9gsxOvv08Pk37tgupl0I2KdcShCcs9yHCoQsHNh2ElbmoVKEsq0KG3SFs1CornYMM03nndRS4adfy_CXZq9d1fEWoVSqIopIxhExkXrpYuqBdyDKrcuZZQtggFeN7TnJsjbEybW6ipOkEaUCQBgVpVEI-jlMuOkKOuwZ_QVGPA5FLuz0BKmZ60zQ64g7c0nNbaAEvbD0LEBUiU34uK-kScjgoiukNfGMgLC7A_5ecJ-T9eBlME_EWW8f1thvDtOIanqOcKNjkgaZX6uWiJfmWClNTkZCjQRVvb37H-x6N2vrvr_P6v9Z-Qx5xtCcsgSwOyV5zuY1vISBr3LvWFH8DZE8wlw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagexg8cEcUBjIST0zpEsdx7cdxmSYkJh6oNJ4i39JWK0nVphrlb_CHOcdJs3ZCQ0jkMXGc2Pp8_B2d4-8Q8oalttAWvBMlmAIHJY4jHXMXDZlnWsAeI0ONpc9n4nTEP51n5-3JumUQ_6uCnzktMWwBnlmJasWDTZASS0oF-10vtL04mruiWfZSHC054gtcYxXFTGWRvE32RAYEvUf2Rmdfjr-Fo5EsBT4ZCnXCUhVghDhrY51_7GNntwqi_jtM9HoeZRdMvUv2V-Vcry_1bLa1X53cJ_XWSH-sBxeDVW0G9uc1Ecj_PBUPyL2W39LjBpAPyS1fPiL7HzAnCcvKPSa_RpjKRnXpqO1qINKqoIjhRs6CTrd0QqmejavFtJ58X1Ig2NRt8ncQUfjeeFFd1pPQobvKgKJmTW2wg9Af1pzGALmnwIXHfgkfoNujfUJGJx-_vj-N2soQkRVc1BFTAvDFNbPOw6UyA2bHcS1SXshM6rhwCRaw0F7JZGgMOMHGGqs8x3PFmqVPSa-sSv-MUC2l41khvHMJT6wwfmicMi5JtExjG_dJvEFAblvZdKzeMcuD-yRF3sx2DrOd42znsk_edq_MG82Qmxq_Q1h1DVHuO9yoFuO8tR658nhIeGiZzhSHAWsbOyCuKOafikKYPjnYgDJvbdAyB-aeAUUZMtYnr7vHYD0wJKRLX62aNrGSTMF_DHfAvPNDu0_K6STokAuJ3jPvk8MNJq8-fsN4D7uV8ffZef5PrV-QOwxBj1ma2QHp1YuVfwmcsTavWhvwGxAcagY priority: 102 providerName: Unpaywall  | 
    
| Title | Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics | 
    
| URI | https://link.springer.com/article/10.1186/s40510-019-0295-8 https://www.proquest.com/docview/2315413722 https://www.proquest.com/docview/2315098298 https://pubmed.ncbi.nlm.nih.gov/PMC6856254 https://progressinorthodontics.springeropen.com/track/pdf/10.1186/s40510-019-0295-8 https://doaj.org/article/9e00597c2a594eeeac0d562615036f6b  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 2196-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017940 issn: 2196-1042 databaseCode: RBZ dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2196-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017940 issn: 2196-1042 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017940 issn: 2196-1042 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2196-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017940 issn: 2196-1042 databaseCode: DIK dateStart: 20130101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2196-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017940 issn: 2196-1042 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2196-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017940 issn: 2196-1042 databaseCode: RPM dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2196-1042 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017940 issn: 2196-1042 databaseCode: M48 dateStart: 20130601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2196-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017940 issn: 2196-1042 databaseCode: AAJSJ dateStart: 20131201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals customDbUrl: eissn: 2196-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017940 issn: 2196-1042 databaseCode: C6C dateStart: 20131201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 2196-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017940 issn: 2196-1042 databaseCode: C24 dateStart: 20131201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF7a9JD2UPqkalOzhZ4aRFbr1Wr3GLsJoRATQg1uL2Jfsg2uHGKbkN-RP9wZvWL3kFx6WZC0klY73-zOMKNvCPnK-64wDrwTLbkGB4Wx2DDh44wHbiTsMaqqsXQ-kmdj8WOSTrZKfWFOWE0PXE_ckQ74f2TmuEm1CAHWCeZhz0Ye874spMXVlyndOlNN_ABQ1sYwEyWPVgKxB26zjhnXaax2dqGKrH_Hwvw3P7ILkr4g-5vyytzemMViax86fUVeNgYkPa4H_po8CeUbsv8dk36wbttbcjfGXDFqSk9dV2SQLguK31rzRdD5FhEnNYvp8nq-nv1ZUbBgqW8TZFBkeN8UPPX1rHqgv08xovaWumqhgedhUWeMQAcKxuY0rOAFFANC4POWyAP9joxPT34Oz-Km9ELspJDrmGsJAhSGOw9zHnRqQa-9MLIvCpUqwwqfYIUIE7RKMmvBy7TOOh0E_rhreP892SuXZfhAqFHKi7SQwftEJE7akFmvrU8So_rMsYiwVhS5a3jJsTzGIq_8EyXzWno5SC9H6eUqIt-6W65qUo6HOg9Qvl1H5NOuTgDK8gZl-WMoi8hBi468UfJVDqZxCjZAxnlEvnSXQT0x5mLKsNzUfZhWXMM4sh1U7Qxo90o5n1VE31Kheyoictji7_7lD3zvYQfRx2fn4_-YnU_kOUfdwuzI9IDsra834TPYamvbI0-zSdYjzwYno4tLOBpyga0c9iqFhfZcKGgvB7-h13h0cfzrL_TjROo | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELem7aHwgPgrOgYYCV6YoiWu49gPE2JsU8e2CqFV2ptxbKedVJLSP5r6Ofg-fDbu0iRdeShPy2PiJHbufL7LnX8_Qt6zjs2MhehECaYgQAnDwITcBQnzzAhYY2TJsXTZE90-_3odX2-RP_VeGCyrrG1iaahdYfEf-QH4ITEY3ISxT-NfAbJGYXa1ptAwFbWCOywhxqqNHed-cQsh3PTw7Bjk_YGx05OrL92gYhkIrOBiFjAloK_cMOs8HCpOQYUdN6LDMxlLE2YuQjIE45WMkjSFgCq1qVWe4x5Vg8AHsATs8A5XEPztHJ30vn1v8hig7XUuNZLiYMpxDkD4roKQqTiQa6thSRqw5un-W6fZJGsfktY8H5vFrRmN7qyHp4_Jo8qRpZ-XmveEbPn8KWkdY_ER8sc9I7_7WLNGTe6obcgOaZFRVNYlbgW9uQMISs1oAB98Nvw5peBJU1cX6qDq4H2DSXE7G5YPdKtSJ5ouqC0NHjwPyaUxE-4pOL0DP4UXUExMQeydIx71c9K_F-G8INt5kfuXhBopHY8z4Z2LeGRF6pPUqdRFkZGd0IZtEtai0LbCR0eajpEu4yQp9FJ6GqSnUXpatsnH5pbxEhxkU-MjlG_TEHG9yxPFZKArM6GVx93AiWUmVhwGbGzowENF1P6OyETaJnu1dujK2Ez1amq0ybvmMpgJzP2Y3BfzZZtQSaagH8maVq11aP1KfjMsAceFxDCZt8l-rX-rl28Y736jov__OrubB_aWtLpXlxf64qx3_oo8YDiDsBYz3iPbs8ncvwbPcJa-qaYfJT_ue8b_BdWweHo | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWi8TCAfEUgQWMBBdWURPHcewDQkCpdllYcaBSb8GxnXalkpQ-VPV38G_4dczk1S2HctocEyexM5_HM5nxfIS8YpHJtQHvRAmmwEEJAl8H3PoJc0wLWGNkxbH09UKcDvnnUTw6IH_avTCYVtnqxEpR29LgP_Ie2CExKNyEsV7epEV86w_ezX75yCCFkdaWTqOGyLnbrMF9W7w964OsXzM2-PT946nfMAz4RnCx9JkS0E-umbEODhVnAF_LtYh4LmOpg9yGSISgnZJhkmXgTGUmM8px3J-qsegBqP8bSRQpTCdMRp2zhzhvo6ihFL0FR_SD4678gKnYlzvrYEUXsGPj_puh2YVpb5OjVTHTm7WeTq-shIO75E5jwtL3NebukQNX3CdHfUw7Qua4B-T3ELPVqC4sNR3NIS1zijCtK1bQyyulQKmejuHzLic_FxRsaGrbFB0EDd43npfr5aR6oN0mOdFsQ02l6uB5SCuNMXBHwdwduwW8gGJICrzuAitRPyTDaxHNI3JYlIV7TKiW0vI4F87akIdGZC7JrMpsGGoZBSbwSNCKIjVNZXQk6JimlYckRVpLLwXppSi9VHrkTXfLrC4Lsq_xB5Rv1xArelcnyvk4bRREqhzuA04M07HiMGBtAgu2Kdbrj0QuMo8ct-hIGzWzSLeTwiMvu8ugIDDqowtXruo2gZJMQT-SHVTtdGj3SnE5qUqNC4kOMvfISYu_7cv3jPekg-j_v86T_QN7QW7CPE-_nF2cPyW3GE4gTMKMj8nhcr5yz8AkXGbPq7lHyY_rnux_AZWqdhQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagexg8cEcUBjIST0zpEsdx7cdxmSYkJh6oNJ4i39JWK0nVphrlb_CHOcdJs3ZCQ0jkMXGc2Pp8_B2d4-8Q8oalttAWvBMlmAIHJY4jHXMXDZlnWsAeI0ONpc9n4nTEP51n5-3JumUQ_6uCnzktMWwBnlmJasWDTZASS0oF-10vtL04mruiWfZSHC054gtcYxXFTGWRvE32RAYEvUf2Rmdfjr-Fo5EsBT4ZCnXCUhVghDhrY51_7GNntwqi_jtM9HoeZRdMvUv2V-Vcry_1bLa1X53cJ_XWSH-sBxeDVW0G9uc1Ecj_PBUPyL2W39LjBpAPyS1fPiL7HzAnCcvKPSa_RpjKRnXpqO1qINKqoIjhRs6CTrd0QqmejavFtJ58X1Ig2NRt8ncQUfjeeFFd1pPQobvKgKJmTW2wg9Af1pzGALmnwIXHfgkfoNujfUJGJx-_vj-N2soQkRVc1BFTAvDFNbPOw6UyA2bHcS1SXshM6rhwCRaw0F7JZGgMOMHGGqs8x3PFmqVPSa-sSv-MUC2l41khvHMJT6wwfmicMi5JtExjG_dJvEFAblvZdKzeMcuD-yRF3sx2DrOd42znsk_edq_MG82Qmxq_Q1h1DVHuO9yoFuO8tR658nhIeGiZzhSHAWsbOyCuKOafikKYPjnYgDJvbdAyB-aeAUUZMtYnr7vHYD0wJKRLX62aNrGSTMF_DHfAvPNDu0_K6STokAuJ3jPvk8MNJq8-fsN4D7uV8ffZef5PrV-QOwxBj1ma2QHp1YuVfwmcsTavWhvwGxAcagY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Usage+and+comparison+of+artificial+intelligence+algorithms+for+determination+of+growth+and+development+by+cervical+vertebrae+stages+in+orthodontics&rft.jtitle=Progress+in+orthodontics&rft.au=Hatice+K%C3%B6k&rft.au=Ayse+Merve+Acilar&rft.au=Mehmet+Said+%C4%B0zgi&rft.date=2019-11-15&rft.pub=SpringerOpen&rft.eissn=2196-1042&rft.volume=20&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1186%2Fs40510-019-0295-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9e00597c2a594eeeac0d562615036f6b | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1042&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1042&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1042&client=summon |