Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics

Background Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In t...

Full description

Saved in:
Bibliographic Details
Published inProgress in orthodontics Vol. 20; no. 1; pp. 1 - 10
Main Authors Kök, Hatice, Acilar, Ayse Merve, İzgi, Mehmet Said
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 15.11.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2196-1042
1723-7785
2196-1042
DOI10.1186/s40510-019-0295-8

Cover

Abstract Background Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In this study, we aimed to determine cervical vertebrae stages (CVS) for growth and development periods by the frequently used seven artificial intelligence classifiers, and to compare the performance of these algorithms with each other. Methods Cephalometric radiographs, that were obtained from 300 individuals aged between 8 and 17 years were included in our study. Nineteen reference points were defined on second, third, and 4th cervical vertebrae, and 20 different linear measurements were taken. Seven algorithms of artificial intelligence that are frequently used in the field of classification were selected and compared. These algorithms are k-nearest neighbors (k-NN), Naive Bayes (NB), decision tree (Tree), artificial neural networks (ANN), support vector machine (SVM), random forest (RF), and logistic regression (Log.Regr.) algorithms. Results According to confusion matrices decision tree, CSV1 (97.1%)–CSV2 (90.5%), SVM: CVS3 (73.2%)–CVS4 (58.5%), and kNN: CVS 5 (60.9%)–CVS 6 (78.7%) were the algorithms with the highest accuracy in determining cervical vertebrae stages. The ANN algorithm was observed to have the second-highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in determining all stages except CVS5 (47.4% third highest accuracy value). According to the average rank of the algorithms in predicting the CSV classes, ANN was the most stable algorithm with its 2.17 average rank. Conclusion In our experimental study, kNN and Log.Regr. algorithms had the lowest accuracy values. SVM-RF-Tree and NB algorithms had varying accuracy values. ANN could be the preferred method for determining CVS.
AbstractList Abstract Background Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In this study, we aimed to determine cervical vertebrae stages (CVS) for growth and development periods by the frequently used seven artificial intelligence classifiers, and to compare the performance of these algorithms with each other. Methods Cephalometric radiographs, that were obtained from 300 individuals aged between 8 and 17 years were included in our study. Nineteen reference points were defined on second, third, and 4th cervical vertebrae, and 20 different linear measurements were taken. Seven algorithms of artificial intelligence that are frequently used in the field of classification were selected and compared. These algorithms are k-nearest neighbors (k-NN), Naive Bayes (NB), decision tree (Tree), artificial neural networks (ANN), support vector machine (SVM), random forest (RF), and logistic regression (Log.Regr.) algorithms. Results According to confusion matrices decision tree, CSV1 (97.1%)–CSV2 (90.5%), SVM: CVS3 (73.2%)–CVS4 (58.5%), and kNN: CVS 5 (60.9%)–CVS 6 (78.7%) were the algorithms with the highest accuracy in determining cervical vertebrae stages. The ANN algorithm was observed to have the second-highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in determining all stages except CVS5 (47.4% third highest accuracy value). According to the average rank of the algorithms in predicting the CSV classes, ANN was the most stable algorithm with its 2.17 average rank. Conclusion In our experimental study, kNN and Log.Regr. algorithms had the lowest accuracy values. SVM-RF-Tree and NB algorithms had varying accuracy values. ANN could be the preferred method for determining CVS.
Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In this study, we aimed to determine cervical vertebrae stages (CVS) for growth and development periods by the frequently used seven artificial intelligence classifiers, and to compare the performance of these algorithms with each other.BACKGROUNDGrowth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In this study, we aimed to determine cervical vertebrae stages (CVS) for growth and development periods by the frequently used seven artificial intelligence classifiers, and to compare the performance of these algorithms with each other.Cephalometric radiographs, that were obtained from 300 individuals aged between 8 and 17 years were included in our study. Nineteen reference points were defined on second, third, and 4th cervical vertebrae, and 20 different linear measurements were taken. Seven algorithms of artificial intelligence that are frequently used in the field of classification were selected and compared. These algorithms are k-nearest neighbors (k-NN), Naive Bayes (NB), decision tree (Tree), artificial neural networks (ANN), support vector machine (SVM), random forest (RF), and logistic regression (Log.Regr.) algorithms.METHODSCephalometric radiographs, that were obtained from 300 individuals aged between 8 and 17 years were included in our study. Nineteen reference points were defined on second, third, and 4th cervical vertebrae, and 20 different linear measurements were taken. Seven algorithms of artificial intelligence that are frequently used in the field of classification were selected and compared. These algorithms are k-nearest neighbors (k-NN), Naive Bayes (NB), decision tree (Tree), artificial neural networks (ANN), support vector machine (SVM), random forest (RF), and logistic regression (Log.Regr.) algorithms.According to confusion matrices decision tree, CSV1 (97.1%)-CSV2 (90.5%), SVM: CVS3 (73.2%)-CVS4 (58.5%), and kNN: CVS 5 (60.9%)-CVS 6 (78.7%) were the algorithms with the highest accuracy in determining cervical vertebrae stages. The ANN algorithm was observed to have the second-highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in determining all stages except CVS5 (47.4% third highest accuracy value). According to the average rank of the algorithms in predicting the CSV classes, ANN was the most stable algorithm with its 2.17 average rank.RESULTSAccording to confusion matrices decision tree, CSV1 (97.1%)-CSV2 (90.5%), SVM: CVS3 (73.2%)-CVS4 (58.5%), and kNN: CVS 5 (60.9%)-CVS 6 (78.7%) were the algorithms with the highest accuracy in determining cervical vertebrae stages. The ANN algorithm was observed to have the second-highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in determining all stages except CVS5 (47.4% third highest accuracy value). According to the average rank of the algorithms in predicting the CSV classes, ANN was the most stable algorithm with its 2.17 average rank.In our experimental study, kNN and Log.Regr. algorithms had the lowest accuracy values. SVM-RF-Tree and NB algorithms had varying accuracy values. ANN could be the preferred method for determining CVS.CONCLUSIONIn our experimental study, kNN and Log.Regr. algorithms had the lowest accuracy values. SVM-RF-Tree and NB algorithms had varying accuracy values. ANN could be the preferred method for determining CVS.
Background Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In this study, we aimed to determine cervical vertebrae stages (CVS) for growth and development periods by the frequently used seven artificial intelligence classifiers, and to compare the performance of these algorithms with each other. Methods Cephalometric radiographs, that were obtained from 300 individuals aged between 8 and 17 years were included in our study. Nineteen reference points were defined on second, third, and 4th cervical vertebrae, and 20 different linear measurements were taken. Seven algorithms of artificial intelligence that are frequently used in the field of classification were selected and compared. These algorithms are k-nearest neighbors (k-NN), Naive Bayes (NB), decision tree (Tree), artificial neural networks (ANN), support vector machine (SVM), random forest (RF), and logistic regression (Log.Regr.) algorithms. Results According to confusion matrices decision tree, CSV1 (97.1%)–CSV2 (90.5%), SVM: CVS3 (73.2%)–CVS4 (58.5%), and kNN: CVS 5 (60.9%)–CVS 6 (78.7%) were the algorithms with the highest accuracy in determining cervical vertebrae stages. The ANN algorithm was observed to have the second-highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in determining all stages except CVS5 (47.4% third highest accuracy value). According to the average rank of the algorithms in predicting the CSV classes, ANN was the most stable algorithm with its 2.17 average rank. Conclusion In our experimental study, kNN and Log.Regr. algorithms had the lowest accuracy values. SVM-RF-Tree and NB algorithms had varying accuracy values. ANN could be the preferred method for determining CVS.
BackgroundGrowth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the ability to perform a variety of activities, such as prediction-classification in many areas of life, by using different algorithms, In this study, we aimed to determine cervical vertebrae stages (CVS) for growth and development periods by the frequently used seven artificial intelligence classifiers, and to compare the performance of these algorithms with each other.MethodsCephalometric radiographs, that were obtained from 300 individuals aged between 8 and 17 years were included in our study. Nineteen reference points were defined on second, third, and 4th cervical vertebrae, and 20 different linear measurements were taken. Seven algorithms of artificial intelligence that are frequently used in the field of classification were selected and compared. These algorithms are k-nearest neighbors (k-NN), Naive Bayes (NB), decision tree (Tree), artificial neural networks (ANN), support vector machine (SVM), random forest (RF), and logistic regression (Log.Regr.) algorithms.ResultsAccording to confusion matrices decision tree, CSV1 (97.1%)–CSV2 (90.5%), SVM: CVS3 (73.2%)–CVS4 (58.5%), and kNN: CVS 5 (60.9%)–CVS 6 (78.7%) were the algorithms with the highest accuracy in determining cervical vertebrae stages. The ANN algorithm was observed to have the second-highest accuracy values (93%, 89.7%, 68.8%, 55.6%, and 78%, respectively) in determining all stages except CVS5 (47.4% third highest accuracy value). According to the average rank of the algorithms in predicting the CSV classes, ANN was the most stable algorithm with its 2.17 average rank.ConclusionIn our experimental study, kNN and Log.Regr. algorithms had the lowest accuracy values. SVM-RF-Tree and NB algorithms had varying accuracy values. ANN could be the preferred method for determining CVS.
ArticleNumber 41
Author Kök, Hatice
Acilar, Ayse Merve
İzgi, Mehmet Said
Author_xml – sequence: 1
  givenname: Hatice
  orcidid: 0000-0002-5874-9474
  surname: Kök
  fullname: Kök, Hatice
  email: hatice.kok@selcuk.edu.tr
  organization: Faculty of Dentistry, Department of Orthodontics, Selçuk University [SÜ]
– sequence: 2
  givenname: Ayse Merve
  surname: Acilar
  fullname: Acilar, Ayse Merve
  organization: Engineering and Architecture Faculty, Department of Computer Engineering, Necmettin Erbakan University [NEÜ]
– sequence: 3
  givenname: Mehmet Said
  surname: İzgi
  fullname: İzgi, Mehmet Said
  organization: Private Practice
BookMark eNqNUcuOFCEUrZgxzkM_wB2JGzelQAEFGxMz8THJJG6cNaGoW9V0qqAFuif9HfPD0l0ddSbRyAYC53E557I688FDVb0m-B0hUrxPDHOCa0xUjanitXxWXVCiRE0wo2d_nM-ry5TWGJNWMfyiOm9IS2Xbiovq4S6ZEZDxPbJh3pjoUvAoDMjE7AZnnZmQ8xmmyY3gbUFOY4gur-aEhhBRDxni7LzJbuGNMdzn1VGwhx1MYTODz6jbIwtx52zR20HM0EUDKOVinooBCjGvQh98dja9rJ4PZkrw6rRfVXefP32__lrffvtyc_3xtraCiVxTJWwrmaG2h7IU72SLe2ZEwwbJpcFDTzDBjQElSdt1nKnOdlYBoxRzQ5ur6mbR7YNZ6010s4l7HYzTx4sQR31IwU6gFWDMVWup4YoVM2NxzwUVhONGDKIrWnTR2vqN2d-bafolSLA-tKWXtnRpSx_a0rKQPiykzbabobclqGimR5M8fvFupcew00IWc86KwNuTQAw_tpCynl2ypSzjIWyTpk0ZUEmqDl5vnkDXYRt9yfeIYqRp6SGSdkHZGFKKMGjr8rHb4u-mf_6FPGH-z_9PoaWC9SPE3zP9nfQTOlLtiw
CitedBy_id crossref_primary_10_12677_ACM_2022_127974
crossref_primary_10_1016_j_jds_2020_05_022
crossref_primary_10_1007_s00056_023_00459_1
crossref_primary_10_35339_ekm_2023_92_4_kuk
crossref_primary_10_1016_j_identj_2024_11_009
crossref_primary_10_1016_j_jormas_2023_101524
crossref_primary_10_3390_app13063850
crossref_primary_10_3390_diagnostics11122200
crossref_primary_10_3390_app122211864
crossref_primary_10_4103_jpbs_jpbs_1341_24
crossref_primary_10_1111_ocr_12492
crossref_primary_10_25259_APOS_73_2024
crossref_primary_10_3390_jcm13144047
crossref_primary_10_1016_j_ejwf_2023_10_001
crossref_primary_10_3390_bioengineering11121267
crossref_primary_10_1007_s11548_021_02550_7
crossref_primary_10_1055_a_1993_2371
crossref_primary_10_1016_j_jdent_2024_105442
crossref_primary_10_3390_jimaging10110278
crossref_primary_10_1371_journal_pone_0269198
crossref_primary_10_1111_ocr_12764
crossref_primary_10_1016_j_jdent_2023_104727
crossref_primary_10_3390_diagnostics13243677
crossref_primary_10_1016_j_jebdp_2023_101928
crossref_primary_10_1109_JBHI_2022_3179619
crossref_primary_10_3390_diagnostics13162640
crossref_primary_10_4321_s0213_12852022000400005
crossref_primary_10_3390_jcm10225400
crossref_primary_10_2319_032923_225_1
crossref_primary_10_3390_jcm10163591
crossref_primary_10_1007_s11517_023_02919_7
crossref_primary_10_1177_03015742241240607
crossref_primary_10_1007_s13246_024_01432_x
crossref_primary_10_1038_s41598_024_60410_1
crossref_primary_10_4103_ijdr_ijdr_955_21
crossref_primary_10_3390_healthcare10112188
crossref_primary_10_7759_cureus_62045
crossref_primary_10_3390_diagnostics15030257
crossref_primary_10_53064_jrad_2023_14_1_310
crossref_primary_10_31616_asj_2020_0147
crossref_primary_10_3390_healthcare11202760
crossref_primary_10_1016_j_jds_2020_06_019
crossref_primary_10_1007_s11282_023_00678_7
crossref_primary_10_1038_s41598_022_13595_2
crossref_primary_10_15311_selcukdentj_1032041
crossref_primary_10_1016_j_jobcr_2023_08_005
crossref_primary_10_1016_j_procs_2022_10_134
crossref_primary_10_25259_APOS_60_2021
crossref_primary_10_1016_j_sdentj_2023_05_014
crossref_primary_10_2319_031022_210_1
crossref_primary_10_1016_j_bas_2022_101666
crossref_primary_10_1016_j_ajodo_2021_02_013
crossref_primary_10_1016_j_sdentj_2024_03_008
crossref_primary_10_1111_ocr_12615
crossref_primary_10_1177_0022034520969115
crossref_primary_10_1186_s40510_024_00523_5
crossref_primary_10_1186_s40510_024_00527_1
crossref_primary_10_3390_app11073160
crossref_primary_10_5005_jp_journals_10005_2971
crossref_primary_10_1186_s40510_021_00361_9
crossref_primary_10_3390_diagnostics14242804
crossref_primary_10_4041_kjod_2022_52_2_112
crossref_primary_10_14260_jemds_2021_431
crossref_primary_10_5662_wjm_v15_i3_100598
crossref_primary_10_3390_app13169114
crossref_primary_10_51754_cusbed_1058830
crossref_primary_10_1111_ocr_12443
crossref_primary_10_1016_j_heliyon_2024_e35742
crossref_primary_10_1186_s12903_023_03266_7
crossref_primary_10_3390_fractalfract9030148
crossref_primary_10_1016_j_jds_2023_05_001
crossref_primary_10_3390_diagnostics13121995
crossref_primary_10_33262_anatomiadigital_v6i1_2_2515
crossref_primary_10_36283_ziun_pjmd13_4_021
crossref_primary_10_1186_s12903_025_05482_9
crossref_primary_10_1111_ocr_12517
crossref_primary_10_4041_kjod21_255
crossref_primary_10_1080_19424396_2023_2202444
crossref_primary_10_7717_peerj_11451
crossref_primary_10_3390_diagnostics13132134
crossref_primary_10_3390_healthcare12131311
crossref_primary_10_1186_s12903_023_03844_9
crossref_primary_10_1111_adj_12812
crossref_primary_10_1111_ocr_12514
crossref_primary_10_1111_ocr_12634
crossref_primary_10_7126_cumudj_991480
crossref_primary_10_54527_jdir_2020_39_4_48
crossref_primary_10_7759_cureus_38711
crossref_primary_10_3390_jcm14030778
crossref_primary_10_3390_jcm13020344
crossref_primary_10_1186_s40510_024_00535_1
crossref_primary_10_3390_bioengineering11050431
crossref_primary_10_3390_jpm11010032
crossref_primary_10_1109_MITP_2020_3001238
crossref_primary_10_3390_dj11010001
crossref_primary_10_1007_s00056_023_00510_1
crossref_primary_10_1016_j_dental_2023_03_006
crossref_primary_10_1111_ocr_12501
crossref_primary_10_3390_computers11110154
crossref_primary_10_1016_j_jjimei_2022_100144
crossref_primary_10_1111_ocr_12584
crossref_primary_10_1186_s40510_020_00338_0
Cites_doi 10.1023/A:1010933404324
10.1016/j.patcog.2018.06.004
10.1016/j.compmedimag.2008.08.005
10.2319/0003-3219(2008)078[0591:CBCACV]2.0.CO;2
10.1016/S0300-5712(97)00027-4
10.1109/72.896805
10.1016/j.ajodo.2013.07.015
10.1016/j.ijom.2007.07.024
10.1016/j.ajodo.2005.01.031
10.3109/00016358009004718
10.1016/0002-9416(75)90038-X
10.1007/978-1-60327-241-4_13
10.1016/j.ajodo.2015.07.030
10.1067/mod.2002.126896
10.1590/S1806-83242007000400009
10.1016/j.ajodo.2008.01.018
10.1177/00220345630420014701
10.1016/j.ijom.2008.12.005
10.1016/j.ijom.2010.03.026
10.1590/S1806-83242010000100020
10.1016/S0889-5406(95)70157-5
10.1016/0002-9416(82)90464-X
10.1067/mod.2000.107009
10.1016/j.ajodo.2011.04.013
ContentType Journal Article
Copyright The Author(s). 2019
Progress in Orthodontics is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: Progress in Orthodontics is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s40510-019-0295-8
DatabaseName Springer Nature Open Access Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

ProQuest Central Student
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Dentistry
EISSN 2196-1042
EndPage 10
ExternalDocumentID oai_doaj_org_article_9e00597c2a594eeeac0d562615036f6b
10.1186/s40510-019-0295-8
PMC6856254
10_1186_s40510_019_0295_8
GroupedDBID ---
-A0
0R~
123
1B1
1OC
34H
3V.
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABUWG
ACACY
ACGFS
ACGOD
ACPRK
ACULB
ADBBV
ADFRT
ADINQ
ADRAZ
AFGXO
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ASPBG
AVWKF
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BPHCQ
BVXVI
C24
C6C
CCPQU
CS3
DIK
DWQXO
EBS
EJD
F5P
FDB
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
IPNFZ
ITC
KQ8
LK8
M1P
M2P
M41
M48
M7P
O9-
OK1
PGMZT
PQQKQ
PROAC
PSQYO
RBZ
RNS
RPM
RSV
SEL
SOJ
UKHRP
XH2
YFH
YUY
AASML
AAYXX
CITATION
EBLON
PUEGO
7XB
8FK
K9.
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
--K
31~
4.4
8-1
AAEDT
AALRI
AAXUO
ACXQS
ADTOC
AFZJQ
AHSBF
AITUG
AJAOE
AZFZN
BFHJK
CAG
COF
HZ~
RIG
ROL
SES
UNPAY
ID FETCH-LOGICAL-c646t-296c784a2cdeeee95b870d4a634f858a0fd10103ae9817bb549bcbc9e42205a23
IEDL.DBID DOA
ISSN 2196-1042
1723-7785
IngestDate Tue Oct 14 18:46:53 EDT 2025
Sun Oct 26 03:32:49 EDT 2025
Tue Sep 30 16:44:04 EDT 2025
Thu Oct 02 11:43:07 EDT 2025
Sat Oct 18 22:45:00 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Wed Oct 01 05:05:25 EDT 2025
Fri Feb 21 02:29:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Growth and development
Algorithms
Artificial intelligence
Cervical vertebrae
Orthodontics
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c646t-296c784a2cdeeee95b870d4a634f858a0fd10103ae9817bb549bcbc9e42205a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5874-9474
OpenAccessLink https://doaj.org/article/9e00597c2a594eeeac0d562615036f6b
PMID 31728776
PQID 2315413722
PQPubID 2034673
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_9e00597c2a594eeeac0d562615036f6b
unpaywall_primary_10_1186_s40510_019_0295_8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6856254
proquest_miscellaneous_2315098298
proquest_journals_2315413722
crossref_citationtrail_10_1186_s40510_019_0295_8
crossref_primary_10_1186_s40510_019_0295_8
springer_journals_10_1186_s40510_019_0295_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191115
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 20191115
  day: 15
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Progress in orthodontics
PublicationTitleAbbrev Prog Orthod
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Chen, Liu, Xu, Long, Lin (CR10) 2010; 39
Marsan, Oztas, Kuvat (CR2) 2009; 38
Caldas, Ambrosano, Haiter (CR27) 2007; 21
Franchi, Baccetti, McNamara (CR7) 2000; 118
Flores-Mir, Nebbe, Major (CR9) 2004; 74
Yang, Loog (CR24) 2018; 83
Jung, Kim (CR17) 2016; 149
Hagg, Taranger (CR8) 1980; 38
Nestman, Marshall, Qian, Holton, Franciscus, Southard (CR33) 2011; 140
Liu, Qi, Liu, Ning, Luo (CR37) 2008; 32
Hassel, Farman (CR18) 1995; 107
Gabriel, Southard, Qian, Marshall, Franciscus, Southard (CR34) 2009; 136
Fudalej, Bollen (CR11) 2010; 137
Alkhal, Wong, Rabie (CR28) 2008; 78
Giordano, Leonardi, Maiorana, Scarciofalo, Spampinato (CR36) 2007
Ben-Hur, Weston (CR20) 2010; 609
Hunter (CR5) 1966; 36
Alhadlaq, Al-Maflehi (CR31) 2013; 4
Breiman (CR22) 2001; 45
Mitchell (CR19) 1997
Lamparski (CR13) 1975; 67
Cortes, Vapnik (CR21) 1995; 20
Beit, Peltomaki, Schätzle, Signorelli, Patcas (CR32) 2013; 144
Mackin, Sims-Williams, Stephens (CR15) 1991; 18
CR23
Su, Chang (CR14) 2001; 12
Hagg, Taranger (CR6) 1982; 82
Mito, Sato, Mitani (CR26) 2002; 122
Baccetti, Franchi, McNamara (CR1) 2002; 72
Uysal, Ramoglu, Basciftci, Sari (CR25) 2006; 130
Caldas, Ambrosano, Haiter Neto (CR30) 2010; 24
Chang, Hsieh, Jong, Tiu (CR35) 2003; 16
Brickley, Shepherd, Armstrong (CR16) 1998; 26
Baidas (CR29) 2012; 3
Björk (CR4) 1963; 42
Nicodemo, Pereira, Ferreira (CR3) 2008; 37
Grave, Townsend (CR12) 2003; 19
A Ben-Hur (295_CR20) 2010; 609
L Breiman (295_CR22) 2001; 45
U Hagg (295_CR6) 1982; 82
L Franchi (295_CR7) 2000; 118
295_CR23
J Liu (295_CR37) 2008; 32
C Flores-Mir (295_CR9) 2004; 74
TM Mitchell (295_CR19) 1997
A Björk (295_CR4) 1963; 42
D Giordano (295_CR36) 2007
N Mackin (295_CR15) 1991; 18
L Baidas (295_CR29) 2012; 3
L Chen (295_CR10) 2010; 39
C Cortes (295_CR21) 1995; 20
G Marsan (295_CR2) 2009; 38
AM Alhadlaq (295_CR31) 2013; 4
P Beit (295_CR32) 2013; 144
T Uysal (295_CR25) 2006; 130
U Hagg (295_CR8) 1980; 38
MR Brickley (295_CR16) 1998; 26
CJ Hunter (295_CR5) 1966; 36
MC Su (295_CR14) 2001; 12
MDP Caldas (295_CR27) 2007; 21
B Hassel (295_CR18) 1995; 107
Y Yang (295_CR24) 2018; 83
TS Nestman (295_CR33) 2011; 140
SK Jung (295_CR17) 2016; 149
D Nicodemo (295_CR3) 2008; 37
K Grave (295_CR12) 2003; 19
MDP Caldas (295_CR30) 2010; 24
CH Chang (295_CR35) 2003; 16
T Mito (295_CR26) 2002; 122
T Baccetti (295_CR1) 2002; 72
DG Lamparski (295_CR13) 1975; 67
HA Alkhal (295_CR28) 2008; 78
P Fudalej (295_CR11) 2010; 137
DB Gabriel (295_CR34) 2009; 136
References_xml – volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR22
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 72
  start-page: 316
  issue: 4
  year: 2002
  end-page: 323
  ident: CR1
  article-title: An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth
  publication-title: Angle Orthod
– volume: 83
  start-page: 401
  year: 2018
  end-page: 415
  ident: CR24
  article-title: A benchmark and comparison of active learning for logistic regression
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.06.004
– volume: 3
  start-page: 21
  issue: 1
  year: 2012
  end-page: 26
  ident: CR29
  article-title: Correlation between cervical vertebrae morphology and chronological age in Saudi adolescents
  publication-title: King Saud Univ J Dent Sci
– volume: 32
  start-page: 678
  issue: 8
  year: 2008
  end-page: 684
  ident: CR37
  article-title: Automatic bone age assessment based on intelligent algorithms and comparison with TW3 method
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2008.08.005
– start-page: 52,81,231
  year: 1997
  ident: CR19
  publication-title: Machine learning
– volume: 78
  start-page: 591
  issue: 4
  year: 2008
  end-page: 596
  ident: CR28
  article-title: Correlation between chronological age, cervical vertebral maturation and Fishman’s skeletal maturity indicators in southern Chinese
  publication-title: Angle Orthod
  doi: 10.2319/0003-3219(2008)078[0591:CBCACV]2.0.CO;2
– volume: 26
  start-page: 305
  issue: 4
  year: 1998
  end-page: 309
  ident: CR16
  article-title: Neural networks: a new technique for development of decision support systems in dentistry
  publication-title: J Dent
  doi: 10.1016/S0300-5712(97)00027-4
– volume: 12
  start-page: 153
  issue: 1
  year: 2001
  end-page: 158
  ident: CR14
  article-title: A new model of self-organizing neural networks and its application in data projection
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.896805
– volume: 144
  start-page: 838
  issue: 6
  year: 2013
  end-page: 847
  ident: CR32
  article-title: Evaluating the agreement of skeletal age assessment based on hand–wrist and cervical vertebrae radiography
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1016/j.ajodo.2013.07.015
– volume: 16
  start-page: 463
  year: 2003
  end-page: 468
  ident: CR35
  article-title: A fully automatic computerized bone age assessment procedure based on phalange ossification analysis
  publication-title: Proc IPPR
– start-page: 6551
  year: 2007
  end-page: 6556
  ident: CR36
  publication-title: Epiphysis and metaphysis extraction and classification by adaptive thresholding and DoG filtering for automated skeletal bone age analysis
– volume: 37
  start-page: 131
  issue: 2
  year: 2008
  end-page: 134
  ident: CR3
  article-title: Effect of orthognathic surgery for class III correction on quality of life as measured by SF-36
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1016/j.ijom.2007.07.024
– ident: CR23
– volume: 130
  start-page: 622
  issue: 5
  year: 2006
  end-page: 628
  ident: CR25
  article-title: Chronologic age and skeletal maturation of the cervical vertebrae and hand-wrist: is there a relationship?
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1016/j.ajodo.2005.01.031
– volume: 38
  start-page: 179
  issue: 3
  year: 1980
  end-page: 186
  ident: CR8
  article-title: Menarche and voice changes as indicators of the pubertal growth spurt
  publication-title: Acta Odontol Scand
  doi: 10.3109/00016358009004718
– volume: 67
  start-page: 458
  issue: 4
  year: 1975
  end-page: 459
  ident: CR13
  article-title: Skeletal age assessment utilizing cervical vertebrae
  publication-title: Am J Orthod
  doi: 10.1016/0002-9416(75)90038-X
– volume: 609
  start-page: 223
  year: 2010
  end-page: 239
  ident: CR20
  article-title: A user's guide to support vector machines
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60327-241-4_13
– volume: 18
  start-page: 341
  issue: 8
  year: 1991
  end-page: 343
  ident: CR15
  article-title: Artificial intelligence in the dental surgery: an orthodontic expert system, a dental tool of tomorrow
  publication-title: Dent Update
– volume: 149
  start-page: 127
  issue: 1
  year: 2016
  end-page: 133
  ident: CR17
  article-title: New approach for the diagnosis of extractions with neural network machine learning
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1016/j.ajodo.2015.07.030
– volume: 122
  start-page: 380
  issue: 4
  year: 2002
  end-page: 385
  ident: CR26
  article-title: Cervical vertebral bone age in girls
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1067/mod.2002.126896
– volume: 21
  start-page: 330
  issue: 4
  year: 2007
  end-page: 335
  ident: CR27
  article-title: New formula to objectively evaluate skeletal maturation using lateral cephalometric radiographs
  publication-title: Braz Oral Res
  doi: 10.1590/S1806-83242007000400009
– volume: 137
  start-page: 59
  issue: 1
  year: 2010
  end-page: 65
  ident: CR11
  article-title: Effectiveness of the cervical vertebral maturation method to predict postpeak circumpubertal growth of craniofacial structures
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1016/j.ajodo.2008.01.018
– volume: 42
  start-page: 400
  issue: 1
  year: 1963
  end-page: 411
  ident: CR4
  article-title: Variations in the growth pattern of the human mandible: longitudinal radiographic study by the implant method
  publication-title: J Dent Res
  doi: 10.1177/00220345630420014701
– volume: 36
  start-page: 44
  issue: 1
  year: 1966
  end-page: 54
  ident: CR5
  article-title: The correlation of facial growth with body height and skeletal maturation at adolescence
  publication-title: Angle Orthod
– volume: 136
  start-page: 478.e1
  year: 2009
  end-page: 478.e7
  ident: CR34
  article-title: Cervical vertebrae maturation method: poor reproducibility
  publication-title: Am J Orthod Dentofac Orthop
– volume: 38
  start-page: 236
  issue: 3
  year: 2009
  end-page: 240
  ident: CR2
  article-title: Changes in soft tissue profile after mandibular setback surgery in class III subjects
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1016/j.ijom.2008.12.005
– volume: 39
  start-page: 653
  issue: 7
  year: 2010
  end-page: 659
  ident: CR10
  article-title: Quantitative skeletal evaluation based on cervical vertebral maturation: a longitudinal study of adolescents with normal occlusion
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1016/j.ijom.2010.03.026
– volume: 19
  start-page: 25
  issue: 1
  year: 2003
  end-page: 32
  ident: CR12
  article-title: Cervical vertebral maturation as a predictor of the adolescent growth spurt
  publication-title: Aust Orthod J
– volume: 24
  start-page: 120
  issue: 1
  year: 2010
  end-page: 126
  ident: CR30
  article-title: Computer assisted analysis of cervical vertebral bone age using cephalometric radiographs in Brazilian subjects
  publication-title: Braz Oral Res
  doi: 10.1590/S1806-83242010000100020
– volume: 107
  start-page: 58
  issue: 1
  year: 1995
  end-page: 66
  ident: CR18
  article-title: Skeletal maturation evaluation using cervical vertebrae
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1016/S0889-5406(95)70157-5
– volume: 4
  start-page: 1
  issue: 1
  year: 2013
  end-page: 5
  ident: CR31
  article-title: New model for cervical vertebral bone age estimation in boys
  publication-title: King Saud Univ J Dent Sci
– volume: 82
  start-page: 299
  issue: 4
  year: 1982
  end-page: 309
  ident: CR6
  article-title: Maturation indicators and the pubertal growth spurt
  publication-title: Am J Orthod
  doi: 10.1016/0002-9416(82)90464-X
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: CR21
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 118
  start-page: 335
  issue: 3
  year: 2000
  end-page: 340
  ident: CR7
  article-title: Mandibular growth as related to cervical vertebral maturation and body height
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1067/mod.2000.107009
– volume: 74
  start-page: 118
  issue: 1
  year: 2004
  end-page: 124
  ident: CR9
  article-title: Use of skeletal maturation based on hand-wrist radiographic analysis as a predictor of facial growth: a systematic review
  publication-title: Angle Orthod
– volume: 140
  start-page: 182
  year: 2011
  end-page: 188
  ident: CR33
  article-title: Cervical vertebrae maturation method morphologic criteria: poor reproducibility
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1016/j.ajodo.2011.04.013
– volume: 83
  start-page: 401
  year: 2018
  ident: 295_CR24
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.06.004
– volume: 19
  start-page: 25
  issue: 1
  year: 2003
  ident: 295_CR12
  publication-title: Aust Orthod J
– volume: 144
  start-page: 838
  issue: 6
  year: 2013
  ident: 295_CR32
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1016/j.ajodo.2013.07.015
– volume: 78
  start-page: 591
  issue: 4
  year: 2008
  ident: 295_CR28
  publication-title: Angle Orthod
  doi: 10.2319/0003-3219(2008)078[0591:CBCACV]2.0.CO;2
– start-page: 52,81,231
  volume-title: Machine learning
  year: 1997
  ident: 295_CR19
– start-page: 6551
  volume-title: Epiphysis and metaphysis extraction and classification by adaptive thresholding and DoG filtering for automated skeletal bone age analysis
  year: 2007
  ident: 295_CR36
– volume: 18
  start-page: 341
  issue: 8
  year: 1991
  ident: 295_CR15
  publication-title: Dent Update
– volume: 36
  start-page: 44
  issue: 1
  year: 1966
  ident: 295_CR5
  publication-title: Angle Orthod
– volume: 38
  start-page: 179
  issue: 3
  year: 1980
  ident: 295_CR8
  publication-title: Acta Odontol Scand
  doi: 10.3109/00016358009004718
– volume: 140
  start-page: 182
  year: 2011
  ident: 295_CR33
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1016/j.ajodo.2011.04.013
– volume: 72
  start-page: 316
  issue: 4
  year: 2002
  ident: 295_CR1
  publication-title: Angle Orthod
– volume: 137
  start-page: 59
  issue: 1
  year: 2010
  ident: 295_CR11
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1016/j.ajodo.2008.01.018
– volume: 130
  start-page: 622
  issue: 5
  year: 2006
  ident: 295_CR25
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1016/j.ajodo.2005.01.031
– volume: 21
  start-page: 330
  issue: 4
  year: 2007
  ident: 295_CR27
  publication-title: Braz Oral Res
  doi: 10.1590/S1806-83242007000400009
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 295_CR22
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 136
  start-page: 478.e1
  year: 2009
  ident: 295_CR34
  publication-title: Am J Orthod Dentofac Orthop
– ident: 295_CR23
– volume: 122
  start-page: 380
  issue: 4
  year: 2002
  ident: 295_CR26
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1067/mod.2002.126896
– volume: 74
  start-page: 118
  issue: 1
  year: 2004
  ident: 295_CR9
  publication-title: Angle Orthod
– volume: 39
  start-page: 653
  issue: 7
  year: 2010
  ident: 295_CR10
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1016/j.ijom.2010.03.026
– volume: 12
  start-page: 153
  issue: 1
  year: 2001
  ident: 295_CR14
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.896805
– volume: 4
  start-page: 1
  issue: 1
  year: 2013
  ident: 295_CR31
  publication-title: King Saud Univ J Dent Sci
– volume: 609
  start-page: 223
  year: 2010
  ident: 295_CR20
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60327-241-4_13
– volume: 24
  start-page: 120
  issue: 1
  year: 2010
  ident: 295_CR30
  publication-title: Braz Oral Res
  doi: 10.1590/S1806-83242010000100020
– volume: 67
  start-page: 458
  issue: 4
  year: 1975
  ident: 295_CR13
  publication-title: Am J Orthod
  doi: 10.1016/0002-9416(75)90038-X
– volume: 26
  start-page: 305
  issue: 4
  year: 1998
  ident: 295_CR16
  publication-title: J Dent
  doi: 10.1016/S0300-5712(97)00027-4
– volume: 149
  start-page: 127
  issue: 1
  year: 2016
  ident: 295_CR17
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1016/j.ajodo.2015.07.030
– volume: 20
  start-page: 273
  year: 1995
  ident: 295_CR21
  publication-title: Mach Learn
– volume: 82
  start-page: 299
  issue: 4
  year: 1982
  ident: 295_CR6
  publication-title: Am J Orthod
  doi: 10.1016/0002-9416(82)90464-X
– volume: 32
  start-page: 678
  issue: 8
  year: 2008
  ident: 295_CR37
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2008.08.005
– volume: 16
  start-page: 463
  year: 2003
  ident: 295_CR35
  publication-title: Proc IPPR
– volume: 3
  start-page: 21
  issue: 1
  year: 2012
  ident: 295_CR29
  publication-title: King Saud Univ J Dent Sci
– volume: 107
  start-page: 58
  issue: 1
  year: 1995
  ident: 295_CR18
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1016/S0889-5406(95)70157-5
– volume: 38
  start-page: 236
  issue: 3
  year: 2009
  ident: 295_CR2
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1016/j.ijom.2008.12.005
– volume: 42
  start-page: 400
  issue: 1
  year: 1963
  ident: 295_CR4
  publication-title: J Dent Res
  doi: 10.1177/00220345630420014701
– volume: 118
  start-page: 335
  issue: 3
  year: 2000
  ident: 295_CR7
  publication-title: Am J Orthod Dentofac Orthop
  doi: 10.1067/mod.2000.107009
– volume: 37
  start-page: 131
  issue: 2
  year: 2008
  ident: 295_CR3
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1016/j.ijom.2007.07.024
SSID ssj0017940
Score 2.4738917
Snippet Background Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has...
BackgroundGrowth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has...
Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial intelligence has the...
Abstract Background Growth and development can be determined by cervical vertebrae stages that were defined on the cephalometric radiograph. Artificial...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Bayesian analysis
Cervical vertebrae
Classification
Dentistry
Developmental stages
Growth and development
Medicine
Neural networks
Orthodontics
Radiography
Vertebrae
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELbK9lA4IJ5qSkFG4kQVNXEcxz4gRKFVhcQKIVbqLfIru5WWZNvNCvV38IeZyWsbDkuOiZPYmRl7JjP-PkLescQW2kJ0ogRTEKBEUagj7sKMeaYFrDGy4Vj6NhWXM_71Kr3aI9N-LwyWVfZzYjNRu8riP_JT8ENSmHAzxj6ubkJkjcLsak-hoTtqBfehgRh7QPYZImNNyP7Z-fT7jyGvANrX5zZjKU7XHHUSwmkVRkyloRytTg2I_8jz_LduckiePiIHm3Kl737r5fLe-nTxhDzuHEv6qdWEp2TPl8_IwRcsBkI-t-fkzwxryKguHbUD-SCtCorK0-JI0Ot7AJ1UL-fwAerFrzUFz5a6vnAGRYn3zSGCrxfNA9229IiaO2qbCQieh2TPmJn2FJzQuV_DCygmiiAWLhEf-gWZXZz__HwZdpQMoRVc1CFTAgTLNbPOw6FSA_buuBYJL2QqdVS4GJkjtFcyzoyB6NNYY5XnuKFXs-QlmZRV6Q8J1VI6nhbCOxfz2ArjM-OUcXGsZRLZKCBRL4rcdnjlSJuxzJu4RYq8lV4O0stRerkMyPvhllUL1rGr8RnKd2iIONvNiep2nndmmyuPu3Mzy3SqOAxY28iBx4go-okohAnIca8deWf863yrqgF5O1wGs8VcjC59tWnbREoyBf3IRlo16tD4Snm9aADAhcSwlQfkpNe_7ct3jPdkUNH_f52j3QN7RR4ytBqsh0yPyaS-3fjX4J3V5k1ncn8B3WQ7Wg
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKORQOiKdIKchInKgCieM49gEhXlWFVE6s1FvkV3ZXCknZzars7-APM5PXNqgqF_aY2Hl4vlnPaCbfR8grlthCW8hOlGAKEpQoCnXEXZgxz7SAPUa2Gktn38TpjH89T8_3yCBv1S_g-trUDvWkZqvyza-f2_fg8O9ah5fi7ZojsiApVmHEVBrKW-Q2bFQKlRzO-K6oANAbCpvXTptsTS2D_yTs_Ltpcqyc3iUHm-pCby91WV7ZnE7uk3t9VEk_dDB4QPZ89ZAcfMZOIBRze0R-z7CBjOrKUTsqD9K6oIicjkSCLq-wc1JdzuvVsln8WFMIa6kbumbQjjhvDul7s2gv6HZ9R9RsqW3_feB6qPSMZWlPIQKd-zXcgGKVCBLhCsmhH5PZyZfvn07DXo8htIKLJmRKgFW5ZtZ5-KnUgLM7rkXCC5lKHRUuRtkI7ZWMM2Mg9TTWWOU5fs2rWfKE7Fd15Z8SqqV0PC2Edy7msRXGZ8Yp4-JYyySyUUCiwRS57cnKUTOjzNukRYq8s14O1svRerkMyOtxykXH1HHT4I9o33Egkmy3B-rVPO99NlceP83NLNOp4vDC2kYOwkWk0E9EIUxAjgZ05ANwc4iXUwgMMsYC8nI8DT6LhRhd-XrTjYmUZAqeI5ugavJA0zPVctGyfwuJOSsPyPGAv93Nb3jf4xGi_16dw_-xOs_IHYa-hS2T6RHZb1Yb_xwCuMa8aN3yD5XXRMA
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSBQOCAqIQEFG4kQV4TiOYx-hUFVI5cRKvVl-ZXelJVt1s6r6O_qHmcmrG4SKyDGxncfMZGb0jb8h5APPfWU9ZCdacg0JCmOpZSKkJY_cSvAxqu2xdPZDns7E9_PivCeLxr0wu_h9puSnjUCtgYRXp4zrIlX3yQPwUbLFZeXxCBiAWg2g5V-nTdxOy84_CSn_LIgcUdHHZH9bX9jrK7ta7Tiek6fkSR8x0s-diJ-Re7E-IPtfscoHG7UdkIdnPT7-nNzMsE6M2jpQPzYYpOuKooJ0XBF0uUPCSe1qvr5cNotfGwrRKw1DcQyKC-fNIUtvFu2C4ba8iLpr6tufDKyHDZ0RfY4UAs153MANKIJBkO_WyAH9gsxOvv08Pk37tgupl0I2KdcShCcs9yHCoQsHNh2ElbmoVKEsq0KG3SFs1CornYMM03nndRS4adfy_CXZq9d1fEWoVSqIopIxhExkXrpYuqBdyDKrcuZZQtggFeN7TnJsjbEybW6ipOkEaUCQBgVpVEI-jlMuOkKOuwZ_QVGPA5FLuz0BKmZ60zQ64g7c0nNbaAEvbD0LEBUiU34uK-kScjgoiukNfGMgLC7A_5ecJ-T9eBlME_EWW8f1thvDtOIanqOcKNjkgaZX6uWiJfmWClNTkZCjQRVvb37H-x6N2vrvr_P6v9Z-Qx5xtCcsgSwOyV5zuY1vISBr3LvWFH8DZE8wlw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagexg8cEcUBjIST0zpEsdx7cdxmSYkJh6oNJ4i39JWK0nVphrlb_CHOcdJs3ZCQ0jkMXGc2Pp8_B2d4-8Q8oalttAWvBMlmAIHJY4jHXMXDZlnWsAeI0ONpc9n4nTEP51n5-3JumUQ_6uCnzktMWwBnlmJasWDTZASS0oF-10vtL04mruiWfZSHC054gtcYxXFTGWRvE32RAYEvUf2Rmdfjr-Fo5EsBT4ZCnXCUhVghDhrY51_7GNntwqi_jtM9HoeZRdMvUv2V-Vcry_1bLa1X53cJ_XWSH-sBxeDVW0G9uc1Ecj_PBUPyL2W39LjBpAPyS1fPiL7HzAnCcvKPSa_RpjKRnXpqO1qINKqoIjhRs6CTrd0QqmejavFtJ58X1Ig2NRt8ncQUfjeeFFd1pPQobvKgKJmTW2wg9Af1pzGALmnwIXHfgkfoNujfUJGJx-_vj-N2soQkRVc1BFTAvDFNbPOw6UyA2bHcS1SXshM6rhwCRaw0F7JZGgMOMHGGqs8x3PFmqVPSa-sSv-MUC2l41khvHMJT6wwfmicMi5JtExjG_dJvEFAblvZdKzeMcuD-yRF3sx2DrOd42znsk_edq_MG82Qmxq_Q1h1DVHuO9yoFuO8tR658nhIeGiZzhSHAWsbOyCuKOafikKYPjnYgDJvbdAyB-aeAUUZMtYnr7vHYD0wJKRLX62aNrGSTMF_DHfAvPNDu0_K6STokAuJ3jPvk8MNJq8-fsN4D7uV8ffZef5PrV-QOwxBj1ma2QHp1YuVfwmcsTavWhvwGxAcagY
  priority: 102
  providerName: Unpaywall
Title Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics
URI https://link.springer.com/article/10.1186/s40510-019-0295-8
https://www.proquest.com/docview/2315413722
https://www.proquest.com/docview/2315098298
https://pubmed.ncbi.nlm.nih.gov/PMC6856254
https://progressinorthodontics.springeropen.com/track/pdf/10.1186/s40510-019-0295-8
https://doaj.org/article/9e00597c2a594eeeac0d562615036f6b
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 2196-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017940
  issn: 2196-1042
  databaseCode: RBZ
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2196-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017940
  issn: 2196-1042
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017940
  issn: 2196-1042
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2196-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017940
  issn: 2196-1042
  databaseCode: DIK
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2196-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017940
  issn: 2196-1042
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2196-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017940
  issn: 2196-1042
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2196-1042
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017940
  issn: 2196-1042
  databaseCode: M48
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2196-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017940
  issn: 2196-1042
  databaseCode: AAJSJ
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals
  customDbUrl:
  eissn: 2196-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017940
  issn: 2196-1042
  databaseCode: C6C
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2196-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017940
  issn: 2196-1042
  databaseCode: C24
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF7a9JD2UPqkalOzhZ4aRFbr1Wr3GLsJoRATQg1uL2Jfsg2uHGKbkN-RP9wZvWL3kFx6WZC0klY73-zOMKNvCPnK-64wDrwTLbkGB4Wx2DDh44wHbiTsMaqqsXQ-kmdj8WOSTrZKfWFOWE0PXE_ckQ74f2TmuEm1CAHWCeZhz0Ye874spMXVlyndOlNN_ABQ1sYwEyWPVgKxB26zjhnXaax2dqGKrH_Hwvw3P7ILkr4g-5vyytzemMViax86fUVeNgYkPa4H_po8CeUbsv8dk36wbttbcjfGXDFqSk9dV2SQLguK31rzRdD5FhEnNYvp8nq-nv1ZUbBgqW8TZFBkeN8UPPX1rHqgv08xovaWumqhgedhUWeMQAcKxuY0rOAFFANC4POWyAP9joxPT34Oz-Km9ELspJDrmGsJAhSGOw9zHnRqQa-9MLIvCpUqwwqfYIUIE7RKMmvBy7TOOh0E_rhreP892SuXZfhAqFHKi7SQwftEJE7akFmvrU8So_rMsYiwVhS5a3jJsTzGIq_8EyXzWno5SC9H6eUqIt-6W65qUo6HOg9Qvl1H5NOuTgDK8gZl-WMoi8hBi468UfJVDqZxCjZAxnlEvnSXQT0x5mLKsNzUfZhWXMM4sh1U7Qxo90o5n1VE31Kheyoictji7_7lD3zvYQfRx2fn4_-YnU_kOUfdwuzI9IDsra834TPYamvbI0-zSdYjzwYno4tLOBpyga0c9iqFhfZcKGgvB7-h13h0cfzrL_TjROo
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELem7aHwgPgrOgYYCV6YoiWu49gPE2JsU8e2CqFV2ptxbKedVJLSP5r6Ofg-fDbu0iRdeShPy2PiJHbufL7LnX8_Qt6zjs2MhehECaYgQAnDwITcBQnzzAhYY2TJsXTZE90-_3odX2-RP_VeGCyrrG1iaahdYfEf-QH4ITEY3ISxT-NfAbJGYXa1ptAwFbWCOywhxqqNHed-cQsh3PTw7Bjk_YGx05OrL92gYhkIrOBiFjAloK_cMOs8HCpOQYUdN6LDMxlLE2YuQjIE45WMkjSFgCq1qVWe4x5Vg8AHsATs8A5XEPztHJ30vn1v8hig7XUuNZLiYMpxDkD4roKQqTiQa6thSRqw5un-W6fZJGsfktY8H5vFrRmN7qyHp4_Jo8qRpZ-XmveEbPn8KWkdY_ER8sc9I7_7WLNGTe6obcgOaZFRVNYlbgW9uQMISs1oAB98Nvw5peBJU1cX6qDq4H2DSXE7G5YPdKtSJ5ouqC0NHjwPyaUxE-4pOL0DP4UXUExMQeydIx71c9K_F-G8INt5kfuXhBopHY8z4Z2LeGRF6pPUqdRFkZGd0IZtEtai0LbCR0eajpEu4yQp9FJ6GqSnUXpatsnH5pbxEhxkU-MjlG_TEHG9yxPFZKArM6GVx93AiWUmVhwGbGzowENF1P6OyETaJnu1dujK2Ez1amq0ybvmMpgJzP2Y3BfzZZtQSaagH8maVq11aP1KfjMsAceFxDCZt8l-rX-rl28Y736jov__OrubB_aWtLpXlxf64qx3_oo8YDiDsBYz3iPbs8ncvwbPcJa-qaYfJT_ue8b_BdWweHo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWi8TCAfEUgQWMBBdWURPHcewDQkCpdllYcaBSb8GxnXalkpQ-VPV38G_4dczk1S2HctocEyexM5_HM5nxfIS8YpHJtQHvRAmmwEEJAl8H3PoJc0wLWGNkxbH09UKcDvnnUTw6IH_avTCYVtnqxEpR29LgP_Ie2CExKNyEsV7epEV86w_ezX75yCCFkdaWTqOGyLnbrMF9W7w964OsXzM2-PT946nfMAz4RnCx9JkS0E-umbEODhVnAF_LtYh4LmOpg9yGSISgnZJhkmXgTGUmM8px3J-qsegBqP8bSRQpTCdMRp2zhzhvo6ihFL0FR_SD4678gKnYlzvrYEUXsGPj_puh2YVpb5OjVTHTm7WeTq-shIO75E5jwtL3NebukQNX3CdHfUw7Qua4B-T3ELPVqC4sNR3NIS1zijCtK1bQyyulQKmejuHzLic_FxRsaGrbFB0EDd43npfr5aR6oN0mOdFsQ02l6uB5SCuNMXBHwdwduwW8gGJICrzuAitRPyTDaxHNI3JYlIV7TKiW0vI4F87akIdGZC7JrMpsGGoZBSbwSNCKIjVNZXQk6JimlYckRVpLLwXppSi9VHrkTXfLrC4Lsq_xB5Rv1xArelcnyvk4bRREqhzuA04M07HiMGBtAgu2Kdbrj0QuMo8ct-hIGzWzSLeTwiMvu8ugIDDqowtXruo2gZJMQT-SHVTtdGj3SnE5qUqNC4kOMvfISYu_7cv3jPekg-j_v86T_QN7QW7CPE-_nF2cPyW3GE4gTMKMj8nhcr5yz8AkXGbPq7lHyY_rnux_AZWqdhQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagexg8cEcUBjIST0zpEsdx7cdxmSYkJh6oNJ4i39JWK0nVphrlb_CHOcdJs3ZCQ0jkMXGc2Pp8_B2d4-8Q8oalttAWvBMlmAIHJY4jHXMXDZlnWsAeI0ONpc9n4nTEP51n5-3JumUQ_6uCnzktMWwBnlmJasWDTZASS0oF-10vtL04mruiWfZSHC054gtcYxXFTGWRvE32RAYEvUf2Rmdfjr-Fo5EsBT4ZCnXCUhVghDhrY51_7GNntwqi_jtM9HoeZRdMvUv2V-Vcry_1bLa1X53cJ_XWSH-sBxeDVW0G9uc1Ecj_PBUPyL2W39LjBpAPyS1fPiL7HzAnCcvKPSa_RpjKRnXpqO1qINKqoIjhRs6CTrd0QqmejavFtJ58X1Ig2NRt8ncQUfjeeFFd1pPQobvKgKJmTW2wg9Af1pzGALmnwIXHfgkfoNujfUJGJx-_vj-N2soQkRVc1BFTAvDFNbPOw6UyA2bHcS1SXshM6rhwCRaw0F7JZGgMOMHGGqs8x3PFmqVPSa-sSv-MUC2l41khvHMJT6wwfmicMi5JtExjG_dJvEFAblvZdKzeMcuD-yRF3sx2DrOd42znsk_edq_MG82Qmxq_Q1h1DVHuO9yoFuO8tR658nhIeGiZzhSHAWsbOyCuKOafikKYPjnYgDJvbdAyB-aeAUUZMtYnr7vHYD0wJKRLX62aNrGSTMF_DHfAvPNDu0_K6STokAuJ3jPvk8MNJq8-fsN4D7uV8ffZef5PrV-QOwxBj1ma2QHp1YuVfwmcsTavWhvwGxAcagY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Usage+and+comparison+of+artificial+intelligence+algorithms+for+determination+of+growth+and+development+by+cervical+vertebrae+stages+in+orthodontics&rft.jtitle=Progress+in+orthodontics&rft.au=Hatice+K%C3%B6k&rft.au=Ayse+Merve+Acilar&rft.au=Mehmet+Said+%C4%B0zgi&rft.date=2019-11-15&rft.pub=SpringerOpen&rft.eissn=2196-1042&rft.volume=20&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1186%2Fs40510-019-0295-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9e00597c2a594eeeac0d562615036f6b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1042&client=summon