Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells

Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited...

Full description

Saved in:
Bibliographic Details
Published inEMBO molecular medicine Vol. 9; no. 9; pp. 1198 - 1211
Main Authors Piras, Francesco, Riba, Michela, Petrillo, Carolina, Lazarevic, Dejan, Cuccovillo, Ivan, Bartolaccini, Sara, Stupka, Elia, Gentner, Bernhard, Cittaro, Davide, Naldini, Luigi, Kajaste‐Rudnitski, Anna
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2017
John Wiley & Sons, Inc
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text
ISSN1757-4676
1757-4684
1757-4684
DOI10.15252/emmm.201707922

Cover

Abstract Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo . These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies. Synopsis Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells. LV transduction remains remarkably stealth in human HSPC, avoiding innate immune activation but triggering p53 signaling in human HSPC. p53 signaling occurs upon ATM‐dependent nuclear sensing of vector DNA (LV, IDLV, AAV) independently of integration into the host genome. Vector‐mediated activation of p53 leads to cell cycle arrest and apoptosis ex vivo ultimately leading to lower engraftment of short‐term HSPC in vivo . Inhibition of LV‐signaling rescues ex vivo apoptosis and early engraftment of human HSPC. Graphical Abstract Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells.
AbstractList Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo . These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies. Synopsis Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells. LV transduction remains remarkably stealth in human HSPC, avoiding innate immune activation but triggering p53 signaling in human HSPC. p53 signaling occurs upon ATM‐dependent nuclear sensing of vector DNA (LV, IDLV, AAV) independently of integration into the host genome. Vector‐mediated activation of p53 leads to cell cycle arrest and apoptosis ex vivo ultimately leading to lower engraftment of short‐term HSPC in vivo . Inhibition of LV‐signaling rescues ex vivo apoptosis and early engraftment of human HSPC. Graphical Abstract Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells.
Abstract Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo. These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies.
Clinical application of lentiviral vector (LV)-based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV-mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma-retroviral vector. However, reverse-transcribed LV DNA did trigger p53 signaling, activated also by non-integrating Adeno-associated vector, ultimately leading to lower cell recovery and engraftment These effects were more pronounced in the short-term repopulating cells while long-term HSC frequencies remained unaffected. Blocking LV-induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies.
Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo . These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies.
Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo. These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies. Synopsis Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells. LV transduction remains remarkably stealth in human HSPC, avoiding innate immune activation but triggering p53 signaling in human HSPC. p53 signaling occurs upon ATM‐dependent nuclear sensing of vector DNA (LV, IDLV, AAV) independently of integration into the host genome. Vector‐mediated activation of p53 leads to cell cycle arrest and apoptosis ex vivo ultimately leading to lower engraftment of short‐term HSPC in vivo. Inhibition of LV‐signaling rescues ex vivo apoptosis and early engraftment of human HSPC. Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells.
Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo . These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies. image Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells. LV transduction remains remarkably stealth in human HSPC, avoiding innate immune activation but triggering p53 signaling in human HSPC. p53 signaling occurs upon ATM‐dependent nuclear sensing of vector DNA (LV, IDLV, AAV) independently of integration into the host genome. Vector‐mediated activation of p53 leads to cell cycle arrest and apoptosis ex vivo ultimately leading to lower engraftment of short‐term HSPC in vivo . Inhibition of LV‐signaling rescues ex vivo apoptosis and early engraftment of human HSPC.
Clinical application of lentiviral vector (LV)-based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV-mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma-retroviral vector. However, reverse-transcribed LV DNA did trigger p53 signaling, activated also by non-integrating Adeno-associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo These effects were more pronounced in the short-term repopulating cells while long-term HSC frequencies remained unaffected. Blocking LV-induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies.Clinical application of lentiviral vector (LV)-based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV-mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma-retroviral vector. However, reverse-transcribed LV DNA did trigger p53 signaling, activated also by non-integrating Adeno-associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo These effects were more pronounced in the short-term repopulating cells while long-term HSC frequencies remained unaffected. Blocking LV-induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies.
Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo. These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies.
Audience Academic
Author Cittaro, Davide
Riba, Michela
Bartolaccini, Sara
Piras, Francesco
Naldini, Luigi
Gentner, Bernhard
Lazarevic, Dejan
Kajaste‐Rudnitski, Anna
Petrillo, Carolina
Stupka, Elia
Cuccovillo, Ivan
AuthorAffiliation 1 San Raffaele Telethon Institute for Gene Therapy IRCCS San Raffaele Scientific Institute Milan Italy
2 Vita‐Salute San Raffaele University Milan Italy
3 Center for Translational Genomics and Bioinformatics IRCCS San Raffaele Scientific Institute Milan Italy
4 Present address: Boehringer Ingelheim Biberach an der Riß Germany
AuthorAffiliation_xml – name: 1 San Raffaele Telethon Institute for Gene Therapy IRCCS San Raffaele Scientific Institute Milan Italy
– name: 3 Center for Translational Genomics and Bioinformatics IRCCS San Raffaele Scientific Institute Milan Italy
– name: 2 Vita‐Salute San Raffaele University Milan Italy
– name: 4 Present address: Boehringer Ingelheim Biberach an der Riß Germany
Author_xml – sequence: 1
  givenname: Francesco
  surname: Piras
  fullname: Piras, Francesco
  organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Vita‐Salute San Raffaele University
– sequence: 2
  givenname: Michela
  surname: Riba
  fullname: Riba, Michela
  organization: Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute
– sequence: 3
  givenname: Carolina
  surname: Petrillo
  fullname: Petrillo, Carolina
  organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Vita‐Salute San Raffaele University
– sequence: 4
  givenname: Dejan
  surname: Lazarevic
  fullname: Lazarevic, Dejan
  organization: Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute
– sequence: 5
  givenname: Ivan
  surname: Cuccovillo
  fullname: Cuccovillo, Ivan
  organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute
– sequence: 6
  givenname: Sara
  surname: Bartolaccini
  fullname: Bartolaccini, Sara
  organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute
– sequence: 7
  givenname: Elia
  surname: Stupka
  fullname: Stupka, Elia
  organization: Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Boehringer Ingelheim
– sequence: 8
  givenname: Bernhard
  surname: Gentner
  fullname: Gentner, Bernhard
  organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute
– sequence: 9
  givenname: Davide
  surname: Cittaro
  fullname: Cittaro, Davide
  organization: Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute
– sequence: 10
  givenname: Luigi
  surname: Naldini
  fullname: Naldini, Luigi
  organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Vita‐Salute San Raffaele University
– sequence: 11
  givenname: Anna
  orcidid: 0000-0003-1549-2426
  surname: Kajaste‐Rudnitski
  fullname: Kajaste‐Rudnitski, Anna
  email: kajaste.anna@hsr.it
  organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28667090$$D View this record in MEDLINE/PubMed
BookMark eNqFUstv0zAcjtAQe8CZG4rEhUs72_Ej5oA0TQMmteICZ8txfs5cJXaxk6L997jrKO3EQ5biyP4e_n36zosTHzwUxWuM5pgRRi5hGIY5QVggIQl5VpxhwcSM8pqe7P8FPy3OU1ohxBnH9YvilNScCyTRWeEW4Ee3cVH35QbMGGIqIRm9htJ5r0coE_jkfFc201iO0XUdxHLNqnxd3k2Dzl8Y9BjWwcHoTJlGGErt23IdQwfeZcXSQN-nl8Vzq_sErx73i-Lbx5uv159niy-fbq-vFjPDKSczXOmWgxVYalOTWuqG1CAaYWuCqbVYGA40zyU5VBy3TFipMQgjwWJuBa0uitudbhv0Sq2jG3S8V0E79XAQYqd0zC_tQQkQTNesYQZVVDSo0dJkH8uRzv4NZK0PO6311AzQmpxVDupI9PjGuzvVhY1irCYUySzw7lEghu8TpFENLm3j0B7ClBSWmFWUVxXL0LdPoKswRZ-jyqiKygoRSn-jOp0HcN6G7Gu2oupKcCYIlXyLmv8BlVcLgzO5Qtbl8yPCm8NB9xP-KkoGXO4AJoaUItg9BCP1UEW1raLaVzEz2BOGcaMeXdgm5fp_8N7veD_yG-__Z6NulsvlIRntyCnzfK7qQYh_8fsJOXwDlw
CitedBy_id crossref_primary_10_1016_j_imlet_2024_106931
crossref_primary_10_1038_s41588_020_0623_4
crossref_primary_10_1016_j_stem_2019_02_019
crossref_primary_10_1084_jem_20211121
crossref_primary_10_1016_j_cell_2022_04_039
crossref_primary_10_1038_s41577_022_00698_0
crossref_primary_10_1016_j_omtm_2021_02_009
crossref_primary_10_1182_bloodadvances_2024013047
crossref_primary_10_3389_fgeed_2021_618378
crossref_primary_10_3389_fcell_2021_698002
crossref_primary_10_1016_j_smim_2023_101731
crossref_primary_10_3390_v15091801
crossref_primary_10_3389_fimmu_2021_660302
crossref_primary_10_15252_emmm_201809958
crossref_primary_10_1038_s41587_023_01888_4
crossref_primary_10_1016_j_omtm_2023_02_014
crossref_primary_10_1186_s12985_020_1297_3
crossref_primary_10_1016_j_omtm_2018_04_001
crossref_primary_10_3389_fgeed_2023_1148693
crossref_primary_10_1186_s13045_021_01083_5
crossref_primary_10_3389_fgeed_2021_618346
crossref_primary_10_1038_s41573_019_0020_9
crossref_primary_10_4049_jimmunol_2200565
crossref_primary_10_1089_hum_2021_089
crossref_primary_10_3390_pharmaceutics11030114
crossref_primary_10_1016_j_jtha_2024_09_008
crossref_primary_10_1002_stem_2901
crossref_primary_10_1182_blood_2019000949
crossref_primary_10_1089_hum_2023_119
crossref_primary_10_3390_pharmaceutics15051329
crossref_primary_10_1093_stmcls_sxae056
crossref_primary_10_1016_j_omtm_2023_06_003
crossref_primary_10_1038_s41467_022_32285_1
crossref_primary_10_3389_fimmu_2022_792684
crossref_primary_10_1016_j_stem_2022_09_001
crossref_primary_10_3390_v12111311
crossref_primary_10_1016_j_omtm_2023_07_009
crossref_primary_10_1016_j_stem_2024_10_013
crossref_primary_10_1016_j_ymthe_2021_09_001
crossref_primary_10_3390_genes14091774
crossref_primary_10_1038_s41467_023_43413_w
crossref_primary_10_1080_14712598_2022_2154601
crossref_primary_10_1038_s41598_019_56056_z
crossref_primary_10_1111_andr_12915
crossref_primary_10_1016_j_omtm_2020_10_009
crossref_primary_10_1038_s41434_020_0175_3
crossref_primary_10_1016_j_stem_2023_04_014
crossref_primary_10_1016_j_ymthe_2023_11_020
crossref_primary_10_3390_biomedicines10010107
crossref_primary_10_1089_hum_2017_141
crossref_primary_10_1089_hum_2019_016
crossref_primary_10_1038_s41576_020_00298_5
crossref_primary_10_1016_j_stem_2018_10_008
Cites_doi 10.1038/nature12274
10.1038/nature12769
10.1038/nbt1049
10.1189/jlb.0209097
10.1016/j.exphem.2011.12.002
10.1038/nri3062
10.1126/science.1233158
10.1089/hum.2015.036
10.1126/science.aab2116
10.1016/j.stem.2012.09.001
10.1016/j.stemcr.2017.02.010
10.1038/nrclinonc.2014.215
10.1038/leu.2009.155
10.1038/nbt1353
10.1016/j.cell.2010.07.030
10.1016/j.jim.2009.06.008
10.1016/j.bbmt.2009.06.019
10.1016/j.molcel.2009.01.024
10.1126/science.1108297
10.1126/science.1121513
10.1016/j.celrep.2015.03.069
10.1101/cshperspect.a006890
10.1038/nbt.3408
10.1038/sj.gt.3302544
10.1016/j.blre.2016.09.002
10.1038/mt.2014.193
10.1016/j.stem.2010.03.002
10.1016/j.stem.2010.05.016
10.1038/gt.2012.6
10.1186/1471-2105-14-128
10.1038/mt.2012.150
10.1038/nature20134
10.1126/science.1240933
10.1038/ncb1250
10.1038/76095
10.1016/S0140-6736(16)30374-9
10.1016/j.jmb.2006.09.054
10.1016/j.chom.2014.06.009
10.1016/j.cell.2007.10.017
10.1016/j.celrep.2014.10.060
10.1038/nbt1216
10.1038/nature14131
10.1016/j.immuni.2015.01.012
10.1097/COH.0000000000000233
10.2202/1544-6115.1027
10.1172/JCI28971
10.1038/nature06013
10.1038/nature15818
10.1016/j.ccell.2016.05.007
10.1084/jem.20151975
10.1016/j.stem.2012.01.006
10.1016/S0092-8674(00)80828-4
10.1016/j.stem.2016.04.016
10.1182/blood-2009-08-239202
10.1038/nature09135
10.1128/MCB.25.2.661-670.2005
10.1016/j.stem.2008.11.006
10.1016/j.stem.2010.06.014
10.1038/mt.2013.168
10.1080/14712598.2017.1269167
10.1371/journal.pone.0029291
10.1016/j.cell.2008.10.048
10.1089/hum.2010.085
10.1038/nrmicro1263
10.1038/nature07815
ContentType Journal Article
Copyright The Authors. Published under the terms of the CC BY 4.0 license 2017
2017 The Authors. Published under the terms of the CC BY 4.0 license
2017 The Authors. Published under the terms of the CC BY 4.0 license.
COPYRIGHT 2017 John Wiley & Sons, Inc.
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Authors. Published under the terms of the CC BY 4.0 license 2017
– notice: 2017 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2017 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: COPYRIGHT 2017 John Wiley & Sons, Inc.
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.15252/emmm.201707922
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE


CrossRef
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Francesco Piras et al
EISSN 1757-4684
EndPage 1211
ExternalDocumentID oai_doaj_org_article_7e75a85b5c0347b0ba9cf82f60a719be
PMC5582409
A765724964
28667090
10_15252_emmm_201707922
EMMM201707922
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministero della Salute (Ministry of Health, Italy)
  grantid: GR‐2009‐1471693
  funderid: 10.13039/501100003196
– fundername: H2020|H2020 Priority Excellent Science|H2020 European Research Council (ERC)
  grantid: TARGETINGGENETHERAPY
  funderid: 10.13039/100010663
– fundername: Fanconi Anemia Research Fund (FARF)
  grantid: FARF
  funderid: 10.13039/100002086
– fundername: Fondazione Telethon (Telethon Foundation)
  grantid: TGT14D04; TELE16C3; TGT
  funderid: 10.13039/501100002426
– fundername: Fondazione Telethon (Telethon Foundation)
  funderid: TGT14D04; TELE16C3; TGT
– fundername: H2020|H2020 Priority Excellent Science|H2020 European Research Council (ERC)
  funderid: TARGETINGGENETHERAPY
– fundername: Fanconi Anemia Research Fund (FARF)
  funderid: FARF
– fundername: Ministero della Salute (Ministry of Health, Italy)
  funderid: GR‐2009‐1471693
– fundername: Fondazione Telethon (Telethon Foundation)
  grantid: TGT14D04; TELE16C3; TGT
– fundername: Ministero della Salute (Ministry of Health, Italy)
  grantid: GR‐2009‐1471693
– fundername: H2020|H2020 Priority Excellent Science|H2020 European Research Council (ERC)
  grantid: TARGETINGGENETHERAPY
– fundername: Fanconi Anemia Research Fund (FARF)
  grantid: FARF
GroupedDBID ---
0R~
1OC
24P
4.4
53G
5DZ
5GY
5VS
7X7
8-0
8-1
8AO
8FE
8FH
8FI
8FJ
AAHHS
AAJSJ
AAZKR
ABOCM
ABUWG
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACXQS
ADBBV
ADKYN
ADPDF
ADRAZ
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFKRA
AHMBA
AIAGR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
C6C
CCPQU
D-9
DIK
DU5
EBD
EBS
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HK~
HMCUK
HYE
HZ~
IAO
IHR
ITC
KQ8
LH4
LK8
LW6
M48
M7P
M~E
NNB
O9-
OIG
OK1
OVD
OVEED
P2P
PIMPY
PQQKQ
PROAC
RHF
RHI
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
XV2
31~
ABJNI
AFZJQ
EBLON
GODZA
H13
AASML
AAYXX
CITATION
NAO
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
AJAOE
PUEGO
5PM
ID FETCH-LOGICAL-c6462-13ad6ef719ac8289ab28e7b7f8214ff17c6e475796e361d57f9a1e7c9ef16f743
IEDL.DBID C6C
ISSN 1757-4676
1757-4684
IngestDate Wed Aug 27 01:30:33 EDT 2025
Thu Aug 21 18:28:43 EDT 2025
Sat Sep 27 20:28:14 EDT 2025
Wed Aug 13 08:14:57 EDT 2025
Tue Jun 17 22:25:21 EDT 2025
Tue Jun 10 21:23:10 EDT 2025
Wed Feb 19 02:30:26 EST 2025
Tue Jul 01 01:52:59 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
Wed Jan 22 16:22:00 EST 2025
Fri Feb 21 02:36:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords hematopoietic stem and progenitor cells
gene therapy
p53 signaling
innate sensing
lentiviral vectors
Language English
License Attribution
2017 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6462-13ad6ef719ac8289ab28e7b7f8214ff17c6e475796e361d57f9a1e7c9ef16f743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1549-2426
OpenAccessLink https://doi.org/10.15252/emmm.201707922
PMID 28667090
PQID 1934930244
PQPubID 866378
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_7e75a85b5c0347b0ba9cf82f60a719be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5582409
proquest_miscellaneous_1915346335
proquest_journals_1934930244
gale_infotracmisc_A765724964
gale_infotracacademiconefile_A765724964
pubmed_primary_28667090
crossref_primary_10_15252_emmm_201707922
crossref_citationtrail_10_15252_emmm_201707922
wiley_primary_10_15252_emmm_201707922_EMMM201707922
springer_journals_10_15252_emmm_201707922
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2017
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Frankfurt
– name: Hoboken
PublicationTitle EMBO molecular medicine
PublicationTitleAbbrev EMBO Mol Med
PublicationTitleAlternate EMBO Mol Med
PublicationYear 2017
Publisher Nature Publishing Group UK
John Wiley & Sons, Inc
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: John Wiley & Sons, Inc
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References Biffi, Montini, Lorioli, Cesani, Fumagalli, Plati, Baldoli, Martino, Calabria, Canale (CR6) 2013; 341
Nucera, Giustacchini, Boccalatte, Calabria, Fanciullo, Plati, Ranghetti, Garcia‐Manteiga, Cittaro, Benedicenti (CR40) 2016; 29
Towers, Noursadeghi (CR52) 2014; 16
Zhang, Scadden, Crumpacker (CR61) 2007; 117
Smyth (CR49) 2004; 3
Tomblyn, Chiller, Einsele, Gress, Sepkowitz, Storek, Wingard, Young, Boeckh (CR51) 2009; 15
Kandalla, Sarrazin, Molawi, Berruyer, Redelberger, Favel, Bordi, de Bentzmann, Sieweke (CR23) 2016; 213
Wilson, Laurenti, Oser, van der Wath, Blanco‐Bose, Jaworski, Offner, Dunant, Eshkind, Bockamp (CR55) 2008; 135
Lau, Swinbank, Ahmed, Taylor, Jackson, Smith, O'Connor (CR27) 2005; 7
Bushman, Lewinski, Ciuffi, Barr, Leipzig, Hannenhalli, Hoffmann (CR9) 2005; 3
Sellers, Dumitriu, Morgan, Hughes, Wu, Raghavarchari, Yang, Uchida, Tisdale, An (CR46) 2014; 22
Rossetti, Gregori, Hauben, Brown, Sergi, Naldini, Roncarolo (CR44) 2011; 22
Zennou, Petit, Guetard, Nerhbass, Montagnier, Charneau (CR59) 2000; 101
Lund, Boitano, Delaney, Shpall, Wagner (CR33) 2015; 12
Mohrin, Bourke, Alexander, Warr, Barry‐Holson, Le Beau, Morrison, Passegue (CR35) 2010; 7
Yu, Katlinskaya, Carbone, Zhao, Katlinski, Zheng, Guha, Li, Chen, Yang (CR58) 2015; 11
Hu, Smyth (CR102) 2009; 347
Yang, Lindahl, Barnes (CR57) 2007; 131
Sauter, Kirchhoff (CR45) 2016; 11
Montini, Cesana, Schmidt, Sanvito, Ponzoni, Bartholomae, Sergi Sergi, Benedicenti, Ambrosi, Di Serio (CR36) 2006; 24
Sessa, Lorioli, Fumagalli, Acquati, Redaelli, Baldoli, Canale, Lopez, Morena, Calabria (CR103) 2016; 388
Hartlova, Erttmann, Raffi, Schmalz, Resch, Anugula, Lienenklaus, Nilsson, Kroger, Nilsson (CR21) 2015; 42
Wu, Shi, Tibbetts, Miyamoto (CR56) 2006; 311
Sioud, Floisand, Forfang, Lund‐Johansen (CR48) 2006; 364
Wang, Exline, DeClercq, Llewellyn, Hayward, Li, Shivak, Surosky, Gregory, Holmes (CR54) 2015; 33
Bondar, Medzhitov (CR7) 2010; 6
Burgess, Burman, Kruhlak, Misteli (CR8) 2014; 9
De Luca, Frances‐Duvert, Asensio, Ihsani, Debien, Taillardet, Verhoeyen, Bella, Lantheaume, Genestier (CR13) 2009; 23
Geest, Coffer (CR19) 2009; 86
Biasco, Pellin, Scala, Dionisio, Basso‐Ricci, Leonardelli, Scaramuzza, Baricordi, Ferrua, Cicalese (CR101) 2016; 19
Nonnenmacher, Weber (CR38) 2012; 19
Petrillo, Cesana, Piras, Bartolaccini, Naldini, Montini, Kajaste‐Rudnitski (CR42) 2015; 23
Agudo, Ruzo, Kitur, Sachidanandam, Blander, Brown (CR1) 2012; 20
Liu, Guo, Hirokawa, Iwamoto, Ubukawa, Michishita, Fujishima, Tagawa, Takahashi, Xiao (CR31) 2012; 40
Dever, Bak, Reinisch, Camarena, Washington, Nicolas, Pavel‐Dinu, Saxena, Wilkens, Mantri (CR14) 2016; 539
Follenzi, Ailles, Bakovic, Geuna, Naldini (CR17) 2000; 25
Lane, Scadden (CR26) 2010; 142
Liu, Elf, Miyata, Sashida, Huang, Di Giandomenico, Lee, Deblasio, Menendez, Antipin (CR30) 2009; 4
Lombardo, Genovese, Beausejour, Colleoni, Lee, Kim, Ando, Urnov, Galli, Gregory (CR32) 2007; 25
Essers, Offner, Blanco‐Bose, Waibler, Kalinke, Duchosal, Trumpp (CR16) 2009; 458
Doulatov, Notta, Laurenti, Dick (CR15) 2012; 10
Chen, Tan, Kou, Duan, Wang, Meirelles, Clark, Ma'ayan (CR10) 2013; 14
Guo, Ishii, Hirokawa, Tagawa, Ohyagi, Michishita, Ubukawa, Yamashita, Ohteki, Onai (CR20) 2010; 115
Baron, Nagler (CR4) 2017; 17
Baldridge, King, Boles, Weksberg, Goodell (CR3) 2010; 465
Milyavsky, Gan, Trottier, Komosa, Tabach, Notta, Lechman, Hermans, Eppert, Konovalova (CR34) 2010; 7
Walter, Lier, Geiselhart, Thalheimer, Huntscha, Sobotta, Moehrle, Brocks, Bayindir, Kaschutnig (CR53) 2015; 520
Takaoka, Wang, Choi, Yanai, Negishi, Ban, Lu, Miyagishi, Kodama, Honda (CR50) 2007; 448
King, Goodell (CR25) 2011; 11
Berg, Melchjorsen, Rintahaka, Diget, Soby, Horan, Gorelick, Matikainen, Larsen, Ostergaard (CR5) 2012; 7
Zhang, Attar, Cohen, Crumpacker, Scadden (CR60) 2005; 12
Pagano, Busca, Candoni, Cattaneo, Cesaro, Fanci, Nadali, Potenza, Russo, Tumbarello (CR41) 2017; 31
Gao, Wu, Wu, Du, Aroh, Yan, Sun, Chen (CR18) 2013; 341
Kajaste‐Rudnitski, Naldini (CR22) 2015; 26
Zonari, Desantis, Petrillo, Boccalatte, Lidonnici, Kajaste‐Rudnitski, Aiuti, Ferrari, Naldini, Gentner (CR104) 2017; 8
Lee, Paull (CR29) 2005; 308
Amendola, Venneri, Biffi, Vigna, Naldini (CR2) 2005; 23
Naldini (CR37) 2015; 526
Cooper, Garcia, Petrovas, Yamamoto, Koup, Nabel (CR11) 2013; 498
Craigie, Bushman (CR12) 2012; 2
Notta, Zandi, Takayama, Dobson, Gan, Wilson, Kaufmann, McLeod, Laurenti, Dunant (CR39) 2016; 351
Lechman, Gentner, van Galen, Giustacchini, Saini, Boccalatte, Hiramatsu, Restuccia, Bachi, Voisin (CR28) 2012; 11
Kang, Ferguson, Song, Bassing, Eckersdorff, Alt, Xu (CR24) 2005; 25
Rasaiyaah, Tan, Fletcher, Price, Blondeau, Hilditch, Jacques, Selwood, James, Noursadeghi (CR43) 2013; 503
Shiotani, Zou (CR47) 2009; 33
2017; 8
2009; 86
2015; 33
2010; 465
2016; 388
2004; 3
2011; 11
2010; 142
2012; 19
2012; 11
2012; 10
2005; 23
2014; 22
2005; 25
2017; 31
2013; 14
2006; 24
2015; 42
2010; 115
2007; 131
2014; 16
2011; 22
2005; 308
2014; 9
2010; 7
2016; 351
2012; 20
2010; 6
2007; 25
2006; 364
2009; 15
2009; 23
2015; 12
2007; 448
2016; 19
2000; 25
2015; 520
2013; 503
2015; 11
2015; 526
2013; 341
2009; 458
2016; 11
2006; 311
2015; 23
2009; 33
2015; 26
2012; 2
2007; 117
2016; 539
2017; 17
2005; 7
2013; 498
2005; 3
2016; 213
2009; 4
2008; 135
2000; 101
2016; 29
2012; 7
2005; 12
2009; 347
2012; 40
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 19
  start-page: 107
  year: 2016
  end-page: 119
  ident: CR101
  article-title: In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady‐state reconstitution phases
  publication-title: Cell Stem Cell
– volume: 22
  start-page: 52
  year: 2014
  end-page: 58
  ident: CR46
  article-title: No impact of lentiviral transduction on hematopoietic stem/progenitor cell telomere length or gene expression in the rhesus macaque model
  publication-title: Mol Ther
– volume: 9
  start-page: 1703
  year: 2014
  end-page: 1717
  ident: CR8
  article-title: Activation of DNA damage response signaling by condensed chromatin
  publication-title: Cell Rep
– volume: 15
  start-page: 1143
  year: 2009
  end-page: 1238
  ident: CR51
  article-title: Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective
  publication-title: Biol Blood Marrow Transplant
– volume: 29
  start-page: 905
  year: 2016
  end-page: 921
  ident: CR40
  article-title: miRNA‐126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic leukemia
  publication-title: Cancer Cell
– volume: 311
  start-page: 1141
  year: 2006
  end-page: 1146
  ident: CR56
  article-title: Molecular linkage between the kinase ATM and NF‐kappaB signaling in response to genotoxic stimuli
  publication-title: Science
– volume: 14
  start-page: 128
  year: 2013
  ident: CR10
  article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinformatics
– volume: 20
  start-page: 2257
  year: 2012
  end-page: 2267
  ident: CR1
  article-title: A TLR and non‐TLR mediated innate response to lentiviruses restricts hepatocyte entry and can be ameliorated by pharmacological blockade
  publication-title: Mol Ther
– volume: 16
  start-page: 10
  year: 2014
  end-page: 18
  ident: CR52
  article-title: Interactions between HIV‐1 and the cell‐autonomous innate immune system
  publication-title: Cell Host Microbe
– volume: 10
  start-page: 120
  year: 2012
  end-page: 136
  ident: CR15
  article-title: Hematopoiesis: a human perspective
  publication-title: Cell Stem Cell
– volume: 42
  start-page: 332
  year: 2015
  end-page: 343
  ident: CR21
  article-title: DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti‐microbial innate immunity
  publication-title: Immunity
– volume: 12
  start-page: 163
  year: 2015
  end-page: 174
  ident: CR33
  article-title: Advances in umbilical cord blood manipulation‐from niche to bedside
  publication-title: Nat Rev Clin Oncol
– volume: 23
  start-page: 108
  year: 2005
  end-page: 116
  ident: CR2
  article-title: Coordinate dual‐gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters
  publication-title: Nat Biotechnol
– volume: 135
  start-page: 1118
  year: 2008
  end-page: 1129
  ident: CR55
  article-title: Hematopoietic stem cells reversibly switch from dormancy to self‐renewal during homeostasis and repair
  publication-title: Cell
– volume: 503
  start-page: 402
  year: 2013
  end-page: 405
  ident: CR43
  article-title: HIV‐1 evades innate immune recognition through specific cofactor recruitment
  publication-title: Nature
– volume: 40
  start-page: 330
  year: 2012
  end-page: 341
  ident: CR31
  article-title: A synthetic double‐stranded RNA, poly I:C, induces a rapid apoptosis of human CD34(+) cells
  publication-title: Exp Hematol
– volume: 526
  start-page: 351
  year: 2015
  end-page: 360
  ident: CR37
  article-title: Gene therapy returns to centre stage
  publication-title: Nature
– volume: 33
  start-page: 1256
  year: 2015
  end-page: 1263
  ident: CR54
  article-title: Homology‐driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors
  publication-title: Nat Biotechnol
– volume: 25
  start-page: 217
  year: 2000
  end-page: 222
  ident: CR17
  article-title: Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV‐1 pol sequences
  publication-title: Nat Genet
– volume: 11
  start-page: 173
  year: 2016
  end-page: 181
  ident: CR45
  article-title: HIV replication: a game of hide and sense
  publication-title: Curr Opin HIV AIDS
– volume: 3
  start-page: Article3
  year: 2004
  ident: CR49
  article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat Appl Genet Mol Biol
– volume: 364
  start-page: 945
  year: 2006
  end-page: 954
  ident: CR48
  article-title: Signaling through toll‐like receptor 7/8 induces the differentiation of human bone marrow CD34 progenitor cells along the myeloid lineage
  publication-title: J Mol Biol
– volume: 7
  start-page: e29291
  year: 2012
  ident: CR5
  article-title: Genomic HIV RNA induces innate immune responses through RIG‐I‐dependent sensing of secondary‐structured RNA
  publication-title: PLoS One
– volume: 23
  start-page: 352
  year: 2015
  end-page: 362
  ident: CR42
  article-title: Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells
  publication-title: Mol Ther
– volume: 465
  start-page: 793
  year: 2010
  end-page: 797
  ident: CR3
  article-title: Quiescent haematopoietic stem cells are activated by IFN‐gamma in response to chronic infection
  publication-title: Nature
– volume: 498
  start-page: 376
  year: 2013
  end-page: 379
  ident: CR11
  article-title: HIV‐1 causes CD4 cell death through DNA‐dependent protein kinase during viral integration
  publication-title: Nature
– volume: 7
  start-page: 174
  year: 2010
  end-page: 185
  ident: CR35
  article-title: Hematopoietic stem cell quiescence promotes error‐prone DNA repair and mutagenesis
  publication-title: Cell Stem Cell
– volume: 448
  start-page: 501
  year: 2007
  end-page: 505
  ident: CR50
  article-title: DAI (DLM‐1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response
  publication-title: Nature
– volume: 11
  start-page: 785
  year: 2015
  end-page: 797
  ident: CR58
  article-title: DNA‐damage‐induced type I interferon promotes senescence and inhibits stem cell function
  publication-title: Cell Rep
– volume: 7
  start-page: 493
  year: 2005
  end-page: 500
  ident: CR27
  article-title: Suppression of HIV‐1 infection by a small molecule inhibitor of the ATM kinase
  publication-title: Nat Cell Biol
– volume: 117
  start-page: 473
  year: 2007
  end-page: 481
  ident: CR61
  article-title: Primitive hematopoietic cells resist HIV‐1 infection via p21
  publication-title: J Clin Invest
– volume: 31
  start-page: 17
  year: 2017
  end-page: 29
  ident: CR41
  article-title: Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations
  publication-title: Blood Rev
– volume: 131
  start-page: 873
  year: 2007
  end-page: 886
  ident: CR57
  article-title: Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease
  publication-title: Cell
– volume: 388
  start-page: 476
  year: 2016
  end-page: 487
  ident: CR103
  article-title: Lentiviral haemopoietic stem‐cell gene therapy in early‐onset metachromatic leukodystrophy: an ad‐hoc analysis of a non‐randomised, open‐label, phase 1/2 trial
  publication-title: Lancet
– volume: 12
  start-page: 1444
  year: 2005
  end-page: 1452
  ident: CR60
  article-title: Silencing p21(Waf1/Cip1/Sdi1) expression increases gene transduction efficiency in primitive human hematopoietic cells
  publication-title: Gene Ther
– volume: 3
  start-page: 848
  year: 2005
  end-page: 858
  ident: CR9
  article-title: Genome‐wide analysis of retroviral DNA integration
  publication-title: Nat Rev Microbiol
– volume: 213
  start-page: 2269
  year: 2016
  end-page: 2279
  ident: CR23
  article-title: M‐CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation
  publication-title: J Exp Med
– volume: 142
  start-page: 360
  year: 2010
  end-page: 362
  ident: CR26
  article-title: Stem cells and DNA damage: persist or perish?
  publication-title: Cell
– volume: 33
  start-page: 547
  year: 2009
  end-page: 558
  ident: CR47
  article-title: Single‐stranded DNA orchestrates an ATM‐to‐ATR switch at DNA breaks
  publication-title: Mol Cell
– volume: 351
  start-page: aab2116
  year: 2016
  ident: CR39
  article-title: Distinct routes of lineage development reshape the human blood hierarchy across ontogeny
  publication-title: Science
– volume: 11
  start-page: 685
  year: 2011
  end-page: 692
  ident: CR25
  article-title: Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response
  publication-title: Nat Rev Immunol
– volume: 458
  start-page: 904
  year: 2009
  end-page: 908
  ident: CR16
  article-title: IFNalpha activates dormant haematopoietic stem cells
  publication-title: Nature
– volume: 539
  start-page: 384
  year: 2016
  end-page: 389
  ident: CR14
  article-title: CRISPR/Cas9 beta‐globin gene targeting in human haematopoietic stem cells
  publication-title: Nature
– volume: 8
  start-page: 977
  year: 2017
  end-page: 990
  ident: CR104
  article-title: Efficient ex vivo engineering and expansion of highly purified human hematopoietic stem and progenitor cell populations for gene therapy
  publication-title: Stem Cell Rep
– volume: 23
  start-page: 2063
  year: 2009
  end-page: 2074
  ident: CR13
  article-title: The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate
  publication-title: Leukemia
– volume: 101
  start-page: 173
  year: 2000
  end-page: 185
  ident: CR59
  article-title: HIV‐1 genome nuclear import is mediated by a central DNA flap
  publication-title: Cell
– volume: 24
  start-page: 687
  year: 2006
  end-page: 696
  ident: CR36
  article-title: Hematopoietic stem cell gene transfer in a tumor‐prone mouse model uncovers low genotoxicity of lentiviral vector integration
  publication-title: Nat Biotechnol
– volume: 19
  start-page: 649
  year: 2012
  end-page: 658
  ident: CR38
  article-title: Intracellular transport of recombinant adeno‐associated virus vectors
  publication-title: Gene Ther
– volume: 22
  start-page: 177
  year: 2011
  end-page: 188
  ident: CR44
  article-title: HIV‐1‐derived lentiviral vectors directly activate plasmacytoid dendritic cells, which in turn induce the maturation of myeloid dendritic cells
  publication-title: Hum Gene Ther
– volume: 25
  start-page: 661
  year: 2005
  end-page: 670
  ident: CR24
  article-title: Functional interaction of H2AX, NBS1, and p53 in ATM‐dependent DNA damage responses and tumor suppression
  publication-title: Mol Cell Biol
– volume: 341
  start-page: 1233158
  year: 2013
  ident: CR6
  article-title: Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy
  publication-title: Science
– volume: 86
  start-page: 237
  year: 2009
  end-page: 250
  ident: CR19
  article-title: MAPK signaling pathways in the regulation of hematopoiesis
  publication-title: J Leukoc Biol
– volume: 7
  start-page: 186
  year: 2010
  end-page: 197
  ident: CR34
  article-title: A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis‐independent role for p53 in self‐renewal
  publication-title: Cell Stem Cell
– volume: 17
  start-page: 163
  year: 2017
  end-page: 174
  ident: CR4
  article-title: Novel strategies for improving hematopoietic reconstruction after allogeneic hematopoietic stem cell transplantation or intensive chemotherapy
  publication-title: Expert Opin Biol Ther
– volume: 347
  start-page: 70
  year: 2009
  end-page: 78
  ident: CR102
  article-title: ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays
  publication-title: J Immunol Methods
– volume: 4
  start-page: 37
  year: 2009
  end-page: 48
  ident: CR30
  article-title: p53 regulates hematopoietic stem cell quiescence
  publication-title: Cell Stem Cell
– volume: 2
  start-page: a006890
  year: 2012
  ident: CR12
  article-title: HIV DNA integration
  publication-title: Cold Spring Harb Perspect Med
– volume: 6
  start-page: 309
  year: 2010
  end-page: 322
  ident: CR7
  article-title: p53‐mediated hematopoietic stem and progenitor cell competition
  publication-title: Cell Stem Cell
– volume: 308
  start-page: 551
  year: 2005
  end-page: 554
  ident: CR29
  article-title: ATM activation by DNA double‐strand breaks through the Mre11‐Rad50‐Nbs1 complex
  publication-title: Science
– volume: 115
  start-page: 4569
  year: 2010
  end-page: 4579
  ident: CR20
  article-title: CpG‐ODN 2006 and human parvovirus B19 genome consensus sequences selectively inhibit growth and development of erythroid progenitor cells
  publication-title: Blood
– volume: 26
  start-page: 201
  year: 2015
  end-page: 209
  ident: CR22
  article-title: Cellular innate immunity and restriction of viral infection ‐ implications for lentiviral gene therapy in human hematopoietic cells
  publication-title: Hum Gene Ther
– volume: 520
  start-page: 549
  year: 2015
  end-page: 552
  ident: CR53
  article-title: Exit from dormancy provokes DNA‐damage‐induced attrition in haematopoietic stem cells
  publication-title: Nature
– volume: 25
  start-page: 1298
  year: 2007
  end-page: 1306
  ident: CR32
  article-title: Gene editing in human stem cells using zinc finger nucleases and integrase‐defective lentiviral vector delivery
  publication-title: Nat Biotechnol
– volume: 341
  start-page: 903
  year: 2013
  end-page: 906
  ident: CR18
  article-title: Cyclic GMP‐AMP synthase is an innate immune sensor of HIV and other retroviruses
  publication-title: Science
– volume: 11
  start-page: 799
  year: 2012
  end-page: 811
  ident: CR28
  article-title: Attenuation of miR‐126 activity expands HSC in vivo without exhaustion
  publication-title: Cell Stem Cell
– volume: 23
  start-page: 352
  year: 2015
  end-page: 362
  article-title: Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells
  publication-title: Mol Ther
– volume: 213
  start-page: 2269
  year: 2016
  end-page: 2279
  article-title: M‐CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation
  publication-title: J Exp Med
– volume: 86
  start-page: 237
  year: 2009
  end-page: 250
  article-title: MAPK signaling pathways in the regulation of hematopoiesis
  publication-title: J Leukoc Biol
– volume: 12
  start-page: 1444
  year: 2005
  end-page: 1452
  article-title: Silencing p21(Waf1/Cip1/Sdi1) expression increases gene transduction efficiency in primitive human hematopoietic cells
  publication-title: Gene Ther
– volume: 8
  start-page: 977
  year: 2017
  end-page: 990
  article-title: Efficient ex vivo engineering and expansion of highly purified human hematopoietic stem and progenitor cell populations for gene therapy
  publication-title: Stem Cell Rep
– volume: 17
  start-page: 163
  year: 2017
  end-page: 174
  article-title: Novel strategies for improving hematopoietic reconstruction after allogeneic hematopoietic stem cell transplantation or intensive chemotherapy
  publication-title: Expert Opin Biol Ther
– volume: 526
  start-page: 351
  year: 2015
  end-page: 360
  article-title: Gene therapy returns to centre stage
  publication-title: Nature
– volume: 308
  start-page: 551
  year: 2005
  end-page: 554
  article-title: ATM activation by DNA double‐strand breaks through the Mre11‐Rad50‐Nbs1 complex
  publication-title: Science
– volume: 341
  start-page: 903
  year: 2013
  end-page: 906
  article-title: Cyclic GMP‐AMP synthase is an innate immune sensor of HIV and other retroviruses
  publication-title: Science
– volume: 25
  start-page: 1298
  year: 2007
  end-page: 1306
  article-title: Gene editing in human stem cells using zinc finger nucleases and integrase‐defective lentiviral vector delivery
  publication-title: Nat Biotechnol
– volume: 15
  start-page: 1143
  year: 2009
  end-page: 1238
  article-title: Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective
  publication-title: Biol Blood Marrow Transplant
– volume: 11
  start-page: 785
  year: 2015
  end-page: 797
  article-title: DNA‐damage‐induced type I interferon promotes senescence and inhibits stem cell function
  publication-title: Cell Rep
– volume: 9
  start-page: 1703
  year: 2014
  end-page: 1717
  article-title: Activation of DNA damage response signaling by condensed chromatin
  publication-title: Cell Rep
– volume: 24
  start-page: 687
  year: 2006
  end-page: 696
  article-title: Hematopoietic stem cell gene transfer in a tumor‐prone mouse model uncovers low genotoxicity of lentiviral vector integration
  publication-title: Nat Biotechnol
– volume: 33
  start-page: 547
  year: 2009
  end-page: 558
  article-title: Single‐stranded DNA orchestrates an ATM‐to‐ATR switch at DNA breaks
  publication-title: Mol Cell
– volume: 3
  start-page: 848
  year: 2005
  end-page: 858
  article-title: Genome‐wide analysis of retroviral DNA integration
  publication-title: Nat Rev Microbiol
– volume: 12
  start-page: 163
  year: 2015
  end-page: 174
  article-title: Advances in umbilical cord blood manipulation‐from niche to bedside
  publication-title: Nat Rev Clin Oncol
– volume: 142
  start-page: 360
  year: 2010
  end-page: 362
  article-title: Stem cells and DNA damage: persist or perish?
  publication-title: Cell
– volume: 117
  start-page: 473
  year: 2007
  end-page: 481
  article-title: Primitive hematopoietic cells resist HIV‐1 infection via p21
  publication-title: J Clin Invest
– volume: 16
  start-page: 10
  year: 2014
  end-page: 18
  article-title: Interactions between HIV‐1 and the cell‐autonomous innate immune system
  publication-title: Cell Host Microbe
– volume: 42
  start-page: 332
  year: 2015
  end-page: 343
  article-title: DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti‐microbial innate immunity
  publication-title: Immunity
– volume: 7
  start-page: 186
  year: 2010
  end-page: 197
  article-title: A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis‐independent role for p53 in self‐renewal
  publication-title: Cell Stem Cell
– volume: 4
  start-page: 37
  year: 2009
  end-page: 48
  article-title: p53 regulates hematopoietic stem cell quiescence
  publication-title: Cell Stem Cell
– volume: 503
  start-page: 402
  year: 2013
  end-page: 405
  article-title: HIV‐1 evades innate immune recognition through specific cofactor recruitment
  publication-title: Nature
– volume: 19
  start-page: 649
  year: 2012
  end-page: 658
  article-title: Intracellular transport of recombinant adeno‐associated virus vectors
  publication-title: Gene Ther
– volume: 11
  start-page: 173
  year: 2016
  end-page: 181
  article-title: HIV replication: a game of hide and sense
  publication-title: Curr Opin HIV AIDS
– volume: 7
  start-page: 493
  year: 2005
  end-page: 500
  article-title: Suppression of HIV‐1 infection by a small molecule inhibitor of the ATM kinase
  publication-title: Nat Cell Biol
– volume: 10
  start-page: 120
  year: 2012
  end-page: 136
  article-title: Hematopoiesis: a human perspective
  publication-title: Cell Stem Cell
– volume: 115
  start-page: 4569
  year: 2010
  end-page: 4579
  article-title: CpG‐ODN 2006 and human parvovirus B19 genome consensus sequences selectively inhibit growth and development of erythroid progenitor cells
  publication-title: Blood
– volume: 33
  start-page: 1256
  year: 2015
  end-page: 1263
  article-title: Homology‐driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors
  publication-title: Nat Biotechnol
– volume: 23
  start-page: 108
  year: 2005
  end-page: 116
  article-title: Coordinate dual‐gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters
  publication-title: Nat Biotechnol
– volume: 311
  start-page: 1141
  year: 2006
  end-page: 1146
  article-title: Molecular linkage between the kinase ATM and NF‐kappaB signaling in response to genotoxic stimuli
  publication-title: Science
– volume: 135
  start-page: 1118
  year: 2008
  end-page: 1129
  article-title: Hematopoietic stem cells reversibly switch from dormancy to self‐renewal during homeostasis and repair
  publication-title: Cell
– volume: 29
  start-page: 905
  year: 2016
  end-page: 921
  article-title: miRNA‐126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic leukemia
  publication-title: Cancer Cell
– volume: 40
  start-page: 330
  year: 2012
  end-page: 341
  article-title: A synthetic double‐stranded RNA, poly I:C, induces a rapid apoptosis of human CD34(+) cells
  publication-title: Exp Hematol
– volume: 388
  start-page: 476
  year: 2016
  end-page: 487
  article-title: Lentiviral haemopoietic stem‐cell gene therapy in early‐onset metachromatic leukodystrophy: an ad‐hoc analysis of a non‐randomised, open‐label, phase 1/2 trial
  publication-title: Lancet
– volume: 351
  start-page: aab2116
  year: 2016
  article-title: Distinct routes of lineage development reshape the human blood hierarchy across ontogeny
  publication-title: Science
– volume: 31
  start-page: 17
  year: 2017
  end-page: 29
  article-title: Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations
  publication-title: Blood Rev
– volume: 11
  start-page: 799
  year: 2012
  end-page: 811
  article-title: Attenuation of miR‐126 activity expands HSC in vivo without exhaustion
  publication-title: Cell Stem Cell
– volume: 341
  start-page: 1233158
  year: 2013
  article-title: Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy
  publication-title: Science
– volume: 539
  start-page: 384
  year: 2016
  end-page: 389
  article-title: CRISPR/Cas9 beta‐globin gene targeting in human haematopoietic stem cells
  publication-title: Nature
– volume: 520
  start-page: 549
  year: 2015
  end-page: 552
  article-title: Exit from dormancy provokes DNA‐damage‐induced attrition in haematopoietic stem cells
  publication-title: Nature
– volume: 347
  start-page: 70
  year: 2009
  end-page: 78
  article-title: ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays
  publication-title: J Immunol Methods
– volume: 364
  start-page: 945
  year: 2006
  end-page: 954
  article-title: Signaling through toll‐like receptor 7/8 induces the differentiation of human bone marrow CD34 progenitor cells along the myeloid lineage
  publication-title: J Mol Biol
– volume: 6
  start-page: 309
  year: 2010
  end-page: 322
  article-title: p53‐mediated hematopoietic stem and progenitor cell competition
  publication-title: Cell Stem Cell
– volume: 7
  start-page: e29291
  year: 2012
  article-title: Genomic HIV RNA induces innate immune responses through RIG‐I‐dependent sensing of secondary‐structured RNA
  publication-title: PLoS One
– volume: 458
  start-page: 904
  year: 2009
  end-page: 908
  article-title: IFNalpha activates dormant haematopoietic stem cells
  publication-title: Nature
– volume: 25
  start-page: 217
  year: 2000
  end-page: 222
  article-title: Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV‐1 pol sequences
  publication-title: Nat Genet
– volume: 3
  start-page: Article3
  year: 2004
  article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat Appl Genet Mol Biol
– volume: 19
  start-page: 107
  year: 2016
  end-page: 119
  article-title: In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady‐state reconstitution phases
  publication-title: Cell Stem Cell
– volume: 26
  start-page: 201
  year: 2015
  end-page: 209
  article-title: Cellular innate immunity and restriction of viral infection ‐ implications for lentiviral gene therapy in human hematopoietic cells
  publication-title: Hum Gene Ther
– volume: 2
  start-page: a006890
  year: 2012
  article-title: HIV DNA integration
  publication-title: Cold Spring Harb Perspect Med
– volume: 7
  start-page: 174
  year: 2010
  end-page: 185
  article-title: Hematopoietic stem cell quiescence promotes error‐prone DNA repair and mutagenesis
  publication-title: Cell Stem Cell
– volume: 11
  start-page: 685
  year: 2011
  end-page: 692
  article-title: Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response
  publication-title: Nat Rev Immunol
– volume: 498
  start-page: 376
  year: 2013
  end-page: 379
  article-title: HIV‐1 causes CD4 cell death through DNA‐dependent protein kinase during viral integration
  publication-title: Nature
– volume: 20
  start-page: 2257
  year: 2012
  end-page: 2267
  article-title: A TLR and non‐TLR mediated innate response to lentiviruses restricts hepatocyte entry and can be ameliorated by pharmacological blockade
  publication-title: Mol Ther
– volume: 101
  start-page: 173
  year: 2000
  end-page: 185
  article-title: HIV‐1 genome nuclear import is mediated by a central DNA flap
  publication-title: Cell
– volume: 25
  start-page: 661
  year: 2005
  end-page: 670
  article-title: Functional interaction of H2AX, NBS1, and p53 in ATM‐dependent DNA damage responses and tumor suppression
  publication-title: Mol Cell Biol
– volume: 131
  start-page: 873
  year: 2007
  end-page: 886
  article-title: Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease
  publication-title: Cell
– volume: 22
  start-page: 52
  year: 2014
  end-page: 58
  article-title: No impact of lentiviral transduction on hematopoietic stem/progenitor cell telomere length or gene expression in the rhesus macaque model
  publication-title: Mol Ther
– volume: 22
  start-page: 177
  year: 2011
  end-page: 188
  article-title: HIV‐1‐derived lentiviral vectors directly activate plasmacytoid dendritic cells, which in turn induce the maturation of myeloid dendritic cells
  publication-title: Hum Gene Ther
– volume: 23
  start-page: 2063
  year: 2009
  end-page: 2074
  article-title: The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate
  publication-title: Leukemia
– volume: 448
  start-page: 501
  year: 2007
  end-page: 505
  article-title: DAI (DLM‐1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response
  publication-title: Nature
– volume: 14
  start-page: 128
  year: 2013
  article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinformatics
– volume: 465
  start-page: 793
  year: 2010
  end-page: 797
  article-title: Quiescent haematopoietic stem cells are activated by IFN‐gamma in response to chronic infection
  publication-title: Nature
– ident: e_1_2_9_13_1
  doi: 10.1038/nature12274
– ident: e_1_2_9_46_1
  doi: 10.1038/nature12769
– ident: e_1_2_9_3_1
  doi: 10.1038/nbt1049
– ident: e_1_2_9_21_1
  doi: 10.1189/jlb.0209097
– ident: e_1_2_9_34_1
  doi: 10.1016/j.exphem.2011.12.002
– ident: e_1_2_9_28_1
  doi: 10.1038/nri3062
– ident: e_1_2_9_8_1
  doi: 10.1126/science.1233158
– ident: e_1_2_9_25_1
  doi: 10.1089/hum.2015.036
– ident: e_1_2_9_42_1
  doi: 10.1126/science.aab2116
– ident: e_1_2_9_31_1
  doi: 10.1016/j.stem.2012.09.001
– ident: e_1_2_9_66_1
  doi: 10.1016/j.stemcr.2017.02.010
– ident: e_1_2_9_36_1
  doi: 10.1038/nrclinonc.2014.215
– ident: e_1_2_9_15_1
  doi: 10.1038/leu.2009.155
– ident: e_1_2_9_35_1
  doi: 10.1038/nbt1353
– ident: e_1_2_9_29_1
  doi: 10.1016/j.cell.2010.07.030
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jim.2009.06.008
– ident: e_1_2_9_55_1
  doi: 10.1016/j.bbmt.2009.06.019
– ident: e_1_2_9_51_1
  doi: 10.1016/j.molcel.2009.01.024
– ident: e_1_2_9_32_1
  doi: 10.1126/science.1108297
– ident: e_1_2_9_60_1
  doi: 10.1126/science.1121513
– ident: e_1_2_9_62_1
  doi: 10.1016/j.celrep.2015.03.069
– ident: e_1_2_9_14_1
  doi: 10.1101/cshperspect.a006890
– ident: e_1_2_9_58_1
  doi: 10.1038/nbt.3408
– ident: e_1_2_9_64_1
  doi: 10.1038/sj.gt.3302544
– ident: e_1_2_9_44_1
  doi: 10.1016/j.blre.2016.09.002
– ident: e_1_2_9_45_1
  doi: 10.1038/mt.2014.193
– ident: e_1_2_9_9_1
  doi: 10.1016/j.stem.2010.03.002
– ident: e_1_2_9_37_1
  doi: 10.1016/j.stem.2010.05.016
– ident: e_1_2_9_41_1
  doi: 10.1038/gt.2012.6
– ident: e_1_2_9_12_1
  doi: 10.1186/1471-2105-14-128
– ident: e_1_2_9_2_1
  doi: 10.1038/mt.2012.150
– ident: e_1_2_9_16_1
  doi: 10.1038/nature20134
– ident: e_1_2_9_20_1
  doi: 10.1126/science.1240933
– ident: e_1_2_9_30_1
  doi: 10.1038/ncb1250
– ident: e_1_2_9_19_1
  doi: 10.1038/76095
– ident: e_1_2_9_50_1
  doi: 10.1016/S0140-6736(16)30374-9
– ident: e_1_2_9_52_1
  doi: 10.1016/j.jmb.2006.09.054
– ident: e_1_2_9_56_1
  doi: 10.1016/j.chom.2014.06.009
– ident: e_1_2_9_61_1
  doi: 10.1016/j.cell.2007.10.017
– ident: e_1_2_9_10_1
  doi: 10.1016/j.celrep.2014.10.060
– ident: e_1_2_9_39_1
  doi: 10.1038/nbt1216
– ident: e_1_2_9_57_1
  doi: 10.1038/nature14131
– ident: e_1_2_9_23_1
  doi: 10.1016/j.immuni.2015.01.012
– ident: e_1_2_9_48_1
  doi: 10.1097/COH.0000000000000233
– ident: e_1_2_9_53_1
  doi: 10.2202/1544-6115.1027
– ident: e_1_2_9_65_1
  doi: 10.1172/JCI28971
– ident: e_1_2_9_54_1
  doi: 10.1038/nature06013
– ident: e_1_2_9_40_1
  doi: 10.1038/nature15818
– ident: e_1_2_9_43_1
  doi: 10.1016/j.ccell.2016.05.007
– ident: e_1_2_9_26_1
  doi: 10.1084/jem.20151975
– ident: e_1_2_9_17_1
  doi: 10.1016/j.stem.2012.01.006
– ident: e_1_2_9_63_1
  doi: 10.1016/S0092-8674(00)80828-4
– ident: e_1_2_9_7_1
  doi: 10.1016/j.stem.2016.04.016
– ident: e_1_2_9_22_1
  doi: 10.1182/blood-2009-08-239202
– ident: e_1_2_9_4_1
  doi: 10.1038/nature09135
– ident: e_1_2_9_27_1
  doi: 10.1128/MCB.25.2.661-670.2005
– ident: e_1_2_9_33_1
  doi: 10.1016/j.stem.2008.11.006
– ident: e_1_2_9_38_1
  doi: 10.1016/j.stem.2010.06.014
– ident: e_1_2_9_49_1
  doi: 10.1038/mt.2013.168
– ident: e_1_2_9_5_1
  doi: 10.1080/14712598.2017.1269167
– ident: e_1_2_9_6_1
  doi: 10.1371/journal.pone.0029291
– ident: e_1_2_9_59_1
  doi: 10.1016/j.cell.2008.10.048
– ident: e_1_2_9_47_1
  doi: 10.1089/hum.2010.085
– ident: e_1_2_9_11_1
  doi: 10.1038/nrmicro1263
– ident: e_1_2_9_18_1
  doi: 10.1038/nature07815
SSID ssj0065618
Score 2.4101548
Snippet Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless,...
Clinical application of lentiviral vector (LV)-based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless,...
Abstract Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1198
SubjectTerms Animals
Apoptosis
Cell cycle
Deoxyribonucleic acid
DNA
EMBO16
EMBO18
Engraftment
Expression vectors
Gene therapy
Genes
Genetic Therapy
Genetic Vectors - genetics
Genetic Vectors - immunology
Genomes
hematopoietic stem and progenitor cells
Hematopoietic Stem Cell Transplantation
Hematopoietic stem cells
Hematopoietic Stem Cells - immunology
Humans
Immune response
Immunity, Innate
innate sensing
Integration
Interferon
lentiviral vectors
Lentivirus - genetics
Lentivirus - immunology
Mice
p53 Protein
p53 signaling
Raltegravir
Research Article
Short term
Signal transduction
Stem cells
Transcription
Transplantation
Tumor proteins
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - immunology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJRAXBOUVWpCRkIBDaBy_kmNBrSpEOFGpN8t2bFipza6aXST-fWecbLQBVb1wWWl3nE08M55HPPOZkHeta1kIVuZldNiS41zuIF3Oo24d0_BZp_6K5rs6OxdfL-TFzlFfWBM2wAMPjDvSQUtbSSd9wYV2hbO1j1UZVWE1q11A61vUxTaZGmwwBCnpzR74Rp2DKVAjqI8sZXkUrq6wBZ0hNlxZzvxRgu3_1zjveKe_Kyen7dN5cJu80-lj8mgMK-nxMJ0n5F7o9sn94aDJP_vkQTNuoT8li29YH4SlvZf0d3pl39PQYxkUXXQdRJ60x5r27id1mzVdQ_IOt6UryYFM04l-NOG8LlfLBTZAUkSCprZrKZZ6BbQQ1xS3A_pn5Pz05MeXs3w8byH3SqgyZ9y2KkRgq_WYiFlXVkE7DexmIkamvQpCY_Nq4Iq1UsfasqB9HSJTEUKR52SvW3bhJaGxZo5rK2XlCiFsqFzFlEO8w8JXgeuMfNpy3fgRjBzPxLg0mJSgmAyKyUxiysiH6YLVgMNx-9DPKMZpGAJopx9ArcyoVuYutcrIe1QCg8scHszbsVsBpoeAWeZYK6khdVUiI4ezkbA8_Zy8VSMzmofeQNQsag7hEZDfTmS8EkveurDc4BhwRkJxLjPyYtC6aUplpRB3r8iInunjbM5zSrf4lcDDQSQQxNUZ-bjV3J3Huo2hPKn2XYw3J03TTN9e_Q8xHJCH-IdDUd8h2Vtfb8JriALX7k1a8DfAZ1W-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdgCMQLgvEVGMhISMBDWJz4I3lCA22aEOWJSXuzbMfeKm1JaVok_nvuXDcsoMFLpdYXNWef78O--x0hr1vbMu-NyMtgsSTH2txCuJwH1Vqm4LOJ9RWzr_L4hH8-FafpwG1IaZVbnRgVdds7PCPfB0eDNxVYFP5h8T3HrlF4u5paaNwktxgQYOsGdToGXOCqxPM9sJAqB4UgE7SPKEW57y8vsRCdIUJcWU6sUgTv_1tFX7FRf-ZPjpeoUxc32qij--Reci7pwUYaHpAbvtsltzftJn_ukjuzdJH-kMy_YJYQJvhe0B_x4H6gfsBkKDrvOvA_6YCZ7d0ZtesVXcE8wN_ShahgmMa-fjSivfaLfo5lkBTxoKnpWooJXx71xJLipcDwiJwcHX77dJynrgu5k1yWOatMK31QrDEOwzFjy9orq0JdMh4CU056rrCE1VeStUKFxjCvXOMDkwEcksdkp-s7_5TQ0DBbKSNEbQvOja9tzaRF1MPC1b5SGXm_nXXtEiQ5dsa40Bia4DJpXCY9LlNG3o4PLDZoHNeTfsRlHMkQRjv-0C_PdNqVWnklTC2scEXFlS2saRzwGWRhgH_rM_IGhUDjZocXcybVLAB7CJulD5QUCgJYyTOyN6GETeqmw1sx0klJDPq3SGfk1TiMT2LiW-f7NdKASeKyqkRGnmykbmSprCWi7xUZURN5nPA8Henm5xFCHJYEXLkmI--2knvlta6b0CqK9v8mXh_OZrPx27N_M_6c3EXSTdLeHtlZLdf-BXh5K_sybuVfgo1Mtg
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYgLgvIKFGQkJOCQEid-JAeECmpVIcKJlXqz7MRuV9omy2YX0X_PjJMNDbRCXKLN2nnYM_bMZGa-IeRVbWvmnBFx6i2m5FgbWzCXY69qyxQci5BfUX6VxzP--USc_C4HNExgd6Vph_WkZqvF_s_vFx9gwb8fqvek79z5OSaVM0R7S2E_vhmcRRjHx0eXAugt4WMfiEsVw-4gB5yfK24wEVEByf_v_fqSwPozmHL0qE713SCwju6Ru4OmSQ961rhPbrhml9zqa09e7JLb5eBVf0DmXzBkCKN9F_RH-IrfUddhZBSdNw0oo7TDMPfmlNrNmq7BnofH0qXIoJmGIn80QL-2y3aOOZEUwaGpaWqK0V8ON40VRQ9B95DMjg6_fTqOhxIMcSW5TGOWmVo6r1hhKrTNjE1zp6zyecq490xV0nGF-awuk6wWyheGOVUVzjPpQTt5RHaatnFPCPUFs5kyQuQ24dy43OZMWoRATKrcZSoi-9tZ19WAT45lMhYa7RQkk0Yy6ZFMEXkzXrDsoTmu7_oRyTh2Q0zt8Ee7OtXDEtXKKWFyYUWVZFzZxJqignF6mRgYv3UReY1MoJEX4cUqMyQwwPAQQ0sfKCkUWLOSR2Rv0hNWbDVt3rKR3jK8BkWaFxloTND8cmzGKzEKrnHtBvuAfOIyy0REHvdcNw4pzSVC8SURURN-nIx52tLMzwKeOJAE9LoiIm-3nHvpta6b0Cyw9r8mXh-WZTmePf2PJzwjd_B3H863R3bWq417Dvrf2r4I6_oXnXZT1g
  priority: 102
  providerName: Scholars Portal
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA9yovgien71PCWCoD5Um-arfTzljkOs-OCBbyFpk3Phrl22u8L9986kH1yVQ_ClbHeStpPMTCbJzC-EvG5cw7y3Ms2Dw5Qc51IH0-U06MYxDdcy5ldUX9Xpmfj8Q07RhJgLM-BDzAtuqBnRXqOCW9dPJ_Ygaqi_vMRUcoYYbzlY4dvg2nMU8lx8m4wxeCtxiQ8GSZ2CTVAjug8-4sPyAYuBKeL3_22lrw1Tf4ZQzvuoSy83DlMnD8j90b-kR4NAPCS3fLtP7gwnTl7tk7vVuJf-iKy-YKAQxvhe0F9x7b6nvsd4KLpqW3BBaY_B7e05dbst3cIsHl5L15IDmcaj_WgEfO3W3QozISlCQlPbNhRjvjyaig3FfYH-MTk7Of7-6TQdD15IayVUnjJuG-WDZqWtcUZmXV547XQociZCYLpWXmjMYvVcsUbqUFrmdV36wFQAn-QJ2Wu71j8jNJTMcW2lLFwmhPWFK5hyCHyY1YXnOiHvp1Y39YhKjodjXBicnWA3GewmM3dTQt7OFdYDIMfNRT9iN87FEEk7_tFtzs2omEZ7LW0hnawzLrTLnC1r4DOozAL_zifkDQqBQX2HD6vtmLYA7CFyljnSSmqYwyqRkMNFSdDTekmexMiMdqI34D6LkoOfBORXMxlrYuxb67sdloFRSSjOZUKeDlI3s5QXCgH4soTohTwueF5S2tXPiCIOXQLeXJmQd5PkXvusmxqUR9H-V8Ob46qq5ruD_6r1nNzD30M43yHZ2252_gX4f1v3Mmr4b78aUOA
  priority: 102
  providerName: Wiley-Blackwell
Title Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells
URI https://link.springer.com/article/10.15252/emmm.201707922
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201707922
https://www.ncbi.nlm.nih.gov/pubmed/28667090
https://www.proquest.com/docview/1934930244
https://www.proquest.com/docview/1915346335
https://pubmed.ncbi.nlm.nih.gov/PMC5582409
https://doaj.org/article/7e75a85b5c0347b0ba9cf82f60a719be
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgE4gXBOMrMCojIQEPgTjxR_K4VZ0mRKYJMalvlp3Yo9KWVkuLxH_PnZNGDTAhXqyk5zQ53_l8tu9-JuRtbWvmnBFx6i2m5FgbW5gux17Vlikoi5BfUZ7J0wv-eS7mPUgS5sLs7t-LVKSf3PU1JowzRHJLwdbuC7C6qMpTOd2aXPBJwkIeDIUqhp4vewyfv_zBaPgJKP1_2uKdwej3QMlht3Tsy4bB6OQRedh7kfSoE_tjcsc1B-Red67kzwNyv-x3zJ-QxRcMB8JI3iv6I6zQt9S1GPVEF00DjiZtMYS9uaR2s6ZrmKvDa-lKZECm4QA_GmBdl6vlAvMdKQI_U9PUFCO7HBqEG4qr_-1TcnEy-zY9jfvjFeJKcpnGLDO1dF6xwlQ47zI2zZ2yyucp494zVUnHFeaqukyyWihfGOZUVTjPpAfP4xnZa5aNe0GoL5jNlBEitwnnxuU2Z9IivGFS5S5TEfm4bXVd9djjeATGlcY5CIpJo5j0IKaIvB8eWHWwG7dXPUYxDtUQLzv8AGqk--6nlVPC5MKKKsm4sok1RQV8epkY4N-6iLxDJdDYq-HDKtMnJwB7iI-lj5QUCmaqkkfkcFQTemM1Jm_VSPfWoNXgJPMiA28IyG8GMj6JEW6NW26wDow9XGaZiMjzTusGltJcIsxeEhE10scRz2NKs_gesMJBJOCzFRH5sNXcnc-6rUGzoNr_ang9K8tyuHv5H294RR7gdReqd0j21jcb9xp8u7WdkLspP4dSzdWE7B_Pzs6_TkJfn4TVEihLnv8CyM9KdQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEJRXoICRQNBDaF62k0OFWthqSzcVQq3UW7ATp6zUJstmF9Q_x29jJpuEBlQ49bJS1naS8UxmxvbMNwAvM525xihue7mmlBytbY3LZTuXmXYl_kZ1fkV8IEZHwcdjfrwCP9tcGAqrbHViraizMqU98k10NILIR4sSvJt-s6lqFJ2utiU0VFNaIduqIcaaxI59c_4Dl3DV1t4H5Pcrz9sdHr4f2U2VATsVgfBs11eZMLl0I5XS8kNpLzRSyzz03CDPXZkKE0hK2TS-cDMu80i5RqaRyV2RowHG-16D1YA2UAawujM8-PS5tQXoLNU7jGijpY0qSTTgQtzj3qY5O6NUeJcw6jyvZxfr8gF_G4kLVvLPCM7uGLfvZNdWcvcO3G7cW7a9lMe7sGKKNbi-LHh5vgY34uYo_x5MxhSnRCHGp-x7fXRQMVNROBabFAV6wKyi2PrihOnFnM2RE_hYNuU-NrO6siCr8WbLaTmhRExGiNRMFRmjkDNDmmrG6Fiiug9HV8KRBzAoysI8ApZHrval4jzUThAoE-rQFZpwF500NL604G0760nagKJTbY7ThBZHxKaE2JR0bLLgTTdgusQDubzrDrGx60ZA3vUf5ewkafRCIo3kKuSap44fSO1oFaVIZy4chfRrY8FrEoKE1A2-WKqarAkkj4C7km0puMQltAgsWO_1RDWR9ptbMUoaNVUlvz8qC150zTSSQu8KUy6oDxrFQPg-t-DhUuo6krxQEP6fY4HsyWOP5n5LMflag5gjS9CZjCzYaCX3wmtdNqF-Ldr_m_hkGMdxd_X434Q_h5ujw3icjPcO9p_ALRq2DCFch8F8tjBP0eec62fNh83gy1Xrkl9boI_a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKyouCMorUMBIIOAQNi_byaFCLd1VS7urClGpt2AndlmpTZZ9gPoX-VXMeJ3QgAqnXlbatb3JeCbziGe-IeRlqcpQa8n8yCgsyVHKVxAu-0aUKhTwmdn6iuGI7x0nH0_YyQr52dTCYFploxOtoi7rAt-R98DRSLIYLErSMy4t4mh38H7yzccOUnjS2rTTkK7NQrll4cZckceBvvgB4dxsa38XeP8qigb9zx_2fNdxwC94wiM_jGXJtRFhJgsMRaSKUi2UMGkUJsaEouA6EVi-qWMelkyYTIZaFJk2ITdgjOF_b5A1AVYfAsG1nf7o6FNjF8Bxsm8bwV4LH9QTd0BDLGJRT5-fY1l8iHh1UdSxkbaVwN8G45LF_DObsz3S7Trc1mIO7pDbztWl20vZvEtWdLVBbi6bX15skPWhO9a_R8aHmLOE6cZn9Ls9RphRPcPULDquKvCG6Qzz7KtTqhZzOgdOwGXphMUwTG2XQWqxZ-tJPcaiTIro1FRWJcX0M41aa0rxiGJ2nxxfC0cekNWqrvQjQk0WqlhIxlIVJInUqUpDrhCDMShSHQuPvGt2PS8cQDr26TjLMVBCNuXIprxlk0fetAsmS2yQq6fuIBvbaQjqbX-op6e50xG50ILJlClWBHEiVKBkVgCdhgcS6FfaI69RCHJUPXBjhXQVFEAegnjl24IzAeE0Tzyy2ZkJKqPoDjdilDuVNct_P2AeedEO40pMw6t0vcA5YCATHsfMIw-XUteSFKUcsQADj4iOPHZo7o5U468W0BxYAo5l5pG3jeReuq2rNjS2ov2_jc_7w-Gw_fb434Q_J-ugU_LD_dHBE3ILVy2zCTfJ6ny60E_B_ZyrZ-65puTLdauSX6xslB4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lentiviral+vectors+escape+innate+sensing+but+trigger+p53+in+human+hematopoietic+stem+and+progenitor+cells&rft.jtitle=EMBO+molecular+medicine&rft.au=Piras%2C+Francesco&rft.au=Riba%2C+Michela&rft.au=Petrillo%2C+Carolina&rft.au=Lazarevic%2C+Dejan&rft.date=2017-09-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=9&rft.issue=9&rft.spage=1198&rft.epage=1211&rft_id=info:doi/10.15252%2Femmm.201707922&rft.externalDocID=10_15252_emmm_201707922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon