Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells
Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited...
Saved in:
Published in | EMBO molecular medicine Vol. 9; no. 9; pp. 1198 - 1211 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2017
John Wiley & Sons, Inc EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
ISSN | 1757-4676 1757-4684 1757-4684 |
DOI | 10.15252/emmm.201707922 |
Cover
Abstract | Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery
ex vivo
and engraftment
in vivo
. These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of
ex vivo
gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies.
Synopsis
Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells.
LV transduction remains remarkably stealth in human HSPC, avoiding innate immune activation but triggering p53 signaling in human HSPC.
p53 signaling occurs upon ATM‐dependent nuclear sensing of vector DNA (LV, IDLV, AAV) independently of integration into the host genome.
Vector‐mediated activation of p53 leads to cell cycle arrest and apoptosis
ex vivo
ultimately leading to lower engraftment of short‐term HSPC
in vivo
.
Inhibition of LV‐signaling rescues
ex vivo
apoptosis and early engraftment of human HSPC.
Graphical Abstract
Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells. |
---|---|
AbstractList | Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery
ex vivo
and engraftment
in vivo
. These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of
ex vivo
gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies.
Synopsis
Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells.
LV transduction remains remarkably stealth in human HSPC, avoiding innate immune activation but triggering p53 signaling in human HSPC.
p53 signaling occurs upon ATM‐dependent nuclear sensing of vector DNA (LV, IDLV, AAV) independently of integration into the host genome.
Vector‐mediated activation of p53 leads to cell cycle arrest and apoptosis
ex vivo
ultimately leading to lower engraftment of short‐term HSPC
in vivo
.
Inhibition of LV‐signaling rescues
ex vivo
apoptosis and early engraftment of human HSPC.
Graphical Abstract
Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells. Abstract Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo. These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies. Clinical application of lentiviral vector (LV)-based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV-mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma-retroviral vector. However, reverse-transcribed LV DNA did trigger p53 signaling, activated also by non-integrating Adeno-associated vector, ultimately leading to lower cell recovery and engraftment These effects were more pronounced in the short-term repopulating cells while long-term HSC frequencies remained unaffected. Blocking LV-induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies. Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo . These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies. Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo. These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies. Synopsis Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells. LV transduction remains remarkably stealth in human HSPC, avoiding innate immune activation but triggering p53 signaling in human HSPC. p53 signaling occurs upon ATM‐dependent nuclear sensing of vector DNA (LV, IDLV, AAV) independently of integration into the host genome. Vector‐mediated activation of p53 leads to cell cycle arrest and apoptosis ex vivo ultimately leading to lower engraftment of short‐term HSPC in vivo. Inhibition of LV‐signaling rescues ex vivo apoptosis and early engraftment of human HSPC. Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells. Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo . These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies. image Lentiviral (LV) gene therapy vectors escape innate sensing but trigger p53 signaling in human hematopoietic stem and progenitor cells (HSPC), ultimately leading to lower engraftment of short‐term repopulating cells. LV transduction remains remarkably stealth in human HSPC, avoiding innate immune activation but triggering p53 signaling in human HSPC. p53 signaling occurs upon ATM‐dependent nuclear sensing of vector DNA (LV, IDLV, AAV) independently of integration into the host genome. Vector‐mediated activation of p53 leads to cell cycle arrest and apoptosis ex vivo ultimately leading to lower engraftment of short‐term HSPC in vivo . Inhibition of LV‐signaling rescues ex vivo apoptosis and early engraftment of human HSPC. Clinical application of lentiviral vector (LV)-based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV-mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma-retroviral vector. However, reverse-transcribed LV DNA did trigger p53 signaling, activated also by non-integrating Adeno-associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo These effects were more pronounced in the short-term repopulating cells while long-term HSC frequencies remained unaffected. Blocking LV-induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies.Clinical application of lentiviral vector (LV)-based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV-mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma-retroviral vector. However, reverse-transcribed LV DNA did trigger p53 signaling, activated also by non-integrating Adeno-associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo These effects were more pronounced in the short-term repopulating cells while long-term HSC frequencies remained unaffected. Blocking LV-induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies. Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV‐mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma‐retroviral vector. However, reverse‐transcribed LV DNA did trigger p53 signaling, activated also by non‐integrating Adeno‐associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo. These effects were more pronounced in the short‐term repopulating cells while long‐term HSC frequencies remained unaffected. Blocking LV‐induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies. |
Audience | Academic |
Author | Cittaro, Davide Riba, Michela Bartolaccini, Sara Piras, Francesco Naldini, Luigi Gentner, Bernhard Lazarevic, Dejan Kajaste‐Rudnitski, Anna Petrillo, Carolina Stupka, Elia Cuccovillo, Ivan |
AuthorAffiliation | 1 San Raffaele Telethon Institute for Gene Therapy IRCCS San Raffaele Scientific Institute Milan Italy 2 Vita‐Salute San Raffaele University Milan Italy 3 Center for Translational Genomics and Bioinformatics IRCCS San Raffaele Scientific Institute Milan Italy 4 Present address: Boehringer Ingelheim Biberach an der Riß Germany |
AuthorAffiliation_xml | – name: 1 San Raffaele Telethon Institute for Gene Therapy IRCCS San Raffaele Scientific Institute Milan Italy – name: 3 Center for Translational Genomics and Bioinformatics IRCCS San Raffaele Scientific Institute Milan Italy – name: 2 Vita‐Salute San Raffaele University Milan Italy – name: 4 Present address: Boehringer Ingelheim Biberach an der Riß Germany |
Author_xml | – sequence: 1 givenname: Francesco surname: Piras fullname: Piras, Francesco organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Vita‐Salute San Raffaele University – sequence: 2 givenname: Michela surname: Riba fullname: Riba, Michela organization: Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute – sequence: 3 givenname: Carolina surname: Petrillo fullname: Petrillo, Carolina organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Vita‐Salute San Raffaele University – sequence: 4 givenname: Dejan surname: Lazarevic fullname: Lazarevic, Dejan organization: Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute – sequence: 5 givenname: Ivan surname: Cuccovillo fullname: Cuccovillo, Ivan organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute – sequence: 6 givenname: Sara surname: Bartolaccini fullname: Bartolaccini, Sara organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute – sequence: 7 givenname: Elia surname: Stupka fullname: Stupka, Elia organization: Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Boehringer Ingelheim – sequence: 8 givenname: Bernhard surname: Gentner fullname: Gentner, Bernhard organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute – sequence: 9 givenname: Davide surname: Cittaro fullname: Cittaro, Davide organization: Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute – sequence: 10 givenname: Luigi surname: Naldini fullname: Naldini, Luigi organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Vita‐Salute San Raffaele University – sequence: 11 givenname: Anna orcidid: 0000-0003-1549-2426 surname: Kajaste‐Rudnitski fullname: Kajaste‐Rudnitski, Anna email: kajaste.anna@hsr.it organization: San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28667090$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstv0zAcjtAQe8CZG4rEhUs72_Ej5oA0TQMmteICZ8txfs5cJXaxk6L997jrKO3EQ5biyP4e_n36zosTHzwUxWuM5pgRRi5hGIY5QVggIQl5VpxhwcSM8pqe7P8FPy3OU1ohxBnH9YvilNScCyTRWeEW4Ee3cVH35QbMGGIqIRm9htJ5r0coE_jkfFc201iO0XUdxHLNqnxd3k2Dzl8Y9BjWwcHoTJlGGErt23IdQwfeZcXSQN-nl8Vzq_sErx73i-Lbx5uv159niy-fbq-vFjPDKSczXOmWgxVYalOTWuqG1CAaYWuCqbVYGA40zyU5VBy3TFipMQgjwWJuBa0uitudbhv0Sq2jG3S8V0E79XAQYqd0zC_tQQkQTNesYQZVVDSo0dJkH8uRzv4NZK0PO6311AzQmpxVDupI9PjGuzvVhY1irCYUySzw7lEghu8TpFENLm3j0B7ClBSWmFWUVxXL0LdPoKswRZ-jyqiKygoRSn-jOp0HcN6G7Gu2oupKcCYIlXyLmv8BlVcLgzO5Qtbl8yPCm8NB9xP-KkoGXO4AJoaUItg9BCP1UEW1raLaVzEz2BOGcaMeXdgm5fp_8N7veD_yG-__Z6NulsvlIRntyCnzfK7qQYh_8fsJOXwDlw |
CitedBy_id | crossref_primary_10_1016_j_imlet_2024_106931 crossref_primary_10_1038_s41588_020_0623_4 crossref_primary_10_1016_j_stem_2019_02_019 crossref_primary_10_1084_jem_20211121 crossref_primary_10_1016_j_cell_2022_04_039 crossref_primary_10_1038_s41577_022_00698_0 crossref_primary_10_1016_j_omtm_2021_02_009 crossref_primary_10_1182_bloodadvances_2024013047 crossref_primary_10_3389_fgeed_2021_618378 crossref_primary_10_3389_fcell_2021_698002 crossref_primary_10_1016_j_smim_2023_101731 crossref_primary_10_3390_v15091801 crossref_primary_10_3389_fimmu_2021_660302 crossref_primary_10_15252_emmm_201809958 crossref_primary_10_1038_s41587_023_01888_4 crossref_primary_10_1016_j_omtm_2023_02_014 crossref_primary_10_1186_s12985_020_1297_3 crossref_primary_10_1016_j_omtm_2018_04_001 crossref_primary_10_3389_fgeed_2023_1148693 crossref_primary_10_1186_s13045_021_01083_5 crossref_primary_10_3389_fgeed_2021_618346 crossref_primary_10_1038_s41573_019_0020_9 crossref_primary_10_4049_jimmunol_2200565 crossref_primary_10_1089_hum_2021_089 crossref_primary_10_3390_pharmaceutics11030114 crossref_primary_10_1016_j_jtha_2024_09_008 crossref_primary_10_1002_stem_2901 crossref_primary_10_1182_blood_2019000949 crossref_primary_10_1089_hum_2023_119 crossref_primary_10_3390_pharmaceutics15051329 crossref_primary_10_1093_stmcls_sxae056 crossref_primary_10_1016_j_omtm_2023_06_003 crossref_primary_10_1038_s41467_022_32285_1 crossref_primary_10_3389_fimmu_2022_792684 crossref_primary_10_1016_j_stem_2022_09_001 crossref_primary_10_3390_v12111311 crossref_primary_10_1016_j_omtm_2023_07_009 crossref_primary_10_1016_j_stem_2024_10_013 crossref_primary_10_1016_j_ymthe_2021_09_001 crossref_primary_10_3390_genes14091774 crossref_primary_10_1038_s41467_023_43413_w crossref_primary_10_1080_14712598_2022_2154601 crossref_primary_10_1038_s41598_019_56056_z crossref_primary_10_1111_andr_12915 crossref_primary_10_1016_j_omtm_2020_10_009 crossref_primary_10_1038_s41434_020_0175_3 crossref_primary_10_1016_j_stem_2023_04_014 crossref_primary_10_1016_j_ymthe_2023_11_020 crossref_primary_10_3390_biomedicines10010107 crossref_primary_10_1089_hum_2017_141 crossref_primary_10_1089_hum_2019_016 crossref_primary_10_1038_s41576_020_00298_5 crossref_primary_10_1016_j_stem_2018_10_008 |
Cites_doi | 10.1038/nature12274 10.1038/nature12769 10.1038/nbt1049 10.1189/jlb.0209097 10.1016/j.exphem.2011.12.002 10.1038/nri3062 10.1126/science.1233158 10.1089/hum.2015.036 10.1126/science.aab2116 10.1016/j.stem.2012.09.001 10.1016/j.stemcr.2017.02.010 10.1038/nrclinonc.2014.215 10.1038/leu.2009.155 10.1038/nbt1353 10.1016/j.cell.2010.07.030 10.1016/j.jim.2009.06.008 10.1016/j.bbmt.2009.06.019 10.1016/j.molcel.2009.01.024 10.1126/science.1108297 10.1126/science.1121513 10.1016/j.celrep.2015.03.069 10.1101/cshperspect.a006890 10.1038/nbt.3408 10.1038/sj.gt.3302544 10.1016/j.blre.2016.09.002 10.1038/mt.2014.193 10.1016/j.stem.2010.03.002 10.1016/j.stem.2010.05.016 10.1038/gt.2012.6 10.1186/1471-2105-14-128 10.1038/mt.2012.150 10.1038/nature20134 10.1126/science.1240933 10.1038/ncb1250 10.1038/76095 10.1016/S0140-6736(16)30374-9 10.1016/j.jmb.2006.09.054 10.1016/j.chom.2014.06.009 10.1016/j.cell.2007.10.017 10.1016/j.celrep.2014.10.060 10.1038/nbt1216 10.1038/nature14131 10.1016/j.immuni.2015.01.012 10.1097/COH.0000000000000233 10.2202/1544-6115.1027 10.1172/JCI28971 10.1038/nature06013 10.1038/nature15818 10.1016/j.ccell.2016.05.007 10.1084/jem.20151975 10.1016/j.stem.2012.01.006 10.1016/S0092-8674(00)80828-4 10.1016/j.stem.2016.04.016 10.1182/blood-2009-08-239202 10.1038/nature09135 10.1128/MCB.25.2.661-670.2005 10.1016/j.stem.2008.11.006 10.1016/j.stem.2010.06.014 10.1038/mt.2013.168 10.1080/14712598.2017.1269167 10.1371/journal.pone.0029291 10.1016/j.cell.2008.10.048 10.1089/hum.2010.085 10.1038/nrmicro1263 10.1038/nature07815 |
ContentType | Journal Article |
Copyright | The Authors. Published under the terms of the CC BY 4.0 license 2017 2017 The Authors. Published under the terms of the CC BY 4.0 license 2017 The Authors. Published under the terms of the CC BY 4.0 license. COPYRIGHT 2017 John Wiley & Sons, Inc. 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Authors. Published under the terms of the CC BY 4.0 license 2017 – notice: 2017 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2017 The Authors. Published under the terms of the CC BY 4.0 license. – notice: COPYRIGHT 2017 John Wiley & Sons, Inc. – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.15252/emmm.201707922 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Francesco Piras et al |
EISSN | 1757-4684 |
EndPage | 1211 |
ExternalDocumentID | oai_doaj_org_article_7e75a85b5c0347b0ba9cf82f60a719be PMC5582409 A765724964 28667090 10_15252_emmm_201707922 EMMM201707922 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministero della Salute (Ministry of Health, Italy) grantid: GR‐2009‐1471693 funderid: 10.13039/501100003196 – fundername: H2020|H2020 Priority Excellent Science|H2020 European Research Council (ERC) grantid: TARGETINGGENETHERAPY funderid: 10.13039/100010663 – fundername: Fanconi Anemia Research Fund (FARF) grantid: FARF funderid: 10.13039/100002086 – fundername: Fondazione Telethon (Telethon Foundation) grantid: TGT14D04; TELE16C3; TGT funderid: 10.13039/501100002426 – fundername: Fondazione Telethon (Telethon Foundation) funderid: TGT14D04; TELE16C3; TGT – fundername: H2020|H2020 Priority Excellent Science|H2020 European Research Council (ERC) funderid: TARGETINGGENETHERAPY – fundername: Fanconi Anemia Research Fund (FARF) funderid: FARF – fundername: Ministero della Salute (Ministry of Health, Italy) funderid: GR‐2009‐1471693 – fundername: Fondazione Telethon (Telethon Foundation) grantid: TGT14D04; TELE16C3; TGT – fundername: Ministero della Salute (Ministry of Health, Italy) grantid: GR‐2009‐1471693 – fundername: H2020|H2020 Priority Excellent Science|H2020 European Research Council (ERC) grantid: TARGETINGGENETHERAPY – fundername: Fanconi Anemia Research Fund (FARF) grantid: FARF |
GroupedDBID | --- 0R~ 1OC 24P 4.4 53G 5DZ 5GY 5VS 7X7 8-0 8-1 8AO 8FE 8FH 8FI 8FJ AAHHS AAJSJ AAZKR ABOCM ABUWG ACCFJ ACCMX ACGFO ACGFS ACPRK ACXQS ADBBV ADKYN ADPDF ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFKRA AHMBA AIAGR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BTFSW BVXVI C6C CCPQU D-9 DIK DU5 EBD EBS EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HK~ HMCUK HYE HZ~ IAO IHR ITC KQ8 LH4 LK8 LW6 M48 M7P M~E NNB O9- OIG OK1 OVD OVEED P2P PIMPY PQQKQ PROAC RHF RHI RNS ROL RPM SV3 TEORI UKHRP WIN XV2 31~ ABJNI AFZJQ EBLON GODZA H13 AASML AAYXX CITATION NAO PHGZM PHGZT CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 AJAOE PUEGO 5PM |
ID | FETCH-LOGICAL-c6462-13ad6ef719ac8289ab28e7b7f8214ff17c6e475796e361d57f9a1e7c9ef16f743 |
IEDL.DBID | C6C |
ISSN | 1757-4676 1757-4684 |
IngestDate | Wed Aug 27 01:30:33 EDT 2025 Thu Aug 21 18:28:43 EDT 2025 Sat Sep 27 20:28:14 EDT 2025 Wed Aug 13 08:14:57 EDT 2025 Tue Jun 17 22:25:21 EDT 2025 Tue Jun 10 21:23:10 EDT 2025 Wed Feb 19 02:30:26 EST 2025 Tue Jul 01 01:52:59 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 Wed Jan 22 16:22:00 EST 2025 Fri Feb 21 02:36:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | hematopoietic stem and progenitor cells gene therapy p53 signaling innate sensing lentiviral vectors |
Language | English |
License | Attribution 2017 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6462-13ad6ef719ac8289ab28e7b7f8214ff17c6e475796e361d57f9a1e7c9ef16f743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1549-2426 |
OpenAccessLink | https://doi.org/10.15252/emmm.201707922 |
PMID | 28667090 |
PQID | 1934930244 |
PQPubID | 866378 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7e75a85b5c0347b0ba9cf82f60a719be pubmedcentral_primary_oai_pubmedcentral_nih_gov_5582409 proquest_miscellaneous_1915346335 proquest_journals_1934930244 gale_infotracmisc_A765724964 gale_infotracacademiconefile_A765724964 pubmed_primary_28667090 crossref_primary_10_15252_emmm_201707922 crossref_citationtrail_10_15252_emmm_201707922 wiley_primary_10_15252_emmm_201707922_EMMM201707922 springer_journals_10_15252_emmm_201707922 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2017 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Frankfurt – name: Hoboken |
PublicationTitle | EMBO molecular medicine |
PublicationTitleAbbrev | EMBO Mol Med |
PublicationTitleAlternate | EMBO Mol Med |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK John Wiley & Sons, Inc EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: John Wiley & Sons, Inc – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | Biffi, Montini, Lorioli, Cesani, Fumagalli, Plati, Baldoli, Martino, Calabria, Canale (CR6) 2013; 341 Nucera, Giustacchini, Boccalatte, Calabria, Fanciullo, Plati, Ranghetti, Garcia‐Manteiga, Cittaro, Benedicenti (CR40) 2016; 29 Towers, Noursadeghi (CR52) 2014; 16 Zhang, Scadden, Crumpacker (CR61) 2007; 117 Smyth (CR49) 2004; 3 Tomblyn, Chiller, Einsele, Gress, Sepkowitz, Storek, Wingard, Young, Boeckh (CR51) 2009; 15 Kandalla, Sarrazin, Molawi, Berruyer, Redelberger, Favel, Bordi, de Bentzmann, Sieweke (CR23) 2016; 213 Wilson, Laurenti, Oser, van der Wath, Blanco‐Bose, Jaworski, Offner, Dunant, Eshkind, Bockamp (CR55) 2008; 135 Lau, Swinbank, Ahmed, Taylor, Jackson, Smith, O'Connor (CR27) 2005; 7 Bushman, Lewinski, Ciuffi, Barr, Leipzig, Hannenhalli, Hoffmann (CR9) 2005; 3 Sellers, Dumitriu, Morgan, Hughes, Wu, Raghavarchari, Yang, Uchida, Tisdale, An (CR46) 2014; 22 Rossetti, Gregori, Hauben, Brown, Sergi, Naldini, Roncarolo (CR44) 2011; 22 Zennou, Petit, Guetard, Nerhbass, Montagnier, Charneau (CR59) 2000; 101 Lund, Boitano, Delaney, Shpall, Wagner (CR33) 2015; 12 Mohrin, Bourke, Alexander, Warr, Barry‐Holson, Le Beau, Morrison, Passegue (CR35) 2010; 7 Yu, Katlinskaya, Carbone, Zhao, Katlinski, Zheng, Guha, Li, Chen, Yang (CR58) 2015; 11 Hu, Smyth (CR102) 2009; 347 Yang, Lindahl, Barnes (CR57) 2007; 131 Sauter, Kirchhoff (CR45) 2016; 11 Montini, Cesana, Schmidt, Sanvito, Ponzoni, Bartholomae, Sergi Sergi, Benedicenti, Ambrosi, Di Serio (CR36) 2006; 24 Sessa, Lorioli, Fumagalli, Acquati, Redaelli, Baldoli, Canale, Lopez, Morena, Calabria (CR103) 2016; 388 Hartlova, Erttmann, Raffi, Schmalz, Resch, Anugula, Lienenklaus, Nilsson, Kroger, Nilsson (CR21) 2015; 42 Wu, Shi, Tibbetts, Miyamoto (CR56) 2006; 311 Sioud, Floisand, Forfang, Lund‐Johansen (CR48) 2006; 364 Wang, Exline, DeClercq, Llewellyn, Hayward, Li, Shivak, Surosky, Gregory, Holmes (CR54) 2015; 33 Bondar, Medzhitov (CR7) 2010; 6 Burgess, Burman, Kruhlak, Misteli (CR8) 2014; 9 De Luca, Frances‐Duvert, Asensio, Ihsani, Debien, Taillardet, Verhoeyen, Bella, Lantheaume, Genestier (CR13) 2009; 23 Geest, Coffer (CR19) 2009; 86 Biasco, Pellin, Scala, Dionisio, Basso‐Ricci, Leonardelli, Scaramuzza, Baricordi, Ferrua, Cicalese (CR101) 2016; 19 Nonnenmacher, Weber (CR38) 2012; 19 Petrillo, Cesana, Piras, Bartolaccini, Naldini, Montini, Kajaste‐Rudnitski (CR42) 2015; 23 Agudo, Ruzo, Kitur, Sachidanandam, Blander, Brown (CR1) 2012; 20 Liu, Guo, Hirokawa, Iwamoto, Ubukawa, Michishita, Fujishima, Tagawa, Takahashi, Xiao (CR31) 2012; 40 Dever, Bak, Reinisch, Camarena, Washington, Nicolas, Pavel‐Dinu, Saxena, Wilkens, Mantri (CR14) 2016; 539 Follenzi, Ailles, Bakovic, Geuna, Naldini (CR17) 2000; 25 Lane, Scadden (CR26) 2010; 142 Liu, Elf, Miyata, Sashida, Huang, Di Giandomenico, Lee, Deblasio, Menendez, Antipin (CR30) 2009; 4 Lombardo, Genovese, Beausejour, Colleoni, Lee, Kim, Ando, Urnov, Galli, Gregory (CR32) 2007; 25 Essers, Offner, Blanco‐Bose, Waibler, Kalinke, Duchosal, Trumpp (CR16) 2009; 458 Doulatov, Notta, Laurenti, Dick (CR15) 2012; 10 Chen, Tan, Kou, Duan, Wang, Meirelles, Clark, Ma'ayan (CR10) 2013; 14 Guo, Ishii, Hirokawa, Tagawa, Ohyagi, Michishita, Ubukawa, Yamashita, Ohteki, Onai (CR20) 2010; 115 Baron, Nagler (CR4) 2017; 17 Baldridge, King, Boles, Weksberg, Goodell (CR3) 2010; 465 Milyavsky, Gan, Trottier, Komosa, Tabach, Notta, Lechman, Hermans, Eppert, Konovalova (CR34) 2010; 7 Walter, Lier, Geiselhart, Thalheimer, Huntscha, Sobotta, Moehrle, Brocks, Bayindir, Kaschutnig (CR53) 2015; 520 Takaoka, Wang, Choi, Yanai, Negishi, Ban, Lu, Miyagishi, Kodama, Honda (CR50) 2007; 448 King, Goodell (CR25) 2011; 11 Berg, Melchjorsen, Rintahaka, Diget, Soby, Horan, Gorelick, Matikainen, Larsen, Ostergaard (CR5) 2012; 7 Zhang, Attar, Cohen, Crumpacker, Scadden (CR60) 2005; 12 Pagano, Busca, Candoni, Cattaneo, Cesaro, Fanci, Nadali, Potenza, Russo, Tumbarello (CR41) 2017; 31 Gao, Wu, Wu, Du, Aroh, Yan, Sun, Chen (CR18) 2013; 341 Kajaste‐Rudnitski, Naldini (CR22) 2015; 26 Zonari, Desantis, Petrillo, Boccalatte, Lidonnici, Kajaste‐Rudnitski, Aiuti, Ferrari, Naldini, Gentner (CR104) 2017; 8 Lee, Paull (CR29) 2005; 308 Amendola, Venneri, Biffi, Vigna, Naldini (CR2) 2005; 23 Naldini (CR37) 2015; 526 Cooper, Garcia, Petrovas, Yamamoto, Koup, Nabel (CR11) 2013; 498 Craigie, Bushman (CR12) 2012; 2 Notta, Zandi, Takayama, Dobson, Gan, Wilson, Kaufmann, McLeod, Laurenti, Dunant (CR39) 2016; 351 Lechman, Gentner, van Galen, Giustacchini, Saini, Boccalatte, Hiramatsu, Restuccia, Bachi, Voisin (CR28) 2012; 11 Kang, Ferguson, Song, Bassing, Eckersdorff, Alt, Xu (CR24) 2005; 25 Rasaiyaah, Tan, Fletcher, Price, Blondeau, Hilditch, Jacques, Selwood, James, Noursadeghi (CR43) 2013; 503 Shiotani, Zou (CR47) 2009; 33 2017; 8 2009; 86 2015; 33 2010; 465 2016; 388 2004; 3 2011; 11 2010; 142 2012; 19 2012; 11 2012; 10 2005; 23 2014; 22 2005; 25 2017; 31 2013; 14 2006; 24 2015; 42 2010; 115 2007; 131 2014; 16 2011; 22 2005; 308 2014; 9 2010; 7 2016; 351 2012; 20 2010; 6 2007; 25 2006; 364 2009; 15 2009; 23 2015; 12 2007; 448 2016; 19 2000; 25 2015; 520 2013; 503 2015; 11 2015; 526 2013; 341 2009; 458 2016; 11 2006; 311 2015; 23 2009; 33 2015; 26 2012; 2 2007; 117 2016; 539 2017; 17 2005; 7 2013; 498 2005; 3 2016; 213 2009; 4 2008; 135 2000; 101 2016; 29 2012; 7 2005; 12 2009; 347 2012; 40 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 19 start-page: 107 year: 2016 end-page: 119 ident: CR101 article-title: In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady‐state reconstitution phases publication-title: Cell Stem Cell – volume: 22 start-page: 52 year: 2014 end-page: 58 ident: CR46 article-title: No impact of lentiviral transduction on hematopoietic stem/progenitor cell telomere length or gene expression in the rhesus macaque model publication-title: Mol Ther – volume: 9 start-page: 1703 year: 2014 end-page: 1717 ident: CR8 article-title: Activation of DNA damage response signaling by condensed chromatin publication-title: Cell Rep – volume: 15 start-page: 1143 year: 2009 end-page: 1238 ident: CR51 article-title: Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective publication-title: Biol Blood Marrow Transplant – volume: 29 start-page: 905 year: 2016 end-page: 921 ident: CR40 article-title: miRNA‐126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic leukemia publication-title: Cancer Cell – volume: 311 start-page: 1141 year: 2006 end-page: 1146 ident: CR56 article-title: Molecular linkage between the kinase ATM and NF‐kappaB signaling in response to genotoxic stimuli publication-title: Science – volume: 14 start-page: 128 year: 2013 ident: CR10 article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool publication-title: BMC Bioinformatics – volume: 20 start-page: 2257 year: 2012 end-page: 2267 ident: CR1 article-title: A TLR and non‐TLR mediated innate response to lentiviruses restricts hepatocyte entry and can be ameliorated by pharmacological blockade publication-title: Mol Ther – volume: 16 start-page: 10 year: 2014 end-page: 18 ident: CR52 article-title: Interactions between HIV‐1 and the cell‐autonomous innate immune system publication-title: Cell Host Microbe – volume: 10 start-page: 120 year: 2012 end-page: 136 ident: CR15 article-title: Hematopoiesis: a human perspective publication-title: Cell Stem Cell – volume: 42 start-page: 332 year: 2015 end-page: 343 ident: CR21 article-title: DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti‐microbial innate immunity publication-title: Immunity – volume: 12 start-page: 163 year: 2015 end-page: 174 ident: CR33 article-title: Advances in umbilical cord blood manipulation‐from niche to bedside publication-title: Nat Rev Clin Oncol – volume: 23 start-page: 108 year: 2005 end-page: 116 ident: CR2 article-title: Coordinate dual‐gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters publication-title: Nat Biotechnol – volume: 135 start-page: 1118 year: 2008 end-page: 1129 ident: CR55 article-title: Hematopoietic stem cells reversibly switch from dormancy to self‐renewal during homeostasis and repair publication-title: Cell – volume: 503 start-page: 402 year: 2013 end-page: 405 ident: CR43 article-title: HIV‐1 evades innate immune recognition through specific cofactor recruitment publication-title: Nature – volume: 40 start-page: 330 year: 2012 end-page: 341 ident: CR31 article-title: A synthetic double‐stranded RNA, poly I:C, induces a rapid apoptosis of human CD34(+) cells publication-title: Exp Hematol – volume: 526 start-page: 351 year: 2015 end-page: 360 ident: CR37 article-title: Gene therapy returns to centre stage publication-title: Nature – volume: 33 start-page: 1256 year: 2015 end-page: 1263 ident: CR54 article-title: Homology‐driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors publication-title: Nat Biotechnol – volume: 25 start-page: 217 year: 2000 end-page: 222 ident: CR17 article-title: Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV‐1 pol sequences publication-title: Nat Genet – volume: 11 start-page: 173 year: 2016 end-page: 181 ident: CR45 article-title: HIV replication: a game of hide and sense publication-title: Curr Opin HIV AIDS – volume: 3 start-page: Article3 year: 2004 ident: CR49 article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments publication-title: Stat Appl Genet Mol Biol – volume: 364 start-page: 945 year: 2006 end-page: 954 ident: CR48 article-title: Signaling through toll‐like receptor 7/8 induces the differentiation of human bone marrow CD34 progenitor cells along the myeloid lineage publication-title: J Mol Biol – volume: 7 start-page: e29291 year: 2012 ident: CR5 article-title: Genomic HIV RNA induces innate immune responses through RIG‐I‐dependent sensing of secondary‐structured RNA publication-title: PLoS One – volume: 23 start-page: 352 year: 2015 end-page: 362 ident: CR42 article-title: Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells publication-title: Mol Ther – volume: 465 start-page: 793 year: 2010 end-page: 797 ident: CR3 article-title: Quiescent haematopoietic stem cells are activated by IFN‐gamma in response to chronic infection publication-title: Nature – volume: 498 start-page: 376 year: 2013 end-page: 379 ident: CR11 article-title: HIV‐1 causes CD4 cell death through DNA‐dependent protein kinase during viral integration publication-title: Nature – volume: 7 start-page: 174 year: 2010 end-page: 185 ident: CR35 article-title: Hematopoietic stem cell quiescence promotes error‐prone DNA repair and mutagenesis publication-title: Cell Stem Cell – volume: 448 start-page: 501 year: 2007 end-page: 505 ident: CR50 article-title: DAI (DLM‐1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response publication-title: Nature – volume: 11 start-page: 785 year: 2015 end-page: 797 ident: CR58 article-title: DNA‐damage‐induced type I interferon promotes senescence and inhibits stem cell function publication-title: Cell Rep – volume: 7 start-page: 493 year: 2005 end-page: 500 ident: CR27 article-title: Suppression of HIV‐1 infection by a small molecule inhibitor of the ATM kinase publication-title: Nat Cell Biol – volume: 117 start-page: 473 year: 2007 end-page: 481 ident: CR61 article-title: Primitive hematopoietic cells resist HIV‐1 infection via p21 publication-title: J Clin Invest – volume: 31 start-page: 17 year: 2017 end-page: 29 ident: CR41 article-title: Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations publication-title: Blood Rev – volume: 131 start-page: 873 year: 2007 end-page: 886 ident: CR57 article-title: Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease publication-title: Cell – volume: 388 start-page: 476 year: 2016 end-page: 487 ident: CR103 article-title: Lentiviral haemopoietic stem‐cell gene therapy in early‐onset metachromatic leukodystrophy: an ad‐hoc analysis of a non‐randomised, open‐label, phase 1/2 trial publication-title: Lancet – volume: 12 start-page: 1444 year: 2005 end-page: 1452 ident: CR60 article-title: Silencing p21(Waf1/Cip1/Sdi1) expression increases gene transduction efficiency in primitive human hematopoietic cells publication-title: Gene Ther – volume: 3 start-page: 848 year: 2005 end-page: 858 ident: CR9 article-title: Genome‐wide analysis of retroviral DNA integration publication-title: Nat Rev Microbiol – volume: 213 start-page: 2269 year: 2016 end-page: 2279 ident: CR23 article-title: M‐CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation publication-title: J Exp Med – volume: 142 start-page: 360 year: 2010 end-page: 362 ident: CR26 article-title: Stem cells and DNA damage: persist or perish? publication-title: Cell – volume: 33 start-page: 547 year: 2009 end-page: 558 ident: CR47 article-title: Single‐stranded DNA orchestrates an ATM‐to‐ATR switch at DNA breaks publication-title: Mol Cell – volume: 351 start-page: aab2116 year: 2016 ident: CR39 article-title: Distinct routes of lineage development reshape the human blood hierarchy across ontogeny publication-title: Science – volume: 11 start-page: 685 year: 2011 end-page: 692 ident: CR25 article-title: Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response publication-title: Nat Rev Immunol – volume: 458 start-page: 904 year: 2009 end-page: 908 ident: CR16 article-title: IFNalpha activates dormant haematopoietic stem cells publication-title: Nature – volume: 539 start-page: 384 year: 2016 end-page: 389 ident: CR14 article-title: CRISPR/Cas9 beta‐globin gene targeting in human haematopoietic stem cells publication-title: Nature – volume: 8 start-page: 977 year: 2017 end-page: 990 ident: CR104 article-title: Efficient ex vivo engineering and expansion of highly purified human hematopoietic stem and progenitor cell populations for gene therapy publication-title: Stem Cell Rep – volume: 23 start-page: 2063 year: 2009 end-page: 2074 ident: CR13 article-title: The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate publication-title: Leukemia – volume: 101 start-page: 173 year: 2000 end-page: 185 ident: CR59 article-title: HIV‐1 genome nuclear import is mediated by a central DNA flap publication-title: Cell – volume: 24 start-page: 687 year: 2006 end-page: 696 ident: CR36 article-title: Hematopoietic stem cell gene transfer in a tumor‐prone mouse model uncovers low genotoxicity of lentiviral vector integration publication-title: Nat Biotechnol – volume: 19 start-page: 649 year: 2012 end-page: 658 ident: CR38 article-title: Intracellular transport of recombinant adeno‐associated virus vectors publication-title: Gene Ther – volume: 22 start-page: 177 year: 2011 end-page: 188 ident: CR44 article-title: HIV‐1‐derived lentiviral vectors directly activate plasmacytoid dendritic cells, which in turn induce the maturation of myeloid dendritic cells publication-title: Hum Gene Ther – volume: 25 start-page: 661 year: 2005 end-page: 670 ident: CR24 article-title: Functional interaction of H2AX, NBS1, and p53 in ATM‐dependent DNA damage responses and tumor suppression publication-title: Mol Cell Biol – volume: 341 start-page: 1233158 year: 2013 ident: CR6 article-title: Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy publication-title: Science – volume: 86 start-page: 237 year: 2009 end-page: 250 ident: CR19 article-title: MAPK signaling pathways in the regulation of hematopoiesis publication-title: J Leukoc Biol – volume: 7 start-page: 186 year: 2010 end-page: 197 ident: CR34 article-title: A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis‐independent role for p53 in self‐renewal publication-title: Cell Stem Cell – volume: 17 start-page: 163 year: 2017 end-page: 174 ident: CR4 article-title: Novel strategies for improving hematopoietic reconstruction after allogeneic hematopoietic stem cell transplantation or intensive chemotherapy publication-title: Expert Opin Biol Ther – volume: 347 start-page: 70 year: 2009 end-page: 78 ident: CR102 article-title: ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays publication-title: J Immunol Methods – volume: 4 start-page: 37 year: 2009 end-page: 48 ident: CR30 article-title: p53 regulates hematopoietic stem cell quiescence publication-title: Cell Stem Cell – volume: 2 start-page: a006890 year: 2012 ident: CR12 article-title: HIV DNA integration publication-title: Cold Spring Harb Perspect Med – volume: 6 start-page: 309 year: 2010 end-page: 322 ident: CR7 article-title: p53‐mediated hematopoietic stem and progenitor cell competition publication-title: Cell Stem Cell – volume: 308 start-page: 551 year: 2005 end-page: 554 ident: CR29 article-title: ATM activation by DNA double‐strand breaks through the Mre11‐Rad50‐Nbs1 complex publication-title: Science – volume: 115 start-page: 4569 year: 2010 end-page: 4579 ident: CR20 article-title: CpG‐ODN 2006 and human parvovirus B19 genome consensus sequences selectively inhibit growth and development of erythroid progenitor cells publication-title: Blood – volume: 26 start-page: 201 year: 2015 end-page: 209 ident: CR22 article-title: Cellular innate immunity and restriction of viral infection ‐ implications for lentiviral gene therapy in human hematopoietic cells publication-title: Hum Gene Ther – volume: 520 start-page: 549 year: 2015 end-page: 552 ident: CR53 article-title: Exit from dormancy provokes DNA‐damage‐induced attrition in haematopoietic stem cells publication-title: Nature – volume: 25 start-page: 1298 year: 2007 end-page: 1306 ident: CR32 article-title: Gene editing in human stem cells using zinc finger nucleases and integrase‐defective lentiviral vector delivery publication-title: Nat Biotechnol – volume: 341 start-page: 903 year: 2013 end-page: 906 ident: CR18 article-title: Cyclic GMP‐AMP synthase is an innate immune sensor of HIV and other retroviruses publication-title: Science – volume: 11 start-page: 799 year: 2012 end-page: 811 ident: CR28 article-title: Attenuation of miR‐126 activity expands HSC in vivo without exhaustion publication-title: Cell Stem Cell – volume: 23 start-page: 352 year: 2015 end-page: 362 article-title: Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells publication-title: Mol Ther – volume: 213 start-page: 2269 year: 2016 end-page: 2279 article-title: M‐CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation publication-title: J Exp Med – volume: 86 start-page: 237 year: 2009 end-page: 250 article-title: MAPK signaling pathways in the regulation of hematopoiesis publication-title: J Leukoc Biol – volume: 12 start-page: 1444 year: 2005 end-page: 1452 article-title: Silencing p21(Waf1/Cip1/Sdi1) expression increases gene transduction efficiency in primitive human hematopoietic cells publication-title: Gene Ther – volume: 8 start-page: 977 year: 2017 end-page: 990 article-title: Efficient ex vivo engineering and expansion of highly purified human hematopoietic stem and progenitor cell populations for gene therapy publication-title: Stem Cell Rep – volume: 17 start-page: 163 year: 2017 end-page: 174 article-title: Novel strategies for improving hematopoietic reconstruction after allogeneic hematopoietic stem cell transplantation or intensive chemotherapy publication-title: Expert Opin Biol Ther – volume: 526 start-page: 351 year: 2015 end-page: 360 article-title: Gene therapy returns to centre stage publication-title: Nature – volume: 308 start-page: 551 year: 2005 end-page: 554 article-title: ATM activation by DNA double‐strand breaks through the Mre11‐Rad50‐Nbs1 complex publication-title: Science – volume: 341 start-page: 903 year: 2013 end-page: 906 article-title: Cyclic GMP‐AMP synthase is an innate immune sensor of HIV and other retroviruses publication-title: Science – volume: 25 start-page: 1298 year: 2007 end-page: 1306 article-title: Gene editing in human stem cells using zinc finger nucleases and integrase‐defective lentiviral vector delivery publication-title: Nat Biotechnol – volume: 15 start-page: 1143 year: 2009 end-page: 1238 article-title: Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective publication-title: Biol Blood Marrow Transplant – volume: 11 start-page: 785 year: 2015 end-page: 797 article-title: DNA‐damage‐induced type I interferon promotes senescence and inhibits stem cell function publication-title: Cell Rep – volume: 9 start-page: 1703 year: 2014 end-page: 1717 article-title: Activation of DNA damage response signaling by condensed chromatin publication-title: Cell Rep – volume: 24 start-page: 687 year: 2006 end-page: 696 article-title: Hematopoietic stem cell gene transfer in a tumor‐prone mouse model uncovers low genotoxicity of lentiviral vector integration publication-title: Nat Biotechnol – volume: 33 start-page: 547 year: 2009 end-page: 558 article-title: Single‐stranded DNA orchestrates an ATM‐to‐ATR switch at DNA breaks publication-title: Mol Cell – volume: 3 start-page: 848 year: 2005 end-page: 858 article-title: Genome‐wide analysis of retroviral DNA integration publication-title: Nat Rev Microbiol – volume: 12 start-page: 163 year: 2015 end-page: 174 article-title: Advances in umbilical cord blood manipulation‐from niche to bedside publication-title: Nat Rev Clin Oncol – volume: 142 start-page: 360 year: 2010 end-page: 362 article-title: Stem cells and DNA damage: persist or perish? publication-title: Cell – volume: 117 start-page: 473 year: 2007 end-page: 481 article-title: Primitive hematopoietic cells resist HIV‐1 infection via p21 publication-title: J Clin Invest – volume: 16 start-page: 10 year: 2014 end-page: 18 article-title: Interactions between HIV‐1 and the cell‐autonomous innate immune system publication-title: Cell Host Microbe – volume: 42 start-page: 332 year: 2015 end-page: 343 article-title: DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti‐microbial innate immunity publication-title: Immunity – volume: 7 start-page: 186 year: 2010 end-page: 197 article-title: A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis‐independent role for p53 in self‐renewal publication-title: Cell Stem Cell – volume: 4 start-page: 37 year: 2009 end-page: 48 article-title: p53 regulates hematopoietic stem cell quiescence publication-title: Cell Stem Cell – volume: 503 start-page: 402 year: 2013 end-page: 405 article-title: HIV‐1 evades innate immune recognition through specific cofactor recruitment publication-title: Nature – volume: 19 start-page: 649 year: 2012 end-page: 658 article-title: Intracellular transport of recombinant adeno‐associated virus vectors publication-title: Gene Ther – volume: 11 start-page: 173 year: 2016 end-page: 181 article-title: HIV replication: a game of hide and sense publication-title: Curr Opin HIV AIDS – volume: 7 start-page: 493 year: 2005 end-page: 500 article-title: Suppression of HIV‐1 infection by a small molecule inhibitor of the ATM kinase publication-title: Nat Cell Biol – volume: 10 start-page: 120 year: 2012 end-page: 136 article-title: Hematopoiesis: a human perspective publication-title: Cell Stem Cell – volume: 115 start-page: 4569 year: 2010 end-page: 4579 article-title: CpG‐ODN 2006 and human parvovirus B19 genome consensus sequences selectively inhibit growth and development of erythroid progenitor cells publication-title: Blood – volume: 33 start-page: 1256 year: 2015 end-page: 1263 article-title: Homology‐driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors publication-title: Nat Biotechnol – volume: 23 start-page: 108 year: 2005 end-page: 116 article-title: Coordinate dual‐gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters publication-title: Nat Biotechnol – volume: 311 start-page: 1141 year: 2006 end-page: 1146 article-title: Molecular linkage between the kinase ATM and NF‐kappaB signaling in response to genotoxic stimuli publication-title: Science – volume: 135 start-page: 1118 year: 2008 end-page: 1129 article-title: Hematopoietic stem cells reversibly switch from dormancy to self‐renewal during homeostasis and repair publication-title: Cell – volume: 29 start-page: 905 year: 2016 end-page: 921 article-title: miRNA‐126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic leukemia publication-title: Cancer Cell – volume: 40 start-page: 330 year: 2012 end-page: 341 article-title: A synthetic double‐stranded RNA, poly I:C, induces a rapid apoptosis of human CD34(+) cells publication-title: Exp Hematol – volume: 388 start-page: 476 year: 2016 end-page: 487 article-title: Lentiviral haemopoietic stem‐cell gene therapy in early‐onset metachromatic leukodystrophy: an ad‐hoc analysis of a non‐randomised, open‐label, phase 1/2 trial publication-title: Lancet – volume: 351 start-page: aab2116 year: 2016 article-title: Distinct routes of lineage development reshape the human blood hierarchy across ontogeny publication-title: Science – volume: 31 start-page: 17 year: 2017 end-page: 29 article-title: Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations publication-title: Blood Rev – volume: 11 start-page: 799 year: 2012 end-page: 811 article-title: Attenuation of miR‐126 activity expands HSC in vivo without exhaustion publication-title: Cell Stem Cell – volume: 341 start-page: 1233158 year: 2013 article-title: Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy publication-title: Science – volume: 539 start-page: 384 year: 2016 end-page: 389 article-title: CRISPR/Cas9 beta‐globin gene targeting in human haematopoietic stem cells publication-title: Nature – volume: 520 start-page: 549 year: 2015 end-page: 552 article-title: Exit from dormancy provokes DNA‐damage‐induced attrition in haematopoietic stem cells publication-title: Nature – volume: 347 start-page: 70 year: 2009 end-page: 78 article-title: ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays publication-title: J Immunol Methods – volume: 364 start-page: 945 year: 2006 end-page: 954 article-title: Signaling through toll‐like receptor 7/8 induces the differentiation of human bone marrow CD34 progenitor cells along the myeloid lineage publication-title: J Mol Biol – volume: 6 start-page: 309 year: 2010 end-page: 322 article-title: p53‐mediated hematopoietic stem and progenitor cell competition publication-title: Cell Stem Cell – volume: 7 start-page: e29291 year: 2012 article-title: Genomic HIV RNA induces innate immune responses through RIG‐I‐dependent sensing of secondary‐structured RNA publication-title: PLoS One – volume: 458 start-page: 904 year: 2009 end-page: 908 article-title: IFNalpha activates dormant haematopoietic stem cells publication-title: Nature – volume: 25 start-page: 217 year: 2000 end-page: 222 article-title: Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV‐1 pol sequences publication-title: Nat Genet – volume: 3 start-page: Article3 year: 2004 article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments publication-title: Stat Appl Genet Mol Biol – volume: 19 start-page: 107 year: 2016 end-page: 119 article-title: In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady‐state reconstitution phases publication-title: Cell Stem Cell – volume: 26 start-page: 201 year: 2015 end-page: 209 article-title: Cellular innate immunity and restriction of viral infection ‐ implications for lentiviral gene therapy in human hematopoietic cells publication-title: Hum Gene Ther – volume: 2 start-page: a006890 year: 2012 article-title: HIV DNA integration publication-title: Cold Spring Harb Perspect Med – volume: 7 start-page: 174 year: 2010 end-page: 185 article-title: Hematopoietic stem cell quiescence promotes error‐prone DNA repair and mutagenesis publication-title: Cell Stem Cell – volume: 11 start-page: 685 year: 2011 end-page: 692 article-title: Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response publication-title: Nat Rev Immunol – volume: 498 start-page: 376 year: 2013 end-page: 379 article-title: HIV‐1 causes CD4 cell death through DNA‐dependent protein kinase during viral integration publication-title: Nature – volume: 20 start-page: 2257 year: 2012 end-page: 2267 article-title: A TLR and non‐TLR mediated innate response to lentiviruses restricts hepatocyte entry and can be ameliorated by pharmacological blockade publication-title: Mol Ther – volume: 101 start-page: 173 year: 2000 end-page: 185 article-title: HIV‐1 genome nuclear import is mediated by a central DNA flap publication-title: Cell – volume: 25 start-page: 661 year: 2005 end-page: 670 article-title: Functional interaction of H2AX, NBS1, and p53 in ATM‐dependent DNA damage responses and tumor suppression publication-title: Mol Cell Biol – volume: 131 start-page: 873 year: 2007 end-page: 886 article-title: Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease publication-title: Cell – volume: 22 start-page: 52 year: 2014 end-page: 58 article-title: No impact of lentiviral transduction on hematopoietic stem/progenitor cell telomere length or gene expression in the rhesus macaque model publication-title: Mol Ther – volume: 22 start-page: 177 year: 2011 end-page: 188 article-title: HIV‐1‐derived lentiviral vectors directly activate plasmacytoid dendritic cells, which in turn induce the maturation of myeloid dendritic cells publication-title: Hum Gene Ther – volume: 23 start-page: 2063 year: 2009 end-page: 2074 article-title: The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate publication-title: Leukemia – volume: 448 start-page: 501 year: 2007 end-page: 505 article-title: DAI (DLM‐1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response publication-title: Nature – volume: 14 start-page: 128 year: 2013 article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool publication-title: BMC Bioinformatics – volume: 465 start-page: 793 year: 2010 end-page: 797 article-title: Quiescent haematopoietic stem cells are activated by IFN‐gamma in response to chronic infection publication-title: Nature – ident: e_1_2_9_13_1 doi: 10.1038/nature12274 – ident: e_1_2_9_46_1 doi: 10.1038/nature12769 – ident: e_1_2_9_3_1 doi: 10.1038/nbt1049 – ident: e_1_2_9_21_1 doi: 10.1189/jlb.0209097 – ident: e_1_2_9_34_1 doi: 10.1016/j.exphem.2011.12.002 – ident: e_1_2_9_28_1 doi: 10.1038/nri3062 – ident: e_1_2_9_8_1 doi: 10.1126/science.1233158 – ident: e_1_2_9_25_1 doi: 10.1089/hum.2015.036 – ident: e_1_2_9_42_1 doi: 10.1126/science.aab2116 – ident: e_1_2_9_31_1 doi: 10.1016/j.stem.2012.09.001 – ident: e_1_2_9_66_1 doi: 10.1016/j.stemcr.2017.02.010 – ident: e_1_2_9_36_1 doi: 10.1038/nrclinonc.2014.215 – ident: e_1_2_9_15_1 doi: 10.1038/leu.2009.155 – ident: e_1_2_9_35_1 doi: 10.1038/nbt1353 – ident: e_1_2_9_29_1 doi: 10.1016/j.cell.2010.07.030 – ident: e_1_2_9_24_1 doi: 10.1016/j.jim.2009.06.008 – ident: e_1_2_9_55_1 doi: 10.1016/j.bbmt.2009.06.019 – ident: e_1_2_9_51_1 doi: 10.1016/j.molcel.2009.01.024 – ident: e_1_2_9_32_1 doi: 10.1126/science.1108297 – ident: e_1_2_9_60_1 doi: 10.1126/science.1121513 – ident: e_1_2_9_62_1 doi: 10.1016/j.celrep.2015.03.069 – ident: e_1_2_9_14_1 doi: 10.1101/cshperspect.a006890 – ident: e_1_2_9_58_1 doi: 10.1038/nbt.3408 – ident: e_1_2_9_64_1 doi: 10.1038/sj.gt.3302544 – ident: e_1_2_9_44_1 doi: 10.1016/j.blre.2016.09.002 – ident: e_1_2_9_45_1 doi: 10.1038/mt.2014.193 – ident: e_1_2_9_9_1 doi: 10.1016/j.stem.2010.03.002 – ident: e_1_2_9_37_1 doi: 10.1016/j.stem.2010.05.016 – ident: e_1_2_9_41_1 doi: 10.1038/gt.2012.6 – ident: e_1_2_9_12_1 doi: 10.1186/1471-2105-14-128 – ident: e_1_2_9_2_1 doi: 10.1038/mt.2012.150 – ident: e_1_2_9_16_1 doi: 10.1038/nature20134 – ident: e_1_2_9_20_1 doi: 10.1126/science.1240933 – ident: e_1_2_9_30_1 doi: 10.1038/ncb1250 – ident: e_1_2_9_19_1 doi: 10.1038/76095 – ident: e_1_2_9_50_1 doi: 10.1016/S0140-6736(16)30374-9 – ident: e_1_2_9_52_1 doi: 10.1016/j.jmb.2006.09.054 – ident: e_1_2_9_56_1 doi: 10.1016/j.chom.2014.06.009 – ident: e_1_2_9_61_1 doi: 10.1016/j.cell.2007.10.017 – ident: e_1_2_9_10_1 doi: 10.1016/j.celrep.2014.10.060 – ident: e_1_2_9_39_1 doi: 10.1038/nbt1216 – ident: e_1_2_9_57_1 doi: 10.1038/nature14131 – ident: e_1_2_9_23_1 doi: 10.1016/j.immuni.2015.01.012 – ident: e_1_2_9_48_1 doi: 10.1097/COH.0000000000000233 – ident: e_1_2_9_53_1 doi: 10.2202/1544-6115.1027 – ident: e_1_2_9_65_1 doi: 10.1172/JCI28971 – ident: e_1_2_9_54_1 doi: 10.1038/nature06013 – ident: e_1_2_9_40_1 doi: 10.1038/nature15818 – ident: e_1_2_9_43_1 doi: 10.1016/j.ccell.2016.05.007 – ident: e_1_2_9_26_1 doi: 10.1084/jem.20151975 – ident: e_1_2_9_17_1 doi: 10.1016/j.stem.2012.01.006 – ident: e_1_2_9_63_1 doi: 10.1016/S0092-8674(00)80828-4 – ident: e_1_2_9_7_1 doi: 10.1016/j.stem.2016.04.016 – ident: e_1_2_9_22_1 doi: 10.1182/blood-2009-08-239202 – ident: e_1_2_9_4_1 doi: 10.1038/nature09135 – ident: e_1_2_9_27_1 doi: 10.1128/MCB.25.2.661-670.2005 – ident: e_1_2_9_33_1 doi: 10.1016/j.stem.2008.11.006 – ident: e_1_2_9_38_1 doi: 10.1016/j.stem.2010.06.014 – ident: e_1_2_9_49_1 doi: 10.1038/mt.2013.168 – ident: e_1_2_9_5_1 doi: 10.1080/14712598.2017.1269167 – ident: e_1_2_9_6_1 doi: 10.1371/journal.pone.0029291 – ident: e_1_2_9_59_1 doi: 10.1016/j.cell.2008.10.048 – ident: e_1_2_9_47_1 doi: 10.1089/hum.2010.085 – ident: e_1_2_9_11_1 doi: 10.1038/nrmicro1263 – ident: e_1_2_9_18_1 doi: 10.1038/nature07815 |
SSID | ssj0065618 |
Score | 2.4101548 |
Snippet | Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless,... Clinical application of lentiviral vector (LV)-based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless,... Abstract Clinical application of lentiviral vector (LV)‐based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality.... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1198 |
SubjectTerms | Animals Apoptosis Cell cycle Deoxyribonucleic acid DNA EMBO16 EMBO18 Engraftment Expression vectors Gene therapy Genes Genetic Therapy Genetic Vectors - genetics Genetic Vectors - immunology Genomes hematopoietic stem and progenitor cells Hematopoietic Stem Cell Transplantation Hematopoietic stem cells Hematopoietic Stem Cells - immunology Humans Immune response Immunity, Innate innate sensing Integration Interferon lentiviral vectors Lentivirus - genetics Lentivirus - immunology Mice p53 Protein p53 signaling Raltegravir Research Article Short term Signal transduction Stem cells Transcription Transplantation Tumor proteins Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - immunology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJRAXBOUVWpCRkIBDaBy_kmNBrSpEOFGpN8t2bFipza6aXST-fWecbLQBVb1wWWl3nE08M55HPPOZkHeta1kIVuZldNiS41zuIF3Oo24d0_BZp_6K5rs6OxdfL-TFzlFfWBM2wAMPjDvSQUtbSSd9wYV2hbO1j1UZVWE1q11A61vUxTaZGmwwBCnpzR74Rp2DKVAjqI8sZXkUrq6wBZ0hNlxZzvxRgu3_1zjveKe_Kyen7dN5cJu80-lj8mgMK-nxMJ0n5F7o9sn94aDJP_vkQTNuoT8li29YH4SlvZf0d3pl39PQYxkUXXQdRJ60x5r27id1mzVdQ_IOt6UryYFM04l-NOG8LlfLBTZAUkSCprZrKZZ6BbQQ1xS3A_pn5Pz05MeXs3w8byH3SqgyZ9y2KkRgq_WYiFlXVkE7DexmIkamvQpCY_Nq4Iq1UsfasqB9HSJTEUKR52SvW3bhJaGxZo5rK2XlCiFsqFzFlEO8w8JXgeuMfNpy3fgRjBzPxLg0mJSgmAyKyUxiysiH6YLVgMNx-9DPKMZpGAJopx9ArcyoVuYutcrIe1QCg8scHszbsVsBpoeAWeZYK6khdVUiI4ezkbA8_Zy8VSMzmofeQNQsag7hEZDfTmS8EkveurDc4BhwRkJxLjPyYtC6aUplpRB3r8iInunjbM5zSrf4lcDDQSQQxNUZ-bjV3J3Huo2hPKn2XYw3J03TTN9e_Q8xHJCH-IdDUd8h2Vtfb8JriALX7k1a8DfAZ1W- priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdgCMQLgvEVGMhISMBDWJz4I3lCA22aEOWJSXuzbMfeKm1JaVok_nvuXDcsoMFLpdYXNWef78O--x0hr1vbMu-NyMtgsSTH2txCuJwH1Vqm4LOJ9RWzr_L4hH8-FafpwG1IaZVbnRgVdds7PCPfB0eDNxVYFP5h8T3HrlF4u5paaNwktxgQYOsGdToGXOCqxPM9sJAqB4UgE7SPKEW57y8vsRCdIUJcWU6sUgTv_1tFX7FRf-ZPjpeoUxc32qij--Reci7pwUYaHpAbvtsltzftJn_ukjuzdJH-kMy_YJYQJvhe0B_x4H6gfsBkKDrvOvA_6YCZ7d0ZtesVXcE8wN_ShahgmMa-fjSivfaLfo5lkBTxoKnpWooJXx71xJLipcDwiJwcHX77dJynrgu5k1yWOatMK31QrDEOwzFjy9orq0JdMh4CU056rrCE1VeStUKFxjCvXOMDkwEcksdkp-s7_5TQ0DBbKSNEbQvOja9tzaRF1MPC1b5SGXm_nXXtEiQ5dsa40Bia4DJpXCY9LlNG3o4PLDZoHNeTfsRlHMkQRjv-0C_PdNqVWnklTC2scEXFlS2saRzwGWRhgH_rM_IGhUDjZocXcybVLAB7CJulD5QUCgJYyTOyN6GETeqmw1sx0klJDPq3SGfk1TiMT2LiW-f7NdKASeKyqkRGnmykbmSprCWi7xUZURN5nPA8Henm5xFCHJYEXLkmI--2knvlta6b0CqK9v8mXh_OZrPx27N_M_6c3EXSTdLeHtlZLdf-BXh5K_sybuVfgo1Mtg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYgLgvIKFGQkJOCQEid-JAeECmpVIcKJlXqz7MRuV9omy2YX0X_PjJMNDbRCXKLN2nnYM_bMZGa-IeRVbWvmnBFx6i2m5FgbWzCXY69qyxQci5BfUX6VxzP--USc_C4HNExgd6Vph_WkZqvF_s_vFx9gwb8fqvek79z5OSaVM0R7S2E_vhmcRRjHx0eXAugt4WMfiEsVw-4gB5yfK24wEVEByf_v_fqSwPozmHL0qE713SCwju6Ru4OmSQ961rhPbrhml9zqa09e7JLb5eBVf0DmXzBkCKN9F_RH-IrfUddhZBSdNw0oo7TDMPfmlNrNmq7BnofH0qXIoJmGIn80QL-2y3aOOZEUwaGpaWqK0V8ON40VRQ9B95DMjg6_fTqOhxIMcSW5TGOWmVo6r1hhKrTNjE1zp6zyecq490xV0nGF-awuk6wWyheGOVUVzjPpQTt5RHaatnFPCPUFs5kyQuQ24dy43OZMWoRATKrcZSoi-9tZ19WAT45lMhYa7RQkk0Yy6ZFMEXkzXrDsoTmu7_oRyTh2Q0zt8Ee7OtXDEtXKKWFyYUWVZFzZxJqignF6mRgYv3UReY1MoJEX4cUqMyQwwPAQQ0sfKCkUWLOSR2Rv0hNWbDVt3rKR3jK8BkWaFxloTND8cmzGKzEKrnHtBvuAfOIyy0REHvdcNw4pzSVC8SURURN-nIx52tLMzwKeOJAE9LoiIm-3nHvpta6b0Cyw9r8mXh-WZTmePf2PJzwjd_B3H863R3bWq417Dvrf2r4I6_oXnXZT1g priority: 102 providerName: Scholars Portal – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA9yovgien71PCWCoD5Um-arfTzljkOs-OCBbyFpk3Phrl22u8L9986kH1yVQ_ClbHeStpPMTCbJzC-EvG5cw7y3Ms2Dw5Qc51IH0-U06MYxDdcy5ldUX9Xpmfj8Q07RhJgLM-BDzAtuqBnRXqOCW9dPJ_Ygaqi_vMRUcoYYbzlY4dvg2nMU8lx8m4wxeCtxiQ8GSZ2CTVAjug8-4sPyAYuBKeL3_22lrw1Tf4ZQzvuoSy83DlMnD8j90b-kR4NAPCS3fLtP7gwnTl7tk7vVuJf-iKy-YKAQxvhe0F9x7b6nvsd4KLpqW3BBaY_B7e05dbst3cIsHl5L15IDmcaj_WgEfO3W3QozISlCQlPbNhRjvjyaig3FfYH-MTk7Of7-6TQdD15IayVUnjJuG-WDZqWtcUZmXV547XQociZCYLpWXmjMYvVcsUbqUFrmdV36wFQAn-QJ2Wu71j8jNJTMcW2lLFwmhPWFK5hyCHyY1YXnOiHvp1Y39YhKjodjXBicnWA3GewmM3dTQt7OFdYDIMfNRT9iN87FEEk7_tFtzs2omEZ7LW0hnawzLrTLnC1r4DOozAL_zifkDQqBQX2HD6vtmLYA7CFyljnSSmqYwyqRkMNFSdDTekmexMiMdqI34D6LkoOfBORXMxlrYuxb67sdloFRSSjOZUKeDlI3s5QXCgH4soTohTwueF5S2tXPiCIOXQLeXJmQd5PkXvusmxqUR9H-V8Ob46qq5ruD_6r1nNzD30M43yHZ2252_gX4f1v3Mmr4b78aUOA priority: 102 providerName: Wiley-Blackwell |
Title | Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells |
URI | https://link.springer.com/article/10.15252/emmm.201707922 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201707922 https://www.ncbi.nlm.nih.gov/pubmed/28667090 https://www.proquest.com/docview/1934930244 https://www.proquest.com/docview/1915346335 https://pubmed.ncbi.nlm.nih.gov/PMC5582409 https://doaj.org/article/7e75a85b5c0347b0ba9cf82f60a719be |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgE4gXBOMrMCojIQEPgTjxR_K4VZ0mRKYJMalvlp3Yo9KWVkuLxH_PnZNGDTAhXqyk5zQ53_l8tu9-JuRtbWvmnBFx6i2m5FgbW5gux17Vlikoi5BfUZ7J0wv-eS7mPUgS5sLs7t-LVKSf3PU1JowzRHJLwdbuC7C6qMpTOd2aXPBJwkIeDIUqhp4vewyfv_zBaPgJKP1_2uKdwej3QMlht3Tsy4bB6OQRedh7kfSoE_tjcsc1B-Red67kzwNyv-x3zJ-QxRcMB8JI3iv6I6zQt9S1GPVEF00DjiZtMYS9uaR2s6ZrmKvDa-lKZECm4QA_GmBdl6vlAvMdKQI_U9PUFCO7HBqEG4qr_-1TcnEy-zY9jfvjFeJKcpnGLDO1dF6xwlQ47zI2zZ2yyucp494zVUnHFeaqukyyWihfGOZUVTjPpAfP4xnZa5aNe0GoL5jNlBEitwnnxuU2Z9IivGFS5S5TEfm4bXVd9djjeATGlcY5CIpJo5j0IKaIvB8eWHWwG7dXPUYxDtUQLzv8AGqk--6nlVPC5MKKKsm4sok1RQV8epkY4N-6iLxDJdDYq-HDKtMnJwB7iI-lj5QUCmaqkkfkcFQTemM1Jm_VSPfWoNXgJPMiA28IyG8GMj6JEW6NW26wDow9XGaZiMjzTusGltJcIsxeEhE10scRz2NKs_gesMJBJOCzFRH5sNXcnc-6rUGzoNr_ang9K8tyuHv5H294RR7gdReqd0j21jcb9xp8u7WdkLspP4dSzdWE7B_Pzs6_TkJfn4TVEihLnv8CyM9KdQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEJRXoICRQNBDaF62k0OFWthqSzcVQq3UW7ATp6zUJstmF9Q_x29jJpuEBlQ49bJS1naS8UxmxvbMNwAvM525xihue7mmlBytbY3LZTuXmXYl_kZ1fkV8IEZHwcdjfrwCP9tcGAqrbHViraizMqU98k10NILIR4sSvJt-s6lqFJ2utiU0VFNaIduqIcaaxI59c_4Dl3DV1t4H5Pcrz9sdHr4f2U2VATsVgfBs11eZMLl0I5XS8kNpLzRSyzz03CDPXZkKE0hK2TS-cDMu80i5RqaRyV2RowHG-16D1YA2UAawujM8-PS5tQXoLNU7jGijpY0qSTTgQtzj3qY5O6NUeJcw6jyvZxfr8gF_G4kLVvLPCM7uGLfvZNdWcvcO3G7cW7a9lMe7sGKKNbi-LHh5vgY34uYo_x5MxhSnRCHGp-x7fXRQMVNROBabFAV6wKyi2PrihOnFnM2RE_hYNuU-NrO6siCr8WbLaTmhRExGiNRMFRmjkDNDmmrG6Fiiug9HV8KRBzAoysI8ApZHrval4jzUThAoE-rQFZpwF500NL604G0760nagKJTbY7ThBZHxKaE2JR0bLLgTTdgusQDubzrDrGx60ZA3vUf5ewkafRCIo3kKuSap44fSO1oFaVIZy4chfRrY8FrEoKE1A2-WKqarAkkj4C7km0puMQltAgsWO_1RDWR9ptbMUoaNVUlvz8qC150zTSSQu8KUy6oDxrFQPg-t-DhUuo6krxQEP6fY4HsyWOP5n5LMflag5gjS9CZjCzYaCX3wmtdNqF-Ldr_m_hkGMdxd_X434Q_h5ujw3icjPcO9p_ALRq2DCFch8F8tjBP0eec62fNh83gy1Xrkl9boI_a |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKyouCMorUMBIIOAQNi_byaFCLd1VS7urClGpt2AndlmpTZZ9gPoX-VXMeJ3QgAqnXlbatb3JeCbziGe-IeRlqcpQa8n8yCgsyVHKVxAu-0aUKhTwmdn6iuGI7x0nH0_YyQr52dTCYFploxOtoi7rAt-R98DRSLIYLErSMy4t4mh38H7yzccOUnjS2rTTkK7NQrll4cZckceBvvgB4dxsa38XeP8qigb9zx_2fNdxwC94wiM_jGXJtRFhJgsMRaSKUi2UMGkUJsaEouA6EVi-qWMelkyYTIZaFJk2ITdgjOF_b5A1AVYfAsG1nf7o6FNjF8Bxsm8bwV4LH9QTd0BDLGJRT5-fY1l8iHh1UdSxkbaVwN8G45LF_DObsz3S7Trc1mIO7pDbztWl20vZvEtWdLVBbi6bX15skPWhO9a_R8aHmLOE6cZn9Ls9RphRPcPULDquKvCG6Qzz7KtTqhZzOgdOwGXphMUwTG2XQWqxZ-tJPcaiTIro1FRWJcX0M41aa0rxiGJ2nxxfC0cekNWqrvQjQk0WqlhIxlIVJInUqUpDrhCDMShSHQuPvGt2PS8cQDr26TjLMVBCNuXIprxlk0fetAsmS2yQq6fuIBvbaQjqbX-op6e50xG50ILJlClWBHEiVKBkVgCdhgcS6FfaI69RCHJUPXBjhXQVFEAegnjl24IzAeE0Tzyy2ZkJKqPoDjdilDuVNct_P2AeedEO40pMw6t0vcA5YCATHsfMIw-XUteSFKUcsQADj4iOPHZo7o5U468W0BxYAo5l5pG3jeReuq2rNjS2ov2_jc_7w-Gw_fb434Q_J-ugU_LD_dHBE3ILVy2zCTfJ6ny60E_B_ZyrZ-65puTLdauSX6xslB4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lentiviral+vectors+escape+innate+sensing+but+trigger+p53+in+human+hematopoietic+stem+and+progenitor+cells&rft.jtitle=EMBO+molecular+medicine&rft.au=Piras%2C+Francesco&rft.au=Riba%2C+Michela&rft.au=Petrillo%2C+Carolina&rft.au=Lazarevic%2C+Dejan&rft.date=2017-09-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=9&rft.issue=9&rft.spage=1198&rft.epage=1211&rft_id=info:doi/10.15252%2Femmm.201707922&rft.externalDocID=10_15252_emmm_201707922 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon |