Improvement in the Power Output of a Reverse Electrodialysis System by the Addition of Poly(sodium 4-styrenesulfonate)

Salinity gradient energy generated by the contact between seawater and river water is one of the promising renewable energies. In the reverse electrodialysis (RED), salinity gradient energy is directly translated into the electricity. The representative problem is a large electrical resistance of ri...

Full description

Saved in:
Bibliographic Details
Published inDenki kagaku oyobi kōgyō butsuri kagaku Vol. 89; no. 5; pp. 467 - 471
Main Authors KITAZUMI, Yuki, SHIRAI, Osamu, SOWA, Keisei, YAMADA, Yusuke
Format Journal Article
LanguageEnglish
Published Tokyo The Electrochemical Society of Japan 05.09.2021
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1344-3542
2186-2451
2186-2451
DOI10.5796/electrochemistry.21-00073

Cover

Abstract Salinity gradient energy generated by the contact between seawater and river water is one of the promising renewable energies. In the reverse electrodialysis (RED), salinity gradient energy is directly translated into the electricity. The representative problem is a large electrical resistance of river water or dilute solutions. The dilute solutions are poor electrically conductive. This results in a huge energy loss when an electrical current passes through it.In this study, sodium chloride (NaCl) or poly(sodium 4-styrenesulfonate) (NaPSS) was added to the dilute solutions to increase the conductivities and enhance the power outputs of the RED cells. When NaCl was added, the power output reached 11.4 ± 0.6 µW. On the other hand, when NaPSS was added, the power output increased up to 19.6 ± 0.6 µW.
AbstractList Salinity gradient energy generated by the contact between seawater and river water is one of the promising renewable energies. In the reverse electrodialysis (RED), salinity gradient energy is directly translated into the electricity. The representative problem is a large electrical resistance of river water or dilute solutions. The dilute solutions are poor electrically conductive. This results in a huge energy loss when an electrical current passes through it.In this study, sodium chloride (NaCl) or poly(sodium 4-styrenesulfonate) (NaPSS) was added to the dilute solutions to increase the conductivities and enhance the power outputs of the RED cells. When NaCl was added, the power output reached 11.4 ± 0.6 µW. On the other hand, when NaPSS was added, the power output increased up to 19.6 ± 0.6 µW.
ArticleNumber 21-00073
Author KITAZUMI, Yuki
SOWA, Keisei
SHIRAI, Osamu
YAMADA, Yusuke
Author_xml – sequence: 1
  fullname: KITAZUMI, Yuki
  organization: Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
– sequence: 1
  orcidid: 0000-0003-1317-6243
  fullname: SHIRAI, Osamu
  organization: Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
– sequence: 1
  fullname: SOWA, Keisei
  organization: Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
– sequence: 1
  fullname: YAMADA, Yusuke
  organization: Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
BookMark eNqVkUFr3DAQhU1Jods0_0Gll_bgVJIl2-qlhJCkC4ENbXIWsjzKarGtrSRv8L-Pdt3sIb20FwmG977HzHufnQxugCz7SPA5r0T5FTrQ0Tu9ht6G6KdzSnKMcVW8yRaU1GVOGScn2YIUjOUFZ_RddhbCJkkIFqWgYpHtlv3Wux30MERkBxTXgO7cE3i0GuN2jMgZpNBP2IEPgK7mwNaqbgo2oF9TiNCjZjr4LtrWRuuGvefOddPnkJRjj1ge4uRhgDB2xg0qwpcP2VujugBnf_7T7OH66v7yR367ulleXtzmumQ85orwRtTG0LZUqgZTFZUmacYrKnRZsVqItIfQHEMFxDTCNNTogmPMy7aibXGaLWdu69RGbr3tlZ-kU1YeBs4_SuWj1R1ITBotGiFSGmOKMoExVbhhRFFd08Ik1reZNQ5bNT2prjsCCZb7QuTrQiQl8lBIMn-azenav0cIUW7c6Ie0u6S8qjkpMa6TSswq7V0IHsx_JXx_5dU2qn0f0Svb_RNhNRM2IapHOGa_XOgvZy0k3z8vhKNSr5WXMBTP8c7bgg
CitedBy_id crossref_primary_10_5796_denkikagaku_24_FE0301
crossref_primary_10_1016_j_enconman_2023_117433
crossref_primary_10_3390_en15114177
Cites_doi 10.1021/es9009635
10.1016/j.colsurfa.2018.10.020
10.1021/es2012758
10.1016/j.apenergy.2018.04.111
10.1080/13504509.2019.1595214
10.3390/membranes9060073
10.1016/j.cej.2018.03.054
10.1016/j.memsci.2018.01.006
10.1016/j.memsci.2015.07.053
10.1080/23311916.2016.1167990
10.7849/ksnre.2016.12.12.4.053
10.1039/c1ee01913a
10.3390/membranes11010027
10.1016/j.memsci.2019.117784
10.1016/j.apenergy.2019.114482
10.1016/j.memsci.2009.10.011
10.1021/ma001366z
10.1039/c1cp21291e
10.1038/nature11477
10.1016/j.watres.2012.11.053
10.1016/j.memsci.2018.09.035
10.3390/su13052940
10.1016/j.desal.2017.10.021
10.1007/s10800-010-0124-8
10.1039/C3EE43501F
10.1016/j.cej.2010.10.071
10.1002/er.3728
10.1016/j.seppur.2016.02.020
10.1016/j.desal.2020.114540
10.1016/j.jelechem.2012.05.017
10.1016/j.memsci.2016.08.007
10.1021/acs.est.5b03864
10.1021/es8004317
10.1002/er.6062
10.1016/j.memsci.2017.12.069
10.1016/j.desal.2020.114389
10.1038/174660a0
10.1016/j.desal.2020.114699
10.1016/j.energy.2018.09.111
10.1016/j.memsci.2019.117385
10.1038/s41545-020-0073-7
ContentType Journal Article
Copyright The Author(s) 2021. Published by ECSJ.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021. Published by ECSJ.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QL
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ADTOC
UNPAY
DOA
DOI 10.5796/electrochemistry.21-00073
DatabaseName CrossRef
Aluminium Industry Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2186-2451
EndPage 471
ExternalDocumentID oai_doaj_org_article_01bc9b99ff244a249002a0b41a2c823f
10.5796/electrochemistry.21-00073
10_5796_electrochemistry_21_00073
article_electrochemistry_89_5_89_21_00073_article_char_en
Genre General Information
GroupedDBID 5GY
AAFWJ
ACIWK
ACPRK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
JSF
JSH
OK1
RJT
RZJ
AAYXX
CITATION
7QF
7QL
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ADTOC
UNPAY
ID FETCH-LOGICAL-c645t-a15b98ff2d6aa8ef737c115b5729c6748999699c50e7e1fb9fb2fc350056d72d3
IEDL.DBID DOA
ISSN 1344-3542
2186-2451
IngestDate Wed Aug 27 01:31:52 EDT 2025
Sun Sep 07 11:05:10 EDT 2025
Mon Jun 30 09:56:27 EDT 2025
Tue Jul 01 02:53:15 EDT 2025
Thu Apr 24 23:11:34 EDT 2025
Wed Sep 03 06:31:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c645t-a15b98ff2d6aa8ef737c115b5729c6748999699c50e7e1fb9fb2fc350056d72d3
Notes SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
ORCID 0000-0003-1317-6243
OpenAccessLink https://doaj.org/article/01bc9b99ff244a249002a0b41a2c823f
PQID 2578516008
PQPubID 2029008
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_01bc9b99ff244a249002a0b41a2c823f
unpaywall_primary_10_5796_electrochemistry_21_00073
proquest_journals_2578516008
crossref_primary_10_5796_electrochemistry_21_00073
crossref_citationtrail_10_5796_electrochemistry_21_00073
jstage_primary_article_electrochemistry_89_5_89_21_00073_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-05
PublicationDateYYYYMMDD 2021-09-05
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-05
  day: 05
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Denki kagaku oyobi kōgyō butsuri kagaku
PublicationTitleAlternate Electrochemistry
PublicationYear 2021
Publisher The Electrochemical Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: The Electrochemical Society of Japan
– name: Japan Science and Technology Agency
References 8) R. A. Tufa, S. Pawlowski, J. Veerman, K. Bouzek, E. Fontananova, G. di Profio, S. Velizarov, J. Goulão Crespo, K. Nijmeijer, and E. Curcio, Appl. Energy, 225, 290 (2018).
22) S. Mehdizadeh, Y. Kakihana, T. Abo, Q. Yuan, and M. Higa, Membranes, 11, 27 (2021).
5) G. Z. Ramon, B. J. Feinberg, and E. M. V. Hoek, Energy Environ. Sci., 4, 4423 (2011).
13) O. Scialdone, C. Guarisco, S. Grispo, A. D. Angelo, and A. Galia, J. Electroanal. Chem., 681, 66 (2012).
31) B. Zhang, H. Gao, and Y. Chen, Environ. Sci. Technol., 49, 14717 (2015).
24) H. Susanto, M. Fitrianingtyas, A. M. Samsudin, and A. Syakur, Int. J. Energy Res., 41, 1474 (2017).
30) J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, Chem. Eng. J., 166, 256 (2011).
23) D. A. Vermaas, D. Kunteng, M. Saakes, and K. Nijmeijer, Water Res., 47, 1289 (2013).
28) J. W. Post, H. V. M. Hamelers, and C. J. N. Buisman, Environ. Sci. Technol., 42, 5785 (2008).
15) D. A. Vermaas, J. Veerman, M. Saakes, and K. Nijmeijer, Energy Environ. Sci., 7, 1434 (2014).
18) J. Moreno, V. Díez, M. Saakes, and K. Nijmeijer, J. Membr. Sci., 550, 155 (2018).
41) C. Tristán, M. Fallanza, R. Ibáñez, and I. Ortiz, Desalination, 496, 114699 (2020).
14) J. G. Hong and J. J. Kim, New Renew. Energy, 12, 53 (2016).
38) M. Chen, K. Shafer-Peltier, S. J. Randtke, and E. Peltier, Chem. Eng. J., 344, 155 (2018).
21) D. Pintossi, C. L. Chen, M. Saakes, K. Nijmeijer, and Z. Borneman, npj Clean Water, 3, 29 (2020).
3) F. Sher, O. Curnick, and M. T. Azizan, Sustainability, 13, 2940 (2021).
2) T. Güney, Int. J. Sustain. Dev. World Ecol., 26, 389 (2019).
40) V. M. Ortiz-Martínez, L. Gómez-Coma, C. Tristán, G. Pérez, M. Fallanza, A. Ortiz, R. Ibañez, and I. Ortiz, Desalination, 482, 114389 (2020).
27) D. A. Vermaas, M. Saakes, and K. Nijmeijer, Environ. Sci. Technol., 45, 7089 (2011).
29) P. Długołȩcki, A. Gambier, K. Nijmeijer, and M. Wessling, Environ. Sci. Technol., 43, 6888 (2009).
26) T. Rijnaarts, J. Moreno, M. Saakes, W. M. de Vos, and K. Nijmeijer, Colloids Surf., A, 560, 198 (2019).
34) B. Kang, H. J. Kim, and D. K. Kim, J. Membr. Sci., 550, 286 (2018).
33) A. M. Lopez, H. Dunsworth, and J. A. Hestekin, Sep. Purif. Technol., 162, 84 (2016).
37) M. R. Talingting, U. Voigt, P. Munk, and S. E. Webber, Macromolecules, 33, 9612 (2000).
12) J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, J. Appl. Electrochem., 40, 1461 (2010).
7) Y. Mei and C. Y. Tang, Desalination, 425, 156 (2018).
36) J. Požar, K. Bohinc, V. Vlachy, and D. Kovačević, Phys. Chem. Chem. Phys., 13, 15610 (2011).
17) A. H. Avci, R. A. Tufa, E. Fontananova, G. Di Profio, and E. Curcio, Energy, 165, 512 (2018).
16) A. H. Avci, P. Sarkar, R. A. Tufa, D. Messana, P. Argurio, E. Fontananova, G. Di Profio, and E. Curcio, J. Membr. Sci., 520, 499 (2016).
4) A. Zoungrana and M. Çakmakci, Int. J. Energy Res., 45, 3495 (2021).
11) R. Pattle, Nature, 174, 660 (1954).
1) P. A. Owusu and S. Asumadu-Sarkodie, Cogent Eng., 3, 1167990 (2016).
6) B. E. Logan and M. Elimelech, Nature, 488, 313 (2012).
9) J. Jang, Y. Kang, J. H. Han, K. Jang, C. M. Kim, and I. S. Kim, Desalination, 491, 114540 (2020).
19) L. Gómez-Coma, V. M. Ortiz-Martínez, J. Carmona, L. Palacio, P. Prádanos, M. Fallanza, A. Ortiz, R. Ibañez, and I. Ortiz, J. Membr. Sci., 592, 117385 (2019).
32) P. Długołęcki, J. Dąbrowska, K. Nijmeijer, and M. Wessling, J. Membr. Sci., 347, 101 (2010).
25) H. Gao, B. Zhang, X. Tong, and Y. Chen, J. Membr. Sci., 567, 68 (2018).
20) A. A. Moya, J. Membr. Sci., 598, 117784 (2020).
35) S. Mehdizadeh, M. Yasukawa, T. Abo, M. Kuno, Y. Noguchi, and M. Higa, Membranes, 9, 73 (2019).
10) H. Tian, Y. Wang, Y. Pei, and J. C. Crittenden, Appl. Energy, 262, 114482 (2020).
39) X. Zhu, W. He, and B. E. Logan, J. Membr. Sci., 494, 154 (2015).
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
21
References_xml – reference: 8) R. A. Tufa, S. Pawlowski, J. Veerman, K. Bouzek, E. Fontananova, G. di Profio, S. Velizarov, J. Goulão Crespo, K. Nijmeijer, and E. Curcio, Appl. Energy, 225, 290 (2018).
– reference: 27) D. A. Vermaas, M. Saakes, and K. Nijmeijer, Environ. Sci. Technol., 45, 7089 (2011).
– reference: 11) R. Pattle, Nature, 174, 660 (1954).
– reference: 5) G. Z. Ramon, B. J. Feinberg, and E. M. V. Hoek, Energy Environ. Sci., 4, 4423 (2011).
– reference: 41) C. Tristán, M. Fallanza, R. Ibáñez, and I. Ortiz, Desalination, 496, 114699 (2020).
– reference: 3) F. Sher, O. Curnick, and M. T. Azizan, Sustainability, 13, 2940 (2021).
– reference: 26) T. Rijnaarts, J. Moreno, M. Saakes, W. M. de Vos, and K. Nijmeijer, Colloids Surf., A, 560, 198 (2019).
– reference: 40) V. M. Ortiz-Martínez, L. Gómez-Coma, C. Tristán, G. Pérez, M. Fallanza, A. Ortiz, R. Ibañez, and I. Ortiz, Desalination, 482, 114389 (2020).
– reference: 25) H. Gao, B. Zhang, X. Tong, and Y. Chen, J. Membr. Sci., 567, 68 (2018).
– reference: 29) P. Długołȩcki, A. Gambier, K. Nijmeijer, and M. Wessling, Environ. Sci. Technol., 43, 6888 (2009).
– reference: 7) Y. Mei and C. Y. Tang, Desalination, 425, 156 (2018).
– reference: 19) L. Gómez-Coma, V. M. Ortiz-Martínez, J. Carmona, L. Palacio, P. Prádanos, M. Fallanza, A. Ortiz, R. Ibañez, and I. Ortiz, J. Membr. Sci., 592, 117385 (2019).
– reference: 21) D. Pintossi, C. L. Chen, M. Saakes, K. Nijmeijer, and Z. Borneman, npj Clean Water, 3, 29 (2020).
– reference: 32) P. Długołęcki, J. Dąbrowska, K. Nijmeijer, and M. Wessling, J. Membr. Sci., 347, 101 (2010).
– reference: 1) P. A. Owusu and S. Asumadu-Sarkodie, Cogent Eng., 3, 1167990 (2016).
– reference: 17) A. H. Avci, R. A. Tufa, E. Fontananova, G. Di Profio, and E. Curcio, Energy, 165, 512 (2018).
– reference: 38) M. Chen, K. Shafer-Peltier, S. J. Randtke, and E. Peltier, Chem. Eng. J., 344, 155 (2018).
– reference: 13) O. Scialdone, C. Guarisco, S. Grispo, A. D. Angelo, and A. Galia, J. Electroanal. Chem., 681, 66 (2012).
– reference: 36) J. Požar, K. Bohinc, V. Vlachy, and D. Kovačević, Phys. Chem. Chem. Phys., 13, 15610 (2011).
– reference: 14) J. G. Hong and J. J. Kim, New Renew. Energy, 12, 53 (2016).
– reference: 20) A. A. Moya, J. Membr. Sci., 598, 117784 (2020).
– reference: 28) J. W. Post, H. V. M. Hamelers, and C. J. N. Buisman, Environ. Sci. Technol., 42, 5785 (2008).
– reference: 2) T. Güney, Int. J. Sustain. Dev. World Ecol., 26, 389 (2019).
– reference: 34) B. Kang, H. J. Kim, and D. K. Kim, J. Membr. Sci., 550, 286 (2018).
– reference: 15) D. A. Vermaas, J. Veerman, M. Saakes, and K. Nijmeijer, Energy Environ. Sci., 7, 1434 (2014).
– reference: 30) J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, Chem. Eng. J., 166, 256 (2011).
– reference: 33) A. M. Lopez, H. Dunsworth, and J. A. Hestekin, Sep. Purif. Technol., 162, 84 (2016).
– reference: 16) A. H. Avci, P. Sarkar, R. A. Tufa, D. Messana, P. Argurio, E. Fontananova, G. Di Profio, and E. Curcio, J. Membr. Sci., 520, 499 (2016).
– reference: 31) B. Zhang, H. Gao, and Y. Chen, Environ. Sci. Technol., 49, 14717 (2015).
– reference: 10) H. Tian, Y. Wang, Y. Pei, and J. C. Crittenden, Appl. Energy, 262, 114482 (2020).
– reference: 24) H. Susanto, M. Fitrianingtyas, A. M. Samsudin, and A. Syakur, Int. J. Energy Res., 41, 1474 (2017).
– reference: 37) M. R. Talingting, U. Voigt, P. Munk, and S. E. Webber, Macromolecules, 33, 9612 (2000).
– reference: 18) J. Moreno, V. Díez, M. Saakes, and K. Nijmeijer, J. Membr. Sci., 550, 155 (2018).
– reference: 35) S. Mehdizadeh, M. Yasukawa, T. Abo, M. Kuno, Y. Noguchi, and M. Higa, Membranes, 9, 73 (2019).
– reference: 12) J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, J. Appl. Electrochem., 40, 1461 (2010).
– reference: 9) J. Jang, Y. Kang, J. H. Han, K. Jang, C. M. Kim, and I. S. Kim, Desalination, 491, 114540 (2020).
– reference: 4) A. Zoungrana and M. Çakmakci, Int. J. Energy Res., 45, 3495 (2021).
– reference: 6) B. E. Logan and M. Elimelech, Nature, 488, 313 (2012).
– reference: 22) S. Mehdizadeh, Y. Kakihana, T. Abo, Q. Yuan, and M. Higa, Membranes, 11, 27 (2021).
– reference: 23) D. A. Vermaas, D. Kunteng, M. Saakes, and K. Nijmeijer, Water Res., 47, 1289 (2013).
– reference: 39) X. Zhu, W. He, and B. E. Logan, J. Membr. Sci., 494, 154 (2015).
– ident: 29
  doi: 10.1021/es9009635
– ident: 26
  doi: 10.1016/j.colsurfa.2018.10.020
– ident: 27
  doi: 10.1021/es2012758
– ident: 8
  doi: 10.1016/j.apenergy.2018.04.111
– ident: 2
  doi: 10.1080/13504509.2019.1595214
– ident: 35
  doi: 10.3390/membranes9060073
– ident: 38
  doi: 10.1016/j.cej.2018.03.054
– ident: 34
  doi: 10.1016/j.memsci.2018.01.006
– ident: 39
  doi: 10.1016/j.memsci.2015.07.053
– ident: 1
  doi: 10.1080/23311916.2016.1167990
– ident: 14
  doi: 10.7849/ksnre.2016.12.12.4.053
– ident: 5
  doi: 10.1039/c1ee01913a
– ident: 22
  doi: 10.3390/membranes11010027
– ident: 20
  doi: 10.1016/j.memsci.2019.117784
– ident: 10
  doi: 10.1016/j.apenergy.2019.114482
– ident: 32
  doi: 10.1016/j.memsci.2009.10.011
– ident: 37
  doi: 10.1021/ma001366z
– ident: 36
  doi: 10.1039/c1cp21291e
– ident: 6
  doi: 10.1038/nature11477
– ident: 23
  doi: 10.1016/j.watres.2012.11.053
– ident: 25
  doi: 10.1016/j.memsci.2018.09.035
– ident: 3
  doi: 10.3390/su13052940
– ident: 7
  doi: 10.1016/j.desal.2017.10.021
– ident: 12
  doi: 10.1007/s10800-010-0124-8
– ident: 15
  doi: 10.1039/C3EE43501F
– ident: 30
  doi: 10.1016/j.cej.2010.10.071
– ident: 24
  doi: 10.1002/er.3728
– ident: 33
  doi: 10.1016/j.seppur.2016.02.020
– ident: 9
  doi: 10.1016/j.desal.2020.114540
– ident: 13
  doi: 10.1016/j.jelechem.2012.05.017
– ident: 16
  doi: 10.1016/j.memsci.2016.08.007
– ident: 31
  doi: 10.1021/acs.est.5b03864
– ident: 28
  doi: 10.1021/es8004317
– ident: 4
  doi: 10.1002/er.6062
– ident: 18
  doi: 10.1016/j.memsci.2017.12.069
– ident: 40
  doi: 10.1016/j.desal.2020.114389
– ident: 11
  doi: 10.1038/174660a0
– ident: 41
  doi: 10.1016/j.desal.2020.114699
– ident: 17
  doi: 10.1016/j.energy.2018.09.111
– ident: 19
  doi: 10.1016/j.memsci.2019.117385
– ident: 21
  doi: 10.1038/s41545-020-0073-7
SSID ssj0001096929
Score 2.2538557
Snippet Salinity gradient energy generated by the contact between seawater and river water is one of the promising renewable energies. In the reverse electrodialysis...
SourceID doaj
unpaywall
proquest
crossref
jstage
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 467
SubjectTerms Dilution
Electric contacts
Electrical resistivity
Electrodialysis
Energy
Energy dissipation
Energy loss
Poly(sodium 4-styrenesulfonate)
Renewable energy
Reverse Electrodialysis
Rivers
Salinity
Salinity effects
Salinity Gradient Energy
Seawater
Sodium Chloride
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrUS58EYsFGQkDnDwkviROMelarXiUFYVK5WTZTsOAkJ2xSag5dfjyUttOVC45BB5bMcZ25_t8fcBvFSRV9LzlAawzqnwaUqtkjmNHeofIeld3kb5niaLlXh3Ls_3IB7uwlw4v8dbkm96MRg3qJ_NWEzb46UbsJ_gmdIE9leny_nHdmElBOWyFcxBqSXKhIxvwou_5nVpTmqp-8N89CWgs0_-EvA8aKqN2f00ZXlhDjq5A2dD7bvQk6-zprYz9-sKseM_fd5duN0jUjLvXOge7PnqPhwcDWkfwI9u46HdRySfKxIgI1miuBp539Sbpibrghhy5jHAw5Pjriy8j4JkJ6SjRCd219rN87yNEUOb5brcvdqGlM03IugWt8PDuNuUBW7o-9cPYXVy_OFoQXu5BuoSIWtqYmkzVRQsT4xRvkh56gLetDLgd4eaJri2yjInI5_6uLBZYVnhuEQ20jxlOX8Ek2pd-cdAMhkxb5XlPA_Lw8SrTKRFAJ5G5ixNpZ-CGn6Ydj2XOUpqlDqsabBh9dWG1SzWbcNOgY2mm47Q4zpGb9ErRgPk5G5fhH-p-y6uo9i6zGZZaAEhTKh38E4TWREb5hTjxRQWnU-N2QyWf5SrMi3xMZQ_psSreGE8m8Lh4JW6H3O2GgdfGYc-oabAR0-9_kc--S-rp3CLYZgPnrHJQ5jU3xv_LOC02j7ve-ZvxkdBHA
  priority: 102
  providerName: Unpaywall
Title Improvement in the Power Output of a Reverse Electrodialysis System by the Addition of Poly(sodium 4-styrenesulfonate)
URI https://www.jstage.jst.go.jp/article/electrochemistry/89/5/89_21-00073/_article/-char/en
https://www.proquest.com/docview/2578516008
https://doi.org/10.5796/electrochemistry.21-00073
https://doaj.org/article/01bc9b99ff244a249002a0b41a2c823f
UnpaywallVersion publishedVersion
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Electrochemistry, 2021/09/05, Vol.89(5), pp.467-471
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2186-2451
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001096929
  issn: 1344-3542
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKwEXVASIQKmMxAEOoYkTr-3jtmq14lBWiJXKyfITgdLsik1a7b9nJi-1cKAHLjlEmST2jGc-2-NvCHknsyB5KEQKYL1IyyBEaiX3ae6w_hGS3vkuy_ditliVny755a1SX5gT1tMD9x13nOXWKatUjBCIDEwWYAibzJa5YU6yIqL3hTDWT6YekrfgBfB45fFQRcaNZdM-sjzt9qXuBKCOpx-Cz0-AYt_DHZT5qK03ZndjqupWwDk_IE8GpEjn_R8-JQ9C_Yxc94sA3Zoe_VFTgG90iYXO6Oe22bQNXUdq6JeAyRaBnvV_h2dDkHiE9vTk1O46ubn3Xb4WyizX1e79Fp5sr2iZbnFpGnxgW0VcXA8fnpPV-dnX00U6lE5I3azkTWpybpWEPvMzY2SIohAOsJ_lgKUd1hfBeY5SjmdBhDxaFS2LruDIDOoF88ULslev6_CSUMUzFqy0ReGh92dBqlJEAIGGeyYEDwmRY39qN_CKY3mLSsP8AlWh_1SFZrnuVJEQNoluenKN-widoNImAeTH7m6A1ejBavS_rCYhi17l02tGyb--K5XmeBm_Pz2Jx-LAtyTkcDQaPYz_rUZHyHMAkzIhxWRI92_kq__RyNfkMcMMHNz-4odkr_nVhjcAoRp71I2WI7K_uljOv_0GLrYjDA
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrUS58EYsFGQkDnDwkviROMelarXiUFYVK5WTZTsOAkJ2xSag5dfjyUttOVC45BB5bMcZ25_t8fcBvFSRV9LzlAawzqnwaUqtkjmNHeofIeld3kb5niaLlXh3Ls_3IB7uwlw4v8dbkm96MRg3qJ_NWEzb46UbsJ_gmdIE9leny_nHdmElBOWyFcxBqSXKhIxvwou_5nVpTmqp-8N89CWgs0_-EvA8aKqN2f00ZXlhDjq5A2dD7bvQk6-zprYz9-sKseM_fd5duN0jUjLvXOge7PnqPhwcDWkfwI9u46HdRySfKxIgI1miuBp539Sbpibrghhy5jHAw5Pjriy8j4JkJ6SjRCd219rN87yNEUOb5brcvdqGlM03IugWt8PDuNuUBW7o-9cPYXVy_OFoQXu5BuoSIWtqYmkzVRQsT4xRvkh56gLetDLgd4eaJri2yjInI5_6uLBZYVnhuEQ20jxlOX8Ek2pd-cdAMhkxb5XlPA_Lw8SrTKRFAJ5G5ixNpZ-CGn6Ydj2XOUpqlDqsabBh9dWG1SzWbcNOgY2mm47Q4zpGb9ErRgPk5G5fhH-p-y6uo9i6zGZZaAEhTKh38E4TWREb5hTjxRQWnU-N2QyWf5SrMi3xMZQ_psSreGE8m8Lh4JW6H3O2GgdfGYc-oabAR0-9_kc--S-rp3CLYZgPnrHJQ5jU3xv_LOC02j7ve-ZvxkdBHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+in+the+Power+Output+of+a+Reverse+Electrodialysis+System+by+the+Addition+of+Poly%28sodium+4-styrenesulfonate%29&rft.jtitle=Denki+kagaku+oyobi+k%C5%8Dgy%C5%8D+butsuri+kagaku&rft.au=YAMADA%2C+Yusuke&rft.au=SOWA%2C+Keisei&rft.au=KITAZUMI%2C+Yuki&rft.au=SHIRAI%2C+Osamu&rft.date=2021-09-05&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1344-3542&rft.eissn=2186-2451&rft.volume=89&rft.issue=5&rft.spage=467&rft_id=info:doi/10.5796%2Felectrochemistry.21-00073&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-3542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-3542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-3542&client=summon