Current advances in understanding endometrial epithelial cell biology and therapeutic applications for intrauterine adhesion
The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid cove...
Saved in:
Published in | Stem cell research & therapy Vol. 15; no. 1; pp. 379 - 19 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
25.10.2024
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1757-6512 1757-6512 |
DOI | 10.1186/s13287-024-03989-6 |
Cover
Abstract | The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells.
Graphical abstract |
---|---|
AbstractList | The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells. The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells. Graphical abstract The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells. Abstract The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells. Graphical abstract The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells. Graphical abstract Keywords: Endometrial epithelial cells, Epithelial stem cells, Intrauterine adhesion, Endometrial regeneration The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells.The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells. |
ArticleNumber | 379 |
Audience | Academic |
Author | Huang, Yunke Wang, Yinfeng Wang, Jia Zhao, Li Wu, Ruijin Zhan, Hong |
Author_xml | – sequence: 1 givenname: Jia surname: Wang fullname: Wang, Jia organization: Women’s Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Maternal and Infant Health – sequence: 2 givenname: Hong surname: Zhan fullname: Zhan, Hong organization: Women’s Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Maternal and Infant Health – sequence: 3 givenname: Yinfeng surname: Wang fullname: Wang, Yinfeng organization: Women’s Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Maternal and Infant Health – sequence: 4 givenname: Li surname: Zhao fullname: Zhao, Li organization: Women’s Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Maternal and Infant Health – sequence: 5 givenname: Yunke surname: Huang fullname: Huang, Yunke organization: Women’s Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Maternal and Infant Health – sequence: 6 givenname: Ruijin orcidid: 0000-0002-0144-7707 surname: Wu fullname: Wu, Ruijin email: wurj@zju.edu.cn organization: Women’s Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Maternal and Infant Health, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39456113$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAUhU1JadI0f6CLYiiUduFUD0vWrEIY-hgIFPpYC1m69mjwSK4khwb646sZJ2WmlFgLC93vHF1fn-fFifMOiuIlRpcYC_4-YkpEUyFSV4guxKLiT4oz3LCm4gyTk4P9aXER4wblh1KEeP2sOKWLmnGM6VnxezmFAC6VytwqpyGW1pWTMxBiUs5Y15fgjN9CClYNJYw2rWHYbTUMQ9laP_j-rsxomQtBjTAlq0s1joPVKlnvYtn5kF1TUFOCYB3ku9YQc-lF8bRTQ4SL-_d58ePjh-_Lz9XNl0-r5fVNpXnNUiWAE046xfmCY9GBVgjVhDHODQZjGjCaoNZwyoCgBRK6Fair25othNJMd_S8WM2-xquNHIPdqnAnvbJyf-BDL1XIbQ8gBeWYIiq6tu1q1QpBlWG0Qy02wihBstfV7DVO7TbfDLsPG45MjyvOrmXvbyXGDDNCRHZ4e-8Q_M8JYpJbG3fTVA78FCXFBCMmmMAZfT2jvcq9Wdf5bKl3uLzOZS6aBvNMXf6HysvA1uocm87m8yPBuyNBZhL8Sr2aYpSrb1-P2TcH7BrUkNbRD9P-1x6Drw4H83ciD1nLgJgBHXyMATqpbdpHJLdrB4mR3CVbzsmWOdlyn2y58yb_SB_cHxXRWRQz7HoIcuOn4HLQHlP9ASCSC7M |
CitedBy_id | crossref_primary_10_1016_j_jrras_2025_101319 crossref_primary_10_1007_s00404_025_07952_5 |
Cites_doi | 10.1016/j.fertnstert.2018.03.007 10.1001/jama.292.1.81 10.1095/biolreprod.108.075226 10.1080/23723556.2020.1729681 10.1186/s13287-017-0535-0 10.1016/j.isci.2022.104262 10.1242/dev.148478 10.1016/j.ajpath.2012.05.008 10.1093/humrep/dey083 10.1371/journal.pone.0044285 10.1038/s41574-022-00725-z 10.1093/humrep/dex289 10.1038/nprot.2016.174 10.1089/scd.2012.0435 10.1016/j.celrep.2019.04.088 10.1634/stemcells.2006-0828 10.1016/0002-9378(76)90059-4 10.1186/s13287-021-02620-2 10.1007/s00441-022-03711-z 10.1371/journal.pone.0086378 10.1016/j.actbio.2022.12.016 10.1038/s41467-023-41656-1 10.1007/s43032-019-00041-4 10.1186/s13287-021-02698-8 10.3390/cells9020410 10.1210/en.2007-0716 10.1093/humupd/dmy035 10.1038/s41587-020-0547-7 10.1089/ten.tea.2014.0052 10.1080/10408398.2023.2288887 10.3390/bioengineering10020124 10.1210/er.2018-00281 10.1016/j.fertnstert.2015.02.030 10.1016/j.biopha.2018.03.091 10.1038/nm0901-1028 10.1038/s41467-021-26426-1 10.1002/pat.6178 10.1016/j.molmed.2004.01.010 10.1242/dev.199577 10.1049/nbt2.12103 10.1093/humrep/det285 10.3389/fcell.2021.605301 10.1007/s00018-022-04684-6 10.1016/j.ydbio.2005.09.051 10.3390/cells11244053 10.4161/cc.25917 10.1073/pnas.2208040119 10.3390/ijms23137410 10.1089/ten.tea.2020.0022 10.1093/humrep/del514 10.7150/ijbs.69410 10.1111/dom.15390 10.1038/ncb3516 10.1177/09636897231218408 10.1093/humrep/deu159 10.1016/j.isci.2021.102258 10.1210/en.2011-1839 10.1039/D3BM00217A 10.3389/fcell.2023.1220694 10.1016/j.biomaterials.2021.120925 10.1177/1933719111414207 10.1111/1440-1681.13862 10.1038/s41588-021-00972-2 10.1093/molehr/gat031 10.1093/humupd/dmae013 10.1016/S0010-7824(78)80015-8 10.7554/eLife.77663 10.1016/j.canlet.2023.216353 10.1093/rb/rbae043 10.1016/j.stem.2017.11.012 10.1038/s41578-020-0199-8 10.1186/s40824-021-00242-6 10.1186/s13287-022-02860-w 10.1038/nature11826 10.1002/stem.2706 10.1016/j.cell.2020.02.048 10.1038/ncb3000 10.3389/fendo.2023.1168175 10.3390/pharmaceutics15030807 10.1172/JCI170500 10.1016/j.stem.2019.11.012 10.1038/ncb3541 10.1634/stemcells.2005-0411 10.1016/j.cell.2017.05.016 10.1111/j.1749-6632.1991.tb37848.x 10.1007/BF00667681 10.3389/fmolb.2023.1250530 10.1038/s41419-019-2182-0 10.1371/journal.pone.0021221 10.1038/s41467-024-51559-4 10.1084/jem.183.4.1797 10.1186/s13287-019-1272-3 10.1126/scitranslmed.adg0338 10.1002/stem.1337 10.1002/path.5478 10.3389/fendo.2020.606269 10.1016/j.celrep.2020.107631 10.1038/s41422-019-0242-8 10.1038/s41596-021-00658-3 10.1093/humupd/dmab039 10.1371/journal.pone.0050749 10.1097/WNR.0000000000001014 10.1016/j.fertnstert.2005.02.056 10.1210/en.2009-1334 10.1016/j.mtbio.2022.100389 10.1371/journal.pgen.1010589 10.1095/biolreprod.103.024109 10.3389/fendo.2023.1130465 10.1186/s13287-023-03309-4 10.1016/j.fertnstert.2007.08.005 10.1038/s41467-022-34424-0 10.1016/j.biomaterials.2014.02.046 10.7150/thno.90538 10.1634/stemcells.2007-0301 10.1073/pnas.1814597116 10.1093/humrep/dep036 10.1095/biolreprod.113.107987 10.3390/ijms19103240 10.1093/biolre/ioaa029 10.1007/s13238-022-00913-7 10.1111/j.1471-0528.2010.02630.x 10.1371/journal.pone.0030260 10.1097/00006250-197803000-00001 10.1016/j.jpha.2021.02.001 10.1038/s41467-019-13363-3 10.1097/AOG.0000000000005309 10.1146/annurev-cellbio-011723-021442 10.1210/en.2009-0690 10.1186/s13287-017-0749-1 10.1210/en.2016-1418 10.1371/journal.pone.0010964 10.1016/j.jconrel.2023.02.025 10.1093/biolre/iox039 10.1093/humrep/deh783 10.1186/s13578-022-00905-4 10.1089/scd.2011.0193 10.1016/j.jmig.2010.01.009 10.1371/journal.pone.0010387 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1186/s13287-024-03989-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1757-6512 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_83613038fbbf4ab883ad53f0b1d8da82 PMC11515228 A813687716 39456113 10_1186_s13287_024_03989_6 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: “4 + X” Clinical Research Project of Women Hospital, Zhejiang University grantid: ZDFY2022-4XB102 – fundername: Provincial Natural Science Foundation of Zhejiang grantid: LQ20H040006 – fundername: National Natural Science Foundation of China grantid: 82001519 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Zhejiang Medical Health Science and Technology Plan grantid: WKJ-ZJ-2321 – fundername: "4 + X" Clinical Research Project of Women Hospital, Zhejiang University grantid: ZDFY2022-4XB102 – fundername: National Natural Science Foundation of China grantid: 82001519 |
GroupedDBID | --- 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFS ACIHN ACJQM ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU DIK E3Z EBD EBLON EBS EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR IHW INH INR ISR ITC KQ8 LK8 M1P M7P M~E O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ ROL RPM RSV SBL SOJ SV3 TUS UKHRP AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 7X8 5PM |
ID | FETCH-LOGICAL-c645t-8e6262fa669618feca00425566d1edd7edc20bd635e20908cb80f4b4598ac5cf3 |
IEDL.DBID | C6C |
ISSN | 1757-6512 |
IngestDate | Wed Aug 27 01:29:41 EDT 2025 Thu Aug 21 18:44:05 EDT 2025 Fri Sep 05 09:23:21 EDT 2025 Tue Jun 17 22:02:12 EDT 2025 Tue Jun 10 21:01:06 EDT 2025 Fri Jun 27 05:26:37 EDT 2025 Thu May 22 21:24:28 EDT 2025 Mon Jul 21 06:00:03 EDT 2025 Thu Apr 24 23:09:43 EDT 2025 Tue Jul 01 02:42:28 EDT 2025 Sat Sep 06 07:28:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Intrauterine adhesion Epithelial stem cells Endometrial regeneration Endometrial epithelial cells |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c645t-8e6262fa669618feca00425566d1edd7edc20bd635e20908cb80f4b4598ac5cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0144-7707 |
OpenAccessLink | https://doi.org/10.1186/s13287-024-03989-6 |
PMID | 39456113 |
PQID | 3121058581 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_83613038fbbf4ab883ad53f0b1d8da82 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11515228 proquest_miscellaneous_3121058581 gale_infotracmisc_A813687716 gale_infotracacademiconefile_A813687716 gale_incontextgauss_ISR_A813687716 gale_healthsolutions_A813687716 pubmed_primary_39456113 crossref_citationtrail_10_1186_s13287_024_03989_6 crossref_primary_10_1186_s13287_024_03989_6 springer_journals_10_1186_s13287_024_03989_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-25 |
PublicationDateYYYYMMDD | 2024-10-25 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Stem cell research & therapy |
PublicationTitleAbbrev | Stem Cell Res Ther |
PublicationTitleAlternate | Stem Cell Res Ther |
PublicationYear | 2024 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | M Leushacke (3989_CR57) 2017; 19 S Ma (3989_CR49) 2020; 27 M Spooner-Harris (3989_CR74) 2023; 391 S Zhou (3989_CR29) 2001; 7 S Jin (3989_CR65) 2019; 116 J Cen (3989_CR89) 2022; 16 TJ Kaitu’u-Lino (3989_CR7) 2007; 148 P van Kerkhof (3989_CR56) 2023; 356 PS Cooke (3989_CR14) 2013; 19 Y Song (3989_CR109) 2024; 26 TJ Kaitu’u-Lino (3989_CR27) 2010; 151 N Tempest (3989_CR15) 2018; 19 N Nie (3989_CR139) 2023; 157 S Xia (3989_CR106) 2022; 13 K Kato (3989_CR35) 2007; 22 M Yamaguchi (3989_CR17) 2021; 24 S-Y Li (3989_CR11) 2020; 11 E Bealer (3989_CR120) 2023 H Du (3989_CR83) 2012; 21 LA Salamonsen (3989_CR2) 2021; 148 R Garry (3989_CR67) 2010; 117 J Jee (3989_CR114) 2021; 275 L Xu (3989_CR142) 2017; 8 X Liu (3989_CR105) 2017; 12 S Katebifar (3989_CR136) 2023; 34 HS Taylor (3989_CR79) 2004; 292 VA Prianishnikov (3989_CR3) 1978; 18 HPT Nguyen (3989_CR37) 2017; 32 S Naghieh (3989_CR138) 2021; 11 R Nusse (3989_CR61) 2017; 169 SS Morelli (3989_CR85) 2013; 89 F Jin (3989_CR100) 2023; 14 Y-Z Nie (3989_CR116) 2018; 9 SM Syed (3989_CR47) 2020; 7 EA Aisenbrey (3989_CR128) 2020; 5 RWS Chan (3989_CR25) 2012; 19 HA Strobel (3989_CR131) 2023; 10 M Saegusa (3989_CR40) 2012; 181 R Matsuura-Sawada (3989_CR8) 2005; 20 RR Kakun (3989_CR77) 2022; 23 T Tadokoro (3989_CR119) 2024; 16 M Yin (3989_CR72) 2019; 27 SM Syed (3989_CR48) 2020; 26 S Wang (3989_CR117) 2019; 29 D Halperin (3989_CR54) 2021; 12 AJ Valentijn (3989_CR36) 2013; 28 FL Cousins (3989_CR71) 2014; 9 L Santana Gonzalez (3989_CR76) 2021; 9 C Gil-Sanchis (3989_CR84) 2015; 103 R Seishima (3989_CR42) 2019; 10 Z Zhang (3989_CR55) 2022; 13 H Ludwig (3989_CR6) 1976; 221 M Huch (3989_CR59) 2013; 494 DM Janzen (3989_CR45) 2013; 31 D Ulrich (3989_CR1) 2014; 29 T Ikoma (3989_CR80) 2009; 201 X Santamaria (3989_CR12) 2023; 14 RWS Chan (3989_CR26) 2006; 24 Y-T Song (3989_CR93) 2021; 12 T Song (3989_CR141) 2015; 21 HPT Nguyen (3989_CR46) 2012; 153 C Chen (3989_CR63) 2022; 13 PM Kirkwood (3989_CR73) 2022; 11 H Masuda (3989_CR30) 2010; 5 P Qi (3989_CR104) 2023; 17 AI Vazquez-Armendariz (3989_CR111) 2023; 133 HS Kruitwagen (3989_CR118) 2020; 9 N Tempest (3989_CR13) 2022; 28 H Tan (3989_CR110) 2023 RN Stepanova (3989_CR9) 1979; 77 H Sasaki (3989_CR122) 2023; 14 R Tal (3989_CR87) 2016; 157 RS Magalhaes (3989_CR137) 2020; 38 X Jiang (3989_CR125) 2021; 6 YR Ong (3989_CR88) 2018; 36 Z Li (3989_CR143) 2019; 10 C-C Liao (3989_CR51) 2022; 25 L Ding (3989_CR144) 2014; 35 CJ Ang (3989_CR94) 2023; 39 Y Xu (3989_CR124) 2023; 32 L Feng (3989_CR91) 2023; 27 MT Pham (3989_CR132) 2018; 29 H Ludwig (3989_CR19) 1991; 622 N Tempest (3989_CR16) 2020; 251 I Cervelló (3989_CR31) 2011; 6 H Koso (3989_CR50) 2006; 292 A Ghosh (3989_CR75) 2020; 31 J Ma (3989_CR92) 2021; 25 R Garry (3989_CR5) 2010; 17 G Kuramoto (3989_CR135) 2018; 110 S Tsuji (3989_CR34) 2008; 90 X Sun (3989_CR44) 2009; 150 AL Patterson (3989_CR70) 2013; 22 A Ng (3989_CR60) 2014; 16 S Sugimoto (3989_CR113) 2018; 22 SA Olalekan (3989_CR130) 2017; 96 R Guo (3989_CR133) 2021; 6 KN Islam (3989_CR23) 2023; 19 W He (3989_CR39) 2022; 12 MFB Jamaluddin (3989_CR129) 2022; 119 A Rodríguez-Eguren (3989_CR96) 2024; 30 R Garry (3989_CR68) 2009; 24 A Bratincsák (3989_CR82) 2007; 25 A Ferenczy (3989_CR20) 1976; 124 D Lee (3989_CR97) 2023; 80 N Gharibeh (3989_CR102) 2022; 13 Y Kim (3989_CR103) 2023; 15 C-C Huang (3989_CR69) 2012; 7 H Campo (3989_CR101) 2020; 26 S-Y Hwang (3989_CR126) 2024; 14 X Luo (3989_CR62) 2023; 11 A Owusu-Akyaw (3989_CR66) 2019; 25 R Azizi (3989_CR95) 2018; 102 AL Patterson (3989_CR24) 2013; 12 I Cervelló (3989_CR33) 2010; 5 MY Turco (3989_CR127) 2017; 19 L Catalini (3989_CR64) 2020; 102 RWS Chan (3989_CR4) 2004; 70 W Zhang (3989_CR98) 2024; 11 Z Khan (3989_CR90) 2023; 142 J Wang (3989_CR53) 2023; 10 AM Kelleher (3989_CR10) 2019; 40 B Banimohamad-Shotorbani (3989_CR134) 2023; 14 G Weng (3989_CR112) 2023; 572 D Wang (3989_CR121) 2020; 180 KE Schwab (3989_CR21) 2005; 84 S Watanabe (3989_CR115) 2022; 17 W Kim (3989_CR108) 2023; 19 MA Goodell (3989_CR28) 1996; 183 H Zhang (3989_CR123) 2022; 18 X Zhou (3989_CR107) 2022; 11 AR Murphy (3989_CR140) 2022; 18 CE Gargett (3989_CR22) 2009; 80 L Kostic (3989_CR58) 2024; 15 H Du (3989_CR86) 2007; 25 N Tempest (3989_CR38) 2018; 33 M Imran (3989_CR99) 2024; 51 K Miyazaki (3989_CR32) 2012; 7 N Rodic (3989_CR78) 2004; 10 F Nogales-Ortiz (3989_CR18) 1978; 51 L Garcia-Alonso (3989_CR41) 2021; 53 R Ma (3989_CR52) 2020; 11 M Boretto (3989_CR43) 2017 I Cervelló (3989_CR81) 2012; 7 |
References_xml | – volume: 110 start-page: 172 year: 2018 ident: 3989_CR135 publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2018.03.007 – volume: 292 start-page: 81 year: 2004 ident: 3989_CR79 publication-title: JAMA doi: 10.1001/jama.292.1.81 – volume: 80 start-page: 1136 year: 2009 ident: 3989_CR22 publication-title: Biol Reprod doi: 10.1095/biolreprod.108.075226 – volume: 7 start-page: 1729681 year: 2020 ident: 3989_CR47 publication-title: Mol Cell Oncol doi: 10.1080/23723556.2020.1729681 – volume: 8 start-page: 84 year: 2017 ident: 3989_CR142 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-017-0535-0 – volume: 25 start-page: 104262 year: 2022 ident: 3989_CR51 publication-title: iScience doi: 10.1016/j.isci.2022.104262 – year: 2017 ident: 3989_CR43 publication-title: Development doi: 10.1242/dev.148478 – volume: 181 start-page: 684 year: 2012 ident: 3989_CR40 publication-title: Am J Pathol doi: 10.1016/j.ajpath.2012.05.008 – volume: 33 start-page: 1052 year: 2018 ident: 3989_CR38 publication-title: Hum Reprod doi: 10.1093/humrep/dey083 – volume: 7 start-page: e44285 year: 2012 ident: 3989_CR69 publication-title: PLoS One doi: 10.1371/journal.pone.0044285 – volume: 18 start-page: 727 year: 2022 ident: 3989_CR140 publication-title: Nat Rev Endocrinol doi: 10.1038/s41574-022-00725-z – volume: 32 start-page: 2254 year: 2017 ident: 3989_CR37 publication-title: Hum Reprod doi: 10.1093/humrep/dex289 – volume: 12 start-page: 439 year: 2017 ident: 3989_CR105 publication-title: Nat Protoc doi: 10.1038/nprot.2016.174 – volume: 22 start-page: 964 year: 2013 ident: 3989_CR70 publication-title: Stem Cells Dev doi: 10.1089/scd.2012.0435 – volume: 27 start-page: 2709 year: 2019 ident: 3989_CR72 publication-title: Cell Rep doi: 10.1016/j.celrep.2019.04.088 – volume: 25 start-page: 2082 year: 2007 ident: 3989_CR86 publication-title: Stem Cells (Dayton, Ohio) doi: 10.1634/stemcells.2006-0828 – volume: 124 start-page: 582 year: 1976 ident: 3989_CR20 publication-title: Am J Obstet Gynecol doi: 10.1016/0002-9378(76)90059-4 – volume: 12 start-page: 556 year: 2021 ident: 3989_CR93 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02620-2 – volume: 391 start-page: 393 year: 2023 ident: 3989_CR74 publication-title: Cell Tissue Res doi: 10.1007/s00441-022-03711-z – volume: 77 start-page: 52 year: 1979 ident: 3989_CR9 publication-title: Arkh Anat Gistol Embriol – volume: 9 start-page: e86378 year: 2014 ident: 3989_CR71 publication-title: PLoS One doi: 10.1371/journal.pone.0086378 – volume: 157 start-page: 187 year: 2023 ident: 3989_CR139 publication-title: Acta Biomater doi: 10.1016/j.actbio.2022.12.016 – volume: 14 start-page: 5890 year: 2023 ident: 3989_CR12 publication-title: Nat Commun doi: 10.1038/s41467-023-41656-1 – volume: 27 start-page: 443 year: 2020 ident: 3989_CR49 publication-title: Reprod Sci doi: 10.1007/s43032-019-00041-4 – volume: 13 start-page: 33 year: 2022 ident: 3989_CR102 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02698-8 – volume: 9 start-page: 410 year: 2020 ident: 3989_CR118 publication-title: Cells doi: 10.3390/cells9020410 – volume: 148 start-page: 5105 year: 2007 ident: 3989_CR7 publication-title: Endocrinology doi: 10.1210/en.2007-0716 – volume: 25 start-page: 114 year: 2019 ident: 3989_CR66 publication-title: Hum Reprod Update doi: 10.1093/humupd/dmy035 – volume: 38 start-page: 1280 year: 2020 ident: 3989_CR137 publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0547-7 – volume: 21 start-page: 353 year: 2015 ident: 3989_CR141 publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2014.0052 – year: 2023 ident: 3989_CR110 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2023.2288887 – volume: 10 start-page: 124 year: 2023 ident: 3989_CR131 publication-title: Bioengineering doi: 10.3390/bioengineering10020124 – volume: 40 start-page: 1424 year: 2019 ident: 3989_CR10 publication-title: Endocr Rev doi: 10.1210/er.2018-00281 – volume: 103 start-page: 1596 year: 2015 ident: 3989_CR84 publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2015.02.030 – volume: 102 start-page: 333 year: 2018 ident: 3989_CR95 publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2018.03.091 – volume: 7 start-page: 1028 year: 2001 ident: 3989_CR29 publication-title: Nat Med doi: 10.1038/nm0901-1028 – volume: 12 start-page: 1 year: 2021 ident: 3989_CR54 publication-title: Nat Commun doi: 10.1038/s41467-021-26426-1 – volume: 34 start-page: 3770 year: 2023 ident: 3989_CR136 publication-title: Polym Adv Techs doi: 10.1002/pat.6178 – volume: 10 start-page: 93 year: 2004 ident: 3989_CR78 publication-title: Trends Mol Med doi: 10.1016/j.molmed.2004.01.010 – volume: 148 start-page: dev199577 year: 2021 ident: 3989_CR2 publication-title: Development doi: 10.1242/dev.199577 – volume: 17 start-page: 41 year: 2023 ident: 3989_CR104 publication-title: IET Nanobiotechnol doi: 10.1049/nbt2.12103 – volume: 28 start-page: 2695 year: 2013 ident: 3989_CR36 publication-title: Hum Reprod doi: 10.1093/humrep/det285 – volume: 9 start-page: 605301 year: 2021 ident: 3989_CR76 publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.605301 – volume: 80 start-page: 26 year: 2023 ident: 3989_CR97 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-022-04684-6 – volume: 292 start-page: 265 year: 2006 ident: 3989_CR50 publication-title: Dev Biol doi: 10.1016/j.ydbio.2005.09.051 – volume: 11 start-page: 4053 year: 2022 ident: 3989_CR107 publication-title: Cells doi: 10.3390/cells11244053 – volume: 12 start-page: 2888 year: 2013 ident: 3989_CR24 publication-title: Cell Cycle (Georgetown, Tex) doi: 10.4161/cc.25917 – volume: 119 start-page: e2208040119 year: 2022 ident: 3989_CR129 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2208040119 – volume: 23 start-page: 7410 year: 2022 ident: 3989_CR77 publication-title: Int J Mol Sci doi: 10.3390/ijms23137410 – volume: 26 start-page: 759 year: 2020 ident: 3989_CR101 publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2020.0022 – volume: 22 start-page: 1214 year: 2007 ident: 3989_CR35 publication-title: Hum Reprod doi: 10.1093/humrep/del514 – volume: 18 start-page: 2627 year: 2022 ident: 3989_CR123 publication-title: Int J Biol Sci doi: 10.7150/ijbs.69410 – volume: 26 start-page: 809 year: 2024 ident: 3989_CR109 publication-title: Diabetes Obes Metab doi: 10.1111/dom.15390 – volume: 19 start-page: 568 year: 2017 ident: 3989_CR127 publication-title: Nat Cell Biol doi: 10.1038/ncb3516 – volume: 32 start-page: 963689723121840 year: 2023 ident: 3989_CR124 publication-title: Cell Transplant doi: 10.1177/09636897231218408 – volume: 29 start-page: 1895 year: 2014 ident: 3989_CR1 publication-title: Hum Reprod doi: 10.1093/humrep/deu159 – volume: 24 start-page: 102258 year: 2021 ident: 3989_CR17 publication-title: iScience doi: 10.1016/j.isci.2021.102258 – volume: 153 start-page: 2870 year: 2012 ident: 3989_CR46 publication-title: Endocrinology doi: 10.1210/en.2011-1839 – year: 2023 ident: 3989_CR120 publication-title: Biomater Sci doi: 10.1039/D3BM00217A – volume: 11 start-page: 1220694 year: 2023 ident: 3989_CR62 publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2023.1220694 – volume: 275 start-page: 120925 year: 2021 ident: 3989_CR114 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120925 – volume: 19 start-page: 102 year: 2012 ident: 3989_CR25 publication-title: Reprod Sci (Thousand Oaks, Calif) doi: 10.1177/1933719111414207 – volume: 51 start-page: e13862 year: 2024 ident: 3989_CR99 publication-title: Clin Exp Pharmacol Physiol doi: 10.1111/1440-1681.13862 – volume: 53 start-page: 1698 year: 2021 ident: 3989_CR41 publication-title: Nat Genet doi: 10.1038/s41588-021-00972-2 – volume: 19 start-page: 547 year: 2013 ident: 3989_CR14 publication-title: Mol Hum Reprod doi: 10.1093/molehr/gat031 – volume: 30 start-page: 584 year: 2024 ident: 3989_CR96 publication-title: Hum Reprod Update doi: 10.1093/humupd/dmae013 – volume: 18 start-page: 213 year: 1978 ident: 3989_CR3 publication-title: Contraception doi: 10.1016/S0010-7824(78)80015-8 – volume: 11 start-page: e77663 year: 2022 ident: 3989_CR73 publication-title: elife doi: 10.7554/eLife.77663 – volume: 572 start-page: 216353 year: 2023 ident: 3989_CR112 publication-title: Cancer Lett doi: 10.1016/j.canlet.2023.216353 – volume: 11 start-page: rbae043 year: 2024 ident: 3989_CR98 publication-title: Regener Biomater doi: 10.1093/rb/rbae043 – volume: 22 start-page: 171 year: 2018 ident: 3989_CR113 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.11.012 – volume: 5 start-page: 539 year: 2020 ident: 3989_CR128 publication-title: Nat Rev Mater doi: 10.1038/s41578-020-0199-8 – volume: 25 start-page: 40 year: 2021 ident: 3989_CR92 publication-title: Biomater Res doi: 10.1186/s40824-021-00242-6 – volume: 13 start-page: 178 year: 2022 ident: 3989_CR106 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-022-02860-w – volume: 494 start-page: 247 year: 2013 ident: 3989_CR59 publication-title: Nature doi: 10.1038/nature11826 – volume: 36 start-page: 91 year: 2018 ident: 3989_CR88 publication-title: Stem Cells doi: 10.1002/stem.2706 – volume: 180 start-page: 1198 year: 2020 ident: 3989_CR121 publication-title: Cell doi: 10.1016/j.cell.2020.02.048 – volume: 16 start-page: 745 year: 2014 ident: 3989_CR60 publication-title: Nat Cell Biol doi: 10.1038/ncb3000 – volume: 14 start-page: 1168175 year: 2023 ident: 3989_CR100 publication-title: Front Endocrinol doi: 10.3389/fendo.2023.1168175 – volume: 15 start-page: 807 year: 2023 ident: 3989_CR103 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics15030807 – volume: 133 start-page: e170500 year: 2023 ident: 3989_CR111 publication-title: J Clin Invest doi: 10.1172/JCI170500 – volume: 26 start-page: 64 year: 2020 ident: 3989_CR48 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.11.012 – volume: 19 start-page: 774 year: 2017 ident: 3989_CR57 publication-title: Nat Cell Biol doi: 10.1038/ncb3541 – volume: 24 start-page: 1529 year: 2006 ident: 3989_CR26 publication-title: Stem Cells (Dayton, Ohio) doi: 10.1634/stemcells.2005-0411 – volume: 169 start-page: 985 year: 2017 ident: 3989_CR61 publication-title: Cell doi: 10.1016/j.cell.2017.05.016 – volume: 622 start-page: 28 year: 1991 ident: 3989_CR19 publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1991.tb37848.x – volume: 221 start-page: 51 year: 1976 ident: 3989_CR6 publication-title: Arch Gynakol doi: 10.1007/BF00667681 – volume: 10 start-page: 1250530 year: 2023 ident: 3989_CR53 publication-title: Front Mol Biosci doi: 10.3389/fmolb.2023.1250530 – volume: 11 start-page: 1 year: 2020 ident: 3989_CR11 publication-title: Cell Death Dis doi: 10.1038/s41419-019-2182-0 – volume: 6 start-page: e21221 year: 2011 ident: 3989_CR31 publication-title: PLoS One doi: 10.1371/journal.pone.0021221 – volume: 6 start-page: 2999 year: 2021 ident: 3989_CR133 publication-title: Bioact Mater – volume: 15 start-page: 7145 year: 2024 ident: 3989_CR58 publication-title: Nat Commun doi: 10.1038/s41467-024-51559-4 – volume: 183 start-page: 1797 year: 1996 ident: 3989_CR28 publication-title: J Exp Med doi: 10.1084/jem.183.4.1797 – volume: 10 start-page: 179 year: 2019 ident: 3989_CR143 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-019-1272-3 – volume: 16 start-page: eadg0338 year: 2024 ident: 3989_CR119 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.adg0338 – volume: 31 start-page: 808 year: 2013 ident: 3989_CR45 publication-title: Stem Cells doi: 10.1002/stem.1337 – volume: 251 start-page: 440 year: 2020 ident: 3989_CR16 publication-title: J Pathol doi: 10.1002/path.5478 – volume: 11 start-page: 606269 year: 2020 ident: 3989_CR52 publication-title: Front Endocrinol doi: 10.3389/fendo.2020.606269 – volume: 31 start-page: 107631 year: 2020 ident: 3989_CR75 publication-title: Cell Rep doi: 10.1016/j.celrep.2020.107631 – volume: 29 start-page: 1009 year: 2019 ident: 3989_CR117 publication-title: Cell Res doi: 10.1038/s41422-019-0242-8 – volume: 17 start-page: 649 year: 2022 ident: 3989_CR115 publication-title: Nat Protoc doi: 10.1038/s41596-021-00658-3 – volume: 28 start-page: 153 year: 2022 ident: 3989_CR13 publication-title: Hum Reprod Update doi: 10.1093/humupd/dmab039 – volume: 7 start-page: e50749 year: 2012 ident: 3989_CR32 publication-title: PLoS One doi: 10.1371/journal.pone.0050749 – volume: 29 start-page: 588 year: 2018 ident: 3989_CR132 publication-title: NeuroReport doi: 10.1097/WNR.0000000000001014 – volume: 19 start-page: 50 year: 2023 ident: 3989_CR108 publication-title: Bioact Mater – volume: 84 start-page: 1124 issue: Suppl 2 year: 2005 ident: 3989_CR21 publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2005.02.056 – volume: 151 start-page: 3386 year: 2010 ident: 3989_CR27 publication-title: Endocrinology doi: 10.1210/en.2009-1334 – volume: 16 start-page: 100389 year: 2022 ident: 3989_CR89 publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2022.100389 – volume: 19 start-page: e1010589 year: 2023 ident: 3989_CR23 publication-title: Plos Genet doi: 10.1371/journal.pgen.1010589 – volume: 70 start-page: 1738 year: 2004 ident: 3989_CR4 publication-title: Biol Reprod doi: 10.1095/biolreprod.103.024109 – volume: 14 start-page: 1130465 year: 2023 ident: 3989_CR122 publication-title: Front Endocrinol doi: 10.3389/fendo.2023.1130465 – volume: 14 start-page: 68 year: 2023 ident: 3989_CR134 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-023-03309-4 – volume: 90 start-page: 1528 year: 2008 ident: 3989_CR34 publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2007.08.005 – volume: 27 start-page: 82 year: 2023 ident: 3989_CR91 publication-title: Bioact Mater – volume: 13 start-page: 6854 year: 2022 ident: 3989_CR55 publication-title: Nat Commun doi: 10.1038/s41467-022-34424-0 – volume: 35 start-page: 4888 year: 2014 ident: 3989_CR144 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.02.046 – volume: 14 start-page: 954 year: 2024 ident: 3989_CR126 publication-title: Theranostics doi: 10.7150/thno.90538 – volume: 25 start-page: 2820 year: 2007 ident: 3989_CR82 publication-title: Stem Cells (Dayton, Ohio) doi: 10.1634/stemcells.2007-0301 – volume: 116 start-page: 6848 year: 2019 ident: 3989_CR65 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1814597116 – volume: 24 start-page: 1393 year: 2009 ident: 3989_CR68 publication-title: Hum Reprod doi: 10.1093/humrep/dep036 – volume: 89 start-page: 7 year: 2013 ident: 3989_CR85 publication-title: Biol Reprod doi: 10.1095/biolreprod.113.107987 – volume: 201 start-page: e1 issue: 608 year: 2009 ident: 3989_CR80 publication-title: Am J Obstet Gynecol – volume: 19 start-page: 3240 year: 2018 ident: 3989_CR15 publication-title: Int J Mol Sci doi: 10.3390/ijms19103240 – volume: 102 start-page: 1160 year: 2020 ident: 3989_CR64 publication-title: Biol Reprod doi: 10.1093/biolre/ioaa029 – volume: 13 start-page: 790 year: 2022 ident: 3989_CR63 publication-title: Protein Cell doi: 10.1007/s13238-022-00913-7 – volume: 117 start-page: 1175 year: 2010 ident: 3989_CR67 publication-title: BJOG doi: 10.1111/j.1471-0528.2010.02630.x – volume: 7 start-page: e30260 year: 2012 ident: 3989_CR81 publication-title: PLoS One doi: 10.1371/journal.pone.0030260 – volume: 51 start-page: 259 year: 1978 ident: 3989_CR18 publication-title: Obstet Gynecol doi: 10.1097/00006250-197803000-00001 – volume: 11 start-page: 564 year: 2021 ident: 3989_CR138 publication-title: J Pharm Anal doi: 10.1016/j.jpha.2021.02.001 – volume: 10 start-page: 5378 year: 2019 ident: 3989_CR42 publication-title: Nat Commun doi: 10.1038/s41467-019-13363-3 – volume: 142 start-page: 543 year: 2023 ident: 3989_CR90 publication-title: Obstet Gynecol doi: 10.1097/AOG.0000000000005309 – volume: 39 start-page: 197 year: 2023 ident: 3989_CR94 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-011723-021442 – volume: 150 start-page: 5065 year: 2009 ident: 3989_CR44 publication-title: Endocrinology doi: 10.1210/en.2009-0690 – volume: 9 start-page: 5 year: 2018 ident: 3989_CR116 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-017-0749-1 – volume: 157 start-page: 3749 year: 2016 ident: 3989_CR87 publication-title: Endocrinology doi: 10.1210/en.2016-1418 – volume: 5 start-page: e10964 year: 2010 ident: 3989_CR33 publication-title: PLoS One doi: 10.1371/journal.pone.0010964 – volume: 356 start-page: 72 year: 2023 ident: 3989_CR56 publication-title: J Control Release doi: 10.1016/j.jconrel.2023.02.025 – volume: 6 start-page: 3935 year: 2021 ident: 3989_CR125 publication-title: Bioact Mater – volume: 96 start-page: 971 year: 2017 ident: 3989_CR130 publication-title: Biol Reprod doi: 10.1093/biolre/iox039 – volume: 20 start-page: 1477 year: 2005 ident: 3989_CR8 publication-title: Hum Reprod doi: 10.1093/humrep/deh783 – volume: 12 start-page: 175 year: 2022 ident: 3989_CR39 publication-title: Cell Biosci doi: 10.1186/s13578-022-00905-4 – volume: 21 start-page: 3324 year: 2012 ident: 3989_CR83 publication-title: Stem Cells Dev doi: 10.1089/scd.2011.0193 – volume: 17 start-page: 337 year: 2010 ident: 3989_CR5 publication-title: J Minim Invasive Gynecol doi: 10.1016/j.jmig.2010.01.009 – volume: 5 start-page: e10387 year: 2010 ident: 3989_CR30 publication-title: PLoS One doi: 10.1371/journal.pone.0010387 |
SSID | ssj0000330064 |
Score | 2.3910058 |
SecondaryResourceType | review_article |
Snippet | The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is... Abstract The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 379 |
SubjectTerms | Animals Biomedical and Life Sciences Biomedical Engineering and Bioengineering Cell Biology Endometrial epithelial cells Endometrial regeneration Endometrium - cytology Endometrium - metabolism Epithelial Cells - cytology Epithelial Cells - metabolism Epithelial stem cells Female Health aspects Humans Intrauterine adhesion Life Sciences Menstruation Regeneration - physiology Regenerative Medicine/Tissue Engineering Review Stem Cells Stem Cells - cytology Stem Cells - metabolism Tissue Adhesions - metabolism Tissue Adhesions - therapy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiPQAGDkDhA1DhOnMmxoFYtBw5Apd4sv0IrtdmK7B4q9ccz43hXSZHKpbdVPNnE4xn7m9jzDWMfZFs5aJo6tw26W2Vbn7edxMAVIIDybVOEyPb5XR0eV99O6pNJqS86EzbSA4-K2wVJCFdCZ21XGQsgja9lV1jhwRuIs2_RFpNgKs7BGKbjYrvOkgG1O2DYhf6ES1JeSDonpGYrUSTs_3danqxLN89M3tg4jevRwSP2MAFJvjd24DG7F_on7P5YWvJqm10n4iWeNvkHftbz1TSThYfeLy5CLNvBwyXlZpzTT_qUzxM3E0dRPknR4tP9bo54F_8V35PKQiBaxWedBvr69pQdH-z_-nqYp0oLuVNVvcwhYFxTdkYpKgDTBWeiMyPU8yJ432C3y8J6BCeBlA3OQtFVtqpbMK52nXzGtvpFH14w7h3iddl6YRVGdpVphamddQVKKeMryJhYa127RENO1TDOdQxHQOlxpDSOlI4jpVXGPm3uuRxJOG6V_kKDuZEkAu14Ac1KJ7PS_zOrjL0lU9BjNupmGtB7IKRC4xb4mPdRgkg0ejql89ushkEf_fwxE_qYhLoF9tKZlPSAuiLerZnkzkwSvdzNmt-tbVJTEx2N68NiNWhJFHAY9IHI2PPRRjddR09EfCxkxmBmvTPdzFv6s9NIMi4I6ZYljtfntaHrNL0Ntyj_5V0o_xV7UJKjIkQo6x22tfyzCq8R-y3tm-jmfwGdUVW8 priority: 102 providerName: Directory of Open Access Journals |
Title | Current advances in understanding endometrial epithelial cell biology and therapeutic applications for intrauterine adhesion |
URI | https://link.springer.com/article/10.1186/s13287-024-03989-6 https://www.ncbi.nlm.nih.gov/pubmed/39456113 https://www.proquest.com/docview/3121058581 https://pubmed.ncbi.nlm.nih.gov/PMC11515228 https://doaj.org/article/83613038fbbf4ab883ad53f0b1d8da82 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoKyQuiDcpZTEIiQNExHHiOMd21apwqFCh0t4sv9JWKtmq2T0g8eOZcbxRUlAlblE8edgz45mxPd8Q8p7XhZVVVaamAnUrTO3SuuEQuErppXB1lfmA9nkijs-Kr4tyEWFyMBdmvH_PpPjcQbQEagCWJM04Hu8RW2SnhIkXpXku5sN6SgaBOZjXTV7MPx-d2J4A0f_3RDyyRLdPSd7aKg0W6OgReRhdR7rf8_oxuefbJ-R-X0zy11PyO0It0bit39HLlq7HuSvUt27504dCHdRfYzbGFV7i4j2NaEwUSOkoKYuOd7gpeLjwVvhPLAQB_il868LjetszcnZ0-GN-nMbaCqkVRblKpYdIJm-0EFjypfFWB_UF584x71wF3c4z48Ad8XlWZ9IamTWFKcpaalvahj8n2-2y9S8JdRY8dF47ZgTEcoWumS6tsRlQCe0KmRC2GXVlI_A41r-4UiEAkUL1nFLAKRU4pURCPg7PXPewG3dSHyAzB0qEzA43QJJU1EAlOYZKXDbGNIU2UnLtSt5khjnptMwT8gZFQfX5p4Piq33JuABxZvCZd4ECYTNaPJdzrtddp758P50QfYhEzRJ6aXVMc4CxQqStCeXehBL02k6a325kUmETHoZr_XLdKY6gbxDmSZaQF72MDl0H3QOPmPGEyIn0TsZm2tJeXgRYcYa-bZ4Dvz5tBF3FCa27Y_B3_4_8FXmQo0qC-c_LPbK9uln71-DXrcyMbFWLakZ2Dg5Pvp3OgnrPwhrJH9n1SUE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gCMEL4pvCYAEh8QAVTdPm3MdxYrrB2ANs0t6ifJVNGr2J3j0g8cdjp7nTdaBJvFUXt73Edm3H8c-MvZZN5WAyqXM7QXWrbOPzppUYuAIEUL6ZFCGifR6q2XH16aQ-STA5VAuzmb8XoN73GC2hGqAlyQtJx3vUdXaDMpeEkz9V0_V-SoGBOZrXVV3MP28d2Z4I0f_3h3jDEl0-JXkpVRot0N5ddie5jnx34PU9di1099nNoZnkrwfsd4Ja4imt3_Ozji83a1d46Pz8R4iNOni4oGqMc7qkzXue0Jg4kvKNoiy-meHm6OHiU_F_UiMI9E_xXaeB9tsesuO9j0fTWZ56K-ROVfUih4CRTNkapajlSxucieqLzp0XwfsJTrssrEd3JJRFU4CzULSVreoGjKtdKx-xrW7ehSeMe4ceumy8sApjuco0wtTOugKplPEVZEysVl27BDxO_S_OdQxAQOmBUxo5pSOntMrY2_U9FwPsxpXUH4iZa0qCzI4_oCTppIEaJIVKElpr28pYAGl8LdvCCg_eQJmxHRIFPdSfrhVf74KQCsVZ4GteRQqCzejoXM53s-x7vf_t64joTSJq5zhLZ1KZA64VIW2NKLdHlKjXbjT8ciWTmoboMFwX5steSwJ9wzAPRMYeDzK6njrqHnrEQmYMRtI7WpvxSHd2GmHFBfm2ZYn8ercSdJ0-aP0Vi__0_8h32K3Z0ZcDfbB_-PkZu12SeqIrUNbbbGvxcxmeo4-3sC-icv8BviJIug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgE4gXxDeFwQxC4gGiJXHiXB7LR7UVNCHGpL1Z_so2aaTV0j4g8cdz57hVM9Ak3qr60tS-O9-dffc7xt6IurBQVWViKlS3wtQuqRuBgSuAB-nqKvUB7fNQ7h8X05PyZKOKP2S7r64k-5oGQmlqF3tz1_QqDnKvwxgKlQPtS5IKSvqRN9k2lHWN4df2eDw9mq7PWVIM2NHsrupl_vnwwCYF6P6_N-gNC3U1e_LKFWqwTJN77G50Kfm4l4H77IZvH7BbfZPJXw_Z7wjBxON1f8fPW77crGnhvnWznz408OB-TlUaF_SRDvV5RGniSMo3irX45s03R88XfxX_JzWIQL8V33Xm6RzuETuefP7xcT-JPRcSK4tykYDHCCdvtJTUCqbxVge1RqfPZd65Cqedp8ahm-LztE7BGkibwhRlDdqWthGP2VY7a_1Txp1Fz13ULjMSY7xC15kurbEpUkntChixbLXqykZAcuqLcaFCYAJS9ZxSyCkVOKXkiL1bPzPv4Tiupf5AzFxTEpR2-GJ2eaqiZioQFEIJaIxpCm0AhHalaFKTOXAa8hHbJVFQfV3qekNQY8iERDHP8DWvAwXBabSUr3Oql12nDo6-D4jeRqJmhrO0OpY_4FoRAteAcmdAifpuB8OvVjKpaIiS5Fo_W3ZKEBgchn-QjdiTXkbXU0edRE85EyMGA-kdrM1wpD0_C3DjGfm8eY78er8SdBU3uu6axX_2f-S77Pa3TxP19eDwy3N2JyftRA8hL3fY1uJy6V-g67cwL6N2_wEBHlJ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+advances+in+understanding+endometrial+epithelial+cell+biology+and+therapeutic+applications+for+intrauterine+adhesion&rft.jtitle=Stem+cell+research+%26+therapy&rft.au=Wang%2C+Jia&rft.au=Zhan%2C+Hong&rft.au=Wang%2C+Yinfeng&rft.au=Zhao%2C+Li&rft.date=2024-10-25&rft.pub=BioMed+Central+Ltd&rft.issn=1757-6512&rft.eissn=1757-6512&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1186%2Fs13287-024-03989-6&rft.externalDBID=ISR&rft.externalDocID=A813687716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-6512&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-6512&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-6512&client=summon |