Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy

Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of por...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 232; p. 119707
Main Authors Rabiee, Navid, Yaraki, Mohammad Tavakkoli, Garakani, Soha Mokhtari, Garakani, Shima Mokhtari, Ahmadi, Sepideh, Lajevardi, Aseman, Bagherzadeh, Mojtaba, Rabiee, Mohammad, Tayebi, Lobat, Tahriri, Mohammadreza, Hamblin, Michael R.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.02.2020
Subjects
Online AccessGet full text
ISSN0142-9612
1878-5905
1878-5905
DOI10.1016/j.biomaterials.2019.119707

Cover

Abstract Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review. Impact statement: Porphyrin nanocomposites are increasingly being used as rationally designed theranostic systems. This timely review gathers together diverse reports of these applications especially for cancer diagnosis and therapy.
AbstractList Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review. Impact statement: Porphyrin nanocomposites are increasingly being used as rationally designed theranostic systems. This timely review gathers together diverse reports of these applications especially for cancer diagnosis and therapy.
Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review.
Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the "pigments of life". They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review.Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the "pigments of life". They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review.
Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review. Porphyrin nanocomposites are increasingly being used as rationally designed theranostic systems. This timely review gathers together diverse reports of these applications especially for cancer diagnosis and therapy.
ArticleNumber 119707
Author Hamblin, Michael R.
Lajevardi, Aseman
Tayebi, Lobat
Rabiee, Navid
Bagherzadeh, Mojtaba
Tahriri, Mohammadreza
Rabiee, Mohammad
Yaraki, Mohammad Tavakkoli
Garakani, Shima Mokhtari
Ahmadi, Sepideh
Garakani, Soha Mokhtari
AuthorAffiliation 6 Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
11 Department of Dermatology, Harvard Medical School, Boston, USA
2 Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
10 Wellman Center for photomedicine, Massachusetts General Hospital, Boston, USA
1 Department of Chemistry, Sharif University of Technology, Tehran, Iran
3 Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore
9 Department of Developmental Sciences, Marquette University, Milwaukee, WI 53233, USA
12 Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
4 Department of Biotechnology, Payame Noor University, P.O Box, 19395-3697, Alborz, Iran
7 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
5 Student Rese
AuthorAffiliation_xml – name: 4 Department of Biotechnology, Payame Noor University, P.O Box, 19395-3697, Alborz, Iran
– name: 8 Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
– name: 3 Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore
– name: 12 Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
– name: 9 Department of Developmental Sciences, Marquette University, Milwaukee, WI 53233, USA
– name: 2 Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
– name: 10 Wellman Center for photomedicine, Massachusetts General Hospital, Boston, USA
– name: 1 Department of Chemistry, Sharif University of Technology, Tehran, Iran
– name: 6 Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
– name: 5 Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
– name: 7 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
– name: 11 Department of Dermatology, Harvard Medical School, Boston, USA
Author_xml – sequence: 1
  givenname: Navid
  surname: Rabiee
  fullname: Rabiee, Navid
  email: nrabiee94@gmail.com
  organization: Department of Chemistry, Sharif University of Technology, Tehran, Iran
– sequence: 2
  givenname: Mohammad Tavakkoli
  surname: Yaraki
  fullname: Yaraki, Mohammad Tavakkoli
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
– sequence: 3
  givenname: Soha Mokhtari
  surname: Garakani
  fullname: Garakani, Soha Mokhtari
  organization: Department of Biotechnology, Payame Noor University, P.O Box, 19395-3697, Alborz, Iran
– sequence: 4
  givenname: Shima Mokhtari
  surname: Garakani
  fullname: Garakani, Shima Mokhtari
  organization: Department of Biotechnology, Payame Noor University, P.O Box, 19395-3697, Alborz, Iran
– sequence: 5
  givenname: Sepideh
  surname: Ahmadi
  fullname: Ahmadi, Sepideh
  organization: Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
– sequence: 6
  givenname: Aseman
  surname: Lajevardi
  fullname: Lajevardi, Aseman
  organization: Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
– sequence: 7
  givenname: Mojtaba
  surname: Bagherzadeh
  fullname: Bagherzadeh, Mojtaba
  organization: Department of Chemistry, Sharif University of Technology, Tehran, Iran
– sequence: 8
  givenname: Mohammad
  surname: Rabiee
  fullname: Rabiee, Mohammad
  email: mrabiee@aut.ac.ir
  organization: Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
– sequence: 9
  givenname: Lobat
  surname: Tayebi
  fullname: Tayebi, Lobat
  organization: Department of Developmental Sciences, Marquette University, Milwaukee, WI, 53233, USA
– sequence: 10
  givenname: Mohammadreza
  surname: Tahriri
  fullname: Tahriri, Mohammadreza
  email: mohammadreza.tahriri@marquette.edu
  organization: Department of Developmental Sciences, Marquette University, Milwaukee, WI, 53233, USA
– sequence: 11
  givenname: Michael R.
  surname: Hamblin
  fullname: Hamblin, Michael R.
  email: hamblin@helix.mgh.harvard.edu
  organization: Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31874428$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuLFDEURoOMOD2jf0EKV26qzaMeiQtRxycMCKI7IaRSt7pvW5XUJOmG_vem6XEYZ2OvQsjJ4bv5ckHOnHdAyAtGl4yy5tVm2aGfTIKAZoxLTplaMqZa2j4iCyZbWdaK1mdkQVnFS9Uwfk4uYtzQvKcVf0LORaaqissF-fUdLLhUmH5nnIVYoCtmH-b1PqArOxOhL5xx3vpp9hFTJgYfChgGsAl3UCQTVpAyhZNZoVsVxvVFWkMw8_4peTzkhPDsdr0kPz99_HH1pbz-9vnr1bvr0jZVnUqhjJSguKR9WxvWVaJRRqhGMZC1slXeKdHIQYiBd8KaFlQlpBzallVS9VJckjdH77ztJugPAwUz6jnkTGGvvUH974nDtV75nW4plVSxLHh5Kwj-Zgsx6QmjhXE0Dvw2al7zStAci_8fFYLWSnJaZ_T5_Vh3ef6-fgZeHwEbfIwBhjuEUX2oWm_0_ar1oWp9rDpffvvgssVkEvrDiDiepvhwVEAuZ4cQdLQI-Rv0GHK9uvd4mub9A40d0aE142_Ynyr5A_165lc
CitedBy_id crossref_primary_10_1021_acsnano_0c08128
crossref_primary_10_1186_s40779_023_00453_z
crossref_primary_10_2147_IJN_S353062
crossref_primary_10_1021_acsbiomaterials_2c00531
crossref_primary_10_3390_ph14020101
crossref_primary_10_1088_1361_6528_aba142
crossref_primary_10_1016_j_cclet_2022_107945
crossref_primary_10_1134_S1070363223070253
crossref_primary_10_15671_hjbc_1492613
crossref_primary_10_1016_j_jconrel_2021_08_045
crossref_primary_10_3389_fbioe_2021_679128
crossref_primary_10_3390_ijms22157948
crossref_primary_10_1007_s10895_023_03396_9
crossref_primary_10_1016_j_biomaterials_2023_122446
crossref_primary_10_1021_acsami_4c03012
crossref_primary_10_3390_molecules26030704
crossref_primary_10_3390_jcs9030116
crossref_primary_10_1016_j_ultrasmedbio_2025_01_011
crossref_primary_10_1039_D0BM02225J
crossref_primary_10_1016_j_ijbiomac_2023_124697
crossref_primary_10_1021_acs_langmuir_2c01621
crossref_primary_10_1155_2022_3302082
crossref_primary_10_1021_acsami_3c12155
crossref_primary_10_1039_D2RA03786F
crossref_primary_10_3390_pharmaceutics16101268
crossref_primary_10_1002_adfm_202405844
crossref_primary_10_1007_s10973_024_12999_8
crossref_primary_10_1039_D0NA00622J
crossref_primary_10_3390_biology10030173
crossref_primary_10_3390_molecules27072329
crossref_primary_10_1016_j_jphotobiol_2023_112796
crossref_primary_10_1186_s13065_022_00889_9
crossref_primary_10_1016_j_snb_2022_132329
crossref_primary_10_1039_D1BM00960E
crossref_primary_10_1021_acsanm_0c02945
crossref_primary_10_1002_jbm_b_35087
crossref_primary_10_1007_s12678_023_00847_6
crossref_primary_10_1021_acs_langmuir_0c00843
crossref_primary_10_1007_s40820_021_00697_1
crossref_primary_10_1016_j_foodchem_2021_131253
crossref_primary_10_1021_acsapm_4c00238
crossref_primary_10_1016_j_mattod_2024_06_017
crossref_primary_10_1002_anbr_202200136
crossref_primary_10_1016_j_molstruc_2024_138897
crossref_primary_10_1039_D0NJ06310J
crossref_primary_10_1021_acsabm_1c00932
crossref_primary_10_1016_j_apt_2020_08_011
crossref_primary_10_1016_j_jconrel_2020_03_051
crossref_primary_10_1039_D2BM00016D
crossref_primary_10_1007_s42247_021_00277_4
crossref_primary_10_2147_DDDT_S441325
crossref_primary_10_1002_INMD_20230010
crossref_primary_10_1016_j_biomaterials_2025_123137
crossref_primary_10_1016_j_tifs_2022_03_016
crossref_primary_10_1063_5_0047672
crossref_primary_10_1038_s41598_021_86119_z
crossref_primary_10_1177_17475198221090914
crossref_primary_10_1002_btm2_10347
crossref_primary_10_1002_smll_202400654
crossref_primary_10_3390_molecules27103311
crossref_primary_10_1021_acsabm_3c00458
crossref_primary_10_3390_ma14237277
crossref_primary_10_2174_1567201818666210609161301
crossref_primary_10_1016_j_ccr_2021_213945
crossref_primary_10_1016_j_ijpharm_2024_124015
crossref_primary_10_1039_D3RA02620E
crossref_primary_10_1016_j_bios_2021_113334
crossref_primary_10_1016_j_arabjc_2023_104868
crossref_primary_10_1016_j_jddst_2020_101715
crossref_primary_10_1016_j_dyepig_2021_109746
crossref_primary_10_1002_cnma_202100357
crossref_primary_10_1021_acs_bioconjchem_3c00432
crossref_primary_10_22159_ijap_2025v17i1_50745
crossref_primary_10_1016_j_jhazmat_2021_127130
crossref_primary_10_3389_fonc_2023_1211603
crossref_primary_10_1039_D1TB01025E
crossref_primary_10_1002_syst_202400068
crossref_primary_10_1039_D3TB02705H
crossref_primary_10_1016_j_cej_2021_128844
crossref_primary_10_1016_j_mtbio_2024_101318
crossref_primary_10_1002_adfm_202107530
crossref_primary_10_3390_polym14030610
crossref_primary_10_1016_j_eti_2023_103019
crossref_primary_10_1002_slct_202103418
crossref_primary_10_3390_gels10080499
crossref_primary_10_1016_j_chemphys_2022_111655
crossref_primary_10_3390_molecules27103111
crossref_primary_10_1016_j_actbio_2024_04_037
crossref_primary_10_3390_molecules27092763
crossref_primary_10_1016_j_jobab_2021_06_001
crossref_primary_10_1021_acsabm_4c00638
crossref_primary_10_1002_agt2_540
crossref_primary_10_1016_j_jconrel_2022_07_038
crossref_primary_10_2174_1573413718666211222162041
crossref_primary_10_1016_j_inoche_2022_110359
crossref_primary_10_1039_D2RA03512J
crossref_primary_10_1016_j_mattod_2020_11_001
crossref_primary_10_3390_molecules29030611
crossref_primary_10_1016_j_ijpharm_2020_119920
crossref_primary_10_1080_00914037_2020_1809405
crossref_primary_10_2217_nnm_2020_0353
crossref_primary_10_1002_btm2_10325
crossref_primary_10_1016_j_actbio_2024_12_047
crossref_primary_10_1021_acsami_2c05953
crossref_primary_10_1021_acsabm_1c01311
crossref_primary_10_1002_adma_202209529
crossref_primary_10_1007_s13346_022_01252_0
crossref_primary_10_1039_D0BM00825G
crossref_primary_10_1039_D1NR02581C
crossref_primary_10_1039_D4CC06541G
crossref_primary_10_1186_s40824_023_00454_y
crossref_primary_10_1007_s10904_021_02188_7
crossref_primary_10_1021_acsabm_4c00988
crossref_primary_10_1039_D3BM00738C
crossref_primary_10_3389_fphar_2025_1533040
crossref_primary_10_1016_j_micromeso_2021_111670
crossref_primary_10_1088_2057_1976_aba7ca
crossref_primary_10_1039_D3TB02423G
crossref_primary_10_1039_D0DT03031G
crossref_primary_10_1039_D4RA00945B
crossref_primary_10_1039_D4TB00299G
crossref_primary_10_3389_fchbi_2023_1346465
crossref_primary_10_1021_jacs_1c07875
crossref_primary_10_1155_2022_3011918
crossref_primary_10_1016_j_matdes_2023_111838
crossref_primary_10_1002_adtp_202000076
crossref_primary_10_1016_j_ccr_2022_214599
crossref_primary_10_1016_j_ccr_2021_214155
crossref_primary_10_1021_acs_biomac_3c00165
crossref_primary_10_1002_smll_202302547
crossref_primary_10_1016_j_addr_2022_114320
crossref_primary_10_1021_acsabm_1c01262
crossref_primary_10_1016_j_mencom_2022_09_036
crossref_primary_10_1021_acsanm_4c00249
crossref_primary_10_1039_D4MA00496E
crossref_primary_10_2147_IJN_S250911
crossref_primary_10_1016_j_rsurfi_2024_100187
crossref_primary_10_1021_acsomega_0c05647
crossref_primary_10_3390_biom11111714
crossref_primary_10_1016_j_scitotenv_2022_153902
crossref_primary_10_1080_03639045_2020_1810269
crossref_primary_10_1016_j_jcis_2025_02_215
crossref_primary_10_1016_j_colsurfb_2024_113743
crossref_primary_10_1021_acs_jmedchem_1c01144
crossref_primary_10_1088_1748_605X_abd382
crossref_primary_10_3390_nano14231879
crossref_primary_10_1039_D2BM00265E
crossref_primary_10_1002_adhm_202401211
crossref_primary_10_1039_D0NR01456G
crossref_primary_10_1016_j_ccr_2023_215211
crossref_primary_10_1016_j_chemosphere_2022_135578
crossref_primary_10_1177_15330338211027898
crossref_primary_10_3389_fimmu_2024_1395187
crossref_primary_10_1016_j_micromeso_2021_111337
crossref_primary_10_1186_s12951_025_03113_7
crossref_primary_10_1007_s40097_022_00500_6
crossref_primary_10_1021_acsami_2c06063
crossref_primary_10_1016_j_cis_2024_103166
crossref_primary_10_1021_acsabm_1c00447
crossref_primary_10_1039_D3TB00632H
crossref_primary_10_1021_acsami_1c01460
crossref_primary_10_1021_acsanm_2c03390
crossref_primary_10_1039_D4CC04512B
Cites_doi 10.1016/j.molliq.2018.12.002
10.1016/j.colsurfb.2008.07.014
10.1016/j.msec.2014.07.019
10.1021/acsami.5b11493
10.1016/j.jphotobiol.2018.01.015
10.1142/S1088424612500770
10.1002/adma.201606134
10.1021/acs.jmedchem.5b00457
10.1021/bm9007953
10.1039/b618854k
10.1021/ja508679h
10.1038/nnano.2015.25
10.1002/anie.201204475
10.1002/jps.2600651217
10.1021/jacs.6b00007
10.1002/smll.201602293
10.1016/j.biomaterials.2011.03.030
10.2174/1573399814666180607075550
10.1016/j.aca.2018.05.011
10.1016/S0039-9140(99)00291-X
10.1039/cs9952400019
10.1016/1010-6030(95)04279-2
10.1038/s41467-018-06655-7
10.1002/(SICI)1096-9101(1998)22:2<74::AID-LSM2>3.0.CO;2-T
10.1021/acs.chemmater.7b00228
10.1021/acsomega.8b00419
10.1021/acs.nanolett.5b03440
10.1016/j.cis.2013.11.014
10.1016/j.copbio.2013.01.011
10.1016/j.biomaterials.2014.04.094
10.1038/nphoton.2009.157
10.1021/ja0341687
10.1021/acsnano.5b01433
10.1016/j.micromeso.2004.03.034
10.1016/j.drudis.2016.06.005
10.1016/j.biomaterials.2017.07.026
10.7150/thno.20118
10.3109/03639048109055684
10.1016/j.canlet.2005.03.041
10.1021/ja204339e
10.1016/j.bios.2018.11.047
10.1002/anie.201103557
10.1016/j.addr.2008.03.016
10.1016/j.chempr.2018.06.003
10.1039/C3TA13925E
10.1021/ja057254a
10.1126/science.1120411
10.1002/adma.201401550
10.1016/j.biopha.2016.09.035
10.1021/jacs.8b11593
10.3109/10717544.2015.1101791
10.1002/btm2.10049
10.1039/C5NR07849K
10.1021/ja308229p
10.1371/journal.pone.0102341
10.1016/j.addr.2016.02.006
10.1021/acs.chemrev.7b00258
10.1038/nature06917
10.1016/j.biomaterials.2019.119341
10.1039/C8TA12442F
10.1038/s41467-018-06574-7
10.1016/j.ijpharm.2019.118580
10.1021/bm300578p
10.1021/la203883k
10.1021/ic300825s
10.1039/C6TB01159D
10.1021/cr8002483
10.1002/anie.200700534
10.1021/cr900300p
10.1016/j.drudis.2018.02.001
10.1021/ic801677y
10.1016/j.ejmech.2008.07.030
10.1038/nrd3978
10.1039/b200393g
10.1371/journal.pone.0120751
10.1016/1011-1344(95)07241-1
10.2174/0929867323666160926151216
10.1016/j.jphotochem.2017.12.005
10.1021/acs.chemrev.5b00046
10.1111/j.1349-7006.2003.tb01485.x
10.1038/nrg3763
10.1002/stem.187
10.1016/j.addr.2012.04.010
10.1039/C5TB00315F
10.1016/j.jconrel.2012.03.020
10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
10.1021/acsami.9b00361
10.1016/j.jconrel.2013.03.012
10.1021/acs.chemrev.5b00125
10.1080/10717544.2017.1289570
10.1002/adma.200500786
10.1002/advs.201500223
10.1529/biophysj.107.117473
10.1039/C8NJ01375F
10.1634/stemcells.2007-0758
10.1016/j.canlet.2004.02.004
10.1142/S1088424611004063
10.1038/nrclinonc.2015.120
10.1021/acs.biomac.6b00356
10.1021/jacs.7b04141
10.1021/nn3058642
10.1159/000485072
10.1038/ncomms4546
10.1021/acs.bioconjchem.6b00569
10.1039/b926367e
10.1039/C7TB02970E
10.1021/ja00537a030
10.1021/jacs.6b06663
10.2217/nnm.15.150
10.1002/chem.201204358
10.1021/bi00168a005
10.1083/jcb.201211138
10.1002/anie.201301113
10.1002/anie.201903277
10.1021/cr200256v
10.1126/science.1114397
10.1002/adma.201706759
10.1021/ja408084j
10.1016/0005-2736(91)90246-5
10.1016/j.biomaterials.2011.06.024
10.1016/j.jconrel.2014.05.036
10.1021/ar030242e
10.1166/jnn.2006.327
10.1002/1097-0142(19950415)75:8<2169::AID-CNCR2820750822>3.0.CO;2-H
10.1021/ja058016i
10.1002/adfm.201100840
10.1021/ja305988f
10.1038/nm.1971
10.1111/j.2042-7158.1979.tb13510.x
10.1002/smll.200700595
10.1021/ar200028a
10.1038/nrc1071
10.1039/C4CS00001C
10.1557/mrs.2019.42
10.1016/j.jcis.2017.02.006
10.1021/cr800247a
10.1021/acsami.5b06026
10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4
10.1039/C4OB01018C
10.1021/jacs.5b10708
10.1002/pola.28543
10.1039/B616421H
10.1166/jbn.2015.1962
10.1038/nnano.2007.387
10.1016/j.chempr.2017.05.002
10.1111/j.1751-1097.2008.00481.x
10.1038/srep01242
10.1021/acs.biomac.7b01196
10.1016/j.biotechadv.2018.02.016
10.1021/bi952443z
10.1016/0014-5793(77)80717-5
10.1016/0005-2736(91)90008-V
10.1002/marc.200800655
10.1021/acsnano.5b01077
10.1016/j.jcis.2015.09.060
10.1021/acsami.7b14866
10.1016/j.addr.2016.03.002
10.1038/nmat2986
10.7150/thno.8818
10.1016/j.jconrel.2014.11.029
10.1021/acsnano.7b02533
10.1002/adma.201602997
10.1006/abio.1998.2759
10.1002/adhm.201300651
10.1016/j.msec.2015.12.037
10.1021/cr9900432
10.3390/bios8040095
10.1111/j.1365-3083.1972.tb03306.x
10.1016/j.cbpa.2017.03.013
10.1002/bbpc.19810850917
10.1073/pnas.072602399
10.1016/j.dyepig.2017.09.031
10.1021/bc025648a
10.1039/B915149B
10.1039/C6PP00304D
10.1016/j.jconrel.2006.08.001
10.1002/adfm.201804901
10.1016/j.biomaterials.2008.10.028
10.1021/bc500595d
10.1016/j.chempr.2017.02.005
10.1002/cnma.201700264
10.1038/nrclinonc.2012.203
10.1016/j.jviromet.2006.12.008
10.1039/C8AN00731D
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.biomaterials.2019.119707
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
EndPage 119707
ExternalDocumentID PMC7008091
31874428
10_1016_j_biomaterials_2019_119707
S0142961219308257
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI050875
– fundername: NIAID NIH HHS
  grantid: R21 AI121700
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RIG
AAYXX
ACLOT
CITATION
~HD
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c645t-39a88e9280d75a1b4369a39691e859c469a9368f33f2b3ca7e94388f771489d83
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Tue Sep 30 16:45:52 EDT 2025
Sun Sep 28 08:29:35 EDT 2025
Fri Sep 05 10:10:21 EDT 2025
Mon Jul 21 06:00:02 EDT 2025
Wed Oct 01 02:03:05 EDT 2025
Thu Apr 24 23:05:44 EDT 2025
Fri Feb 23 02:40:20 EST 2024
Tue Aug 26 20:00:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nanocomposite
Drug delivery
Porphyrin
Nanoparticle
Theranostics
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c645t-39a88e9280d75a1b4369a39691e859c469a9368f33f2b3ca7e94388f771489d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7008091
PMID 31874428
PQID 2330598205
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7008091
proquest_miscellaneous_2524303692
proquest_miscellaneous_2330598205
pubmed_primary_31874428
crossref_primary_10_1016_j_biomaterials_2019_119707
crossref_citationtrail_10_1016_j_biomaterials_2019_119707
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2019_119707
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2019_119707
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Choi, Barron, Novotny, Son, Hu, Choe (bib163) 2008; 48
Lajevardi, Hossaini Sadr, Tavakkoli Yaraki, Badiei, Armaghan (bib147) 2018; 42
Yguerabide, Yguerabide (bib80) 1998; 262
Luo, Zhang, Su, Cheng, Shi (bib27) 2011; 32
Lewinski, Colvin, Drezek (bib82) 2008; 4
Schwarz, Uchida, Douglas (bib113) 2017
Ren, Zhang, Huang, Wang, Zhou, Cui, An (bib131) 2009; 30
Hu, Zandi, Anavitarte, Knobler, Gelbart (bib121) 2008; 94
Czapar, Steinmetz (bib119) 2017; 38
Wu, Bazan, Liu (bib141) 2017; 2
Yoshida, Andersson (bib103) 1972; 1
Moulton, Zaworotko (bib161) 2001; 101
Nasseri, Soleimani, Rabiee, Kalbasi, Karimi, Hamblin (bib5) 2018
Kim, Osuka (bib87) 2004; 37
Wang, Liu, Lin (bib173) 2013; 135
Aggad, Jimenez, Dib, Croissant, Lichon, Laurencin, Richeter, Maynadier, Alsaiari, Boufatit (bib35) 2018; 4
Lin, Ding, Chen, Peng, Wang, Wang (bib157) 2017; 139
Phan, Yeung, Lee (bib110) 2014; 11
Managa, Achadu, Nyokong (bib55) 2018; 148
Puri, Loomis, Smith, Lee, Yavlovich, Heldman, Blumenthal (bib59) 2009; 26
Nakamura, Aratani, Osuka (bib167) 2007; 36
Côté, Benin, Ockwig, O'Keeffe, Matzger, Yaghi (bib148) 2005; 310
Zheng, Wang, Pei, He, Liu, Xie (bib179) 2017; 29
Popovich, Tomanová, Čuba, Procházková, Pelikánová, Jakubec, Mihóková, Nikl (bib41) 2018; 179
Maranho, De Lima, Primo, Da Silva, Tedesco (bib53) 2009; 85
James (bib150) 2003; 32
Ricchelli, Jori, Gobbo, Tronchin (bib51) 1991; 1065
Siekmann, Westesen (bib11) 1992; 1
Guo, Cai, Xu, Fateminia, Liu, Liang, Feng, Wu, Liu (bib189) 2016; 4
Weissleder, Pittet (bib78) 2008; 452
Dolphin (bib21) 2012
Wu, Mao, Xu, Kenry, Hu, Li, Kong, Liu (bib140) 2018; 4
Huang, El-Sayed, Qian, El-Sayed (bib74) 2006; 128
Liang, Li, Jing, Yue, Dai (bib58) 2014; 35
Cao, Ma, Yue, Li, Dai, Kikuchi (bib61) 2010; 46
Zhu, Cao, Zhen, Laxmi, Li, Liu, Mao (bib128) 2011; 32
Lv, Mao, Liu (bib185) 2014; 43
Luo, Liu, Liu, Lyu (bib146) 2017; 55
Sun, Tham, Reed, Boyd (bib164) 2002; 99
Dong, Wei, Lu, Liu, Lv (bib187) 2016; 61
Wang, Chrzanowski, Wojtas, Chen, Ma (bib168) 2013; 19
Guo, Feng, Manghnani, Cai, Liu, Wu, Xu, Cheng, Teh, Liu (bib145) 2016; 12
Ghosh, Carter, Lovell (bib44) 2019; 218
Biswas, Ahn, Bondar, Belfield (bib33) 2011; 28
Liu, Guo, Jin, Tan (bib158) 2019; 7
Raposo, Stoorvogel (bib136) 2013; 200
Thariat, Hannoun-Levi, Sun Myint, Vuong, Gérard (bib193) 2013; 10
Penon, Marín, Russell, Pérez-García (bib40) 2017; 496
Imran, Ramzan, Qureshi, Khan, Tariq (bib23) 2018; 8
Ethirajan, Chen, Joshi, Pandey (bib26) 2011; 40
Ziegler, Moresco, Tu, Yates, Nardulli (bib105) 2014; 9
Lipscomb, Zhou, Presnell, Woo, Peek, Plaskon, Williams (bib22) 1996; 35
Hirohashi, Kanai (bib104) 2003; 94
Kroll, Fang, Zhang (bib98) 2016; 28
Zhai, Su, Ran, Zhang, Yin, Zhang, Yu, Li (bib100) 2017; 7
Cao, Yang, Zhu, Qu, Mao (bib133) 2014; 26
Castaldo, Ambrogi, Gentile (bib153) 2019
Song, Li, Wang, Liao, Zhang (bib190) 2015; 11
Beletskaya, Tyurin, Tsivadze, Guilard, Stern (bib166) 2009; 109
Mauriello-Jimenez, Croissant, Maynadier, Cattoën, Man, Vergnaud, Chaleix, Sol, Garcia, Gary-Bobo (bib43) 2015; 3
Feng, Chung, Wei, Gu, Jiang, Chen, Darensbourg, Zhou (bib37) 2013; 135
Wang, Meng, Cheng, Kim, Wojtas, Chrzanowski, Chen, Zhang, Ma (bib165) 2011; 133
Lash (bib20) 2011; 15
Pattni, Chupin, Torchilin (bib47) 2015; 115
Dolmans, Fukumura, Jain (bib72) 2003; 3
Yue, Dai (bib66) 2014; 207
Ghasemi, Rabiee, Ahmadi, Lolasi, Borzogomid, Kalbasi, Nasseri, Dezfuli, Aref, Karimi (bib6) 2018; 143
Huynh, Leung, Helfield, Shakiba, Gandier, Jin, Master, Wilson, Goertz, Zheng (bib93) 2015; 10
Yu, Yu, Saha, Zhou, Cook, Yung, Chen, Mao, Zhang, Zhou, Liu, Shao, Wang, Gao, Huang, Stang, Chen (bib184) 2018; 9
Kidd, Spaeth, Dembinski, Dietrich, Watson, Klopp, Battula, Weil, Andreeff, Marini (bib132) 2009; 27
Nathan, Vijayashree, Harikrishna, Takafuji, Jintoku, Ihara, Rao (bib96) 2016; 15
Li, Cheng, Xie, Qiu, Zeng, Li, Wan, Zhang, Liu, Zhang (bib112) 2017; 11
Illum, Jones, Baldwin, Davis (bib13) 1984; 230
Drain, Varotto, Radivojevic (bib86) 2009; 109
Couvreur (bib15) 2013; 65
Cooper, Hausman (bib101) 2000
Ni, Lan, Veroneau, Duan, Song, Lin (bib198) 2018; 9
Feng, Gu, Li, Jiang, Wei, Zhou (bib38) 2012; 51
Horcajada, Gref, Baati, Allan, Maurin, Couvreur, Férey, Morris, Serre (bib177) 2012; 112
Finikova, Galkin, Rozhkov, Cordero, Hägerhäll, Vinogradov (bib57) 2003; 125
Wu, Xu (bib142) 2009; 30
Rezayat, Boushehri, Salmanian, Omidvari, Tarighat, Esmaeili, Sarkar, Amirshahi, Alyautdin, Orlova (bib102) 2009; 44
Guo, Feng, Manghnani, Cai, Liu, Wu, Xu, Cheng, Teh, Liu (bib200) 2016; 12
Vafajoo, Rostami, Parsa, Salarian, Rabiee, Rabiee, Rabiee, Tahriri, Vashaee, Tayebi (bib4) 2018; 1032
Ghosh, Han, De, Kim, Rotello (bib81) 2008; 60
Vader, Mol, Pasterkamp, Schiffelers (bib137) 2016; 106
Chang, Tang, Fang, Yin, Xu, Wu (bib144) 2016; 17
Duchi, Sotgiu, Lucarelli, Ballestri, Dozza, Santi, Guerrini, Dambruoso, Giannini, Donati, Ferroni, Varchi (bib134) 2013; 168
Calik, Sick, Dogru, Döblinger, Datz, Budde, Hartschuh, Auras, Bein (bib183) 2016; 138
Dong, Wei, Liu, Lv, Qian (bib188) 2016; 8
Dawidczyk, Kim, Park, Russell, Lee, Pomper, Searson (bib18) 2014; 187
Lindig, Rodgers, Schaap (bib31) 1980; 102
Jin, Cui, Wang, Chen, Zheng (bib91) 2014; 3
Della Rocca, Liu, Lin (bib174) 2011; 44
Rowsell, Yaghi (bib151) 2004; 73
Xu, Zhao, Qu, Wang, Shi, Zhao (bib95) 2015; 7
Yu, Cen, He, Wang, Wang, Ying, Li, Jacobson, Wang, Wang, Lin, Tian, Zhou, Ni, Li, Chen (bib160) 2019; 58
Luksiene, Juzenas, Moan (bib196) 2006; 235
Rohovie, Nagasawa, Swartz (bib16) 2017; 2
Bera, Maiti, Maity, Mandal, Maiti (bib192) 2018; 3
Barenholz (bib48) 2012; 160
Petre, Dittmer (bib49) 2007; 2
Wei, Zhou, Pang, Liu, Deng, Wang, Wu, Chen (bib159) 2013; 2
Wang, Zheng, Xie (bib171) 2018; 6
Zenkevich, Sagun, Knyukshto, Shulga, Mironov, Efremova, Bonnett, Songca, Kassem (bib90) 1996; 33
V. Sansone, R. Frairia, M. Brañes, P. Romeo, M.G. Catalano, R.C. Applefield, Current Applications and Future Prospects of Extracorporeal Shockwave Therapy, Shockwave Medicine, Karger Publishers2018, pp. 140-157.
Carter, Shao, Hoopes, Luo, Ahsan, Grigoryants, Song, Huang, Zhang, Pandey (bib94) 2014; 5
Nel, Xia, Mädler, Li (bib83) 2006; 311
Couvreur, Kante, Roland, Guiot, Bauduin, Speiser (bib9) 1979; 31
Gurny, Peppas, Harrington, Banker (bib10) 1981; 7
O'Neal, Hirsch, Halas, Payne, West (bib73) 2004; 209
Bose, Lee, Park (bib99) 2016; 21
Cui, Lin, Jin, Jiang, Huang, Ding, Muhanna, Irish, Wang, Chen (bib92) 2015; 9
Andaloussi, Mäger, Breakefield, Wood (bib135) 2013; 12
Park, Jiang, Feng, Mao, Zhou (bib36) 2016; 138
Chowdhury, Schumann, Bhakta-Guha, Guha (bib107) 2016; 84
Wu, Yang (bib176) 2017; 29
Birrenbach, Speiser (bib1) 1976; 65
Zhou, Begum, Wang, Krolla, Wagner, Bräse, Wöll, Tsotsalas (bib180) 2018; 10
Fang, Kroll, Gao, Zhang (bib111) 2018
Schaue, McBride (bib195) 2015; 12
Lázaro, Haddad, Sacca, Orellana-Tavra, Fairen-Jimenez, Forgan (bib181) 2017; 2
Fan, Yung, Huang, Chen (bib50) 2017; 117
Ivanov, Boldyrev (bib19) 2014; 12
Dai (bib64) 2016
Rhee, Baksh, Nycholat, Paulson, Kitagishi, Finn (bib126) 2012; 13
Vader, Mol, Pasterkamp, Schiffelers (bib122) 2016; 106
Bonnett (bib28) 1995; 24
Fuhrmann, Serio, Mazo, Nair, Stevens (bib138) 2015; 205
Zhu, Zhang, Wang, Zhao, Lian, Wang, Wang, Wu, Hu, Guo (bib191) 2016; 23
Van Veen, Van Baar, Kroese, Coolegem, De Wit, Colijn (bib139) 1981; 85
Penon, Marín, Amabilino, Russell, Pérez-García (bib32) 2016; 462
Kubát, Mosinger (bib89) 1996; 96
Kievit, Zhang (bib108) 2011; 23
Morris, Volosskiy, Demir, Gándara, McGrier, Furukawa, Cascio, Stoddart, Yaghi (bib39) 2012; 51
Wang, Wang, Li, Mao (bib127) 2013; 3
Marty (bib8) 1978; 53
Dong, Chen, Qin, Wei, Liang, Liu, Kong, Lv (bib186) 2017; 24
Yang, Zhang (bib24) 2019; 44
Vakoc, Lanning, Tyrrell, Padera, Bartlett, Stylianopoulos, Munn, Tearney, Fukumura, Jain (bib77) 2009; 15
Lerouge, Cerveau, Corriu, Stern, Guilard (bib34) 2007
Jin, Lovell, Chen, Zheng (bib70) 2013; 7
Tao, Feng, Chao, Liang, Song, Wang, Yang, Liu (bib155) 2018; 28
Gandra, Wang, Zhu, Mao (bib129) 2013; 52
Hiraka, Kanehisa, Tamai, Asayama, Nagaoka, Oyaizu, Yuasa, Kawakami (bib54) 2008; 67
Comellas-Aragones, de la Escosura, Dirks, van der Ham, Fuste-Cune, Cornelissen, Nolte (bib120) 2009; 10
Oraevsky, Esenaliev, Jacques, Tittel (bib75) 1996
Varchi, Foglietta, Canaparo, Ballestri, Arena, Sotgiu, Guerrini, Nanni, Cicoria, Cravotto (bib199) 2015; 10
Klostranec, Chan (bib79) 2006; 18
Masarapu, Patel, Chariou, Hu, Gulati, Carpenter, Ghiladi, Shukla, Steinmetz (bib125) 2017; 18
Yin, Kanasty, Eltoukhy, Vegas, Dorkin, Anderson (bib115) 2014; 15
Li, Cheng, Qiu, Zhang, Wan, Zeng, Zhang (bib109) 2017; 142
Farjadian, Moghoofei, Mirkiani, Ghasemi, Rabiee, Hadifar, Beyzavi, Karimi, Hamblin (bib3) 2018; 36
Wang, Wang, Li, Liu, Xie, Jing (bib182) 2016; 28
Pandey, Chitgupi, Lakshminarayanan (bib201) 2012; 16
Skupin-Mrugalska, Szczolko, Gierlich, Konopka, Goslinski, Mielcarek, Düzgüneş (bib52) 2018; 353
Jiao, Zhang, Meng, Li, Liu, Luo, Gao (bib106) 2018
Ishida, Ichihara, Wang, Kiwada (bib63) 2006; 115
Gordon, Tajuddin, Guitart, Kuzel, Eramo, Vonroenn (bib62) 1995; 75
Peyret, Gehin, Thuenemann, Blond, El Turabi, Beales, Clarke, Gilbert, Fry, Stuart (bib117) 2015; 10
Sehlstedt, Kim, Carter, Goodisman, Vollano, Norden, Dabrowiak (bib123) 1994; 33
Bose, Paulmurugan, Moon, Lee, Park (bib97) 2018; 23
Ibrahim, Sabouni, Husseini (bib178) 2017; 24
Desiraju (bib162) 2007; 46
Allen, Hansen, Martin, Redemann, Yau-Young (bib60) 1991; 1066
Lee, Lee, Kim (bib124) 2016; 106
Jiang, Lilge, Grenier, Li, Wilson, Chopp (bib45) 1998; 22
Calvo, Remuñán-López, Vila-Jato, Alonso (bib12) 1997; 63
Shi, Liu, Liu, Sun, Chang, Zhao, Hu, Pang (bib156) 2019; 11
Zhan, Wang, McAlvin, Guo, Timko, Santamaria, Kohane (bib46) 2015; 16
Ng, Takada, Jin, Zheng (bib69) 2015; 26
Phelps, Dang, Rasochova (bib118) 2007; 141
Liang, Li, Yue, Dai (bib67) 2011; 50
Takeuchi, Kurohane, Ichikawa, Yonezawa, Ori, Koishi, Nango, Oku (bib56) 2003; 14
Sonabend, Ulasov, Tyler, Rivera, Mathis, Lesniak (bib130) 2008; 26
Jing, Liang, Li, Lin, Yang, Yue, Dai (bib42) 2014; 4
Lajevardi, Tavakkoli Yaraki, Masjedi, Nouri, Hossaini Sadr (bib152) 2019; 276
Couvreur, Tulkenst, Roland, Trouet, Speiser (bib7) 1977; 84
Biesaga, Pyrzyńska, Trojanowicz (bib25) 2000; 51
Smith, Hawes, Bundy (
10.1016/j.biomaterials.2019.119707_bib114
Rowsell (10.1016/j.biomaterials.2019.119707_bib151) 2004; 73
Calvo (10.1016/j.biomaterials.2019.119707_bib12) 1997; 63
Liang (10.1016/j.biomaterials.2019.119707_bib67) 2011; 50
Kidd (10.1016/j.biomaterials.2019.119707_bib132) 2009; 27
Nathan (10.1016/j.biomaterials.2019.119707_bib96) 2016; 15
Cooper (10.1016/j.biomaterials.2019.119707_bib101) 2000
Yue (10.1016/j.biomaterials.2019.119707_bib66) 2014; 207
Lin (10.1016/j.biomaterials.2019.119707_bib157) 2017; 139
Nakamura (10.1016/j.biomaterials.2019.119707_bib167) 2007; 36
Birrenbach (10.1016/j.biomaterials.2019.119707_bib1) 1976; 65
O'Neal (10.1016/j.biomaterials.2019.119707_bib73) 2004; 209
Couvreur (10.1016/j.biomaterials.2019.119707_bib7) 1977; 84
Couvreur (10.1016/j.biomaterials.2019.119707_bib9) 1979; 31
Ehlerding (10.1016/j.biomaterials.2019.119707_bib68) 2016; 3
Beletskaya (10.1016/j.biomaterials.2019.119707_bib166) 2009; 109
Imran (10.1016/j.biomaterials.2019.119707_bib23) 2018; 8
Lash (10.1016/j.biomaterials.2019.119707_bib20) 2011; 15
Van Veen (10.1016/j.biomaterials.2019.119707_bib139) 1981; 85
Skupin-Mrugalska (10.1016/j.biomaterials.2019.119707_bib52) 2018; 353
Chen (10.1016/j.biomaterials.2019.119707_bib194) 2006; 6
Schwarz (10.1016/j.biomaterials.2019.119707_bib113) 2017
Chang (10.1016/j.biomaterials.2019.119707_bib144) 2016; 17
Lázaro (10.1016/j.biomaterials.2019.119707_bib181) 2017; 2
Ziegler (10.1016/j.biomaterials.2019.119707_bib105) 2014; 9
Li (10.1016/j.biomaterials.2019.119707_bib112) 2017; 11
Fan (10.1016/j.biomaterials.2019.119707_bib50) 2017; 117
Ghosh (10.1016/j.biomaterials.2019.119707_bib44) 2019; 218
Della Rocca (10.1016/j.biomaterials.2019.119707_bib174) 2011; 44
Wang (10.1016/j.biomaterials.2019.119707_bib127) 2013; 3
Illum (10.1016/j.biomaterials.2019.119707_bib13) 1984; 230
Carter (10.1016/j.biomaterials.2019.119707_bib94) 2014; 5
Luo (10.1016/j.biomaterials.2019.119707_bib27) 2011; 32
Huynh (10.1016/j.biomaterials.2019.119707_bib88) 2012; 134
Xing (10.1016/j.biomaterials.2019.119707_bib143) 2011; 21
Calik (10.1016/j.biomaterials.2019.119707_bib183) 2016; 138
Sun (10.1016/j.biomaterials.2019.119707_bib164) 2002; 99
Lajevardi (10.1016/j.biomaterials.2019.119707_bib147) 2018; 42
Nasseri (10.1016/j.biomaterials.2019.119707_bib5) 2018
Barenholz (10.1016/j.biomaterials.2019.119707_bib48) 2012; 160
Côté (10.1016/j.biomaterials.2019.119707_bib148) 2005; 310
Ghasemi (10.1016/j.biomaterials.2019.119707_bib6) 2018; 143
Luksiene (10.1016/j.biomaterials.2019.119707_bib196) 2006; 235
Zhan (10.1016/j.biomaterials.2019.119707_bib46) 2015; 16
Kievit (10.1016/j.biomaterials.2019.119707_bib108) 2011; 23
Ricchelli (10.1016/j.biomaterials.2019.119707_bib51) 1991; 1065
Zenkevich (10.1016/j.biomaterials.2019.119707_bib90) 1996; 33
Lovell (10.1016/j.biomaterials.2019.119707_bib71) 2011; 10
Castaldo (10.1016/j.biomaterials.2019.119707_bib153) 2019
Zhou (10.1016/j.biomaterials.2019.119707_bib180) 2018; 10
Huang (10.1016/j.biomaterials.2019.119707_bib74) 2006; 128
Petre (10.1016/j.biomaterials.2019.119707_bib49) 2007; 2
Peer (10.1016/j.biomaterials.2019.119707_bib84) 2007; 2
Wang (10.1016/j.biomaterials.2019.119707_bib76) 2009; 3
Tao (10.1016/j.biomaterials.2019.119707_bib155) 2018; 28
Comellas-Aragones (10.1016/j.biomaterials.2019.119707_bib120) 2009; 10
Ishida (10.1016/j.biomaterials.2019.119707_bib63) 2006; 115
Yguerabide (10.1016/j.biomaterials.2019.119707_bib80) 1998; 262
Andaloussi (10.1016/j.biomaterials.2019.119707_bib135) 2013; 12
Desiraju (10.1016/j.biomaterials.2019.119707_bib162) 2007; 46
Pandey (10.1016/j.biomaterials.2019.119707_bib201) 2012; 16
Wu (10.1016/j.biomaterials.2019.119707_bib141) 2017; 2
Thariat (10.1016/j.biomaterials.2019.119707_bib193) 2013; 10
Zhou (10.1016/j.biomaterials.2019.119707_bib30) 2016; 8
Liu (10.1016/j.biomaterials.2019.119707_bib158) 2019; 7
Hu (10.1016/j.biomaterials.2019.119707_bib121) 2008; 94
Song (10.1016/j.biomaterials.2019.119707_bib190) 2015; 11
Vader (10.1016/j.biomaterials.2019.119707_bib122) 2016; 106
Ghafelehbashi (10.1016/j.biomaterials.2019.119707_bib85) 2019; 569
Ahmadi (10.1016/j.biomaterials.2019.119707_bib14) 2018; 15
Morris (10.1016/j.biomaterials.2019.119707_bib39) 2012; 51
Choi (10.1016/j.biomaterials.2019.119707_bib163) 2008; 48
Biesaga (10.1016/j.biomaterials.2019.119707_bib25) 2000; 51
Vakoc (10.1016/j.biomaterials.2019.119707_bib77) 2009; 15
Fuhrmann (10.1016/j.biomaterials.2019.119707_bib138) 2015; 205
Dawidczyk (10.1016/j.biomaterials.2019.119707_bib18) 2014; 187
Vader (10.1016/j.biomaterials.2019.119707_bib137) 2016; 106
Lu (10.1016/j.biomaterials.2019.119707_bib172) 2016; 138
Popovich (10.1016/j.biomaterials.2019.119707_bib41) 2018; 179
Jin (10.1016/j.biomaterials.2019.119707_bib91) 2014; 3
Lan (10.1016/j.biomaterials.2019.119707_bib197) 2018; 140
Vafajoo (10.1016/j.biomaterials.2019.119707_bib4) 2018; 1032
Lindig (10.1016/j.biomaterials.2019.119707_bib31) 1980; 102
Dolmans (10.1016/j.biomaterials.2019.119707_bib72) 2003; 3
Yang (10.1016/j.biomaterials.2019.119707_bib24) 2019; 44
Lee (10.1016/j.biomaterials.2019.119707_bib124) 2016; 106
Ren (10.1016/j.biomaterials.2019.119707_bib131) 2009; 30
Bera (10.1016/j.biomaterials.2019.119707_bib192) 2018; 3
Chowdhury (10.1016/j.biomaterials.2019.119707_bib107) 2016; 84
Raposo (10.1016/j.biomaterials.2019.119707_bib136) 2013; 200
Finikova (10.1016/j.biomaterials.2019.119707_bib57) 2003; 125
Yoshida (10.1016/j.biomaterials.2019.119707_bib103) 1972; 1
Wu (10.1016/j.biomaterials.2019.119707_bib176) 2017; 29
Aggad (10.1016/j.biomaterials.2019.119707_bib35) 2018; 4
Puri (10.1016/j.biomaterials.2019.119707_bib59) 2009; 26
Fang (10.1016/j.biomaterials.2019.119707_bib111) 2018
Varchi (10.1016/j.biomaterials.2019.119707_bib199) 2015; 10
Wang (10.1016/j.biomaterials.2019.119707_bib171) 2018; 6
Jiao (10.1016/j.biomaterials.2019.119707_bib106) 2018
Managa (10.1016/j.biomaterials.2019.119707_bib55) 2018; 148
Mauriello-Jimenez (10.1016/j.biomaterials.2019.119707_bib43) 2015; 3
Dolphin (10.1016/j.biomaterials.2019.119707_bib21) 2012
Wei (10.1016/j.biomaterials.2019.119707_bib159) 2013; 2
Wang (10.1016/j.biomaterials.2019.119707_bib165) 2011; 133
Li (10.1016/j.biomaterials.2019.119707_bib109) 2017; 142
Huynh (10.1016/j.biomaterials.2019.119707_bib93) 2015; 10
Penon (10.1016/j.biomaterials.2019.119707_bib32) 2016; 462
Zhu (10.1016/j.biomaterials.2019.119707_bib128) 2011; 32
Marty (10.1016/j.biomaterials.2019.119707_bib8) 1978; 53
Weissleder (10.1016/j.biomaterials.2019.119707_bib78) 2008; 452
Duchi (10.1016/j.biomaterials.2019.119707_bib134) 2013; 168
Yu (10.1016/j.biomaterials.2019.119707_bib160) 2019; 58
Biswas (10.1016/j.biomaterials.2019.119707_bib33) 2011; 28
Gandra (10.1016/j.biomaterials.2019.119707_bib129) 2013; 52
Yin (10.1016/j.biomaterials.2019.119707_bib115) 2014; 15
Czapar (10.1016/j.biomaterials.2019.119707_bib119) 2017; 38
Wu (10.1016/j.biomaterials.2019.119707_bib140) 2018; 4
James (10.1016/j.biomaterials.2019.119707_bib150) 2003; 32
Siekmann (10.1016/j.biomaterials.2019.119707_bib11) 1992; 1
Drain (10.1016/j.biomaterials.2019.119707_bib86) 2009; 109
Phelps (10.1016/j.biomaterials.2019.119707_bib118) 2007; 141
Moulton (10.1016/j.biomaterials.2019.119707_bib161) 2001; 101
Masarapu (10.1016/j.biomaterials.2019.119707_bib125) 2017; 18
Park (10.1016/j.biomaterials.2019.119707_bib36) 2016; 138
Gordon (10.1016/j.biomaterials.2019.119707_bib62) 1995; 75
Lerouge (10.1016/j.biomaterials.2019.119707_bib34) 2007
Wang (10.1016/j.biomaterials.2019.119707_bib168) 2013; 19
Rezayat (10.1016/j.biomaterials.2019.119707_bib102) 2009; 44
Zheng (10.1016/j.biomaterials.2019.119707_bib179) 2017; 29
Schaue (10.1016/j.biomaterials.2019.119707_bib195) 2015; 12
Lewinski (10.1016/j.biomaterials.2019.119707_bib82) 2008; 4
Dong (10.1016/j.biomaterials.2019.119707_bib188) 2016; 8
Kim (10.1016/j.biomaterials.2019.119707_bib87) 2004; 37
Penon (10.1016/j.biomaterials.2019.119707_bib40) 2017; 496
Allen (10.1016/j.biomaterials.2019.119707_bib60) 1991; 1066
Hiraka (10.1016/j.biomaterials.2019.119707_bib54) 2008; 67
Guo (10.1016/j.biomaterials.2019.119707_bib145) 2016; 12
Kubát (10.1016/j.biomaterials.2019.119707_bib89) 1996; 96
Hirohashi (10.1016/j.biomaterials.2019.119707_bib104) 2003; 94
Wang (10.1016/j.biomaterials.2019.119707_bib173) 2013; 135
Zhu (10.1016/j.biomaterials.2019.119707_bib191) 2016; 23
Horcajada (10.1016/j.biomaterials.2019.119707_bib177) 2012; 112
Jiang (10.1016/j.biomaterials.2019.119707_bib45) 1998; 22
Celli (10.1016/j.biomaterials.2019.119707_bib29) 2010; 110
Couvreur (10.1016/j.biomaterials.2019.119707_bib15) 2013; 65
Feng (10.1016/j.biomaterials.2019.119707_bib37) 2013; 135
Luo (10.1016/j.biomaterials.2019.119707_bib146) 2017; 55
Ni (10.1016/j.biomaterials.2019.119707_bib198) 2018; 9
Gurny (10.1016/j.biomaterials.2019.119707_bib10) 1981; 7
Dong (10.1016/j.biomaterials.2019.119707_bib187) 2016; 61
Cui (10.1016/j.biomaterials.2019.119707_bib92) 2015; 9
Rhee (10.1016/j.biomaterials.2019.119707_bib126) 2012; 13
Sehlstedt (10.1016/j.biomaterials.2019.119707_bib123) 1994; 33
Gao (10.1016/j.biomaterials.2019.119707_bib169) 2014; 43
Ghosh (10.1016/j.biomaterials.2019.119707_bib81) 2008; 60
Cao (10.1016/j.biomaterials.2019.119707_bib61) 2010; 46
Ng (10.1016/j.biomaterials.2019.119707_bib69) 2015; 26
Zhai (10.1016/j.biomaterials.2019.119707_bib100) 2017; 7
Merino (10.1016/j.biomaterials.2019.119707_bib154) 2015; 9
Lu (10.1016/j.biomaterials.2019.119707_bib170) 2014; 136
Feng (10.1016/j.biomaterials.2019.119707_bib38) 2012; 51
Farjadian (10.1016/j.biomaterials.2019.119707_bib3) 2018; 36
Shi (10.1016/j.biomaterials.2019.119707_bib156) 2019; 11
Rabiee (10.1016/j.biomaterials.2019.119707_bib2) 2018; 1
Xu (10.1016/j.biomaterials.2019.119707_bib95) 2015; 7
Wang (10.1016/j.biomaterials.2019.119707_bib182) 2016; 28
Liang (10.1016/j.biomaterials.2019.119707_bib58) 2014; 35
Phan (10.1016/j.biomaterials.2019.119707_bib110) 2014; 11
Guo (10.1016/j.biomaterials.2019.119707_bib189) 2016; 4
Klostranec (10.1016/j.biomaterials.2019.119707_bib79) 2006; 18
Dai (10.1016/j.biomaterials.2019.119707_bib64) 2016
Bose (10.1016/j.biomaterials.2019.119707_bib97) 2018; 23
Smith (10.1016/j.biomaterials.2019.119707_bib116)
References_xml – volume: 51
  start-page: 209
  year: 2000
  end-page: 224
  ident: bib25
  article-title: Porphyrins in analytical chemistry
  publication-title: A Rev. Talanta
– volume: 44
  start-page: 1554
  year: 2009
  end-page: 1569
  ident: bib102
  article-title: The porphyrin–fullerene nanoparticles to promote the ATP overproduction in myocardium: 25Mg2+-magnetic isotope effect
  publication-title: Eur. J. Med. Chem.
– volume: 7
  start-page: 17371
  year: 2015
  end-page: 17380
  ident: bib95
  article-title: Imaging-guided drug release from glutathione-responsive supramolecular porphysome nanovesicles
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 1553
  year: 2007
  end-page: 1555
  ident: bib34
  article-title: Self-organization of porphyrin units induced by magnetic field during sol–gel polymerization
  publication-title: Chem. Commun.
– volume: 38
  start-page: 108
  year: 2017
  end-page: 116
  ident: bib119
  article-title: Plant viruses and bacteriophages for drug delivery in medicine and biotechnology
  publication-title: Curr. Opin. Chem. Biol.
– volume: 21
  start-page: 4058
  year: 2011
  end-page: 4067
  ident: bib143
  article-title: Design guidelines for conjugated polymers with light-activated anticancer activity
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 641
  year: 2017
  end-page: 650
  ident: bib186
  article-title: Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer (II): doxorubicin loaded hydrogel as a dual fluorescent drug delivery system for simultaneous imaging tracking in vivo
  publication-title: Drug Deliv.
– volume: 276
  start-page: 371
  year: 2019
  end-page: 378
  ident: bib152
  article-title: Green synthesis of MOF@Ag nanocomposites for catalytic reduction of methylene blue
  publication-title: J. Mol. Liq.
– volume: 7
  start-page: 5153
  year: 2019
  end-page: 5172
  ident: bib158
  article-title: Covalent triazine frameworks: synthesis and applications
  publication-title: J. Mater. Chem. A
– volume: 135
  start-page: 13222
  year: 2013
  end-page: 13234
  ident: bib173
  article-title: Metal–organic frameworks as A tunable platform for designing functional molecular materials
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 16712
  year: 2014
  end-page: 16715
  ident: bib170
  article-title: Nanoscale metal–organic framework for highly effective photodynamic therapy of resistant head and neck cancer
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 1630
  year: 2009
  end-page: 1658
  ident: bib86
  article-title: Self-organized porphyrinic materials
  publication-title: Chem. Rev.
– volume: 51
  start-page: 6443
  year: 2012
  end-page: 6445
  ident: bib39
  article-title: Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks
  publication-title: Inorg. Chem.
– volume: 30
  start-page: 1036
  year: 2009
  end-page: 1044
  ident: bib131
  article-title: In vitro behavior of neural stem cells in response to different chemical functional groups
  publication-title: Biomaterials
– volume: 135
  start-page: 17105
  year: 2013
  end-page: 17110
  ident: bib37
  article-title: Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination
  publication-title: J. Am. Chem. Soc.
– year: 2012
  ident: bib21
  article-title: The Porphyrins V5: Physical Chemistry
– volume: 84
  start-page: 291
  year: 2016
  end-page: 304
  ident: bib107
  article-title: Cancer nanotheranostics: strategies, promises and impediments
  publication-title: Biomed. Pharmacother.
– volume: 101
  start-page: 1629
  year: 2001
  end-page: 1658
  ident: bib161
  article-title: From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids
  publication-title: Chem. Rev.
– volume: 15
  start-page: 1093
  year: 2011
  end-page: 1115
  ident: bib20
  article-title: Origin of aromatic character in porphyrinoid systems
  publication-title: J. Porphyr. Phthalocyanines
– start-page: 1706759
  year: 2018
  ident: bib111
  article-title: Cell membrane coating nanotechnology
  publication-title: Adv. Mater.
– volume: 4
  start-page: 858
  year: 2014
  ident: bib42
  article-title: Mn-porphyrin conjugated Au nanoshells encapsulating doxorubicin for potential magnetic resonance imaging and light triggered synergistic therapy of cancer
  publication-title: Theranostics
– volume: 31
  start-page: 331
  year: 1979
  end-page: 332
  ident: bib9
  article-title: Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties
  publication-title: J. Pharm. Pharmacol.
– volume: 32
  start-page: 4744
  year: 2011
  end-page: 4752
  ident: bib128
  article-title: Controlled growth and differentiation of MSCs on grooved films assembled from monodisperse biological nanofibers with genetically tunable surface chemistries
  publication-title: Biomaterials
– volume: 48
  start-page: 426
  year: 2008
  end-page: 428
  ident: bib163
  article-title: Pillared porphyrin homologous series: intergrowth in Metal− organic frameworks
  publication-title: Inorg. Chem.
– volume: 33
  start-page: 171
  year: 1996
  end-page: 180
  ident: bib90
  article-title: Photophysical and photochemical properties of potential porphyrin and chlorin photosensitizers for PDT
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 106
  start-page: 148
  year: 2016
  end-page: 156
  ident: bib122
  article-title: Extracellular vesicles for drug delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 569
  start-page: 118580
  year: 2019
  ident: bib85
  article-title: Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes
  publication-title: Int. J. Pharm.
– volume: 142
  start-page: 149
  year: 2017
  end-page: 161
  ident: bib109
  article-title: Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy
  publication-title: Biomaterials
– volume: 6
  start-page: 707
  year: 2018
  end-page: 717
  ident: bib171
  article-title: Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise
  publication-title: J. Mater. Chem. B
– volume: 10
  start-page: 3483
  year: 2015
  end-page: 3494
  ident: bib199
  article-title: Engineered porphyrin loaded core-shell nanoparticles for selective sonodynamic anticancer treatment
  publication-title: Nanomedicine
– volume: 128
  start-page: 2115
  year: 2006
  end-page: 2120
  ident: bib74
  article-title: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods
  publication-title: J. Am. Chem. Soc.
– volume: 37
  start-page: 735
  year: 2004
  end-page: 745
  ident: bib87
  article-title: Directly linked porphyrin arrays with tunable excitonic interactions
  publication-title: Acc. Chem. Res.
– volume: 16
  start-page: 1055
  year: 2012
  end-page: 1058
  ident: bib201
  article-title: Porphyrin aggregates in the form of nanofibers and their unusual aggregation induced emission
  publication-title: J. Porphyr. Phthalocyanines
– volume: 16
  start-page: 177
  year: 2015
  end-page: 181
  ident: bib46
  article-title: Phototriggered local anesthesia
  publication-title: Nano Lett.
– volume: 29
  start-page: 1606134
  year: 2017
  ident: bib176
  article-title: Metal–organic framework (MOF)-Based drug/cargo delivery and cancer therapy
  publication-title: Adv. Mater.
– volume: 8
  start-page: 12394
  year: 2016
  end-page: 12405
  ident: bib30
  article-title: Porphyrin-loaded nanoparticles for cancer theranostics
  publication-title: Nanoscale
– volume: 168
  start-page: 225
  year: 2013
  end-page: 237
  ident: bib134
  article-title: Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: effective photoinduced in vitro killing of osteosarcoma
  publication-title: J. Control. Release
– volume: 12
  start-page: 6243
  year: 2016
  end-page: 6254
  ident: bib145
  article-title: A porphyrin-based conjugated polymer for highly efficient in vitro and in vivo photothermal therapy
  publication-title: Small
– volume: 84
  start-page: 323
  year: 1977
  end-page: 326
  ident: bib7
  article-title: Nanocapsules: a new type of lysosomotropic carrier
  publication-title: FEBS Lett.
– volume: 1032
  start-page: 1
  year: 2018
  end-page: 17
  ident: bib4
  article-title: Early diagnosis of disease using microbead array technology: a review
  publication-title: Anal. Chim. Acta
– volume: 99
  start-page: 5088
  year: 2002
  end-page: 5092
  ident: bib164
  article-title: Extending supramolecular fullerene-porphyrin chemistry to pillared metal-organic frameworks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 179
  start-page: 149
  year: 2018
  end-page: 155
  ident: bib41
  article-title: LuAG: Pr3+-porphyrin based nanohybrid system for singlet oxygen production: toward the next generation of PDTX drugs
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 30
  start-page: 504
  year: 2009
  end-page: 508
  ident: bib142
  article-title: Enhanced one- and two-photon excitation emission of a porphyrin photosensitizer by FRET from a conjugated polyelectrolyte, macromol
  publication-title: Rapid Commun
– volume: 5
  start-page: 3546
  year: 2014
  ident: bib94
  article-title: Porphyrin–phospholipid liposomes permeabilized by near-infrared light
  publication-title: Nat. Commun.
– volume: 125
  start-page: 4882
  year: 2003
  end-page: 4893
  ident: bib57
  article-title: Porphyrin and tetrabenzoporphyrin dendrimers: tunable membrane-impermeable fluorescent pH nanosensors
  publication-title: J. Am. Chem. Soc.
– start-page: 1
  year: 2017
  end-page: 60
  ident: bib113
  article-title: Biomedical and catalytic opportunities of virus-like particles in nanotechnology
  publication-title: Adv. Virus Res.
– volume: 141
  start-page: 146
  year: 2007
  end-page: 153
  ident: bib118
  article-title: Inactivation and purification of cowpea mosaic virus-like particles displaying peptide antigens from Bacillus anthracis
  publication-title: J. Virol Methods
– volume: 94
  start-page: 1428
  year: 2008
  end-page: 1436
  ident: bib121
  article-title: Packaging of a polymer by a viral capsid: the interplay between polymer length and capsid size
  publication-title: Biophys. J.
– volume: 19
  start-page: 3297
  year: 2013
  end-page: 3301
  ident: bib168
  article-title: formation of a metalloporphyrin‐based nanoreactor by postsynthetic metal–ion exchange of a polyhedral‐cage containing a metal–metalloporphyrin framework
  publication-title: Chem.–A Eur. J.
– volume: 3
  start-page: 3681
  year: 2015
  end-page: 3684
  ident: bib43
  article-title: Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery
  publication-title: J. Mater. Chem. B
– volume: 8
  start-page: 95
  year: 2018
  ident: bib23
  article-title: Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging
  publication-title: Biosensors
– volume: 138
  start-page: 1234
  year: 2016
  end-page: 1239
  ident: bib183
  article-title: From highly crystalline to outer surface-functionalized covalent organic Frameworks A modulation approach
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 1804901
  year: 2018
  ident: bib155
  article-title: Covalent organic polymers based on fluorinated porphyrin as oxygen nanoshuttles for tumor hypoxia relief and enhanced photodynamic therapy
  publication-title: Adv. Funct. Mater.
– volume: 36
  start-page: 831
  year: 2007
  end-page: 845
  ident: bib167
  article-title: Cyclic porphyrin arrays as artificial photosynthetic antenna: synthesis and excitation energy transfer
  publication-title: Chem. Soc. Rev.
– volume: 207
  start-page: 32
  year: 2014
  end-page: 42
  ident: bib66
  article-title: Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers
  publication-title: Adv. Colloid Interface Sci.
– volume: 187
  start-page: 133
  year: 2014
  end-page: 144
  ident: bib18
  article-title: State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines
  publication-title: J. Control. Release
– volume: 496
  start-page: 100
  year: 2017
  end-page: 110
  ident: bib40
  article-title: Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy
  publication-title: J. Colloid Interface Sci.
– volume: 11
  start-page: 1
  year: 2014
  ident: bib110
  article-title: Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies
  publication-title: Cancer Biol. Med.
– volume: 3
  start-page: 1242
  year: 2013
  ident: bib127
  article-title: Virus activated artificial ECM induces the osteoblastic differentiation of mesenchymal stem cells without osteogenic supplements
  publication-title: Sci. Rep.
– volume: 102
  start-page: 5590
  year: 1980
  end-page: 5593
  ident: bib31
  article-title: Determination of the lifetime of singlet oxygen in water-d2 using 9, 10-anthracenedipropionic acid, a water-soluble probe
  publication-title: J. Am. Chem. Soc.
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  ident: bib148
  article-title: Porous, crystalline, covalent organic frameworks
  publication-title: Science
– volume: 32
  start-page: 7127
  year: 2011
  end-page: 7138
  ident: bib27
  article-title: A review of NIR dyes in cancer targeting and imaging
  publication-title: Biomaterials
– volume: 8
  start-page: 5104
  year: 2016
  end-page: 5113
  ident: bib188
  article-title: Real-time fluorescence tracking of protoporphyrin incorporated thermosensitive hydrogel and its drug release in vivo
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 4690
  year: 2016
  end-page: 4695
  ident: bib189
  article-title: Decoration of porphyrin with tetraphenylethene: converting a fluorophore with aggregation-caused quenching to aggregation-induced emission enhancement
  publication-title: J. Mater. Chem. B
– volume: 462
  start-page: 154
  year: 2016
  end-page: 165
  ident: bib32
  article-title: Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy
  publication-title: J. Colloid Interface Sci.
– volume: 50
  start-page: 11622
  year: 2011
  end-page: 11627
  ident: bib67
  article-title: Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer
  publication-title: Angew. Chem. Int. Ed.
– volume: 110
  start-page: 2795
  year: 2010
  end-page: 2838
  ident: bib29
  article-title: Imaging and photodynamic therapy: mechanisms, monitoring, and optimization
  publication-title: Chem. Rev.
– volume: 44
  start-page: 189
  year: 2019
  end-page: 194
  ident: bib24
  article-title: Porphyrin-based nanocomposites for tumor photodynamic therapy
  publication-title: MRS Bull.
– volume: 27
  start-page: 2614
  year: 2009
  end-page: 2623
  ident: bib132
  article-title: Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging
  publication-title: Stem Cells
– volume: 106
  start-page: 157
  year: 2016
  end-page: 171
  ident: bib124
  article-title: Bioengineered protein-based nanocage for drug delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 15
  start-page: 1476
  year: 2016
  end-page: 1483
  ident: bib96
  article-title: A novel photosensitizer: an l-glutamide lipid conjugate with improved properties for photodynamic therapy
  publication-title: Photochem. Photobiol. Sci.
– volume: 65
  start-page: 1763
  year: 1976
  end-page: 1766
  ident: bib1
  article-title: Polymerized micelles and their use as adjuvants in immunology
  publication-title: J. Pharm. Sci.
– volume: 85
  start-page: 693
  year: 1981
  end-page: 700
  ident: bib139
  article-title: Oxygen reduction on transition‐metal porphyrins in acid electrolyte I. Activity
  publication-title: Ber. Bunsen Ges. Phys. Chem.
– volume: 1066
  start-page: 29
  year: 1991
  end-page: 36
  ident: bib60
  article-title: Liposomes containing synthetic lipid derivatives of poly (ethylene glycol) show prolonged circulation half-lives in vivo
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 65
  start-page: 21
  year: 2013
  end-page: 23
  ident: bib15
  article-title: Nanoparticles in drug delivery: past, present and future
  publication-title: Adv. Drug Deliv. Rev.
– volume: 117
  start-page: 13566
  year: 2017
  end-page: 13638
  ident: bib50
  article-title: Nanotechnology for multimodal synergistic cancer therapy
  publication-title: Chem. Rev.
– year: 2018
  ident: bib5
  article-title: Point-of-care Microfluidic Devices for Pathogen Detection
– volume: 96
  start-page: 93
  year: 1996
  end-page: 97
  ident: bib89
  article-title: Photophysical properties of metal complexes of meso-tetrakis (4-sulphonatophenyl) porphyrin
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 9
  start-page: 4484
  year: 2015
  end-page: 4495
  ident: bib92
  article-title: A PEGylation-free biomimetic porphyrin nanoplatform for personalized cancer theranostics
  publication-title: ACS Nano
– volume: 106
  start-page: 148
  year: 2016
  end-page: 156
  ident: bib137
  publication-title: Extracell. Vesicles Drug Deliv.
– volume: 24
  start-page: 620
  year: 2013
  end-page: 626
  ident: bib116
  article-title: Reengineering viruses and virus-like particles through chemical functionalization strategies
  publication-title: Curr. Opin. Biotechnol.
– volume: 24
  start-page: 19
  year: 1995
  end-page: 33
  ident: bib28
  article-title: Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 541
  year: 2014
  ident: bib115
  article-title: Non-viral vectors for gene-based therapy
  publication-title: Nat. Rev. Genet.
– volume: 13
  start-page: 2333
  year: 2012
  end-page: 2338
  ident: bib126
  article-title: Glycan-targeted virus-like nanoparticles for photodynamic therapy
  publication-title: Biomacromolecules
– volume: 1
  start-page: 123
  year: 1992
  end-page: 126
  ident: bib11
  article-title: Submicron-sized parenteral carrier systems based on solid lipids
  publication-title: Pharm. Pharmacol. Lett.
– volume: 17
  start-page: 2128
  year: 2016
  end-page: 2136
  ident: bib144
  article-title: Incorporation of porphyrin to π-conjugated backbone for polymer-dot-sensitized photodynamic therapy
  publication-title: Biomacromolecules
– volume: 43
  start-page: 221
  year: 2014
  end-page: 230
  ident: bib185
  article-title: Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG–PCL copolymer: preparation, characterization and fluorescence imaging in vivo
  publication-title: Mater. Sci. Eng. C
– volume: 22
  start-page: 74
  year: 1998
  end-page: 80
  ident: bib45
  article-title: Photodynamic therapy of U87 human glioma in nude rat using liposome‐delivered photofrin
  publication-title: Lasers Surg. Med.: Off. J. Am. Soc. Laser Med. Surg.
– volume: 52
  start-page: 11278
  year: 2013
  end-page: 11281
  ident: bib129
  article-title: Virus-mimetic cytoplasm-cleavable magnetic/silica nanoclusters for enhanced gene delivery to mesenchymal stem cells
  publication-title: Angew. Chem. Int. Ed.
– volume: 85
  start-page: 705
  year: 2009
  end-page: 713
  ident: bib53
  article-title: Photoinduced nitric oxide and singlet oxygen release from ZnPC liposome vehicle associated with the nitrosyl ruthenium complex: synergistic effects in photodynamic therapy application
  publication-title: Photochem. Photobiol.
– volume: 7
  start-page: 2575
  year: 2017
  ident: bib100
  article-title: Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy
  publication-title: Theranostics
– volume: 2
  start-page: 760
  year: 2017
  end-page: 790
  ident: bib141
  article-title: Conjugated-polymer-Amplified sensing, imaging, and therapy
  publication-title: Chem
– volume: 3
  start-page: 503
  year: 2009
  ident: bib76
  article-title: Multiscale photoacoustic microscopy and computed tomography
  publication-title: Nat. Photonics
– volume: 205
  start-page: 35
  year: 2015
  end-page: 44
  ident: bib138
  article-title: Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins
  publication-title: J. Control. Release
– volume: 15
  start-page: 309
  year: 2018
  end-page: 313
  ident: bib14
  article-title: Application of aptamer-based hybrid molecules in early diagnosis and treatment of diabetes mellitus: from the concepts toward the future
  publication-title: Curr. Diabetes Rev.
– volume: 1065
  start-page: 42
  year: 1991
  end-page: 48
  ident: bib51
  article-title: Liposomes as models to study the distribution of porphyrins in cell membranes
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 230
  start-page: 733
  year: 1984
  end-page: 736
  ident: bib13
  article-title: Tissue distribution of poly (hexyl 2-cyanoacrylate) nanoparticles coated with monoclonal antibodies in mice bearing human tumor xenografts
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 75
  start-page: 2169
  year: 1995
  end-page: 2173
  ident: bib62
  article-title: Hand‐foot syndrome associated with liposome‐encapsulated doxorubicin therapy
  publication-title: Cancer
– volume: 311
  start-page: 622
  year: 2006
  end-page: 627
  ident: bib83
  article-title: Toxic potential of materials at the nanolevel
  publication-title: Science
– volume: 353
  start-page: 445
  year: 2018
  end-page: 457
  ident: bib52
  article-title: Physicochemical properties of liposome-incorporated 2-(morpholin-4-yl) ethoxy phthalocyanines and their photodynamic activity against oral cancer cells
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 61
  start-page: 214
  year: 2016
  end-page: 219
  ident: bib187
  article-title: Fluorescent nanogel based on four-arm PEG–PCL copolymer with porphyrin core for bioimaging
  publication-title: Mater. Sci. Eng. C
– volume: 2
  start-page: 1128
  year: 2013
  end-page: 1136
  ident: bib159
  article-title: Effects of dislocation mechanics on diffusion-induced stresses within a spherical insertion particle electrode
  publication-title: J. Mater. Chem.
– volume: 28
  start-page: 1515
  year: 2011
  end-page: 1522
  ident: bib33
  article-title: Two-photon absorption enhancement of polymer-templated porphyrin-based J-aggregates
  publication-title: Langmuir
– volume: 10
  start-page: 324
  year: 2011
  ident: bib71
  article-title: Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents
  publication-title: Nat. Mater.
– volume: 43
  start-page: 5841
  year: 2014
  end-page: 5866
  ident: bib169
  article-title: Metal–metalloporphyrin frameworks: a resurging class of functional materials
  publication-title: Chem. Soc. Rev.
– volume: 209
  start-page: 171
  year: 2004
  end-page: 176
  ident: bib73
  article-title: Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles
  publication-title: Cancer Lett.
– volume: 18
  start-page: 4141
  year: 2017
  end-page: 4153
  ident: bib125
  article-title: Physalis mottle virus-like particles as nanocarriers for imaging reagents and drugs
  publication-title: Biomacromolecules
– volume: 53
  start-page: 17
  year: 1978
  end-page: 23
  ident: bib8
  article-title: Nanoparticles-a new colloidal drug delivery system
  publication-title: Pharm. Acta Helv.
– reference: V. Sansone, R. Frairia, M. Brañes, P. Romeo, M.G. Catalano, R.C. Applefield, Current Applications and Future Prospects of Extracorporeal Shockwave Therapy, Shockwave Medicine, Karger Publishers2018, pp. 140-157.
– volume: 11
  start-page: 7006
  year: 2017
  end-page: 7018
  ident: bib112
  article-title: Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy
  publication-title: ACS Nano
– volume: 2
  start-page: 751
  year: 2007
  ident: bib84
  article-title: Nanocarriers as an emerging platform for cancer therapy
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 4686
  year: 2015
  end-page: 4697
  ident: bib154
  article-title: Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery
  publication-title: ACS Nano
– volume: 36
  start-page: 968
  year: 2018
  end-page: 985
  ident: bib3
  article-title: Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work?
  publication-title: Biotechnol. Adv.
– volume: 14
  start-page: 790
  year: 2003
  end-page: 796
  ident: bib56
  article-title: Polycation liposome enhances the endocytic uptake of photosensitizer into cells in the presence of serum
  publication-title: Bioconjug. Chem.
– volume: 3
  start-page: 4602
  year: 2018
  end-page: 4619
  ident: bib192
  article-title: Porphyrin–gold nanomaterial for efficient drug delivery to cancerous cells
  publication-title: ACS Omega
– volume: 9
  start-page: 4335
  year: 2018
  ident: bib184
  article-title: A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy
  publication-title: Nat. Commun.
– volume: 29
  start-page: 2374
  year: 2017
  end-page: 2381
  ident: bib179
  article-title: Metal–organic framework@ porous organic polymer nanocomposite for photodynamic therapy
  publication-title: Chem. Mater.
– volume: 12
  start-page: 6145
  year: 2014
  end-page: 6150
  ident: bib19
  article-title: Deciphering aromaticity in porphyrinoids via adaptive natural density partitioning
  publication-title: Org. Biomol. Chem.
– volume: 7
  start-page: 1
  year: 1981
  end-page: 25
  ident: bib10
  article-title: Development of biodegradable and injectable latices for controlled release of potent drugs
  publication-title: Drug Dev. Ind. Pharm.
– volume: 63
  start-page: 125
  year: 1997
  end-page: 132
  ident: bib12
  article-title: Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers
  publication-title: J. Appl. Polym. Sci.
– volume: 28
  start-page: 23
  year: 2016
  end-page: 32
  ident: bib98
  article-title: Biointerfacing and applications of cell membrane-coated nanoparticles
  publication-title: Bioconjug. Chem.
– start-page: 25
  year: 2019
  end-page: 47
  ident: bib153
  article-title: 2 - microporous organic polymer nanocomposites for adsorption applications
  publication-title: Composite Nanoadsorbents
– volume: 58
  start-page: 8799
  year: 2019
  end-page: 8803
  ident: bib160
  article-title: Porphyrin nanocage-embedded single-molecular nanoparticles for cancer nanotheranostics
  publication-title: Angew. Chem. Int. Ed.
– volume: 33
  start-page: 417
  year: 1994
  end-page: 426
  ident: bib123
  article-title: Interaction of cationic porphyrins with DNA
  publication-title: Biochemistry
– volume: 12
  start-page: 6243
  year: 2016
  end-page: 6254
  ident: bib200
  article-title: A porphyrin‐based conjugated polymer for highly efficient in vitro and in vivo photothermal therapy
  publication-title: Small
– volume: 26
  start-page: 4627
  year: 2014
  end-page: 4631
  ident: bib133
  article-title: Stem cells loaded with nanoparticles as a drug carrier for in vivo breast cancer therapy
  publication-title: Adv. Mater.
– volume: 2
  start-page: 43
  year: 2017
  end-page: 57
  ident: bib16
  article-title: Virus‐like particles: next‐generation nanoparticles for targeted therapeutic delivery
  publication-title: Bioeng. Transl. med.
– volume: 94
  start-page: 575
  year: 2003
  end-page: 581
  ident: bib104
  article-title: Cell adhesion system and human cancer morphogenesis
  publication-title: Cancer Sci.
– volume: 4
  start-page: 1937
  year: 2018
  end-page: 1951
  ident: bib140
  article-title: Polymerization-enhanced photosensitization
  publication-title: Chem
– volume: 148
  start-page: 405
  year: 2018
  end-page: 416
  ident: bib55
  article-title: Photophysical studies of graphene quantum dots-Pyrene-derivatized porphyrins conjugates when encapsulated within Pluronic F127 micelles
  publication-title: Dyes Pigments
– volume: 26
  start-page: 831
  year: 2008
  end-page: 841
  ident: bib130
  article-title: Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma
  publication-title: Stem Cells
– volume: 35
  start-page: 2818
  year: 1996
  end-page: 2823
  ident: bib22
  article-title: Structure of a DNA− porphyrin complex
  publication-title: Biochemistry
– volume: 24
  start-page: 193
  year: 2017
  end-page: 214
  ident: bib178
  article-title: Anti-cancer drug delivery using metal organic frameworks (MOFs)
  publication-title: Curr. Med. Chem.
– volume: 26
  year: 2009
  ident: bib59
  article-title: Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic
  publication-title: Crit. Rev. Ther. Drug Carrier Syst.
– volume: 32
  start-page: 276
  year: 2003
  end-page: 288
  ident: bib150
  article-title: Metal-organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 12321
  year: 2019
  end-page: 12326
  ident: bib156
  article-title: Facile fabrication of nanoscale porphyrinic covalent organic polymers for combined photodynamic and photothermal cancer therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 452
  start-page: 580
  year: 2008
  ident: bib78
  article-title: Imaging in the era of molecular oncology
  publication-title: Nature
– volume: 23
  year: 2011
  ident: bib108
  article-title: Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3141
  year: 2009
  end-page: 3147
  ident: bib120
  article-title: Controlled integration of polymers into viral capsids
  publication-title: Biomacromolecules
– volume: 23
  start-page: 891
  year: 2018
  end-page: 899
  ident: bib97
  article-title: Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics
  publication-title: Drug Discov. Today
– volume: 112
  start-page: 1232
  year: 2012
  end-page: 1268
  ident: bib177
  article-title: Metal–organic frameworks in biomedicine
  publication-title: Chem. Rev.
– volume: 15
  start-page: 1219
  year: 2009
  ident: bib77
  article-title: Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging
  publication-title: Nat. Med.
– volume: 9
  year: 2014
  ident: bib105
  article-title: Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment
  publication-title: PLoS One
– volume: 4
  start-page: 46
  year: 2018
  end-page: 51
  ident: bib35
  article-title: Gemcitabine delivery and photodynamic therapy in cancer cells via porphyrin‐ethylene‐based periodic mesoporous organosilica nanoparticles
  publication-title: ChemNanoMat
– volume: 40
  start-page: 340
  year: 2011
  end-page: 362
  ident: bib26
  article-title: The role of porphyrin chemistry in tumor imaging and photodynamic therapy
  publication-title: Chem. Soc. Rev.
– volume: 42
  start-page: 9690
  year: 2018
  end-page: 9701
  ident: bib147
  article-title: A pH-responsive and magnetic Fe3O4@silica@MIL-100(Fe)/β-CD nanocomposite as a drug nanocarrier: loading and release study of cephalexin
  publication-title: New J. Chem.
– volume: 7
  start-page: 2541
  year: 2013
  end-page: 2550
  ident: bib70
  article-title: Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly
  publication-title: ACS Nano
– volume: 160
  start-page: 117
  year: 2012
  end-page: 134
  ident: bib48
  article-title: Doxil®—the first FDA-approved nano-drug: lessons learned
  publication-title: J. Control. Release
– volume: 3
  start-page: 380
  year: 2003
  ident: bib72
  article-title: Photodynamic therapy for cancer
  publication-title: Nat. Rev. Cancer
– volume: 28
  start-page: 9320
  year: 2016
  end-page: 9325
  ident: bib182
  article-title: Nanoscale polymer metal–organic framework hybrids for effective photothermal therapy of colon cancers
  publication-title: Adv. Mater.
– volume: 11
  start-page: 40
  year: 2015
  end-page: 52
  ident: bib190
  article-title: Nanocomposite hydrogels and their applications in drug delivery and tissue engineering
  publication-title: J. Biomed. Nanotechnol.
– volume: 115
  start-page: 10938
  year: 2015
  end-page: 10966
  ident: bib47
  article-title: New developments in liposomal drug delivery
  publication-title: Chem. Rev.
– volume: 109
  start-page: 1659
  year: 2009
  end-page: 1713
  ident: bib166
  article-title: Supramolecular chemistry of metalloporphyrins
  publication-title: Chem. Rev.
– volume: 44
  start-page: 957
  year: 2011
  end-page: 968
  ident: bib174
  article-title: Nanoscale metal–organic frameworks for biomedical imaging and drug delivery
  publication-title: Acc. Chem. Res.
– year: 2018
  ident: bib106
  article-title: Recent Advancements in Biocompatible Inorganic Nanoparticles towards Biomedical Applications
– volume: 235
  start-page: 40
  year: 2006
  end-page: 47
  ident: bib196
  article-title: Radiosensitization of tumours by porphyrins
  publication-title: Cancer Lett.
– volume: 73
  start-page: 3
  year: 2004
  end-page: 14
  ident: bib151
  article-title: Metal–organic frameworks: a new class of porous materials
  publication-title: Microporous Mesoporous Mater.
– volume: 26
  start-page: 345
  year: 2015
  end-page: 351
  ident: bib69
  article-title: Self-sensing porphysomes for fluorescence-guided photothermal therapy
  publication-title: Bioconjug. Chem.
– volume: 262
  start-page: 137
  year: 1998
  end-page: 156
  ident: bib80
  article-title: Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory
  publication-title: Anal. Biochem.
– volume: 10
  start-page: 52
  year: 2013
  end-page: 60
  ident: bib193
  article-title: Past, present, and future of radiotherapy for the benefit of patients
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 67
  start-page: 54
  year: 2008
  end-page: 58
  ident: bib54
  article-title: Preparation of pH-sensitive liposomes retaining SOD mimic and their anticancer effect
  publication-title: Colloids Surfaces B Biointerfaces
– volume: 46
  start-page: 5265
  year: 2010
  end-page: 5267
  ident: bib61
  article-title: Stabilized liposomal nanohybrid cerasomes for drug delivery applications
  publication-title: Chem. Commun.
– volume: 126
  start-page: 734
  year: 2019
  end-page: 742
  ident: bib149
  article-title: Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell detection
  publication-title: Biosens. Bioelectron.
– volume: 3
  start-page: 1240
  year: 2014
  end-page: 1249
  ident: bib91
  article-title: Targeting‐triggered porphysome nanostructure disruption for activatable photodynamic therapy
  publication-title: Adv. Healthc. Mater.
– volume: 200
  start-page: 373
  year: 2013
  end-page: 383
  ident: bib136
  article-title: Extracellular vesicles: exosomes, microvesicles, and friends
  publication-title: J. Cell Biol.
– volume: 2
  start-page: 277
  year: 2007
  ident: bib49
  article-title: Liposomal daunorubicin as treatment for Kaposi's sarcoma
  publication-title: Int. J. Nanomed.
– volume: 138
  start-page: 3518
  year: 2016
  end-page: 3525
  ident: bib36
  article-title: Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 12502
  year: 2016
  end-page: 12510
  ident: bib172
  article-title: Chlorin-based nanoscale metal–organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 3249
  year: 2018
  end-page: 3283
  ident: bib6
  article-title: Optical assays based on colloidal inorganic nanoparticles
  publication-title: Analyst
– start-page: 22
  year: 1996
  end-page: 32
  ident: bib75
  article-title: Laser Optoacoustic Tomography for Medical Diagnostics: Principles, Biomedical Sensing, Imaging, and Tracking Technologies I
– volume: 1
  start-page: 401
  year: 1972
  end-page: 408
  ident: bib103
  article-title: Evidence for a receptor recognizing antigen complexed immunoglobulin on the surface of activated mouse thymus lymphocytes
  publication-title: Scand. J. Immunol.
– volume: 140
  start-page: 16971
  year: 2018
  end-page: 16975
  ident: bib197
  article-title: Nanoscale metal–organic layers for radiotherapy–radiodynamic therapy
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1159
  year: 2006
  end-page: 1166
  ident: bib194
  article-title: Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment
  publication-title: J. Nanosci. Nanotechnol.
– volume: 115
  start-page: 11079
  year: 2015
  end-page: 11108
  ident: bib175
  article-title: Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers
  publication-title: Chem. Rev.
– volume: 23
  start-page: 2820
  year: 2016
  end-page: 2826
  ident: bib191
  article-title: Visualized intravesical floating hydrogel encapsulating vaporized perfluoropentane for controlled drug release
  publication-title: Drug Deliv.
– volume: 133
  start-page: 16322
  year: 2011
  end-page: 16325
  ident: bib165
  article-title: Three-dimensional porous metal–metalloporphyrin framework consisting of nanoscopic polyhedral cages
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 10307
  year: 2012
  end-page: 10310
  ident: bib38
  article-title: Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 21
  start-page: 1303
  year: 2016
  end-page: 1312
  ident: bib99
  article-title: Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments
  publication-title: Drug Discov. Today
– year: 2016
  ident: bib64
  article-title: Advances in Nanotheranostics
– volume: 10
  start-page: 1528
  year: 2018
  end-page: 1533
  ident: bib180
  article-title: High antimicrobial activity of metal–organic framework-templated porphyrin polymer thin films
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2016
  ident: bib68
  article-title: Biodegradable and renal clearable inorganic nanoparticles
  publication-title: Adv. Sci.
– volume: 55
  start-page: 2594
  year: 2017
  end-page: 2600
  ident: bib146
  article-title: Porphyrin‐based covalent triazine frameworks: porosity, adsorption performance, and drug delivery
  publication-title: J. Polym. Sci. A Polym. Chem.
– volume: 10
  start-page: 325
  year: 2015
  ident: bib93
  article-title: In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging
  publication-title: Nat. Nanotechnol.
– volume: 35
  start-page: 6379
  year: 2014
  end-page: 6388
  ident: bib58
  article-title: Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy
  publication-title: Biomaterials
– volume: 128
  start-page: 3114
  year: 2006
  end-page: 3115
  ident: bib65
  article-title: Cerasome as an infusible, cell-friendly, and serum-compatible transfection agent in a viral size
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 347
  year: 2013
  ident: bib135
  article-title: Extracellular vesicles: biology and emerging therapeutic opportunities
  publication-title: Nat. Rev. Drug Discov.
– volume: 46
  start-page: 8342
  year: 2007
  end-page: 8356
  ident: bib162
  article-title: Crystal engineering: a holistic view
  publication-title: Angew. Chem. Int. Ed.
– volume: 139
  start-page: 8705
  year: 2017
  end-page: 8709
  ident: bib157
  article-title: 3D porphyrin-based covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 527
  year: 2015
  end-page: 540
  ident: bib195
  article-title: Opportunities and challenges of radiotherapy for treating cancer
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 218
  start-page: 119341
  year: 2019
  ident: bib44
  article-title: Liposomal formulations of photosensitizers
  publication-title: Biomaterials
– volume: 4
  start-page: 26
  year: 2008
  end-page: 49
  ident: bib82
  article-title: Cytotoxicity of nanoparticles
  publication-title: Small
– volume: 60
  start-page: 1307
  year: 2008
  end-page: 1315
  ident: bib81
  article-title: Gold nanoparticles in delivery applications
  publication-title: Adv. Drug Deliv. Rev.
– volume: 134
  start-page: 16464
  year: 2012
  end-page: 16467
  ident: bib88
  article-title: Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 561
  year: 2017
  end-page: 578
  ident: bib181
  article-title: Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery
  publication-title: Chem
– volume: 1
  start-page: 61
  year: 2018
  end-page: 70
  ident: bib2
  article-title: Ultra-sensitive electrochemical on-line determination of clarithromycin based on poly (L-Aspartic acid)/graphite oxide/pristine graphene/glassy carbon electrode
  publication-title: Asian J. Nanosci. Mater.
– volume: 58
  start-page: 8751
  year: 2015
  end-page: 8761
  ident: bib17
  article-title: Antibody–drug conjugates and small molecule–drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents
  publication-title: J. Med. Chem.
– volume: 18
  start-page: 1953
  year: 2006
  end-page: 1964
  ident: bib79
  article-title: Quantum dots in biological and biomedical research: recent progress and present challenges
  publication-title: Adv. Mater.
– volume: 9
  start-page: 4321
  year: 2018
  ident: bib198
  article-title: Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy
  publication-title: Nat. Commun.
– year: 2000
  ident: bib101
  article-title: The Cytoskeleton and Cell Movement, the Cell: a Molecular Approach
– volume: 10
  year: 2015
  ident: bib117
  article-title: Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins
  publication-title: PLoS One
– volume: 115
  start-page: 243
  year: 2006
  end-page: 250
  ident: bib63
  article-title: Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes
  publication-title: J. Control. Release
– year: 2012
  ident: 10.1016/j.biomaterials.2019.119707_bib21
– volume: 276
  start-page: 371
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119707_bib152
  article-title: Green synthesis of MOF@Ag nanocomposites for catalytic reduction of methylene blue
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.12.002
– volume: 67
  start-page: 54
  issue: 1
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119707_bib54
  article-title: Preparation of pH-sensitive liposomes retaining SOD mimic and their anticancer effect
  publication-title: Colloids Surfaces B Biointerfaces
  doi: 10.1016/j.colsurfb.2008.07.014
– volume: 43
  start-page: 221
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib185
  article-title: Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG–PCL copolymer: preparation, characterization and fluorescence imaging in vivo
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.07.019
– volume: 8
  start-page: 5104
  issue: 8
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib188
  article-title: Real-time fluorescence tracking of protoporphyrin incorporated thermosensitive hydrogel and its drug release in vivo
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11493
– volume: 179
  start-page: 149
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib41
  article-title: LuAG: Pr3+-porphyrin based nanohybrid system for singlet oxygen production: toward the next generation of PDTX drugs
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2018.01.015
– volume: 16
  start-page: 1055
  issue: 09
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119707_bib201
  article-title: Porphyrin aggregates in the form of nanofibers and their unusual aggregation induced emission
  publication-title: J. Porphyr. Phthalocyanines
  doi: 10.1142/S1088424612500770
– volume: 29
  start-page: 1606134
  issue: 23
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib176
  article-title: Metal–organic framework (MOF)-Based drug/cargo delivery and cancer therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606134
– volume: 58
  start-page: 8751
  issue: 22
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib17
  article-title: Antibody–drug conjugates and small molecule–drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b00457
– volume: 10
  start-page: 3141
  issue: 11
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119707_bib120
  article-title: Controlled integration of polymers into viral capsids
  publication-title: Biomacromolecules
  doi: 10.1021/bm9007953
– volume: 36
  start-page: 831
  issue: 6
  year: 2007
  ident: 10.1016/j.biomaterials.2019.119707_bib167
  article-title: Cyclic porphyrin arrays as artificial photosynthetic antenna: synthesis and excitation energy transfer
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b618854k
– volume: 136
  start-page: 16712
  issue: 48
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib170
  article-title: Nanoscale metal–organic framework for highly effective photodynamic therapy of resistant head and neck cancer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508679h
– volume: 10
  start-page: 325
  issue: 4
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib93
  article-title: In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.25
– volume: 51
  start-page: 10307
  issue: 41
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119707_bib38
  article-title: Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204475
– volume: 65
  start-page: 1763
  issue: 12
  year: 1976
  ident: 10.1016/j.biomaterials.2019.119707_bib1
  article-title: Polymerized micelles and their use as adjuvants in immunology
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600651217
– volume: 138
  start-page: 3518
  issue: 10
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib36
  article-title: Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00007
– volume: 12
  start-page: 6243
  issue: 45
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib145
  article-title: A porphyrin-based conjugated polymer for highly efficient in vitro and in vivo photothermal therapy
  publication-title: Small
  doi: 10.1002/smll.201602293
– volume: 32
  start-page: 4744
  issue: 21
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119707_bib128
  article-title: Controlled growth and differentiation of MSCs on grooved films assembled from monodisperse biological nanofibers with genetically tunable surface chemistries
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.03.030
– volume: 15
  start-page: 309
  issue: 4
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib14
  article-title: Application of aptamer-based hybrid molecules in early diagnosis and treatment of diabetes mellitus: from the concepts toward the future
  publication-title: Curr. Diabetes Rev.
  doi: 10.2174/1573399814666180607075550
– volume: 1032
  start-page: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib4
  article-title: Early diagnosis of disease using microbead array technology: a review
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.05.011
– volume: 51
  start-page: 209
  issue: 2
  year: 2000
  ident: 10.1016/j.biomaterials.2019.119707_bib25
  article-title: Porphyrins in analytical chemistry
  publication-title: A Rev. Talanta
  doi: 10.1016/S0039-9140(99)00291-X
– volume: 24
  start-page: 19
  issue: 1
  year: 1995
  ident: 10.1016/j.biomaterials.2019.119707_bib28
  article-title: Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9952400019
– volume: 96
  start-page: 93
  issue: 1–3
  year: 1996
  ident: 10.1016/j.biomaterials.2019.119707_bib89
  article-title: Photophysical properties of metal complexes of meso-tetrakis (4-sulphonatophenyl) porphyrin
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/1010-6030(95)04279-2
– volume: 9
  start-page: 4321
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib198
  article-title: Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06655-7
– volume: 22
  start-page: 74
  issue: 2
  year: 1998
  ident: 10.1016/j.biomaterials.2019.119707_bib45
  article-title: Photodynamic therapy of U87 human glioma in nude rat using liposome‐delivered photofrin
  publication-title: Lasers Surg. Med.: Off. J. Am. Soc. Laser Med. Surg.
  doi: 10.1002/(SICI)1096-9101(1998)22:2<74::AID-LSM2>3.0.CO;2-T
– volume: 29
  start-page: 2374
  issue: 5
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib179
  article-title: Metal–organic framework@ porous organic polymer nanocomposite for photodynamic therapy
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00228
– volume: 3
  start-page: 4602
  issue: 4
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib192
  article-title: Porphyrin–gold nanomaterial for efficient drug delivery to cancerous cells
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00419
– volume: 16
  start-page: 177
  issue: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib46
  article-title: Phototriggered local anesthesia
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03440
– volume: 207
  start-page: 32
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib66
  article-title: Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2013.11.014
– volume: 24
  start-page: 620
  issue: 4
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib116
  article-title: Reengineering viruses and virus-like particles through chemical functionalization strategies
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2013.01.011
– volume: 35
  start-page: 6379
  issue: 24
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib58
  article-title: Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.04.094
– volume: 3
  start-page: 503
  issue: 9
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119707_bib76
  article-title: Multiscale photoacoustic microscopy and computed tomography
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.157
– volume: 125
  start-page: 4882
  issue: 16
  year: 2003
  ident: 10.1016/j.biomaterials.2019.119707_bib57
  article-title: Porphyrin and tetrabenzoporphyrin dendrimers: tunable membrane-impermeable fluorescent pH nanosensors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0341687
– volume: 9
  start-page: 4686
  issue: 5
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib154
  article-title: Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01433
– volume: 73
  start-page: 3
  issue: 1
  year: 2004
  ident: 10.1016/j.biomaterials.2019.119707_bib151
  article-title: Metal–organic frameworks: a new class of porous materials
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2004.03.034
– volume: 21
  start-page: 1303
  issue: 8
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib99
  article-title: Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2016.06.005
– volume: 142
  start-page: 149
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib109
  article-title: Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.07.026
– volume: 7
  start-page: 2575
  issue: 10
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib100
  article-title: Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy
  publication-title: Theranostics
  doi: 10.7150/thno.20118
– year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib5
– volume: 7
  start-page: 1
  issue: 1
  year: 1981
  ident: 10.1016/j.biomaterials.2019.119707_bib10
  article-title: Development of biodegradable and injectable latices for controlled release of potent drugs
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.3109/03639048109055684
– volume: 235
  start-page: 40
  issue: 1
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119707_bib196
  article-title: Radiosensitization of tumours by porphyrins
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2005.03.041
– volume: 133
  start-page: 16322
  issue: 41
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119707_bib165
  article-title: Three-dimensional porous metal–metalloporphyrin framework consisting of nanoscopic polyhedral cages
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204339e
– volume: 126
  start-page: 734
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119707_bib149
  article-title: Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell detection
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.11.047
– volume: 50
  start-page: 11622
  issue: 49
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119707_bib67
  article-title: Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201103557
– volume: 60
  start-page: 1307
  issue: 11
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119707_bib81
  article-title: Gold nanoparticles in delivery applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2008.03.016
– volume: 4
  start-page: 1937
  issue: 8
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib140
  article-title: Polymerization-enhanced photosensitization
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.06.003
– volume: 2
  start-page: 1128
  issue: 4
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib159
  article-title: Effects of dislocation mechanics on diffusion-induced stresses within a spherical insertion particle electrode
  publication-title: J. Mater. Chem.
  doi: 10.1039/C3TA13925E
– volume: 128
  start-page: 2115
  issue: 6
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119707_bib74
  article-title: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057254a
– volume: 310
  start-page: 1166
  issue: 5751
  year: 2005
  ident: 10.1016/j.biomaterials.2019.119707_bib148
  article-title: Porous, crystalline, covalent organic frameworks
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 26
  start-page: 4627
  issue: 27
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib133
  article-title: Stem cells loaded with nanoparticles as a drug carrier for in vivo breast cancer therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401550
– volume: 84
  start-page: 291
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib107
  article-title: Cancer nanotheranostics: strategies, promises and impediments
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2016.09.035
– volume: 140
  start-page: 16971
  issue: 49
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib197
  article-title: Nanoscale metal–organic layers for radiotherapy–radiodynamic therapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11593
– start-page: 22
  year: 1996
  ident: 10.1016/j.biomaterials.2019.119707_bib75
– volume: 23
  start-page: 2820
  issue: 8
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib191
  article-title: Visualized intravesical floating hydrogel encapsulating vaporized perfluoropentane for controlled drug release
  publication-title: Drug Deliv.
  doi: 10.3109/10717544.2015.1101791
– volume: 2
  start-page: 43
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib16
  article-title: Virus‐like particles: next‐generation nanoparticles for targeted therapeutic delivery
  publication-title: Bioeng. Transl. med.
  doi: 10.1002/btm2.10049
– volume: 8
  start-page: 12394
  issue: 25
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib30
  article-title: Porphyrin-loaded nanoparticles for cancer theranostics
  publication-title: Nanoscale
  doi: 10.1039/C5NR07849K
– volume: 135
  start-page: 13222
  issue: 36
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib173
  article-title: Metal–organic frameworks as A tunable platform for designing functional molecular materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308229p
– volume: 230
  start-page: 733
  issue: 3
  year: 1984
  ident: 10.1016/j.biomaterials.2019.119707_bib13
  article-title: Tissue distribution of poly (hexyl 2-cyanoacrylate) nanoparticles coated with monoclonal antibodies in mice bearing human tumor xenografts
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 9
  issue: 7
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib105
  article-title: Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0102341
– volume: 106
  start-page: 148
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib122
  article-title: Extracellular vesicles for drug delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2016.02.006
– volume: 117
  start-page: 13566
  issue: 22
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib50
  article-title: Nanotechnology for multimodal synergistic cancer therapy
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00258
– volume: 452
  start-page: 580
  issue: 7187
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119707_bib78
  article-title: Imaging in the era of molecular oncology
  publication-title: Nature
  doi: 10.1038/nature06917
– volume: 218
  start-page: 119341
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119707_bib44
  article-title: Liposomal formulations of photosensitizers
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119341
– volume: 11
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib110
  article-title: Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies
  publication-title: Cancer Biol. Med.
– volume: 7
  start-page: 5153
  issue: 10
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119707_bib158
  article-title: Covalent triazine frameworks: synthesis and applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12442F
– volume: 9
  start-page: 4335
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib184
  article-title: A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06574-7
– volume: 569
  start-page: 118580
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119707_bib85
  article-title: Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.118580
– volume: 13
  start-page: 2333
  issue: 8
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119707_bib126
  article-title: Glycan-targeted virus-like nanoparticles for photodynamic therapy
  publication-title: Biomacromolecules
  doi: 10.1021/bm300578p
– volume: 28
  start-page: 1515
  issue: 2
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119707_bib33
  article-title: Two-photon absorption enhancement of polymer-templated porphyrin-based J-aggregates
  publication-title: Langmuir
  doi: 10.1021/la203883k
– volume: 51
  start-page: 6443
  issue: 12
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119707_bib39
  article-title: Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks
  publication-title: Inorg. Chem.
  doi: 10.1021/ic300825s
– volume: 4
  start-page: 4690
  issue: 27
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib189
  article-title: Decoration of porphyrin with tetraphenylethene: converting a fluorophore with aggregation-caused quenching to aggregation-induced emission enhancement
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB01159D
– volume: 109
  start-page: 1630
  issue: 5
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119707_bib86
  article-title: Self-organized porphyrinic materials
  publication-title: Chem. Rev.
  doi: 10.1021/cr8002483
– volume: 46
  start-page: 8342
  issue: 44
  year: 2007
  ident: 10.1016/j.biomaterials.2019.119707_bib162
  article-title: Crystal engineering: a holistic view
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200700534
– volume: 110
  start-page: 2795
  issue: 5
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119707_bib29
  article-title: Imaging and photodynamic therapy: mechanisms, monitoring, and optimization
  publication-title: Chem. Rev.
  doi: 10.1021/cr900300p
– volume: 23
  start-page: 891
  issue: 4
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib97
  article-title: Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2018.02.001
– volume: 48
  start-page: 426
  issue: 2
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119707_bib163
  article-title: Pillared porphyrin homologous series: intergrowth in Metal− organic frameworks
  publication-title: Inorg. Chem.
  doi: 10.1021/ic801677y
– volume: 44
  start-page: 1554
  issue: 4
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119707_bib102
  article-title: The porphyrin–fullerene nanoparticles to promote the ATP overproduction in myocardium: 25Mg2+-magnetic isotope effect
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2008.07.030
– volume: 12
  start-page: 347
  issue: 5
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib135
  article-title: Extracellular vesicles: biology and emerging therapeutic opportunities
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3978
– volume: 32
  start-page: 276
  issue: 5
  year: 2003
  ident: 10.1016/j.biomaterials.2019.119707_bib150
  article-title: Metal-organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b200393g
– volume: 10
  issue: 4
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib117
  article-title: Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0120751
– volume: 33
  start-page: 171
  issue: 2
  year: 1996
  ident: 10.1016/j.biomaterials.2019.119707_bib90
  article-title: Photophysical and photochemical properties of potential porphyrin and chlorin photosensitizers for PDT
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/1011-1344(95)07241-1
– year: 2000
  ident: 10.1016/j.biomaterials.2019.119707_bib101
– volume: 24
  start-page: 193
  issue: 2
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib178
  article-title: Anti-cancer drug delivery using metal organic frameworks (MOFs)
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867323666160926151216
– volume: 12
  start-page: 6243
  issue: 45
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib200
  article-title: A porphyrin‐based conjugated polymer for highly efficient in vitro and in vivo photothermal therapy
  publication-title: Small
  doi: 10.1002/smll.201602293
– volume: 353
  start-page: 445
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib52
  article-title: Physicochemical properties of liposome-incorporated 2-(morpholin-4-yl) ethoxy phthalocyanines and their photodynamic activity against oral cancer cells
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2017.12.005
– volume: 115
  start-page: 10938
  issue: 19
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib47
  article-title: New developments in liposomal drug delivery
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00046
– volume: 53
  start-page: 17
  year: 1978
  ident: 10.1016/j.biomaterials.2019.119707_bib8
  article-title: Nanoparticles-a new colloidal drug delivery system
  publication-title: Pharm. Acta Helv.
– volume: 94
  start-page: 575
  issue: 7
  year: 2003
  ident: 10.1016/j.biomaterials.2019.119707_bib104
  article-title: Cell adhesion system and human cancer morphogenesis
  publication-title: Cancer Sci.
  doi: 10.1111/j.1349-7006.2003.tb01485.x
– volume: 15
  start-page: 541
  issue: 8
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib115
  article-title: Non-viral vectors for gene-based therapy
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3763
– volume: 27
  start-page: 2614
  issue: 10
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119707_bib132
  article-title: Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging
  publication-title: Stem Cells
  doi: 10.1002/stem.187
– volume: 65
  start-page: 21
  issue: 1
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib15
  article-title: Nanoparticles in drug delivery: past, present and future
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.04.010
– volume: 3
  start-page: 3681
  issue: 18
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib43
  article-title: Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00315F
– volume: 160
  start-page: 117
  issue: 2
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119707_bib48
  article-title: Doxil®—the first FDA-approved nano-drug: lessons learned
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2012.03.020
– volume: 26
  issue: 6
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119707_bib59
  article-title: Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic
  publication-title: Crit. Rev. Ther. Drug Carrier Syst.
  doi: 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
– volume: 11
  start-page: 12321
  issue: 13
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119707_bib156
  article-title: Facile fabrication of nanoscale porphyrinic covalent organic polymers for combined photodynamic and photothermal cancer therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00361
– volume: 168
  start-page: 225
  issue: 2
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib134
  article-title: Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: effective photoinduced in vitro killing of osteosarcoma
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.03.012
– volume: 115
  start-page: 11079
  issue: 19
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib175
  article-title: Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00125
– volume: 24
  start-page: 641
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib186
  article-title: Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer (II): doxorubicin loaded hydrogel as a dual fluorescent drug delivery system for simultaneous imaging tracking in vivo
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2017.1289570
– volume: 18
  start-page: 1953
  issue: 15
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119707_bib79
  article-title: Quantum dots in biological and biomedical research: recent progress and present challenges
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200500786
– volume: 3
  issue: 2
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib68
  article-title: Biodegradable and renal clearable inorganic nanoparticles
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500223
– volume: 94
  start-page: 1428
  issue: 4
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119707_bib121
  article-title: Packaging of a polymer by a viral capsid: the interplay between polymer length and capsid size
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.117473
– volume: 42
  start-page: 9690
  issue: 12
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib147
  article-title: A pH-responsive and magnetic Fe3O4@silica@MIL-100(Fe)/β-CD nanocomposite as a drug nanocarrier: loading and release study of cephalexin
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ01375F
– volume: 26
  start-page: 831
  issue: 3
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119707_bib130
  article-title: Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0758
– volume: 209
  start-page: 171
  issue: 2
  year: 2004
  ident: 10.1016/j.biomaterials.2019.119707_bib73
  article-title: Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2004.02.004
– volume: 15
  start-page: 1093
  issue: 11n12
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119707_bib20
  article-title: Origin of aromatic character in porphyrinoid systems
  publication-title: J. Porphyr. Phthalocyanines
  doi: 10.1142/S1088424611004063
– volume: 1
  start-page: 123
  issue: 3
  year: 1992
  ident: 10.1016/j.biomaterials.2019.119707_bib11
  article-title: Submicron-sized parenteral carrier systems based on solid lipids
  publication-title: Pharm. Pharmacol. Lett.
– volume: 12
  start-page: 527
  issue: 9
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib195
  article-title: Opportunities and challenges of radiotherapy for treating cancer
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2015.120
– volume: 17
  start-page: 2128
  issue: 6
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib144
  article-title: Incorporation of porphyrin to π-conjugated backbone for polymer-dot-sensitized photodynamic therapy
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.6b00356
– volume: 139
  start-page: 8705
  issue: 25
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib157
  article-title: 3D porphyrin-based covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04141
– volume: 7
  start-page: 2541
  issue: 3
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib70
  article-title: Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly
  publication-title: ACS Nano
  doi: 10.1021/nn3058642
– ident: 10.1016/j.biomaterials.2019.119707_bib114
  doi: 10.1159/000485072
– volume: 5
  start-page: 3546
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib94
  article-title: Porphyrin–phospholipid liposomes permeabilized by near-infrared light
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4546
– volume: 28
  start-page: 23
  issue: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib98
  article-title: Biointerfacing and applications of cell membrane-coated nanoparticles
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.6b00569
– volume: 46
  start-page: 5265
  issue: 29
  year: 2010
  ident: 10.1016/j.biomaterials.2019.119707_bib61
  article-title: Stabilized liposomal nanohybrid cerasomes for drug delivery applications
  publication-title: Chem. Commun.
  doi: 10.1039/b926367e
– volume: 6
  start-page: 707
  issue: 5
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib171
  article-title: Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB02970E
– volume: 102
  start-page: 5590
  issue: 17
  year: 1980
  ident: 10.1016/j.biomaterials.2019.119707_bib31
  article-title: Determination of the lifetime of singlet oxygen in water-d2 using 9, 10-anthracenedipropionic acid, a water-soluble probe
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00537a030
– volume: 138
  start-page: 12502
  issue: 38
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib172
  article-title: Chlorin-based nanoscale metal–organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06663
– volume: 10
  start-page: 3483
  issue: 23
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib199
  article-title: Engineered porphyrin loaded core-shell nanoparticles for selective sonodynamic anticancer treatment
  publication-title: Nanomedicine
  doi: 10.2217/nnm.15.150
– volume: 19
  start-page: 3297
  issue: 10
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib168
  article-title: formation of a metalloporphyrin‐based nanoreactor by postsynthetic metal–ion exchange of a polyhedral‐cage containing a metal–metalloporphyrin framework
  publication-title: Chem.–A Eur. J.
  doi: 10.1002/chem.201204358
– volume: 33
  start-page: 417
  issue: 2
  year: 1994
  ident: 10.1016/j.biomaterials.2019.119707_bib123
  article-title: Interaction of cationic porphyrins with DNA
  publication-title: Biochemistry
  doi: 10.1021/bi00168a005
– volume: 23
  issue: 36
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119707_bib108
  article-title: Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers
  publication-title: Adv. Mater.
– volume: 200
  start-page: 373
  issue: 4
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib136
  article-title: Extracellular vesicles: exosomes, microvesicles, and friends
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201211138
– volume: 52
  start-page: 11278
  issue: 43
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib129
  article-title: Virus-mimetic cytoplasm-cleavable magnetic/silica nanoclusters for enhanced gene delivery to mesenchymal stem cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201301113
– volume: 58
  start-page: 8799
  issue: 26
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119707_bib160
  article-title: Porphyrin nanocage-embedded single-molecular nanoparticles for cancer nanotheranostics
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903277
– volume: 1
  start-page: 61
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib2
  article-title: Ultra-sensitive electrochemical on-line determination of clarithromycin based on poly (L-Aspartic acid)/graphite oxide/pristine graphene/glassy carbon electrode
  publication-title: Asian J. Nanosci. Mater.
– volume: 112
  start-page: 1232
  issue: 2
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119707_bib177
  article-title: Metal–organic frameworks in biomedicine
  publication-title: Chem. Rev.
  doi: 10.1021/cr200256v
– volume: 311
  start-page: 622
  issue: 5761
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119707_bib83
  article-title: Toxic potential of materials at the nanolevel
  publication-title: Science
  doi: 10.1126/science.1114397
– start-page: 1706759
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib111
  article-title: Cell membrane coating nanotechnology
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706759
– volume: 135
  start-page: 17105
  issue: 45
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib37
  article-title: Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408084j
– start-page: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib113
  article-title: Biomedical and catalytic opportunities of virus-like particles in nanotechnology
  publication-title: Adv. Virus Res.
– volume: 1066
  start-page: 29
  issue: 1
  year: 1991
  ident: 10.1016/j.biomaterials.2019.119707_bib60
  article-title: Liposomes containing synthetic lipid derivatives of poly (ethylene glycol) show prolonged circulation half-lives in vivo
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/0005-2736(91)90246-5
– volume: 32
  start-page: 7127
  issue: 29
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119707_bib27
  article-title: A review of NIR dyes in cancer targeting and imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.06.024
– start-page: 25
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119707_bib153
  article-title: 2 - microporous organic polymer nanocomposites for adsorption applications
– volume: 187
  start-page: 133
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib18
  article-title: State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.05.036
– volume: 37
  start-page: 735
  issue: 10
  year: 2004
  ident: 10.1016/j.biomaterials.2019.119707_bib87
  article-title: Directly linked porphyrin arrays with tunable excitonic interactions
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar030242e
– volume: 6
  start-page: 1159
  issue: 4
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119707_bib194
  article-title: Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2006.327
– volume: 75
  start-page: 2169
  issue: 8
  year: 1995
  ident: 10.1016/j.biomaterials.2019.119707_bib62
  article-title: Hand‐foot syndrome associated with liposome‐encapsulated doxorubicin therapy
  publication-title: Cancer
  doi: 10.1002/1097-0142(19950415)75:8<2169::AID-CNCR2820750822>3.0.CO;2-H
– volume: 128
  start-page: 3114
  issue: 10
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119707_bib65
  article-title: Cerasome as an infusible, cell-friendly, and serum-compatible transfection agent in a viral size
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja058016i
– volume: 21
  start-page: 4058
  issue: 21
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119707_bib143
  article-title: Design guidelines for conjugated polymers with light-activated anticancer activity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100840
– volume: 134
  start-page: 16464
  issue: 40
  year: 2012
  ident: 10.1016/j.biomaterials.2019.119707_bib88
  article-title: Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305988f
– volume: 15
  start-page: 1219
  issue: 10
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119707_bib77
  article-title: Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging
  publication-title: Nat. Med.
  doi: 10.1038/nm.1971
– volume: 31
  start-page: 331
  issue: 1
  year: 1979
  ident: 10.1016/j.biomaterials.2019.119707_bib9
  article-title: Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.1979.tb13510.x
– year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib106
– volume: 4
  start-page: 26
  issue: 1
  year: 2008
  ident: 10.1016/j.biomaterials.2019.119707_bib82
  article-title: Cytotoxicity of nanoparticles
  publication-title: Small
  doi: 10.1002/smll.200700595
– volume: 106
  start-page: 148
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib137
  publication-title: Extracell. Vesicles Drug Deliv.
– volume: 44
  start-page: 957
  issue: 10
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119707_bib174
  article-title: Nanoscale metal–organic frameworks for biomedical imaging and drug delivery
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200028a
– volume: 3
  start-page: 380
  issue: 5
  year: 2003
  ident: 10.1016/j.biomaterials.2019.119707_bib72
  article-title: Photodynamic therapy for cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1071
– volume: 43
  start-page: 5841
  issue: 16
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib169
  article-title: Metal–metalloporphyrin frameworks: a resurging class of functional materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00001C
– volume: 44
  start-page: 189
  issue: 3
  year: 2019
  ident: 10.1016/j.biomaterials.2019.119707_bib24
  article-title: Porphyrin-based nanocomposites for tumor photodynamic therapy
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2019.42
– volume: 496
  start-page: 100
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib40
  article-title: Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.02.006
– volume: 109
  start-page: 1659
  issue: 5
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119707_bib166
  article-title: Supramolecular chemistry of metalloporphyrins
  publication-title: Chem. Rev.
  doi: 10.1021/cr800247a
– volume: 7
  start-page: 17371
  issue: 31
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib95
  article-title: Imaging-guided drug release from glutathione-responsive supramolecular porphysome nanovesicles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b06026
– volume: 63
  start-page: 125
  issue: 1
  year: 1997
  ident: 10.1016/j.biomaterials.2019.119707_bib12
  article-title: Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4
– volume: 12
  start-page: 6145
  issue: 32
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib19
  article-title: Deciphering aromaticity in porphyrinoids via adaptive natural density partitioning
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C4OB01018C
– volume: 138
  start-page: 1234
  issue: 4
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib183
  article-title: From highly crystalline to outer surface-functionalized covalent organic Frameworks A modulation approach
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10708
– volume: 2
  start-page: 277
  issue: 3
  year: 2007
  ident: 10.1016/j.biomaterials.2019.119707_bib49
  article-title: Liposomal daunorubicin as treatment for Kaposi's sarcoma
  publication-title: Int. J. Nanomed.
– volume: 55
  start-page: 2594
  issue: 16
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib146
  article-title: Porphyrin‐based covalent triazine frameworks: porosity, adsorption performance, and drug delivery
  publication-title: J. Polym. Sci. A Polym. Chem.
  doi: 10.1002/pola.28543
– start-page: 1553
  issue: 15
  year: 2007
  ident: 10.1016/j.biomaterials.2019.119707_bib34
  article-title: Self-organization of porphyrin units induced by magnetic field during sol–gel polymerization
  publication-title: Chem. Commun.
  doi: 10.1039/B616421H
– volume: 11
  start-page: 40
  issue: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib190
  article-title: Nanocomposite hydrogels and their applications in drug delivery and tissue engineering
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2015.1962
– volume: 2
  start-page: 751
  issue: 12
  year: 2007
  ident: 10.1016/j.biomaterials.2019.119707_bib84
  article-title: Nanocarriers as an emerging platform for cancer therapy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.387
– volume: 2
  start-page: 760
  issue: 6
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib141
  article-title: Conjugated-polymer-Amplified sensing, imaging, and therapy
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.05.002
– volume: 85
  start-page: 705
  issue: 3
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119707_bib53
  article-title: Photoinduced nitric oxide and singlet oxygen release from ZnPC liposome vehicle associated with the nitrosyl ruthenium complex: synergistic effects in photodynamic therapy application
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2008.00481.x
– volume: 3
  start-page: 1242
  issue: 1
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib127
  article-title: Virus activated artificial ECM induces the osteoblastic differentiation of mesenchymal stem cells without osteogenic supplements
  publication-title: Sci. Rep.
  doi: 10.1038/srep01242
– volume: 18
  start-page: 4141
  issue: 12
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib125
  article-title: Physalis mottle virus-like particles as nanocarriers for imaging reagents and drugs
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01196
– volume: 36
  start-page: 968
  issue: 4
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib3
  article-title: Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work?
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.02.016
– volume: 35
  start-page: 2818
  issue: 9
  year: 1996
  ident: 10.1016/j.biomaterials.2019.119707_bib22
  article-title: Structure of a DNA− porphyrin complex
  publication-title: Biochemistry
  doi: 10.1021/bi952443z
– volume: 84
  start-page: 323
  issue: 2
  year: 1977
  ident: 10.1016/j.biomaterials.2019.119707_bib7
  article-title: Nanocapsules: a new type of lysosomotropic carrier
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(77)80717-5
– volume: 1065
  start-page: 42
  issue: 1
  year: 1991
  ident: 10.1016/j.biomaterials.2019.119707_bib51
  article-title: Liposomes as models to study the distribution of porphyrins in cell membranes
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/0005-2736(91)90008-V
– volume: 30
  start-page: 504
  issue: 7
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119707_bib142
  article-title: Enhanced one- and two-photon excitation emission of a porphyrin photosensitizer by FRET from a conjugated polyelectrolyte, macromol
  publication-title: Rapid Commun
  doi: 10.1002/marc.200800655
– volume: 9
  start-page: 4484
  issue: 4
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib92
  article-title: A PEGylation-free biomimetic porphyrin nanoplatform for personalized cancer theranostics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01077
– volume: 462
  start-page: 154
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib32
  article-title: Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.09.060
– volume: 10
  start-page: 1528
  issue: 2
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib180
  article-title: High antimicrobial activity of metal–organic framework-templated porphyrin polymer thin films
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14866
– volume: 106
  start-page: 157
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib124
  article-title: Bioengineered protein-based nanocage for drug delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2016.03.002
– volume: 10
  start-page: 324
  issue: 4
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119707_bib71
  article-title: Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2986
– volume: 4
  start-page: 858
  issue: 9
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib42
  article-title: Mn-porphyrin conjugated Au nanoshells encapsulating doxorubicin for potential magnetic resonance imaging and light triggered synergistic therapy of cancer
  publication-title: Theranostics
  doi: 10.7150/thno.8818
– volume: 205
  start-page: 35
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib138
  article-title: Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.11.029
– volume: 11
  start-page: 7006
  issue: 7
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib112
  article-title: Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02533
– volume: 28
  start-page: 9320
  issue: 42
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib182
  article-title: Nanoscale polymer metal–organic framework hybrids for effective photothermal therapy of colon cancers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602997
– volume: 262
  start-page: 137
  issue: 2
  year: 1998
  ident: 10.1016/j.biomaterials.2019.119707_bib80
  article-title: Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1998.2759
– volume: 3
  start-page: 1240
  issue: 8
  year: 2014
  ident: 10.1016/j.biomaterials.2019.119707_bib91
  article-title: Targeting‐triggered porphysome nanostructure disruption for activatable photodynamic therapy
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201300651
– volume: 61
  start-page: 214
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib187
  article-title: Fluorescent nanogel based on four-arm PEG–PCL copolymer with porphyrin core for bioimaging
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.12.037
– volume: 101
  start-page: 1629
  issue: 6
  year: 2001
  ident: 10.1016/j.biomaterials.2019.119707_bib161
  article-title: From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids
  publication-title: Chem. Rev.
  doi: 10.1021/cr9900432
– volume: 8
  start-page: 95
  issue: 4
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib23
  article-title: Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging
  publication-title: Biosensors
  doi: 10.3390/bios8040095
– volume: 1
  start-page: 401
  issue: 4
  year: 1972
  ident: 10.1016/j.biomaterials.2019.119707_bib103
  article-title: Evidence for a receptor recognizing antigen complexed immunoglobulin on the surface of activated mouse thymus lymphocytes
  publication-title: Scand. J. Immunol.
  doi: 10.1111/j.1365-3083.1972.tb03306.x
– volume: 38
  start-page: 108
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib119
  article-title: Plant viruses and bacteriophages for drug delivery in medicine and biotechnology
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2017.03.013
– volume: 85
  start-page: 693
  issue: 9
  year: 1981
  ident: 10.1016/j.biomaterials.2019.119707_bib139
  article-title: Oxygen reduction on transition‐metal porphyrins in acid electrolyte I. Activity
  publication-title: Ber. Bunsen Ges. Phys. Chem.
  doi: 10.1002/bbpc.19810850917
– volume: 99
  start-page: 5088
  issue: 8
  year: 2002
  ident: 10.1016/j.biomaterials.2019.119707_bib164
  article-title: Extending supramolecular fullerene-porphyrin chemistry to pillared metal-organic frameworks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.072602399
– volume: 148
  start-page: 405
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib55
  article-title: Photophysical studies of graphene quantum dots-Pyrene-derivatized porphyrins conjugates when encapsulated within Pluronic F127 micelles
  publication-title: Dyes Pigments
  doi: 10.1016/j.dyepig.2017.09.031
– volume: 14
  start-page: 790
  issue: 4
  year: 2003
  ident: 10.1016/j.biomaterials.2019.119707_bib56
  article-title: Polycation liposome enhances the endocytic uptake of photosensitizer into cells in the presence of serum
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc025648a
– year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib64
– volume: 40
  start-page: 340
  issue: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2019.119707_bib26
  article-title: The role of porphyrin chemistry in tumor imaging and photodynamic therapy
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B915149B
– volume: 15
  start-page: 1476
  issue: 12
  year: 2016
  ident: 10.1016/j.biomaterials.2019.119707_bib96
  article-title: A novel photosensitizer: an l-glutamide lipid conjugate with improved properties for photodynamic therapy
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/C6PP00304D
– volume: 115
  start-page: 243
  issue: 3
  year: 2006
  ident: 10.1016/j.biomaterials.2019.119707_bib63
  article-title: Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2006.08.001
– volume: 28
  start-page: 1804901
  issue: 43
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib155
  article-title: Covalent organic polymers based on fluorinated porphyrin as oxygen nanoshuttles for tumor hypoxia relief and enhanced photodynamic therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804901
– volume: 30
  start-page: 1036
  issue: 6
  year: 2009
  ident: 10.1016/j.biomaterials.2019.119707_bib131
  article-title: In vitro behavior of neural stem cells in response to different chemical functional groups
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.10.028
– volume: 26
  start-page: 345
  issue: 2
  year: 2015
  ident: 10.1016/j.biomaterials.2019.119707_bib69
  article-title: Self-sensing porphysomes for fluorescence-guided photothermal therapy
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc500595d
– volume: 2
  start-page: 561
  issue: 4
  year: 2017
  ident: 10.1016/j.biomaterials.2019.119707_bib181
  article-title: Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.02.005
– volume: 4
  start-page: 46
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib35
  article-title: Gemcitabine delivery and photodynamic therapy in cancer cells via porphyrin‐ethylene‐based periodic mesoporous organosilica nanoparticles
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.201700264
– volume: 10
  start-page: 52
  issue: 1
  year: 2013
  ident: 10.1016/j.biomaterials.2019.119707_bib193
  article-title: Past, present, and future of radiotherapy for the benefit of patients
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2012.203
– volume: 141
  start-page: 146
  issue: 2
  year: 2007
  ident: 10.1016/j.biomaterials.2019.119707_bib118
  article-title: Inactivation and purification of cowpea mosaic virus-like particles displaying peptide antigens from Bacillus anthracis
  publication-title: J. Virol Methods
  doi: 10.1016/j.jviromet.2006.12.008
– volume: 143
  start-page: 3249
  issue: 14
  year: 2018
  ident: 10.1016/j.biomaterials.2019.119707_bib6
  article-title: Optical assays based on colloidal inorganic nanoparticles
  publication-title: Analyst
  doi: 10.1039/C8AN00731D
SSID ssj0014042
Score 2.650625
SecondaryResourceType review_article
Snippet Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in...
Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the "pigments of life". They have a wide role in...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119707
SubjectTerms Animals
biocompatible materials
Drug delivery
drugs
fluorescence
Gold
hydrophilicity
hydrophobicity
immunosuppression
magnetism
Metal Nanoparticles
Mice
Mice, Nude
Nanocomposite
Nanocomposites
Nanoparticle
Nanoparticles
Photochemotherapy
Porphyrin
Porphyrins
precision medicine
Theranostic Nanomedicine
Theranostics
Tissue Distribution
Title Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961219308257
https://dx.doi.org/10.1016/j.biomaterials.2019.119707
https://www.ncbi.nlm.nih.gov/pubmed/31874428
https://www.proquest.com/docview/2330598205
https://www.proquest.com/docview/2524303692
https://pubmed.ncbi.nlm.nih.gov/PMC7008091
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AKRWK
  dateStart: 19800101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KBdGHovXr_Cgr-Jpes5vN7iA-lGI5FftkoQ9C2GR3MUVzxV4ffPFvdyabhDsVOfDpIDcTkp3Z2dnsb34D8MqoxjmtbcaNbLPC0JzDJpZZxKMYfVCRfhhtcVYuzov3F_piB07GWhiGVQ6xP8X0PloPV-bDaM6v2nbOsCSJTICFTLmiuaKc2b_Ipw9_TjAPZo-RCcZIT0HSI_Foj_HiEne3SqZmmBce8qkat5b9-yL1ZxL6O5ZybXE6vQd7Q1YpjtOD34ed0O3D3TWuwX24_XE4RX8AnylXpPuI4fz_WrSdoDScBpxEM17XvOhct2S4OWO6SIJSW5GgHxQdRYKPk1T7rW9yJFznRark-vEQzk_ffjpZZEOXhawpC73KFDprA0p75I12eV2oEp3CEvNgNTa0fXaoShuVirImy5qAhbI2GkM7KfRWPYLdbtmFJyC8NNHGOm-iVIWX6KSuowmFq0tvco8zwHFYq2agIOdOGF-rEWt2Wa2bpGKTVMkkM1CT7lUi4thK6_VovWosNaXgWNF6sZX2m0l7wym31n85OkxFs5aPYlwXljckpCjOImVf-h8yWhacYKCcwePkZNObK26lSDvHGZgN95sEmDV885-u_dKzhxveJGD-9D_f7RnckfzpoQewP4fd1feb8ILys1V90E_AA7h1_O7D4uwXwZ8-9Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC7iBtQcRKPGja8WvI6704_pLsRDCIaNSfaUQA7C0PNonJDMBt0c_PdWzYtdFVnwNDBTNUx3Vddj-usqgPdW5d4b4yJuZBtpS2sO85BEAachFKUKdGG0xTyZXegvl-ZyCw77szAMq-xsf2vTG2vd3Zl0szm5raoJw5IkcgEs5JIrxt6DbW3IJo9g--D4ZDYfNhP0tOmhw_QRM_S1RxuYF59y98tW2oz0wg-8scbdZf_up_6MQ3-HU674p6PH8KgLLMVB--1PYKusd2FnpdzgLtw_6zbSn8JXChfpPaKDAPwQVS0oEqc5J9KIXVshal8vGHHOsC6ioOhWtOgPMpCiRZATVXXT9DkSvi5Ee5jr5zO4OPp8fjiLukYLUZ5os4wUeudKlG5aWOPjTKsEvcIE49IZzCmD9qgSF5QKMiPh2hK1ci5YS8kUFk49h1G9qMsXIAppgwtZnAepdCHRS5MFW2qfJYWNCxwD9tOa5l0Vcm6GcZ32cLOrdFUkKYskbUUyBjXw3ra1ODbi-thLL-1Pm5J9TMllbMT9aeBe08uN-d_1CpPSwuXdGF-XizsiUmRqkQIw8w8aIzXHGCjHsNcq2TByxd0UKXkcg11Tv4GAC4evP6mrb00Bcct5Asb7_zm2t_Bgdn52mp4ez09ewkPJfyIaPPsrGC2_35WvKVxbZm-65fgLbZZBoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+porphyrin-based+nanocomposites+for+effective+targeted+imaging+and+therapy&rft.jtitle=Biomaterials&rft.au=Rabiee%2C+Navid&rft.au=Yaraki%2C+Mohammad+Tavakkoli&rft.au=Garakani%2C+Soha+Mokhtari&rft.au=Garakani%2C+Shima+Mokhtari&rft.date=2020-02-01&rft.eissn=1878-5905&rft.volume=232&rft.spage=119707&rft_id=info:doi/10.1016%2Fj.biomaterials.2019.119707&rft_id=info%3Apmid%2F31874428&rft.externalDocID=31874428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon