Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy
Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of por...
Saved in:
Published in | Biomaterials Vol. 232; p. 119707 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0142-9612 1878-5905 1878-5905 |
DOI | 10.1016/j.biomaterials.2019.119707 |
Cover
Abstract | Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review.
Impact statement: Porphyrin nanocomposites are increasingly being used as rationally designed theranostic systems. This timely review gathers together diverse reports of these applications especially for cancer diagnosis and therapy. |
---|---|
AbstractList | Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review.
Impact statement: Porphyrin nanocomposites are increasingly being used as rationally designed theranostic systems. This timely review gathers together diverse reports of these applications especially for cancer diagnosis and therapy. Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review. Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the "pigments of life". They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review.Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the "pigments of life". They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review. Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review. Porphyrin nanocomposites are increasingly being used as rationally designed theranostic systems. This timely review gathers together diverse reports of these applications especially for cancer diagnosis and therapy. |
ArticleNumber | 119707 |
Author | Hamblin, Michael R. Lajevardi, Aseman Tayebi, Lobat Rabiee, Navid Bagherzadeh, Mojtaba Tahriri, Mohammadreza Rabiee, Mohammad Yaraki, Mohammad Tavakkoli Garakani, Shima Mokhtari Ahmadi, Sepideh Garakani, Soha Mokhtari |
AuthorAffiliation | 6 Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran 11 Department of Dermatology, Harvard Medical School, Boston, USA 2 Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore 10 Wellman Center for photomedicine, Massachusetts General Hospital, Boston, USA 1 Department of Chemistry, Sharif University of Technology, Tehran, Iran 3 Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore 9 Department of Developmental Sciences, Marquette University, Milwaukee, WI 53233, USA 12 Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa 4 Department of Biotechnology, Payame Noor University, P.O Box, 19395-3697, Alborz, Iran 7 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran 5 Student Rese |
AuthorAffiliation_xml | – name: 4 Department of Biotechnology, Payame Noor University, P.O Box, 19395-3697, Alborz, Iran – name: 8 Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran – name: 3 Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore – name: 12 Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa – name: 9 Department of Developmental Sciences, Marquette University, Milwaukee, WI 53233, USA – name: 2 Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore – name: 10 Wellman Center for photomedicine, Massachusetts General Hospital, Boston, USA – name: 1 Department of Chemistry, Sharif University of Technology, Tehran, Iran – name: 6 Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran – name: 5 Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran – name: 7 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran – name: 11 Department of Dermatology, Harvard Medical School, Boston, USA |
Author_xml | – sequence: 1 givenname: Navid surname: Rabiee fullname: Rabiee, Navid email: nrabiee94@gmail.com organization: Department of Chemistry, Sharif University of Technology, Tehran, Iran – sequence: 2 givenname: Mohammad Tavakkoli surname: Yaraki fullname: Yaraki, Mohammad Tavakkoli organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore – sequence: 3 givenname: Soha Mokhtari surname: Garakani fullname: Garakani, Soha Mokhtari organization: Department of Biotechnology, Payame Noor University, P.O Box, 19395-3697, Alborz, Iran – sequence: 4 givenname: Shima Mokhtari surname: Garakani fullname: Garakani, Shima Mokhtari organization: Department of Biotechnology, Payame Noor University, P.O Box, 19395-3697, Alborz, Iran – sequence: 5 givenname: Sepideh surname: Ahmadi fullname: Ahmadi, Sepideh organization: Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran – sequence: 6 givenname: Aseman surname: Lajevardi fullname: Lajevardi, Aseman organization: Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran – sequence: 7 givenname: Mojtaba surname: Bagherzadeh fullname: Bagherzadeh, Mojtaba organization: Department of Chemistry, Sharif University of Technology, Tehran, Iran – sequence: 8 givenname: Mohammad surname: Rabiee fullname: Rabiee, Mohammad email: mrabiee@aut.ac.ir organization: Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran – sequence: 9 givenname: Lobat surname: Tayebi fullname: Tayebi, Lobat organization: Department of Developmental Sciences, Marquette University, Milwaukee, WI, 53233, USA – sequence: 10 givenname: Mohammadreza surname: Tahriri fullname: Tahriri, Mohammadreza email: mohammadreza.tahriri@marquette.edu organization: Department of Developmental Sciences, Marquette University, Milwaukee, WI, 53233, USA – sequence: 11 givenname: Michael R. surname: Hamblin fullname: Hamblin, Michael R. email: hamblin@helix.mgh.harvard.edu organization: Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31874428$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkuLFDEURoOMOD2jf0EKV26qzaMeiQtRxycMCKI7IaRSt7pvW5XUJOmG_vem6XEYZ2OvQsjJ4bv5ckHOnHdAyAtGl4yy5tVm2aGfTIKAZoxLTplaMqZa2j4iCyZbWdaK1mdkQVnFS9Uwfk4uYtzQvKcVf0LORaaqissF-fUdLLhUmH5nnIVYoCtmH-b1PqArOxOhL5xx3vpp9hFTJgYfChgGsAl3UCQTVpAyhZNZoVsVxvVFWkMw8_4peTzkhPDsdr0kPz99_HH1pbz-9vnr1bvr0jZVnUqhjJSguKR9WxvWVaJRRqhGMZC1slXeKdHIQYiBd8KaFlQlpBzallVS9VJckjdH77ztJugPAwUz6jnkTGGvvUH974nDtV75nW4plVSxLHh5Kwj-Zgsx6QmjhXE0Dvw2al7zStAci_8fFYLWSnJaZ_T5_Vh3ef6-fgZeHwEbfIwBhjuEUX2oWm_0_ar1oWp9rDpffvvgssVkEvrDiDiepvhwVEAuZ4cQdLQI-Rv0GHK9uvd4mub9A40d0aE142_Ynyr5A_165lc |
CitedBy_id | crossref_primary_10_1021_acsnano_0c08128 crossref_primary_10_1186_s40779_023_00453_z crossref_primary_10_2147_IJN_S353062 crossref_primary_10_1021_acsbiomaterials_2c00531 crossref_primary_10_3390_ph14020101 crossref_primary_10_1088_1361_6528_aba142 crossref_primary_10_1016_j_cclet_2022_107945 crossref_primary_10_1134_S1070363223070253 crossref_primary_10_15671_hjbc_1492613 crossref_primary_10_1016_j_jconrel_2021_08_045 crossref_primary_10_3389_fbioe_2021_679128 crossref_primary_10_3390_ijms22157948 crossref_primary_10_1007_s10895_023_03396_9 crossref_primary_10_1016_j_biomaterials_2023_122446 crossref_primary_10_1021_acsami_4c03012 crossref_primary_10_3390_molecules26030704 crossref_primary_10_3390_jcs9030116 crossref_primary_10_1016_j_ultrasmedbio_2025_01_011 crossref_primary_10_1039_D0BM02225J crossref_primary_10_1016_j_ijbiomac_2023_124697 crossref_primary_10_1021_acs_langmuir_2c01621 crossref_primary_10_1155_2022_3302082 crossref_primary_10_1021_acsami_3c12155 crossref_primary_10_1039_D2RA03786F crossref_primary_10_3390_pharmaceutics16101268 crossref_primary_10_1002_adfm_202405844 crossref_primary_10_1007_s10973_024_12999_8 crossref_primary_10_1039_D0NA00622J crossref_primary_10_3390_biology10030173 crossref_primary_10_3390_molecules27072329 crossref_primary_10_1016_j_jphotobiol_2023_112796 crossref_primary_10_1186_s13065_022_00889_9 crossref_primary_10_1016_j_snb_2022_132329 crossref_primary_10_1039_D1BM00960E crossref_primary_10_1021_acsanm_0c02945 crossref_primary_10_1002_jbm_b_35087 crossref_primary_10_1007_s12678_023_00847_6 crossref_primary_10_1021_acs_langmuir_0c00843 crossref_primary_10_1007_s40820_021_00697_1 crossref_primary_10_1016_j_foodchem_2021_131253 crossref_primary_10_1021_acsapm_4c00238 crossref_primary_10_1016_j_mattod_2024_06_017 crossref_primary_10_1002_anbr_202200136 crossref_primary_10_1016_j_molstruc_2024_138897 crossref_primary_10_1039_D0NJ06310J crossref_primary_10_1021_acsabm_1c00932 crossref_primary_10_1016_j_apt_2020_08_011 crossref_primary_10_1016_j_jconrel_2020_03_051 crossref_primary_10_1039_D2BM00016D crossref_primary_10_1007_s42247_021_00277_4 crossref_primary_10_2147_DDDT_S441325 crossref_primary_10_1002_INMD_20230010 crossref_primary_10_1016_j_biomaterials_2025_123137 crossref_primary_10_1016_j_tifs_2022_03_016 crossref_primary_10_1063_5_0047672 crossref_primary_10_1038_s41598_021_86119_z crossref_primary_10_1177_17475198221090914 crossref_primary_10_1002_btm2_10347 crossref_primary_10_1002_smll_202400654 crossref_primary_10_3390_molecules27103311 crossref_primary_10_1021_acsabm_3c00458 crossref_primary_10_3390_ma14237277 crossref_primary_10_2174_1567201818666210609161301 crossref_primary_10_1016_j_ccr_2021_213945 crossref_primary_10_1016_j_ijpharm_2024_124015 crossref_primary_10_1039_D3RA02620E crossref_primary_10_1016_j_bios_2021_113334 crossref_primary_10_1016_j_arabjc_2023_104868 crossref_primary_10_1016_j_jddst_2020_101715 crossref_primary_10_1016_j_dyepig_2021_109746 crossref_primary_10_1002_cnma_202100357 crossref_primary_10_1021_acs_bioconjchem_3c00432 crossref_primary_10_22159_ijap_2025v17i1_50745 crossref_primary_10_1016_j_jhazmat_2021_127130 crossref_primary_10_3389_fonc_2023_1211603 crossref_primary_10_1039_D1TB01025E crossref_primary_10_1002_syst_202400068 crossref_primary_10_1039_D3TB02705H crossref_primary_10_1016_j_cej_2021_128844 crossref_primary_10_1016_j_mtbio_2024_101318 crossref_primary_10_1002_adfm_202107530 crossref_primary_10_3390_polym14030610 crossref_primary_10_1016_j_eti_2023_103019 crossref_primary_10_1002_slct_202103418 crossref_primary_10_3390_gels10080499 crossref_primary_10_1016_j_chemphys_2022_111655 crossref_primary_10_3390_molecules27103111 crossref_primary_10_1016_j_actbio_2024_04_037 crossref_primary_10_3390_molecules27092763 crossref_primary_10_1016_j_jobab_2021_06_001 crossref_primary_10_1021_acsabm_4c00638 crossref_primary_10_1002_agt2_540 crossref_primary_10_1016_j_jconrel_2022_07_038 crossref_primary_10_2174_1573413718666211222162041 crossref_primary_10_1016_j_inoche_2022_110359 crossref_primary_10_1039_D2RA03512J crossref_primary_10_1016_j_mattod_2020_11_001 crossref_primary_10_3390_molecules29030611 crossref_primary_10_1016_j_ijpharm_2020_119920 crossref_primary_10_1080_00914037_2020_1809405 crossref_primary_10_2217_nnm_2020_0353 crossref_primary_10_1002_btm2_10325 crossref_primary_10_1016_j_actbio_2024_12_047 crossref_primary_10_1021_acsami_2c05953 crossref_primary_10_1021_acsabm_1c01311 crossref_primary_10_1002_adma_202209529 crossref_primary_10_1007_s13346_022_01252_0 crossref_primary_10_1039_D0BM00825G crossref_primary_10_1039_D1NR02581C crossref_primary_10_1039_D4CC06541G crossref_primary_10_1186_s40824_023_00454_y crossref_primary_10_1007_s10904_021_02188_7 crossref_primary_10_1021_acsabm_4c00988 crossref_primary_10_1039_D3BM00738C crossref_primary_10_3389_fphar_2025_1533040 crossref_primary_10_1016_j_micromeso_2021_111670 crossref_primary_10_1088_2057_1976_aba7ca crossref_primary_10_1039_D3TB02423G crossref_primary_10_1039_D0DT03031G crossref_primary_10_1039_D4RA00945B crossref_primary_10_1039_D4TB00299G crossref_primary_10_3389_fchbi_2023_1346465 crossref_primary_10_1021_jacs_1c07875 crossref_primary_10_1155_2022_3011918 crossref_primary_10_1016_j_matdes_2023_111838 crossref_primary_10_1002_adtp_202000076 crossref_primary_10_1016_j_ccr_2022_214599 crossref_primary_10_1016_j_ccr_2021_214155 crossref_primary_10_1021_acs_biomac_3c00165 crossref_primary_10_1002_smll_202302547 crossref_primary_10_1016_j_addr_2022_114320 crossref_primary_10_1021_acsabm_1c01262 crossref_primary_10_1016_j_mencom_2022_09_036 crossref_primary_10_1021_acsanm_4c00249 crossref_primary_10_1039_D4MA00496E crossref_primary_10_2147_IJN_S250911 crossref_primary_10_1016_j_rsurfi_2024_100187 crossref_primary_10_1021_acsomega_0c05647 crossref_primary_10_3390_biom11111714 crossref_primary_10_1016_j_scitotenv_2022_153902 crossref_primary_10_1080_03639045_2020_1810269 crossref_primary_10_1016_j_jcis_2025_02_215 crossref_primary_10_1016_j_colsurfb_2024_113743 crossref_primary_10_1021_acs_jmedchem_1c01144 crossref_primary_10_1088_1748_605X_abd382 crossref_primary_10_3390_nano14231879 crossref_primary_10_1039_D2BM00265E crossref_primary_10_1002_adhm_202401211 crossref_primary_10_1039_D0NR01456G crossref_primary_10_1016_j_ccr_2023_215211 crossref_primary_10_1016_j_chemosphere_2022_135578 crossref_primary_10_1177_15330338211027898 crossref_primary_10_3389_fimmu_2024_1395187 crossref_primary_10_1016_j_micromeso_2021_111337 crossref_primary_10_1186_s12951_025_03113_7 crossref_primary_10_1007_s40097_022_00500_6 crossref_primary_10_1021_acsami_2c06063 crossref_primary_10_1016_j_cis_2024_103166 crossref_primary_10_1021_acsabm_1c00447 crossref_primary_10_1039_D3TB00632H crossref_primary_10_1021_acsami_1c01460 crossref_primary_10_1021_acsanm_2c03390 crossref_primary_10_1039_D4CC04512B |
Cites_doi | 10.1016/j.molliq.2018.12.002 10.1016/j.colsurfb.2008.07.014 10.1016/j.msec.2014.07.019 10.1021/acsami.5b11493 10.1016/j.jphotobiol.2018.01.015 10.1142/S1088424612500770 10.1002/adma.201606134 10.1021/acs.jmedchem.5b00457 10.1021/bm9007953 10.1039/b618854k 10.1021/ja508679h 10.1038/nnano.2015.25 10.1002/anie.201204475 10.1002/jps.2600651217 10.1021/jacs.6b00007 10.1002/smll.201602293 10.1016/j.biomaterials.2011.03.030 10.2174/1573399814666180607075550 10.1016/j.aca.2018.05.011 10.1016/S0039-9140(99)00291-X 10.1039/cs9952400019 10.1016/1010-6030(95)04279-2 10.1038/s41467-018-06655-7 10.1002/(SICI)1096-9101(1998)22:2<74::AID-LSM2>3.0.CO;2-T 10.1021/acs.chemmater.7b00228 10.1021/acsomega.8b00419 10.1021/acs.nanolett.5b03440 10.1016/j.cis.2013.11.014 10.1016/j.copbio.2013.01.011 10.1016/j.biomaterials.2014.04.094 10.1038/nphoton.2009.157 10.1021/ja0341687 10.1021/acsnano.5b01433 10.1016/j.micromeso.2004.03.034 10.1016/j.drudis.2016.06.005 10.1016/j.biomaterials.2017.07.026 10.7150/thno.20118 10.3109/03639048109055684 10.1016/j.canlet.2005.03.041 10.1021/ja204339e 10.1016/j.bios.2018.11.047 10.1002/anie.201103557 10.1016/j.addr.2008.03.016 10.1016/j.chempr.2018.06.003 10.1039/C3TA13925E 10.1021/ja057254a 10.1126/science.1120411 10.1002/adma.201401550 10.1016/j.biopha.2016.09.035 10.1021/jacs.8b11593 10.3109/10717544.2015.1101791 10.1002/btm2.10049 10.1039/C5NR07849K 10.1021/ja308229p 10.1371/journal.pone.0102341 10.1016/j.addr.2016.02.006 10.1021/acs.chemrev.7b00258 10.1038/nature06917 10.1016/j.biomaterials.2019.119341 10.1039/C8TA12442F 10.1038/s41467-018-06574-7 10.1016/j.ijpharm.2019.118580 10.1021/bm300578p 10.1021/la203883k 10.1021/ic300825s 10.1039/C6TB01159D 10.1021/cr8002483 10.1002/anie.200700534 10.1021/cr900300p 10.1016/j.drudis.2018.02.001 10.1021/ic801677y 10.1016/j.ejmech.2008.07.030 10.1038/nrd3978 10.1039/b200393g 10.1371/journal.pone.0120751 10.1016/1011-1344(95)07241-1 10.2174/0929867323666160926151216 10.1016/j.jphotochem.2017.12.005 10.1021/acs.chemrev.5b00046 10.1111/j.1349-7006.2003.tb01485.x 10.1038/nrg3763 10.1002/stem.187 10.1016/j.addr.2012.04.010 10.1039/C5TB00315F 10.1016/j.jconrel.2012.03.020 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 10.1021/acsami.9b00361 10.1016/j.jconrel.2013.03.012 10.1021/acs.chemrev.5b00125 10.1080/10717544.2017.1289570 10.1002/adma.200500786 10.1002/advs.201500223 10.1529/biophysj.107.117473 10.1039/C8NJ01375F 10.1634/stemcells.2007-0758 10.1016/j.canlet.2004.02.004 10.1142/S1088424611004063 10.1038/nrclinonc.2015.120 10.1021/acs.biomac.6b00356 10.1021/jacs.7b04141 10.1021/nn3058642 10.1159/000485072 10.1038/ncomms4546 10.1021/acs.bioconjchem.6b00569 10.1039/b926367e 10.1039/C7TB02970E 10.1021/ja00537a030 10.1021/jacs.6b06663 10.2217/nnm.15.150 10.1002/chem.201204358 10.1021/bi00168a005 10.1083/jcb.201211138 10.1002/anie.201301113 10.1002/anie.201903277 10.1021/cr200256v 10.1126/science.1114397 10.1002/adma.201706759 10.1021/ja408084j 10.1016/0005-2736(91)90246-5 10.1016/j.biomaterials.2011.06.024 10.1016/j.jconrel.2014.05.036 10.1021/ar030242e 10.1166/jnn.2006.327 10.1002/1097-0142(19950415)75:8<2169::AID-CNCR2820750822>3.0.CO;2-H 10.1021/ja058016i 10.1002/adfm.201100840 10.1021/ja305988f 10.1038/nm.1971 10.1111/j.2042-7158.1979.tb13510.x 10.1002/smll.200700595 10.1021/ar200028a 10.1038/nrc1071 10.1039/C4CS00001C 10.1557/mrs.2019.42 10.1016/j.jcis.2017.02.006 10.1021/cr800247a 10.1021/acsami.5b06026 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4 10.1039/C4OB01018C 10.1021/jacs.5b10708 10.1002/pola.28543 10.1039/B616421H 10.1166/jbn.2015.1962 10.1038/nnano.2007.387 10.1016/j.chempr.2017.05.002 10.1111/j.1751-1097.2008.00481.x 10.1038/srep01242 10.1021/acs.biomac.7b01196 10.1016/j.biotechadv.2018.02.016 10.1021/bi952443z 10.1016/0014-5793(77)80717-5 10.1016/0005-2736(91)90008-V 10.1002/marc.200800655 10.1021/acsnano.5b01077 10.1016/j.jcis.2015.09.060 10.1021/acsami.7b14866 10.1016/j.addr.2016.03.002 10.1038/nmat2986 10.7150/thno.8818 10.1016/j.jconrel.2014.11.029 10.1021/acsnano.7b02533 10.1002/adma.201602997 10.1006/abio.1998.2759 10.1002/adhm.201300651 10.1016/j.msec.2015.12.037 10.1021/cr9900432 10.3390/bios8040095 10.1111/j.1365-3083.1972.tb03306.x 10.1016/j.cbpa.2017.03.013 10.1002/bbpc.19810850917 10.1073/pnas.072602399 10.1016/j.dyepig.2017.09.031 10.1021/bc025648a 10.1039/B915149B 10.1039/C6PP00304D 10.1016/j.jconrel.2006.08.001 10.1002/adfm.201804901 10.1016/j.biomaterials.2008.10.028 10.1021/bc500595d 10.1016/j.chempr.2017.02.005 10.1002/cnma.201700264 10.1038/nrclinonc.2012.203 10.1016/j.jviromet.2006.12.008 10.1039/C8AN00731D |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.biomaterials.2019.119707 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
EndPage | 119707 |
ExternalDocumentID | PMC7008091 31874428 10_1016_j_biomaterials_2019_119707 S0142961219308257 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI050875 – fundername: NIAID NIH HHS grantid: R21 AI121700 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RIG AAYXX ACLOT CITATION ~HD AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c645t-39a88e9280d75a1b4369a39691e859c469a9368f33f2b3ca7e94388f771489d83 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Tue Sep 30 16:45:52 EDT 2025 Sun Sep 28 08:29:35 EDT 2025 Fri Sep 05 10:10:21 EDT 2025 Mon Jul 21 06:00:02 EDT 2025 Wed Oct 01 02:03:05 EDT 2025 Thu Apr 24 23:05:44 EDT 2025 Fri Feb 23 02:40:20 EST 2024 Tue Aug 26 20:00:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanocomposite Drug delivery Porphyrin Nanoparticle Theranostics |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c645t-39a88e9280d75a1b4369a39691e859c469a9368f33f2b3ca7e94388f771489d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7008091 |
PMID | 31874428 |
PQID | 2330598205 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7008091 proquest_miscellaneous_2524303692 proquest_miscellaneous_2330598205 pubmed_primary_31874428 crossref_primary_10_1016_j_biomaterials_2019_119707 crossref_citationtrail_10_1016_j_biomaterials_2019_119707 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2019_119707 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2019_119707 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Choi, Barron, Novotny, Son, Hu, Choe (bib163) 2008; 48 Lajevardi, Hossaini Sadr, Tavakkoli Yaraki, Badiei, Armaghan (bib147) 2018; 42 Yguerabide, Yguerabide (bib80) 1998; 262 Luo, Zhang, Su, Cheng, Shi (bib27) 2011; 32 Lewinski, Colvin, Drezek (bib82) 2008; 4 Schwarz, Uchida, Douglas (bib113) 2017 Ren, Zhang, Huang, Wang, Zhou, Cui, An (bib131) 2009; 30 Hu, Zandi, Anavitarte, Knobler, Gelbart (bib121) 2008; 94 Czapar, Steinmetz (bib119) 2017; 38 Wu, Bazan, Liu (bib141) 2017; 2 Yoshida, Andersson (bib103) 1972; 1 Moulton, Zaworotko (bib161) 2001; 101 Nasseri, Soleimani, Rabiee, Kalbasi, Karimi, Hamblin (bib5) 2018 Kim, Osuka (bib87) 2004; 37 Wang, Liu, Lin (bib173) 2013; 135 Aggad, Jimenez, Dib, Croissant, Lichon, Laurencin, Richeter, Maynadier, Alsaiari, Boufatit (bib35) 2018; 4 Lin, Ding, Chen, Peng, Wang, Wang (bib157) 2017; 139 Phan, Yeung, Lee (bib110) 2014; 11 Managa, Achadu, Nyokong (bib55) 2018; 148 Puri, Loomis, Smith, Lee, Yavlovich, Heldman, Blumenthal (bib59) 2009; 26 Nakamura, Aratani, Osuka (bib167) 2007; 36 Côté, Benin, Ockwig, O'Keeffe, Matzger, Yaghi (bib148) 2005; 310 Zheng, Wang, Pei, He, Liu, Xie (bib179) 2017; 29 Popovich, Tomanová, Čuba, Procházková, Pelikánová, Jakubec, Mihóková, Nikl (bib41) 2018; 179 Maranho, De Lima, Primo, Da Silva, Tedesco (bib53) 2009; 85 James (bib150) 2003; 32 Ricchelli, Jori, Gobbo, Tronchin (bib51) 1991; 1065 Siekmann, Westesen (bib11) 1992; 1 Guo, Cai, Xu, Fateminia, Liu, Liang, Feng, Wu, Liu (bib189) 2016; 4 Weissleder, Pittet (bib78) 2008; 452 Dolphin (bib21) 2012 Wu, Mao, Xu, Kenry, Hu, Li, Kong, Liu (bib140) 2018; 4 Huang, El-Sayed, Qian, El-Sayed (bib74) 2006; 128 Liang, Li, Jing, Yue, Dai (bib58) 2014; 35 Cao, Ma, Yue, Li, Dai, Kikuchi (bib61) 2010; 46 Zhu, Cao, Zhen, Laxmi, Li, Liu, Mao (bib128) 2011; 32 Lv, Mao, Liu (bib185) 2014; 43 Luo, Liu, Liu, Lyu (bib146) 2017; 55 Sun, Tham, Reed, Boyd (bib164) 2002; 99 Dong, Wei, Lu, Liu, Lv (bib187) 2016; 61 Wang, Chrzanowski, Wojtas, Chen, Ma (bib168) 2013; 19 Guo, Feng, Manghnani, Cai, Liu, Wu, Xu, Cheng, Teh, Liu (bib145) 2016; 12 Ghosh, Carter, Lovell (bib44) 2019; 218 Biswas, Ahn, Bondar, Belfield (bib33) 2011; 28 Liu, Guo, Jin, Tan (bib158) 2019; 7 Raposo, Stoorvogel (bib136) 2013; 200 Thariat, Hannoun-Levi, Sun Myint, Vuong, Gérard (bib193) 2013; 10 Penon, Marín, Russell, Pérez-García (bib40) 2017; 496 Imran, Ramzan, Qureshi, Khan, Tariq (bib23) 2018; 8 Ethirajan, Chen, Joshi, Pandey (bib26) 2011; 40 Ziegler, Moresco, Tu, Yates, Nardulli (bib105) 2014; 9 Lipscomb, Zhou, Presnell, Woo, Peek, Plaskon, Williams (bib22) 1996; 35 Hirohashi, Kanai (bib104) 2003; 94 Kroll, Fang, Zhang (bib98) 2016; 28 Zhai, Su, Ran, Zhang, Yin, Zhang, Yu, Li (bib100) 2017; 7 Cao, Yang, Zhu, Qu, Mao (bib133) 2014; 26 Castaldo, Ambrogi, Gentile (bib153) 2019 Song, Li, Wang, Liao, Zhang (bib190) 2015; 11 Beletskaya, Tyurin, Tsivadze, Guilard, Stern (bib166) 2009; 109 Mauriello-Jimenez, Croissant, Maynadier, Cattoën, Man, Vergnaud, Chaleix, Sol, Garcia, Gary-Bobo (bib43) 2015; 3 Feng, Chung, Wei, Gu, Jiang, Chen, Darensbourg, Zhou (bib37) 2013; 135 Wang, Meng, Cheng, Kim, Wojtas, Chrzanowski, Chen, Zhang, Ma (bib165) 2011; 133 Lash (bib20) 2011; 15 Pattni, Chupin, Torchilin (bib47) 2015; 115 Dolmans, Fukumura, Jain (bib72) 2003; 3 Yue, Dai (bib66) 2014; 207 Ghasemi, Rabiee, Ahmadi, Lolasi, Borzogomid, Kalbasi, Nasseri, Dezfuli, Aref, Karimi (bib6) 2018; 143 Huynh, Leung, Helfield, Shakiba, Gandier, Jin, Master, Wilson, Goertz, Zheng (bib93) 2015; 10 Yu, Yu, Saha, Zhou, Cook, Yung, Chen, Mao, Zhang, Zhou, Liu, Shao, Wang, Gao, Huang, Stang, Chen (bib184) 2018; 9 Kidd, Spaeth, Dembinski, Dietrich, Watson, Klopp, Battula, Weil, Andreeff, Marini (bib132) 2009; 27 Nathan, Vijayashree, Harikrishna, Takafuji, Jintoku, Ihara, Rao (bib96) 2016; 15 Li, Cheng, Xie, Qiu, Zeng, Li, Wan, Zhang, Liu, Zhang (bib112) 2017; 11 Illum, Jones, Baldwin, Davis (bib13) 1984; 230 Drain, Varotto, Radivojevic (bib86) 2009; 109 Couvreur (bib15) 2013; 65 Cooper, Hausman (bib101) 2000 Ni, Lan, Veroneau, Duan, Song, Lin (bib198) 2018; 9 Feng, Gu, Li, Jiang, Wei, Zhou (bib38) 2012; 51 Horcajada, Gref, Baati, Allan, Maurin, Couvreur, Férey, Morris, Serre (bib177) 2012; 112 Finikova, Galkin, Rozhkov, Cordero, Hägerhäll, Vinogradov (bib57) 2003; 125 Wu, Xu (bib142) 2009; 30 Rezayat, Boushehri, Salmanian, Omidvari, Tarighat, Esmaeili, Sarkar, Amirshahi, Alyautdin, Orlova (bib102) 2009; 44 Guo, Feng, Manghnani, Cai, Liu, Wu, Xu, Cheng, Teh, Liu (bib200) 2016; 12 Vafajoo, Rostami, Parsa, Salarian, Rabiee, Rabiee, Rabiee, Tahriri, Vashaee, Tayebi (bib4) 2018; 1032 Ghosh, Han, De, Kim, Rotello (bib81) 2008; 60 Vader, Mol, Pasterkamp, Schiffelers (bib137) 2016; 106 Chang, Tang, Fang, Yin, Xu, Wu (bib144) 2016; 17 Duchi, Sotgiu, Lucarelli, Ballestri, Dozza, Santi, Guerrini, Dambruoso, Giannini, Donati, Ferroni, Varchi (bib134) 2013; 168 Calik, Sick, Dogru, Döblinger, Datz, Budde, Hartschuh, Auras, Bein (bib183) 2016; 138 Dong, Wei, Liu, Lv, Qian (bib188) 2016; 8 Dawidczyk, Kim, Park, Russell, Lee, Pomper, Searson (bib18) 2014; 187 Lindig, Rodgers, Schaap (bib31) 1980; 102 Jin, Cui, Wang, Chen, Zheng (bib91) 2014; 3 Della Rocca, Liu, Lin (bib174) 2011; 44 Rowsell, Yaghi (bib151) 2004; 73 Xu, Zhao, Qu, Wang, Shi, Zhao (bib95) 2015; 7 Yu, Cen, He, Wang, Wang, Ying, Li, Jacobson, Wang, Wang, Lin, Tian, Zhou, Ni, Li, Chen (bib160) 2019; 58 Luksiene, Juzenas, Moan (bib196) 2006; 235 Rohovie, Nagasawa, Swartz (bib16) 2017; 2 Bera, Maiti, Maity, Mandal, Maiti (bib192) 2018; 3 Barenholz (bib48) 2012; 160 Petre, Dittmer (bib49) 2007; 2 Wei, Zhou, Pang, Liu, Deng, Wang, Wu, Chen (bib159) 2013; 2 Wang, Zheng, Xie (bib171) 2018; 6 Zenkevich, Sagun, Knyukshto, Shulga, Mironov, Efremova, Bonnett, Songca, Kassem (bib90) 1996; 33 V. Sansone, R. Frairia, M. Brañes, P. Romeo, M.G. Catalano, R.C. Applefield, Current Applications and Future Prospects of Extracorporeal Shockwave Therapy, Shockwave Medicine, Karger Publishers2018, pp. 140-157. Carter, Shao, Hoopes, Luo, Ahsan, Grigoryants, Song, Huang, Zhang, Pandey (bib94) 2014; 5 Nel, Xia, Mädler, Li (bib83) 2006; 311 Couvreur, Kante, Roland, Guiot, Bauduin, Speiser (bib9) 1979; 31 Gurny, Peppas, Harrington, Banker (bib10) 1981; 7 O'Neal, Hirsch, Halas, Payne, West (bib73) 2004; 209 Bose, Lee, Park (bib99) 2016; 21 Cui, Lin, Jin, Jiang, Huang, Ding, Muhanna, Irish, Wang, Chen (bib92) 2015; 9 Andaloussi, Mäger, Breakefield, Wood (bib135) 2013; 12 Park, Jiang, Feng, Mao, Zhou (bib36) 2016; 138 Chowdhury, Schumann, Bhakta-Guha, Guha (bib107) 2016; 84 Wu, Yang (bib176) 2017; 29 Birrenbach, Speiser (bib1) 1976; 65 Zhou, Begum, Wang, Krolla, Wagner, Bräse, Wöll, Tsotsalas (bib180) 2018; 10 Fang, Kroll, Gao, Zhang (bib111) 2018 Schaue, McBride (bib195) 2015; 12 Lázaro, Haddad, Sacca, Orellana-Tavra, Fairen-Jimenez, Forgan (bib181) 2017; 2 Fan, Yung, Huang, Chen (bib50) 2017; 117 Ivanov, Boldyrev (bib19) 2014; 12 Dai (bib64) 2016 Rhee, Baksh, Nycholat, Paulson, Kitagishi, Finn (bib126) 2012; 13 Vader, Mol, Pasterkamp, Schiffelers (bib122) 2016; 106 Bonnett (bib28) 1995; 24 Fuhrmann, Serio, Mazo, Nair, Stevens (bib138) 2015; 205 Zhu, Zhang, Wang, Zhao, Lian, Wang, Wang, Wu, Hu, Guo (bib191) 2016; 23 Van Veen, Van Baar, Kroese, Coolegem, De Wit, Colijn (bib139) 1981; 85 Penon, Marín, Amabilino, Russell, Pérez-García (bib32) 2016; 462 Kubát, Mosinger (bib89) 1996; 96 Kievit, Zhang (bib108) 2011; 23 Morris, Volosskiy, Demir, Gándara, McGrier, Furukawa, Cascio, Stoddart, Yaghi (bib39) 2012; 51 Wang, Wang, Li, Mao (bib127) 2013; 3 Marty (bib8) 1978; 53 Dong, Chen, Qin, Wei, Liang, Liu, Kong, Lv (bib186) 2017; 24 Yang, Zhang (bib24) 2019; 44 Vakoc, Lanning, Tyrrell, Padera, Bartlett, Stylianopoulos, Munn, Tearney, Fukumura, Jain (bib77) 2009; 15 Lerouge, Cerveau, Corriu, Stern, Guilard (bib34) 2007 Jin, Lovell, Chen, Zheng (bib70) 2013; 7 Tao, Feng, Chao, Liang, Song, Wang, Yang, Liu (bib155) 2018; 28 Gandra, Wang, Zhu, Mao (bib129) 2013; 52 Hiraka, Kanehisa, Tamai, Asayama, Nagaoka, Oyaizu, Yuasa, Kawakami (bib54) 2008; 67 Comellas-Aragones, de la Escosura, Dirks, van der Ham, Fuste-Cune, Cornelissen, Nolte (bib120) 2009; 10 Oraevsky, Esenaliev, Jacques, Tittel (bib75) 1996 Varchi, Foglietta, Canaparo, Ballestri, Arena, Sotgiu, Guerrini, Nanni, Cicoria, Cravotto (bib199) 2015; 10 Klostranec, Chan (bib79) 2006; 18 Masarapu, Patel, Chariou, Hu, Gulati, Carpenter, Ghiladi, Shukla, Steinmetz (bib125) 2017; 18 Yin, Kanasty, Eltoukhy, Vegas, Dorkin, Anderson (bib115) 2014; 15 Li, Cheng, Qiu, Zhang, Wan, Zeng, Zhang (bib109) 2017; 142 Farjadian, Moghoofei, Mirkiani, Ghasemi, Rabiee, Hadifar, Beyzavi, Karimi, Hamblin (bib3) 2018; 36 Wang, Wang, Li, Liu, Xie, Jing (bib182) 2016; 28 Pandey, Chitgupi, Lakshminarayanan (bib201) 2012; 16 Skupin-Mrugalska, Szczolko, Gierlich, Konopka, Goslinski, Mielcarek, Düzgüneş (bib52) 2018; 353 Jiao, Zhang, Meng, Li, Liu, Luo, Gao (bib106) 2018 Ishida, Ichihara, Wang, Kiwada (bib63) 2006; 115 Gordon, Tajuddin, Guitart, Kuzel, Eramo, Vonroenn (bib62) 1995; 75 Peyret, Gehin, Thuenemann, Blond, El Turabi, Beales, Clarke, Gilbert, Fry, Stuart (bib117) 2015; 10 Sehlstedt, Kim, Carter, Goodisman, Vollano, Norden, Dabrowiak (bib123) 1994; 33 Bose, Paulmurugan, Moon, Lee, Park (bib97) 2018; 23 Ibrahim, Sabouni, Husseini (bib178) 2017; 24 Desiraju (bib162) 2007; 46 Allen, Hansen, Martin, Redemann, Yau-Young (bib60) 1991; 1066 Lee, Lee, Kim (bib124) 2016; 106 Jiang, Lilge, Grenier, Li, Wilson, Chopp (bib45) 1998; 22 Calvo, Remuñán-López, Vila-Jato, Alonso (bib12) 1997; 63 Shi, Liu, Liu, Sun, Chang, Zhao, Hu, Pang (bib156) 2019; 11 Zhan, Wang, McAlvin, Guo, Timko, Santamaria, Kohane (bib46) 2015; 16 Ng, Takada, Jin, Zheng (bib69) 2015; 26 Phelps, Dang, Rasochova (bib118) 2007; 141 Liang, Li, Yue, Dai (bib67) 2011; 50 Takeuchi, Kurohane, Ichikawa, Yonezawa, Ori, Koishi, Nango, Oku (bib56) 2003; 14 Sonabend, Ulasov, Tyler, Rivera, Mathis, Lesniak (bib130) 2008; 26 Jing, Liang, Li, Lin, Yang, Yue, Dai (bib42) 2014; 4 Lajevardi, Tavakkoli Yaraki, Masjedi, Nouri, Hossaini Sadr (bib152) 2019; 276 Couvreur, Tulkenst, Roland, Trouet, Speiser (bib7) 1977; 84 Biesaga, Pyrzyńska, Trojanowicz (bib25) 2000; 51 Smith, Hawes, Bundy ( 10.1016/j.biomaterials.2019.119707_bib114 Rowsell (10.1016/j.biomaterials.2019.119707_bib151) 2004; 73 Calvo (10.1016/j.biomaterials.2019.119707_bib12) 1997; 63 Liang (10.1016/j.biomaterials.2019.119707_bib67) 2011; 50 Kidd (10.1016/j.biomaterials.2019.119707_bib132) 2009; 27 Nathan (10.1016/j.biomaterials.2019.119707_bib96) 2016; 15 Cooper (10.1016/j.biomaterials.2019.119707_bib101) 2000 Yue (10.1016/j.biomaterials.2019.119707_bib66) 2014; 207 Lin (10.1016/j.biomaterials.2019.119707_bib157) 2017; 139 Nakamura (10.1016/j.biomaterials.2019.119707_bib167) 2007; 36 Birrenbach (10.1016/j.biomaterials.2019.119707_bib1) 1976; 65 O'Neal (10.1016/j.biomaterials.2019.119707_bib73) 2004; 209 Couvreur (10.1016/j.biomaterials.2019.119707_bib7) 1977; 84 Couvreur (10.1016/j.biomaterials.2019.119707_bib9) 1979; 31 Ehlerding (10.1016/j.biomaterials.2019.119707_bib68) 2016; 3 Beletskaya (10.1016/j.biomaterials.2019.119707_bib166) 2009; 109 Imran (10.1016/j.biomaterials.2019.119707_bib23) 2018; 8 Lash (10.1016/j.biomaterials.2019.119707_bib20) 2011; 15 Van Veen (10.1016/j.biomaterials.2019.119707_bib139) 1981; 85 Skupin-Mrugalska (10.1016/j.biomaterials.2019.119707_bib52) 2018; 353 Chen (10.1016/j.biomaterials.2019.119707_bib194) 2006; 6 Schwarz (10.1016/j.biomaterials.2019.119707_bib113) 2017 Chang (10.1016/j.biomaterials.2019.119707_bib144) 2016; 17 Lázaro (10.1016/j.biomaterials.2019.119707_bib181) 2017; 2 Ziegler (10.1016/j.biomaterials.2019.119707_bib105) 2014; 9 Li (10.1016/j.biomaterials.2019.119707_bib112) 2017; 11 Fan (10.1016/j.biomaterials.2019.119707_bib50) 2017; 117 Ghosh (10.1016/j.biomaterials.2019.119707_bib44) 2019; 218 Della Rocca (10.1016/j.biomaterials.2019.119707_bib174) 2011; 44 Wang (10.1016/j.biomaterials.2019.119707_bib127) 2013; 3 Illum (10.1016/j.biomaterials.2019.119707_bib13) 1984; 230 Carter (10.1016/j.biomaterials.2019.119707_bib94) 2014; 5 Luo (10.1016/j.biomaterials.2019.119707_bib27) 2011; 32 Huynh (10.1016/j.biomaterials.2019.119707_bib88) 2012; 134 Xing (10.1016/j.biomaterials.2019.119707_bib143) 2011; 21 Calik (10.1016/j.biomaterials.2019.119707_bib183) 2016; 138 Sun (10.1016/j.biomaterials.2019.119707_bib164) 2002; 99 Lajevardi (10.1016/j.biomaterials.2019.119707_bib147) 2018; 42 Nasseri (10.1016/j.biomaterials.2019.119707_bib5) 2018 Barenholz (10.1016/j.biomaterials.2019.119707_bib48) 2012; 160 Côté (10.1016/j.biomaterials.2019.119707_bib148) 2005; 310 Ghasemi (10.1016/j.biomaterials.2019.119707_bib6) 2018; 143 Luksiene (10.1016/j.biomaterials.2019.119707_bib196) 2006; 235 Zhan (10.1016/j.biomaterials.2019.119707_bib46) 2015; 16 Kievit (10.1016/j.biomaterials.2019.119707_bib108) 2011; 23 Ricchelli (10.1016/j.biomaterials.2019.119707_bib51) 1991; 1065 Zenkevich (10.1016/j.biomaterials.2019.119707_bib90) 1996; 33 Lovell (10.1016/j.biomaterials.2019.119707_bib71) 2011; 10 Castaldo (10.1016/j.biomaterials.2019.119707_bib153) 2019 Zhou (10.1016/j.biomaterials.2019.119707_bib180) 2018; 10 Huang (10.1016/j.biomaterials.2019.119707_bib74) 2006; 128 Petre (10.1016/j.biomaterials.2019.119707_bib49) 2007; 2 Peer (10.1016/j.biomaterials.2019.119707_bib84) 2007; 2 Wang (10.1016/j.biomaterials.2019.119707_bib76) 2009; 3 Tao (10.1016/j.biomaterials.2019.119707_bib155) 2018; 28 Comellas-Aragones (10.1016/j.biomaterials.2019.119707_bib120) 2009; 10 Ishida (10.1016/j.biomaterials.2019.119707_bib63) 2006; 115 Yguerabide (10.1016/j.biomaterials.2019.119707_bib80) 1998; 262 Andaloussi (10.1016/j.biomaterials.2019.119707_bib135) 2013; 12 Desiraju (10.1016/j.biomaterials.2019.119707_bib162) 2007; 46 Pandey (10.1016/j.biomaterials.2019.119707_bib201) 2012; 16 Wu (10.1016/j.biomaterials.2019.119707_bib141) 2017; 2 Thariat (10.1016/j.biomaterials.2019.119707_bib193) 2013; 10 Zhou (10.1016/j.biomaterials.2019.119707_bib30) 2016; 8 Liu (10.1016/j.biomaterials.2019.119707_bib158) 2019; 7 Hu (10.1016/j.biomaterials.2019.119707_bib121) 2008; 94 Song (10.1016/j.biomaterials.2019.119707_bib190) 2015; 11 Vader (10.1016/j.biomaterials.2019.119707_bib122) 2016; 106 Ghafelehbashi (10.1016/j.biomaterials.2019.119707_bib85) 2019; 569 Ahmadi (10.1016/j.biomaterials.2019.119707_bib14) 2018; 15 Morris (10.1016/j.biomaterials.2019.119707_bib39) 2012; 51 Choi (10.1016/j.biomaterials.2019.119707_bib163) 2008; 48 Biesaga (10.1016/j.biomaterials.2019.119707_bib25) 2000; 51 Vakoc (10.1016/j.biomaterials.2019.119707_bib77) 2009; 15 Fuhrmann (10.1016/j.biomaterials.2019.119707_bib138) 2015; 205 Dawidczyk (10.1016/j.biomaterials.2019.119707_bib18) 2014; 187 Vader (10.1016/j.biomaterials.2019.119707_bib137) 2016; 106 Lu (10.1016/j.biomaterials.2019.119707_bib172) 2016; 138 Popovich (10.1016/j.biomaterials.2019.119707_bib41) 2018; 179 Jin (10.1016/j.biomaterials.2019.119707_bib91) 2014; 3 Lan (10.1016/j.biomaterials.2019.119707_bib197) 2018; 140 Vafajoo (10.1016/j.biomaterials.2019.119707_bib4) 2018; 1032 Lindig (10.1016/j.biomaterials.2019.119707_bib31) 1980; 102 Dolmans (10.1016/j.biomaterials.2019.119707_bib72) 2003; 3 Yang (10.1016/j.biomaterials.2019.119707_bib24) 2019; 44 Lee (10.1016/j.biomaterials.2019.119707_bib124) 2016; 106 Ren (10.1016/j.biomaterials.2019.119707_bib131) 2009; 30 Bera (10.1016/j.biomaterials.2019.119707_bib192) 2018; 3 Chowdhury (10.1016/j.biomaterials.2019.119707_bib107) 2016; 84 Raposo (10.1016/j.biomaterials.2019.119707_bib136) 2013; 200 Finikova (10.1016/j.biomaterials.2019.119707_bib57) 2003; 125 Yoshida (10.1016/j.biomaterials.2019.119707_bib103) 1972; 1 Wu (10.1016/j.biomaterials.2019.119707_bib176) 2017; 29 Aggad (10.1016/j.biomaterials.2019.119707_bib35) 2018; 4 Puri (10.1016/j.biomaterials.2019.119707_bib59) 2009; 26 Fang (10.1016/j.biomaterials.2019.119707_bib111) 2018 Varchi (10.1016/j.biomaterials.2019.119707_bib199) 2015; 10 Wang (10.1016/j.biomaterials.2019.119707_bib171) 2018; 6 Jiao (10.1016/j.biomaterials.2019.119707_bib106) 2018 Managa (10.1016/j.biomaterials.2019.119707_bib55) 2018; 148 Mauriello-Jimenez (10.1016/j.biomaterials.2019.119707_bib43) 2015; 3 Dolphin (10.1016/j.biomaterials.2019.119707_bib21) 2012 Wei (10.1016/j.biomaterials.2019.119707_bib159) 2013; 2 Wang (10.1016/j.biomaterials.2019.119707_bib165) 2011; 133 Li (10.1016/j.biomaterials.2019.119707_bib109) 2017; 142 Huynh (10.1016/j.biomaterials.2019.119707_bib93) 2015; 10 Penon (10.1016/j.biomaterials.2019.119707_bib32) 2016; 462 Zhu (10.1016/j.biomaterials.2019.119707_bib128) 2011; 32 Marty (10.1016/j.biomaterials.2019.119707_bib8) 1978; 53 Weissleder (10.1016/j.biomaterials.2019.119707_bib78) 2008; 452 Duchi (10.1016/j.biomaterials.2019.119707_bib134) 2013; 168 Yu (10.1016/j.biomaterials.2019.119707_bib160) 2019; 58 Biswas (10.1016/j.biomaterials.2019.119707_bib33) 2011; 28 Gandra (10.1016/j.biomaterials.2019.119707_bib129) 2013; 52 Yin (10.1016/j.biomaterials.2019.119707_bib115) 2014; 15 Czapar (10.1016/j.biomaterials.2019.119707_bib119) 2017; 38 Wu (10.1016/j.biomaterials.2019.119707_bib140) 2018; 4 James (10.1016/j.biomaterials.2019.119707_bib150) 2003; 32 Siekmann (10.1016/j.biomaterials.2019.119707_bib11) 1992; 1 Drain (10.1016/j.biomaterials.2019.119707_bib86) 2009; 109 Phelps (10.1016/j.biomaterials.2019.119707_bib118) 2007; 141 Moulton (10.1016/j.biomaterials.2019.119707_bib161) 2001; 101 Masarapu (10.1016/j.biomaterials.2019.119707_bib125) 2017; 18 Park (10.1016/j.biomaterials.2019.119707_bib36) 2016; 138 Gordon (10.1016/j.biomaterials.2019.119707_bib62) 1995; 75 Lerouge (10.1016/j.biomaterials.2019.119707_bib34) 2007 Wang (10.1016/j.biomaterials.2019.119707_bib168) 2013; 19 Rezayat (10.1016/j.biomaterials.2019.119707_bib102) 2009; 44 Zheng (10.1016/j.biomaterials.2019.119707_bib179) 2017; 29 Schaue (10.1016/j.biomaterials.2019.119707_bib195) 2015; 12 Lewinski (10.1016/j.biomaterials.2019.119707_bib82) 2008; 4 Dong (10.1016/j.biomaterials.2019.119707_bib188) 2016; 8 Kim (10.1016/j.biomaterials.2019.119707_bib87) 2004; 37 Penon (10.1016/j.biomaterials.2019.119707_bib40) 2017; 496 Allen (10.1016/j.biomaterials.2019.119707_bib60) 1991; 1066 Hiraka (10.1016/j.biomaterials.2019.119707_bib54) 2008; 67 Guo (10.1016/j.biomaterials.2019.119707_bib145) 2016; 12 Kubát (10.1016/j.biomaterials.2019.119707_bib89) 1996; 96 Hirohashi (10.1016/j.biomaterials.2019.119707_bib104) 2003; 94 Wang (10.1016/j.biomaterials.2019.119707_bib173) 2013; 135 Zhu (10.1016/j.biomaterials.2019.119707_bib191) 2016; 23 Horcajada (10.1016/j.biomaterials.2019.119707_bib177) 2012; 112 Jiang (10.1016/j.biomaterials.2019.119707_bib45) 1998; 22 Celli (10.1016/j.biomaterials.2019.119707_bib29) 2010; 110 Couvreur (10.1016/j.biomaterials.2019.119707_bib15) 2013; 65 Feng (10.1016/j.biomaterials.2019.119707_bib37) 2013; 135 Luo (10.1016/j.biomaterials.2019.119707_bib146) 2017; 55 Ni (10.1016/j.biomaterials.2019.119707_bib198) 2018; 9 Gurny (10.1016/j.biomaterials.2019.119707_bib10) 1981; 7 Dong (10.1016/j.biomaterials.2019.119707_bib187) 2016; 61 Cui (10.1016/j.biomaterials.2019.119707_bib92) 2015; 9 Rhee (10.1016/j.biomaterials.2019.119707_bib126) 2012; 13 Sehlstedt (10.1016/j.biomaterials.2019.119707_bib123) 1994; 33 Gao (10.1016/j.biomaterials.2019.119707_bib169) 2014; 43 Ghosh (10.1016/j.biomaterials.2019.119707_bib81) 2008; 60 Cao (10.1016/j.biomaterials.2019.119707_bib61) 2010; 46 Ng (10.1016/j.biomaterials.2019.119707_bib69) 2015; 26 Zhai (10.1016/j.biomaterials.2019.119707_bib100) 2017; 7 Merino (10.1016/j.biomaterials.2019.119707_bib154) 2015; 9 Lu (10.1016/j.biomaterials.2019.119707_bib170) 2014; 136 Feng (10.1016/j.biomaterials.2019.119707_bib38) 2012; 51 Farjadian (10.1016/j.biomaterials.2019.119707_bib3) 2018; 36 Shi (10.1016/j.biomaterials.2019.119707_bib156) 2019; 11 Rabiee (10.1016/j.biomaterials.2019.119707_bib2) 2018; 1 Xu (10.1016/j.biomaterials.2019.119707_bib95) 2015; 7 Wang (10.1016/j.biomaterials.2019.119707_bib182) 2016; 28 Liang (10.1016/j.biomaterials.2019.119707_bib58) 2014; 35 Phan (10.1016/j.biomaterials.2019.119707_bib110) 2014; 11 Guo (10.1016/j.biomaterials.2019.119707_bib189) 2016; 4 Klostranec (10.1016/j.biomaterials.2019.119707_bib79) 2006; 18 Dai (10.1016/j.biomaterials.2019.119707_bib64) 2016 Bose (10.1016/j.biomaterials.2019.119707_bib97) 2018; 23 Smith (10.1016/j.biomaterials.2019.119707_bib116) |
References_xml | – volume: 51 start-page: 209 year: 2000 end-page: 224 ident: bib25 article-title: Porphyrins in analytical chemistry publication-title: A Rev. Talanta – volume: 44 start-page: 1554 year: 2009 end-page: 1569 ident: bib102 article-title: The porphyrin–fullerene nanoparticles to promote the ATP overproduction in myocardium: 25Mg2+-magnetic isotope effect publication-title: Eur. J. Med. Chem. – volume: 7 start-page: 17371 year: 2015 end-page: 17380 ident: bib95 article-title: Imaging-guided drug release from glutathione-responsive supramolecular porphysome nanovesicles publication-title: ACS Appl. Mater. Interfaces – start-page: 1553 year: 2007 end-page: 1555 ident: bib34 article-title: Self-organization of porphyrin units induced by magnetic field during sol–gel polymerization publication-title: Chem. Commun. – volume: 38 start-page: 108 year: 2017 end-page: 116 ident: bib119 article-title: Plant viruses and bacteriophages for drug delivery in medicine and biotechnology publication-title: Curr. Opin. Chem. Biol. – volume: 21 start-page: 4058 year: 2011 end-page: 4067 ident: bib143 article-title: Design guidelines for conjugated polymers with light-activated anticancer activity publication-title: Adv. Funct. Mater. – volume: 24 start-page: 641 year: 2017 end-page: 650 ident: bib186 article-title: Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer (II): doxorubicin loaded hydrogel as a dual fluorescent drug delivery system for simultaneous imaging tracking in vivo publication-title: Drug Deliv. – volume: 276 start-page: 371 year: 2019 end-page: 378 ident: bib152 article-title: Green synthesis of MOF@Ag nanocomposites for catalytic reduction of methylene blue publication-title: J. Mol. Liq. – volume: 7 start-page: 5153 year: 2019 end-page: 5172 ident: bib158 article-title: Covalent triazine frameworks: synthesis and applications publication-title: J. Mater. Chem. A – volume: 135 start-page: 13222 year: 2013 end-page: 13234 ident: bib173 article-title: Metal–organic frameworks as A tunable platform for designing functional molecular materials publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 16712 year: 2014 end-page: 16715 ident: bib170 article-title: Nanoscale metal–organic framework for highly effective photodynamic therapy of resistant head and neck cancer publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 1630 year: 2009 end-page: 1658 ident: bib86 article-title: Self-organized porphyrinic materials publication-title: Chem. Rev. – volume: 51 start-page: 6443 year: 2012 end-page: 6445 ident: bib39 article-title: Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks publication-title: Inorg. Chem. – volume: 30 start-page: 1036 year: 2009 end-page: 1044 ident: bib131 article-title: In vitro behavior of neural stem cells in response to different chemical functional groups publication-title: Biomaterials – volume: 135 start-page: 17105 year: 2013 end-page: 17110 ident: bib37 article-title: Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination publication-title: J. Am. Chem. Soc. – year: 2012 ident: bib21 article-title: The Porphyrins V5: Physical Chemistry – volume: 84 start-page: 291 year: 2016 end-page: 304 ident: bib107 article-title: Cancer nanotheranostics: strategies, promises and impediments publication-title: Biomed. Pharmacother. – volume: 101 start-page: 1629 year: 2001 end-page: 1658 ident: bib161 article-title: From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids publication-title: Chem. Rev. – volume: 15 start-page: 1093 year: 2011 end-page: 1115 ident: bib20 article-title: Origin of aromatic character in porphyrinoid systems publication-title: J. Porphyr. Phthalocyanines – start-page: 1706759 year: 2018 ident: bib111 article-title: Cell membrane coating nanotechnology publication-title: Adv. Mater. – volume: 4 start-page: 858 year: 2014 ident: bib42 article-title: Mn-porphyrin conjugated Au nanoshells encapsulating doxorubicin for potential magnetic resonance imaging and light triggered synergistic therapy of cancer publication-title: Theranostics – volume: 31 start-page: 331 year: 1979 end-page: 332 ident: bib9 article-title: Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties publication-title: J. Pharm. Pharmacol. – volume: 32 start-page: 4744 year: 2011 end-page: 4752 ident: bib128 article-title: Controlled growth and differentiation of MSCs on grooved films assembled from monodisperse biological nanofibers with genetically tunable surface chemistries publication-title: Biomaterials – volume: 48 start-page: 426 year: 2008 end-page: 428 ident: bib163 article-title: Pillared porphyrin homologous series: intergrowth in Metal− organic frameworks publication-title: Inorg. Chem. – volume: 33 start-page: 171 year: 1996 end-page: 180 ident: bib90 article-title: Photophysical and photochemical properties of potential porphyrin and chlorin photosensitizers for PDT publication-title: J. Photochem. Photobiol. B Biol. – volume: 106 start-page: 148 year: 2016 end-page: 156 ident: bib122 article-title: Extracellular vesicles for drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 569 start-page: 118580 year: 2019 ident: bib85 article-title: Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes publication-title: Int. J. Pharm. – volume: 142 start-page: 149 year: 2017 end-page: 161 ident: bib109 article-title: Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy publication-title: Biomaterials – volume: 6 start-page: 707 year: 2018 end-page: 717 ident: bib171 article-title: Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise publication-title: J. Mater. Chem. B – volume: 10 start-page: 3483 year: 2015 end-page: 3494 ident: bib199 article-title: Engineered porphyrin loaded core-shell nanoparticles for selective sonodynamic anticancer treatment publication-title: Nanomedicine – volume: 128 start-page: 2115 year: 2006 end-page: 2120 ident: bib74 article-title: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 735 year: 2004 end-page: 745 ident: bib87 article-title: Directly linked porphyrin arrays with tunable excitonic interactions publication-title: Acc. Chem. Res. – volume: 16 start-page: 1055 year: 2012 end-page: 1058 ident: bib201 article-title: Porphyrin aggregates in the form of nanofibers and their unusual aggregation induced emission publication-title: J. Porphyr. Phthalocyanines – volume: 16 start-page: 177 year: 2015 end-page: 181 ident: bib46 article-title: Phototriggered local anesthesia publication-title: Nano Lett. – volume: 29 start-page: 1606134 year: 2017 ident: bib176 article-title: Metal–organic framework (MOF)-Based drug/cargo delivery and cancer therapy publication-title: Adv. Mater. – volume: 8 start-page: 12394 year: 2016 end-page: 12405 ident: bib30 article-title: Porphyrin-loaded nanoparticles for cancer theranostics publication-title: Nanoscale – volume: 168 start-page: 225 year: 2013 end-page: 237 ident: bib134 article-title: Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: effective photoinduced in vitro killing of osteosarcoma publication-title: J. Control. Release – volume: 12 start-page: 6243 year: 2016 end-page: 6254 ident: bib145 article-title: A porphyrin-based conjugated polymer for highly efficient in vitro and in vivo photothermal therapy publication-title: Small – volume: 84 start-page: 323 year: 1977 end-page: 326 ident: bib7 article-title: Nanocapsules: a new type of lysosomotropic carrier publication-title: FEBS Lett. – volume: 1032 start-page: 1 year: 2018 end-page: 17 ident: bib4 article-title: Early diagnosis of disease using microbead array technology: a review publication-title: Anal. Chim. Acta – volume: 99 start-page: 5088 year: 2002 end-page: 5092 ident: bib164 article-title: Extending supramolecular fullerene-porphyrin chemistry to pillared metal-organic frameworks publication-title: Proc. Natl. Acad. Sci. – volume: 179 start-page: 149 year: 2018 end-page: 155 ident: bib41 article-title: LuAG: Pr3+-porphyrin based nanohybrid system for singlet oxygen production: toward the next generation of PDTX drugs publication-title: J. Photochem. Photobiol. B Biol. – volume: 30 start-page: 504 year: 2009 end-page: 508 ident: bib142 article-title: Enhanced one- and two-photon excitation emission of a porphyrin photosensitizer by FRET from a conjugated polyelectrolyte, macromol publication-title: Rapid Commun – volume: 5 start-page: 3546 year: 2014 ident: bib94 article-title: Porphyrin–phospholipid liposomes permeabilized by near-infrared light publication-title: Nat. Commun. – volume: 125 start-page: 4882 year: 2003 end-page: 4893 ident: bib57 article-title: Porphyrin and tetrabenzoporphyrin dendrimers: tunable membrane-impermeable fluorescent pH nanosensors publication-title: J. Am. Chem. Soc. – start-page: 1 year: 2017 end-page: 60 ident: bib113 article-title: Biomedical and catalytic opportunities of virus-like particles in nanotechnology publication-title: Adv. Virus Res. – volume: 141 start-page: 146 year: 2007 end-page: 153 ident: bib118 article-title: Inactivation and purification of cowpea mosaic virus-like particles displaying peptide antigens from Bacillus anthracis publication-title: J. Virol Methods – volume: 94 start-page: 1428 year: 2008 end-page: 1436 ident: bib121 article-title: Packaging of a polymer by a viral capsid: the interplay between polymer length and capsid size publication-title: Biophys. J. – volume: 19 start-page: 3297 year: 2013 end-page: 3301 ident: bib168 article-title: formation of a metalloporphyrin‐based nanoreactor by postsynthetic metal–ion exchange of a polyhedral‐cage containing a metal–metalloporphyrin framework publication-title: Chem.–A Eur. J. – volume: 3 start-page: 3681 year: 2015 end-page: 3684 ident: bib43 article-title: Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery publication-title: J. Mater. Chem. B – volume: 8 start-page: 95 year: 2018 ident: bib23 article-title: Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging publication-title: Biosensors – volume: 138 start-page: 1234 year: 2016 end-page: 1239 ident: bib183 article-title: From highly crystalline to outer surface-functionalized covalent organic Frameworks A modulation approach publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 1804901 year: 2018 ident: bib155 article-title: Covalent organic polymers based on fluorinated porphyrin as oxygen nanoshuttles for tumor hypoxia relief and enhanced photodynamic therapy publication-title: Adv. Funct. Mater. – volume: 36 start-page: 831 year: 2007 end-page: 845 ident: bib167 article-title: Cyclic porphyrin arrays as artificial photosynthetic antenna: synthesis and excitation energy transfer publication-title: Chem. Soc. Rev. – volume: 207 start-page: 32 year: 2014 end-page: 42 ident: bib66 article-title: Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers publication-title: Adv. Colloid Interface Sci. – volume: 187 start-page: 133 year: 2014 end-page: 144 ident: bib18 article-title: State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines publication-title: J. Control. Release – volume: 496 start-page: 100 year: 2017 end-page: 110 ident: bib40 article-title: Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 1 year: 2014 ident: bib110 article-title: Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies publication-title: Cancer Biol. Med. – volume: 3 start-page: 1242 year: 2013 ident: bib127 article-title: Virus activated artificial ECM induces the osteoblastic differentiation of mesenchymal stem cells without osteogenic supplements publication-title: Sci. Rep. – volume: 102 start-page: 5590 year: 1980 end-page: 5593 ident: bib31 article-title: Determination of the lifetime of singlet oxygen in water-d2 using 9, 10-anthracenedipropionic acid, a water-soluble probe publication-title: J. Am. Chem. Soc. – volume: 310 start-page: 1166 year: 2005 end-page: 1170 ident: bib148 article-title: Porous, crystalline, covalent organic frameworks publication-title: Science – volume: 32 start-page: 7127 year: 2011 end-page: 7138 ident: bib27 article-title: A review of NIR dyes in cancer targeting and imaging publication-title: Biomaterials – volume: 8 start-page: 5104 year: 2016 end-page: 5113 ident: bib188 article-title: Real-time fluorescence tracking of protoporphyrin incorporated thermosensitive hydrogel and its drug release in vivo publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 4690 year: 2016 end-page: 4695 ident: bib189 article-title: Decoration of porphyrin with tetraphenylethene: converting a fluorophore with aggregation-caused quenching to aggregation-induced emission enhancement publication-title: J. Mater. Chem. B – volume: 462 start-page: 154 year: 2016 end-page: 165 ident: bib32 article-title: Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy publication-title: J. Colloid Interface Sci. – volume: 50 start-page: 11622 year: 2011 end-page: 11627 ident: bib67 article-title: Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer publication-title: Angew. Chem. Int. Ed. – volume: 110 start-page: 2795 year: 2010 end-page: 2838 ident: bib29 article-title: Imaging and photodynamic therapy: mechanisms, monitoring, and optimization publication-title: Chem. Rev. – volume: 44 start-page: 189 year: 2019 end-page: 194 ident: bib24 article-title: Porphyrin-based nanocomposites for tumor photodynamic therapy publication-title: MRS Bull. – volume: 27 start-page: 2614 year: 2009 end-page: 2623 ident: bib132 article-title: Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging publication-title: Stem Cells – volume: 106 start-page: 157 year: 2016 end-page: 171 ident: bib124 article-title: Bioengineered protein-based nanocage for drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 15 start-page: 1476 year: 2016 end-page: 1483 ident: bib96 article-title: A novel photosensitizer: an l-glutamide lipid conjugate with improved properties for photodynamic therapy publication-title: Photochem. Photobiol. Sci. – volume: 65 start-page: 1763 year: 1976 end-page: 1766 ident: bib1 article-title: Polymerized micelles and their use as adjuvants in immunology publication-title: J. Pharm. Sci. – volume: 85 start-page: 693 year: 1981 end-page: 700 ident: bib139 article-title: Oxygen reduction on transition‐metal porphyrins in acid electrolyte I. Activity publication-title: Ber. Bunsen Ges. Phys. Chem. – volume: 1066 start-page: 29 year: 1991 end-page: 36 ident: bib60 article-title: Liposomes containing synthetic lipid derivatives of poly (ethylene glycol) show prolonged circulation half-lives in vivo publication-title: Biochim. Biophys. Acta Biomembr. – volume: 65 start-page: 21 year: 2013 end-page: 23 ident: bib15 article-title: Nanoparticles in drug delivery: past, present and future publication-title: Adv. Drug Deliv. Rev. – volume: 117 start-page: 13566 year: 2017 end-page: 13638 ident: bib50 article-title: Nanotechnology for multimodal synergistic cancer therapy publication-title: Chem. Rev. – year: 2018 ident: bib5 article-title: Point-of-care Microfluidic Devices for Pathogen Detection – volume: 96 start-page: 93 year: 1996 end-page: 97 ident: bib89 article-title: Photophysical properties of metal complexes of meso-tetrakis (4-sulphonatophenyl) porphyrin publication-title: J. Photochem. Photobiol. A Chem. – volume: 9 start-page: 4484 year: 2015 end-page: 4495 ident: bib92 article-title: A PEGylation-free biomimetic porphyrin nanoplatform for personalized cancer theranostics publication-title: ACS Nano – volume: 106 start-page: 148 year: 2016 end-page: 156 ident: bib137 publication-title: Extracell. Vesicles Drug Deliv. – volume: 24 start-page: 620 year: 2013 end-page: 626 ident: bib116 article-title: Reengineering viruses and virus-like particles through chemical functionalization strategies publication-title: Curr. Opin. Biotechnol. – volume: 24 start-page: 19 year: 1995 end-page: 33 ident: bib28 article-title: Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy publication-title: Chem. Soc. Rev. – volume: 15 start-page: 541 year: 2014 ident: bib115 article-title: Non-viral vectors for gene-based therapy publication-title: Nat. Rev. Genet. – volume: 13 start-page: 2333 year: 2012 end-page: 2338 ident: bib126 article-title: Glycan-targeted virus-like nanoparticles for photodynamic therapy publication-title: Biomacromolecules – volume: 1 start-page: 123 year: 1992 end-page: 126 ident: bib11 article-title: Submicron-sized parenteral carrier systems based on solid lipids publication-title: Pharm. Pharmacol. Lett. – volume: 17 start-page: 2128 year: 2016 end-page: 2136 ident: bib144 article-title: Incorporation of porphyrin to π-conjugated backbone for polymer-dot-sensitized photodynamic therapy publication-title: Biomacromolecules – volume: 43 start-page: 221 year: 2014 end-page: 230 ident: bib185 article-title: Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG–PCL copolymer: preparation, characterization and fluorescence imaging in vivo publication-title: Mater. Sci. Eng. C – volume: 22 start-page: 74 year: 1998 end-page: 80 ident: bib45 article-title: Photodynamic therapy of U87 human glioma in nude rat using liposome‐delivered photofrin publication-title: Lasers Surg. Med.: Off. J. Am. Soc. Laser Med. Surg. – volume: 52 start-page: 11278 year: 2013 end-page: 11281 ident: bib129 article-title: Virus-mimetic cytoplasm-cleavable magnetic/silica nanoclusters for enhanced gene delivery to mesenchymal stem cells publication-title: Angew. Chem. Int. Ed. – volume: 85 start-page: 705 year: 2009 end-page: 713 ident: bib53 article-title: Photoinduced nitric oxide and singlet oxygen release from ZnPC liposome vehicle associated with the nitrosyl ruthenium complex: synergistic effects in photodynamic therapy application publication-title: Photochem. Photobiol. – volume: 7 start-page: 2575 year: 2017 ident: bib100 article-title: Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy publication-title: Theranostics – volume: 2 start-page: 760 year: 2017 end-page: 790 ident: bib141 article-title: Conjugated-polymer-Amplified sensing, imaging, and therapy publication-title: Chem – volume: 3 start-page: 503 year: 2009 ident: bib76 article-title: Multiscale photoacoustic microscopy and computed tomography publication-title: Nat. Photonics – volume: 205 start-page: 35 year: 2015 end-page: 44 ident: bib138 article-title: Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins publication-title: J. Control. Release – volume: 15 start-page: 309 year: 2018 end-page: 313 ident: bib14 article-title: Application of aptamer-based hybrid molecules in early diagnosis and treatment of diabetes mellitus: from the concepts toward the future publication-title: Curr. Diabetes Rev. – volume: 1065 start-page: 42 year: 1991 end-page: 48 ident: bib51 article-title: Liposomes as models to study the distribution of porphyrins in cell membranes publication-title: Biochim. Biophys. Acta Biomembr. – volume: 230 start-page: 733 year: 1984 end-page: 736 ident: bib13 article-title: Tissue distribution of poly (hexyl 2-cyanoacrylate) nanoparticles coated with monoclonal antibodies in mice bearing human tumor xenografts publication-title: J. Pharmacol. Exp. Ther. – volume: 75 start-page: 2169 year: 1995 end-page: 2173 ident: bib62 article-title: Hand‐foot syndrome associated with liposome‐encapsulated doxorubicin therapy publication-title: Cancer – volume: 311 start-page: 622 year: 2006 end-page: 627 ident: bib83 article-title: Toxic potential of materials at the nanolevel publication-title: Science – volume: 353 start-page: 445 year: 2018 end-page: 457 ident: bib52 article-title: Physicochemical properties of liposome-incorporated 2-(morpholin-4-yl) ethoxy phthalocyanines and their photodynamic activity against oral cancer cells publication-title: J. Photochem. Photobiol. A Chem. – volume: 61 start-page: 214 year: 2016 end-page: 219 ident: bib187 article-title: Fluorescent nanogel based on four-arm PEG–PCL copolymer with porphyrin core for bioimaging publication-title: Mater. Sci. Eng. C – volume: 2 start-page: 1128 year: 2013 end-page: 1136 ident: bib159 article-title: Effects of dislocation mechanics on diffusion-induced stresses within a spherical insertion particle electrode publication-title: J. Mater. Chem. – volume: 28 start-page: 1515 year: 2011 end-page: 1522 ident: bib33 article-title: Two-photon absorption enhancement of polymer-templated porphyrin-based J-aggregates publication-title: Langmuir – volume: 10 start-page: 324 year: 2011 ident: bib71 article-title: Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents publication-title: Nat. Mater. – volume: 43 start-page: 5841 year: 2014 end-page: 5866 ident: bib169 article-title: Metal–metalloporphyrin frameworks: a resurging class of functional materials publication-title: Chem. Soc. Rev. – volume: 209 start-page: 171 year: 2004 end-page: 176 ident: bib73 article-title: Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles publication-title: Cancer Lett. – volume: 18 start-page: 4141 year: 2017 end-page: 4153 ident: bib125 article-title: Physalis mottle virus-like particles as nanocarriers for imaging reagents and drugs publication-title: Biomacromolecules – volume: 53 start-page: 17 year: 1978 end-page: 23 ident: bib8 article-title: Nanoparticles-a new colloidal drug delivery system publication-title: Pharm. Acta Helv. – reference: V. Sansone, R. Frairia, M. Brañes, P. Romeo, M.G. Catalano, R.C. Applefield, Current Applications and Future Prospects of Extracorporeal Shockwave Therapy, Shockwave Medicine, Karger Publishers2018, pp. 140-157. – volume: 11 start-page: 7006 year: 2017 end-page: 7018 ident: bib112 article-title: Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy publication-title: ACS Nano – volume: 2 start-page: 751 year: 2007 ident: bib84 article-title: Nanocarriers as an emerging platform for cancer therapy publication-title: Nat. Nanotechnol. – volume: 9 start-page: 4686 year: 2015 end-page: 4697 ident: bib154 article-title: Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery publication-title: ACS Nano – volume: 36 start-page: 968 year: 2018 end-page: 985 ident: bib3 article-title: Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work? publication-title: Biotechnol. Adv. – volume: 14 start-page: 790 year: 2003 end-page: 796 ident: bib56 article-title: Polycation liposome enhances the endocytic uptake of photosensitizer into cells in the presence of serum publication-title: Bioconjug. Chem. – volume: 3 start-page: 4602 year: 2018 end-page: 4619 ident: bib192 article-title: Porphyrin–gold nanomaterial for efficient drug delivery to cancerous cells publication-title: ACS Omega – volume: 9 start-page: 4335 year: 2018 ident: bib184 article-title: A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy publication-title: Nat. Commun. – volume: 29 start-page: 2374 year: 2017 end-page: 2381 ident: bib179 article-title: Metal–organic framework@ porous organic polymer nanocomposite for photodynamic therapy publication-title: Chem. Mater. – volume: 12 start-page: 6145 year: 2014 end-page: 6150 ident: bib19 article-title: Deciphering aromaticity in porphyrinoids via adaptive natural density partitioning publication-title: Org. Biomol. Chem. – volume: 7 start-page: 1 year: 1981 end-page: 25 ident: bib10 article-title: Development of biodegradable and injectable latices for controlled release of potent drugs publication-title: Drug Dev. Ind. Pharm. – volume: 63 start-page: 125 year: 1997 end-page: 132 ident: bib12 article-title: Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers publication-title: J. Appl. Polym. Sci. – volume: 28 start-page: 23 year: 2016 end-page: 32 ident: bib98 article-title: Biointerfacing and applications of cell membrane-coated nanoparticles publication-title: Bioconjug. Chem. – start-page: 25 year: 2019 end-page: 47 ident: bib153 article-title: 2 - microporous organic polymer nanocomposites for adsorption applications publication-title: Composite Nanoadsorbents – volume: 58 start-page: 8799 year: 2019 end-page: 8803 ident: bib160 article-title: Porphyrin nanocage-embedded single-molecular nanoparticles for cancer nanotheranostics publication-title: Angew. Chem. Int. Ed. – volume: 33 start-page: 417 year: 1994 end-page: 426 ident: bib123 article-title: Interaction of cationic porphyrins with DNA publication-title: Biochemistry – volume: 12 start-page: 6243 year: 2016 end-page: 6254 ident: bib200 article-title: A porphyrin‐based conjugated polymer for highly efficient in vitro and in vivo photothermal therapy publication-title: Small – volume: 26 start-page: 4627 year: 2014 end-page: 4631 ident: bib133 article-title: Stem cells loaded with nanoparticles as a drug carrier for in vivo breast cancer therapy publication-title: Adv. Mater. – volume: 2 start-page: 43 year: 2017 end-page: 57 ident: bib16 article-title: Virus‐like particles: next‐generation nanoparticles for targeted therapeutic delivery publication-title: Bioeng. Transl. med. – volume: 94 start-page: 575 year: 2003 end-page: 581 ident: bib104 article-title: Cell adhesion system and human cancer morphogenesis publication-title: Cancer Sci. – volume: 4 start-page: 1937 year: 2018 end-page: 1951 ident: bib140 article-title: Polymerization-enhanced photosensitization publication-title: Chem – volume: 148 start-page: 405 year: 2018 end-page: 416 ident: bib55 article-title: Photophysical studies of graphene quantum dots-Pyrene-derivatized porphyrins conjugates when encapsulated within Pluronic F127 micelles publication-title: Dyes Pigments – volume: 26 start-page: 831 year: 2008 end-page: 841 ident: bib130 article-title: Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma publication-title: Stem Cells – volume: 35 start-page: 2818 year: 1996 end-page: 2823 ident: bib22 article-title: Structure of a DNA− porphyrin complex publication-title: Biochemistry – volume: 24 start-page: 193 year: 2017 end-page: 214 ident: bib178 article-title: Anti-cancer drug delivery using metal organic frameworks (MOFs) publication-title: Curr. Med. Chem. – volume: 26 year: 2009 ident: bib59 article-title: Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic publication-title: Crit. Rev. Ther. Drug Carrier Syst. – volume: 32 start-page: 276 year: 2003 end-page: 288 ident: bib150 article-title: Metal-organic frameworks publication-title: Chem. Soc. Rev. – volume: 11 start-page: 12321 year: 2019 end-page: 12326 ident: bib156 article-title: Facile fabrication of nanoscale porphyrinic covalent organic polymers for combined photodynamic and photothermal cancer therapy publication-title: ACS Appl. Mater. Interfaces – volume: 452 start-page: 580 year: 2008 ident: bib78 article-title: Imaging in the era of molecular oncology publication-title: Nature – volume: 23 year: 2011 ident: bib108 article-title: Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers publication-title: Adv. Mater. – volume: 10 start-page: 3141 year: 2009 end-page: 3147 ident: bib120 article-title: Controlled integration of polymers into viral capsids publication-title: Biomacromolecules – volume: 23 start-page: 891 year: 2018 end-page: 899 ident: bib97 article-title: Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics publication-title: Drug Discov. Today – volume: 112 start-page: 1232 year: 2012 end-page: 1268 ident: bib177 article-title: Metal–organic frameworks in biomedicine publication-title: Chem. Rev. – volume: 15 start-page: 1219 year: 2009 ident: bib77 article-title: Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging publication-title: Nat. Med. – volume: 9 year: 2014 ident: bib105 article-title: Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment publication-title: PLoS One – volume: 4 start-page: 46 year: 2018 end-page: 51 ident: bib35 article-title: Gemcitabine delivery and photodynamic therapy in cancer cells via porphyrin‐ethylene‐based periodic mesoporous organosilica nanoparticles publication-title: ChemNanoMat – volume: 40 start-page: 340 year: 2011 end-page: 362 ident: bib26 article-title: The role of porphyrin chemistry in tumor imaging and photodynamic therapy publication-title: Chem. Soc. Rev. – volume: 42 start-page: 9690 year: 2018 end-page: 9701 ident: bib147 article-title: A pH-responsive and magnetic Fe3O4@silica@MIL-100(Fe)/β-CD nanocomposite as a drug nanocarrier: loading and release study of cephalexin publication-title: New J. Chem. – volume: 7 start-page: 2541 year: 2013 end-page: 2550 ident: bib70 article-title: Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly publication-title: ACS Nano – volume: 160 start-page: 117 year: 2012 end-page: 134 ident: bib48 article-title: Doxil®—the first FDA-approved nano-drug: lessons learned publication-title: J. Control. Release – volume: 3 start-page: 380 year: 2003 ident: bib72 article-title: Photodynamic therapy for cancer publication-title: Nat. Rev. Cancer – volume: 28 start-page: 9320 year: 2016 end-page: 9325 ident: bib182 article-title: Nanoscale polymer metal–organic framework hybrids for effective photothermal therapy of colon cancers publication-title: Adv. Mater. – volume: 11 start-page: 40 year: 2015 end-page: 52 ident: bib190 article-title: Nanocomposite hydrogels and their applications in drug delivery and tissue engineering publication-title: J. Biomed. Nanotechnol. – volume: 115 start-page: 10938 year: 2015 end-page: 10966 ident: bib47 article-title: New developments in liposomal drug delivery publication-title: Chem. Rev. – volume: 109 start-page: 1659 year: 2009 end-page: 1713 ident: bib166 article-title: Supramolecular chemistry of metalloporphyrins publication-title: Chem. Rev. – volume: 44 start-page: 957 year: 2011 end-page: 968 ident: bib174 article-title: Nanoscale metal–organic frameworks for biomedical imaging and drug delivery publication-title: Acc. Chem. Res. – year: 2018 ident: bib106 article-title: Recent Advancements in Biocompatible Inorganic Nanoparticles towards Biomedical Applications – volume: 235 start-page: 40 year: 2006 end-page: 47 ident: bib196 article-title: Radiosensitization of tumours by porphyrins publication-title: Cancer Lett. – volume: 73 start-page: 3 year: 2004 end-page: 14 ident: bib151 article-title: Metal–organic frameworks: a new class of porous materials publication-title: Microporous Mesoporous Mater. – volume: 26 start-page: 345 year: 2015 end-page: 351 ident: bib69 article-title: Self-sensing porphysomes for fluorescence-guided photothermal therapy publication-title: Bioconjug. Chem. – volume: 262 start-page: 137 year: 1998 end-page: 156 ident: bib80 article-title: Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory publication-title: Anal. Biochem. – volume: 10 start-page: 52 year: 2013 end-page: 60 ident: bib193 article-title: Past, present, and future of radiotherapy for the benefit of patients publication-title: Nat. Rev. Clin. Oncol. – volume: 67 start-page: 54 year: 2008 end-page: 58 ident: bib54 article-title: Preparation of pH-sensitive liposomes retaining SOD mimic and their anticancer effect publication-title: Colloids Surfaces B Biointerfaces – volume: 46 start-page: 5265 year: 2010 end-page: 5267 ident: bib61 article-title: Stabilized liposomal nanohybrid cerasomes for drug delivery applications publication-title: Chem. Commun. – volume: 126 start-page: 734 year: 2019 end-page: 742 ident: bib149 article-title: Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell detection publication-title: Biosens. Bioelectron. – volume: 3 start-page: 1240 year: 2014 end-page: 1249 ident: bib91 article-title: Targeting‐triggered porphysome nanostructure disruption for activatable photodynamic therapy publication-title: Adv. Healthc. Mater. – volume: 200 start-page: 373 year: 2013 end-page: 383 ident: bib136 article-title: Extracellular vesicles: exosomes, microvesicles, and friends publication-title: J. Cell Biol. – volume: 2 start-page: 277 year: 2007 ident: bib49 article-title: Liposomal daunorubicin as treatment for Kaposi's sarcoma publication-title: Int. J. Nanomed. – volume: 138 start-page: 3518 year: 2016 end-page: 3525 ident: bib36 article-title: Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 12502 year: 2016 end-page: 12510 ident: bib172 article-title: Chlorin-based nanoscale metal–organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 3249 year: 2018 end-page: 3283 ident: bib6 article-title: Optical assays based on colloidal inorganic nanoparticles publication-title: Analyst – start-page: 22 year: 1996 end-page: 32 ident: bib75 article-title: Laser Optoacoustic Tomography for Medical Diagnostics: Principles, Biomedical Sensing, Imaging, and Tracking Technologies I – volume: 1 start-page: 401 year: 1972 end-page: 408 ident: bib103 article-title: Evidence for a receptor recognizing antigen complexed immunoglobulin on the surface of activated mouse thymus lymphocytes publication-title: Scand. J. Immunol. – volume: 140 start-page: 16971 year: 2018 end-page: 16975 ident: bib197 article-title: Nanoscale metal–organic layers for radiotherapy–radiodynamic therapy publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1159 year: 2006 end-page: 1166 ident: bib194 article-title: Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment publication-title: J. Nanosci. Nanotechnol. – volume: 115 start-page: 11079 year: 2015 end-page: 11108 ident: bib175 article-title: Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers publication-title: Chem. Rev. – volume: 23 start-page: 2820 year: 2016 end-page: 2826 ident: bib191 article-title: Visualized intravesical floating hydrogel encapsulating vaporized perfluoropentane for controlled drug release publication-title: Drug Deliv. – volume: 133 start-page: 16322 year: 2011 end-page: 16325 ident: bib165 article-title: Three-dimensional porous metal–metalloporphyrin framework consisting of nanoscopic polyhedral cages publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 10307 year: 2012 end-page: 10310 ident: bib38 article-title: Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 1303 year: 2016 end-page: 1312 ident: bib99 article-title: Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments publication-title: Drug Discov. Today – year: 2016 ident: bib64 article-title: Advances in Nanotheranostics – volume: 10 start-page: 1528 year: 2018 end-page: 1533 ident: bib180 article-title: High antimicrobial activity of metal–organic framework-templated porphyrin polymer thin films publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2016 ident: bib68 article-title: Biodegradable and renal clearable inorganic nanoparticles publication-title: Adv. Sci. – volume: 55 start-page: 2594 year: 2017 end-page: 2600 ident: bib146 article-title: Porphyrin‐based covalent triazine frameworks: porosity, adsorption performance, and drug delivery publication-title: J. Polym. Sci. A Polym. Chem. – volume: 10 start-page: 325 year: 2015 ident: bib93 article-title: In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging publication-title: Nat. Nanotechnol. – volume: 35 start-page: 6379 year: 2014 end-page: 6388 ident: bib58 article-title: Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy publication-title: Biomaterials – volume: 128 start-page: 3114 year: 2006 end-page: 3115 ident: bib65 article-title: Cerasome as an infusible, cell-friendly, and serum-compatible transfection agent in a viral size publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 347 year: 2013 ident: bib135 article-title: Extracellular vesicles: biology and emerging therapeutic opportunities publication-title: Nat. Rev. Drug Discov. – volume: 46 start-page: 8342 year: 2007 end-page: 8356 ident: bib162 article-title: Crystal engineering: a holistic view publication-title: Angew. Chem. Int. Ed. – volume: 139 start-page: 8705 year: 2017 end-page: 8709 ident: bib157 article-title: 3D porphyrin-based covalent organic frameworks publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 527 year: 2015 end-page: 540 ident: bib195 article-title: Opportunities and challenges of radiotherapy for treating cancer publication-title: Nat. Rev. Clin. Oncol. – volume: 218 start-page: 119341 year: 2019 ident: bib44 article-title: Liposomal formulations of photosensitizers publication-title: Biomaterials – volume: 4 start-page: 26 year: 2008 end-page: 49 ident: bib82 article-title: Cytotoxicity of nanoparticles publication-title: Small – volume: 60 start-page: 1307 year: 2008 end-page: 1315 ident: bib81 article-title: Gold nanoparticles in delivery applications publication-title: Adv. Drug Deliv. Rev. – volume: 134 start-page: 16464 year: 2012 end-page: 16467 ident: bib88 article-title: Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 561 year: 2017 end-page: 578 ident: bib181 article-title: Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery publication-title: Chem – volume: 1 start-page: 61 year: 2018 end-page: 70 ident: bib2 article-title: Ultra-sensitive electrochemical on-line determination of clarithromycin based on poly (L-Aspartic acid)/graphite oxide/pristine graphene/glassy carbon electrode publication-title: Asian J. Nanosci. Mater. – volume: 58 start-page: 8751 year: 2015 end-page: 8761 ident: bib17 article-title: Antibody–drug conjugates and small molecule–drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents publication-title: J. Med. Chem. – volume: 18 start-page: 1953 year: 2006 end-page: 1964 ident: bib79 article-title: Quantum dots in biological and biomedical research: recent progress and present challenges publication-title: Adv. Mater. – volume: 9 start-page: 4321 year: 2018 ident: bib198 article-title: Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy publication-title: Nat. Commun. – year: 2000 ident: bib101 article-title: The Cytoskeleton and Cell Movement, the Cell: a Molecular Approach – volume: 10 year: 2015 ident: bib117 article-title: Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins publication-title: PLoS One – volume: 115 start-page: 243 year: 2006 end-page: 250 ident: bib63 article-title: Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes publication-title: J. Control. Release – year: 2012 ident: 10.1016/j.biomaterials.2019.119707_bib21 – volume: 276 start-page: 371 year: 2019 ident: 10.1016/j.biomaterials.2019.119707_bib152 article-title: Green synthesis of MOF@Ag nanocomposites for catalytic reduction of methylene blue publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.12.002 – volume: 67 start-page: 54 issue: 1 year: 2008 ident: 10.1016/j.biomaterials.2019.119707_bib54 article-title: Preparation of pH-sensitive liposomes retaining SOD mimic and their anticancer effect publication-title: Colloids Surfaces B Biointerfaces doi: 10.1016/j.colsurfb.2008.07.014 – volume: 43 start-page: 221 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib185 article-title: Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG–PCL copolymer: preparation, characterization and fluorescence imaging in vivo publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.07.019 – volume: 8 start-page: 5104 issue: 8 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib188 article-title: Real-time fluorescence tracking of protoporphyrin incorporated thermosensitive hydrogel and its drug release in vivo publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11493 – volume: 179 start-page: 149 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib41 article-title: LuAG: Pr3+-porphyrin based nanohybrid system for singlet oxygen production: toward the next generation of PDTX drugs publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2018.01.015 – volume: 16 start-page: 1055 issue: 09 year: 2012 ident: 10.1016/j.biomaterials.2019.119707_bib201 article-title: Porphyrin aggregates in the form of nanofibers and their unusual aggregation induced emission publication-title: J. Porphyr. Phthalocyanines doi: 10.1142/S1088424612500770 – volume: 29 start-page: 1606134 issue: 23 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib176 article-title: Metal–organic framework (MOF)-Based drug/cargo delivery and cancer therapy publication-title: Adv. Mater. doi: 10.1002/adma.201606134 – volume: 58 start-page: 8751 issue: 22 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib17 article-title: Antibody–drug conjugates and small molecule–drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b00457 – volume: 10 start-page: 3141 issue: 11 year: 2009 ident: 10.1016/j.biomaterials.2019.119707_bib120 article-title: Controlled integration of polymers into viral capsids publication-title: Biomacromolecules doi: 10.1021/bm9007953 – volume: 36 start-page: 831 issue: 6 year: 2007 ident: 10.1016/j.biomaterials.2019.119707_bib167 article-title: Cyclic porphyrin arrays as artificial photosynthetic antenna: synthesis and excitation energy transfer publication-title: Chem. Soc. Rev. doi: 10.1039/b618854k – volume: 136 start-page: 16712 issue: 48 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib170 article-title: Nanoscale metal–organic framework for highly effective photodynamic therapy of resistant head and neck cancer publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508679h – volume: 10 start-page: 325 issue: 4 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib93 article-title: In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.25 – volume: 51 start-page: 10307 issue: 41 year: 2012 ident: 10.1016/j.biomaterials.2019.119707_bib38 article-title: Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204475 – volume: 65 start-page: 1763 issue: 12 year: 1976 ident: 10.1016/j.biomaterials.2019.119707_bib1 article-title: Polymerized micelles and their use as adjuvants in immunology publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600651217 – volume: 138 start-page: 3518 issue: 10 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib36 article-title: Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00007 – volume: 12 start-page: 6243 issue: 45 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib145 article-title: A porphyrin-based conjugated polymer for highly efficient in vitro and in vivo photothermal therapy publication-title: Small doi: 10.1002/smll.201602293 – volume: 32 start-page: 4744 issue: 21 year: 2011 ident: 10.1016/j.biomaterials.2019.119707_bib128 article-title: Controlled growth and differentiation of MSCs on grooved films assembled from monodisperse biological nanofibers with genetically tunable surface chemistries publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.03.030 – volume: 15 start-page: 309 issue: 4 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib14 article-title: Application of aptamer-based hybrid molecules in early diagnosis and treatment of diabetes mellitus: from the concepts toward the future publication-title: Curr. Diabetes Rev. doi: 10.2174/1573399814666180607075550 – volume: 1032 start-page: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib4 article-title: Early diagnosis of disease using microbead array technology: a review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.05.011 – volume: 51 start-page: 209 issue: 2 year: 2000 ident: 10.1016/j.biomaterials.2019.119707_bib25 article-title: Porphyrins in analytical chemistry publication-title: A Rev. Talanta doi: 10.1016/S0039-9140(99)00291-X – volume: 24 start-page: 19 issue: 1 year: 1995 ident: 10.1016/j.biomaterials.2019.119707_bib28 article-title: Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy publication-title: Chem. Soc. Rev. doi: 10.1039/cs9952400019 – volume: 96 start-page: 93 issue: 1–3 year: 1996 ident: 10.1016/j.biomaterials.2019.119707_bib89 article-title: Photophysical properties of metal complexes of meso-tetrakis (4-sulphonatophenyl) porphyrin publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/1010-6030(95)04279-2 – volume: 9 start-page: 4321 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib198 article-title: Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy publication-title: Nat. Commun. doi: 10.1038/s41467-018-06655-7 – volume: 22 start-page: 74 issue: 2 year: 1998 ident: 10.1016/j.biomaterials.2019.119707_bib45 article-title: Photodynamic therapy of U87 human glioma in nude rat using liposome‐delivered photofrin publication-title: Lasers Surg. Med.: Off. J. Am. Soc. Laser Med. Surg. doi: 10.1002/(SICI)1096-9101(1998)22:2<74::AID-LSM2>3.0.CO;2-T – volume: 29 start-page: 2374 issue: 5 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib179 article-title: Metal–organic framework@ porous organic polymer nanocomposite for photodynamic therapy publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00228 – volume: 3 start-page: 4602 issue: 4 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib192 article-title: Porphyrin–gold nanomaterial for efficient drug delivery to cancerous cells publication-title: ACS Omega doi: 10.1021/acsomega.8b00419 – volume: 16 start-page: 177 issue: 1 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib46 article-title: Phototriggered local anesthesia publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03440 – volume: 207 start-page: 32 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib66 article-title: Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2013.11.014 – volume: 24 start-page: 620 issue: 4 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib116 article-title: Reengineering viruses and virus-like particles through chemical functionalization strategies publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2013.01.011 – volume: 35 start-page: 6379 issue: 24 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib58 article-title: Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.04.094 – volume: 3 start-page: 503 issue: 9 year: 2009 ident: 10.1016/j.biomaterials.2019.119707_bib76 article-title: Multiscale photoacoustic microscopy and computed tomography publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.157 – volume: 125 start-page: 4882 issue: 16 year: 2003 ident: 10.1016/j.biomaterials.2019.119707_bib57 article-title: Porphyrin and tetrabenzoporphyrin dendrimers: tunable membrane-impermeable fluorescent pH nanosensors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0341687 – volume: 9 start-page: 4686 issue: 5 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib154 article-title: Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery publication-title: ACS Nano doi: 10.1021/acsnano.5b01433 – volume: 73 start-page: 3 issue: 1 year: 2004 ident: 10.1016/j.biomaterials.2019.119707_bib151 article-title: Metal–organic frameworks: a new class of porous materials publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2004.03.034 – volume: 21 start-page: 1303 issue: 8 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib99 article-title: Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2016.06.005 – volume: 142 start-page: 149 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib109 article-title: Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.07.026 – volume: 7 start-page: 2575 issue: 10 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib100 article-title: Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy publication-title: Theranostics doi: 10.7150/thno.20118 – year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib5 – volume: 7 start-page: 1 issue: 1 year: 1981 ident: 10.1016/j.biomaterials.2019.119707_bib10 article-title: Development of biodegradable and injectable latices for controlled release of potent drugs publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639048109055684 – volume: 235 start-page: 40 issue: 1 year: 2006 ident: 10.1016/j.biomaterials.2019.119707_bib196 article-title: Radiosensitization of tumours by porphyrins publication-title: Cancer Lett. doi: 10.1016/j.canlet.2005.03.041 – volume: 133 start-page: 16322 issue: 41 year: 2011 ident: 10.1016/j.biomaterials.2019.119707_bib165 article-title: Three-dimensional porous metal–metalloporphyrin framework consisting of nanoscopic polyhedral cages publication-title: J. Am. Chem. Soc. doi: 10.1021/ja204339e – volume: 126 start-page: 734 year: 2019 ident: 10.1016/j.biomaterials.2019.119707_bib149 article-title: Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell detection publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.11.047 – volume: 50 start-page: 11622 issue: 49 year: 2011 ident: 10.1016/j.biomaterials.2019.119707_bib67 article-title: Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103557 – volume: 60 start-page: 1307 issue: 11 year: 2008 ident: 10.1016/j.biomaterials.2019.119707_bib81 article-title: Gold nanoparticles in delivery applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2008.03.016 – volume: 4 start-page: 1937 issue: 8 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib140 article-title: Polymerization-enhanced photosensitization publication-title: Chem doi: 10.1016/j.chempr.2018.06.003 – volume: 2 start-page: 1128 issue: 4 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib159 article-title: Effects of dislocation mechanics on diffusion-induced stresses within a spherical insertion particle electrode publication-title: J. Mater. Chem. doi: 10.1039/C3TA13925E – volume: 128 start-page: 2115 issue: 6 year: 2006 ident: 10.1016/j.biomaterials.2019.119707_bib74 article-title: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057254a – volume: 310 start-page: 1166 issue: 5751 year: 2005 ident: 10.1016/j.biomaterials.2019.119707_bib148 article-title: Porous, crystalline, covalent organic frameworks publication-title: Science doi: 10.1126/science.1120411 – volume: 26 start-page: 4627 issue: 27 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib133 article-title: Stem cells loaded with nanoparticles as a drug carrier for in vivo breast cancer therapy publication-title: Adv. Mater. doi: 10.1002/adma.201401550 – volume: 84 start-page: 291 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib107 article-title: Cancer nanotheranostics: strategies, promises and impediments publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2016.09.035 – volume: 140 start-page: 16971 issue: 49 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib197 article-title: Nanoscale metal–organic layers for radiotherapy–radiodynamic therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11593 – start-page: 22 year: 1996 ident: 10.1016/j.biomaterials.2019.119707_bib75 – volume: 23 start-page: 2820 issue: 8 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib191 article-title: Visualized intravesical floating hydrogel encapsulating vaporized perfluoropentane for controlled drug release publication-title: Drug Deliv. doi: 10.3109/10717544.2015.1101791 – volume: 2 start-page: 43 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib16 article-title: Virus‐like particles: next‐generation nanoparticles for targeted therapeutic delivery publication-title: Bioeng. Transl. med. doi: 10.1002/btm2.10049 – volume: 8 start-page: 12394 issue: 25 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib30 article-title: Porphyrin-loaded nanoparticles for cancer theranostics publication-title: Nanoscale doi: 10.1039/C5NR07849K – volume: 135 start-page: 13222 issue: 36 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib173 article-title: Metal–organic frameworks as A tunable platform for designing functional molecular materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308229p – volume: 230 start-page: 733 issue: 3 year: 1984 ident: 10.1016/j.biomaterials.2019.119707_bib13 article-title: Tissue distribution of poly (hexyl 2-cyanoacrylate) nanoparticles coated with monoclonal antibodies in mice bearing human tumor xenografts publication-title: J. Pharmacol. Exp. Ther. – volume: 9 issue: 7 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib105 article-title: Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment publication-title: PLoS One doi: 10.1371/journal.pone.0102341 – volume: 106 start-page: 148 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib122 article-title: Extracellular vesicles for drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2016.02.006 – volume: 117 start-page: 13566 issue: 22 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib50 article-title: Nanotechnology for multimodal synergistic cancer therapy publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00258 – volume: 452 start-page: 580 issue: 7187 year: 2008 ident: 10.1016/j.biomaterials.2019.119707_bib78 article-title: Imaging in the era of molecular oncology publication-title: Nature doi: 10.1038/nature06917 – volume: 218 start-page: 119341 year: 2019 ident: 10.1016/j.biomaterials.2019.119707_bib44 article-title: Liposomal formulations of photosensitizers publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119341 – volume: 11 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib110 article-title: Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies publication-title: Cancer Biol. Med. – volume: 7 start-page: 5153 issue: 10 year: 2019 ident: 10.1016/j.biomaterials.2019.119707_bib158 article-title: Covalent triazine frameworks: synthesis and applications publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12442F – volume: 9 start-page: 4335 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib184 article-title: A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy publication-title: Nat. Commun. doi: 10.1038/s41467-018-06574-7 – volume: 569 start-page: 118580 year: 2019 ident: 10.1016/j.biomaterials.2019.119707_bib85 article-title: Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.118580 – volume: 13 start-page: 2333 issue: 8 year: 2012 ident: 10.1016/j.biomaterials.2019.119707_bib126 article-title: Glycan-targeted virus-like nanoparticles for photodynamic therapy publication-title: Biomacromolecules doi: 10.1021/bm300578p – volume: 28 start-page: 1515 issue: 2 year: 2011 ident: 10.1016/j.biomaterials.2019.119707_bib33 article-title: Two-photon absorption enhancement of polymer-templated porphyrin-based J-aggregates publication-title: Langmuir doi: 10.1021/la203883k – volume: 51 start-page: 6443 issue: 12 year: 2012 ident: 10.1016/j.biomaterials.2019.119707_bib39 article-title: Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks publication-title: Inorg. Chem. doi: 10.1021/ic300825s – volume: 4 start-page: 4690 issue: 27 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib189 article-title: Decoration of porphyrin with tetraphenylethene: converting a fluorophore with aggregation-caused quenching to aggregation-induced emission enhancement publication-title: J. Mater. Chem. B doi: 10.1039/C6TB01159D – volume: 109 start-page: 1630 issue: 5 year: 2009 ident: 10.1016/j.biomaterials.2019.119707_bib86 article-title: Self-organized porphyrinic materials publication-title: Chem. Rev. doi: 10.1021/cr8002483 – volume: 46 start-page: 8342 issue: 44 year: 2007 ident: 10.1016/j.biomaterials.2019.119707_bib162 article-title: Crystal engineering: a holistic view publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200700534 – volume: 110 start-page: 2795 issue: 5 year: 2010 ident: 10.1016/j.biomaterials.2019.119707_bib29 article-title: Imaging and photodynamic therapy: mechanisms, monitoring, and optimization publication-title: Chem. Rev. doi: 10.1021/cr900300p – volume: 23 start-page: 891 issue: 4 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib97 article-title: Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2018.02.001 – volume: 48 start-page: 426 issue: 2 year: 2008 ident: 10.1016/j.biomaterials.2019.119707_bib163 article-title: Pillared porphyrin homologous series: intergrowth in Metal− organic frameworks publication-title: Inorg. Chem. doi: 10.1021/ic801677y – volume: 44 start-page: 1554 issue: 4 year: 2009 ident: 10.1016/j.biomaterials.2019.119707_bib102 article-title: The porphyrin–fullerene nanoparticles to promote the ATP overproduction in myocardium: 25Mg2+-magnetic isotope effect publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2008.07.030 – volume: 12 start-page: 347 issue: 5 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib135 article-title: Extracellular vesicles: biology and emerging therapeutic opportunities publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3978 – volume: 32 start-page: 276 issue: 5 year: 2003 ident: 10.1016/j.biomaterials.2019.119707_bib150 article-title: Metal-organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/b200393g – volume: 10 issue: 4 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib117 article-title: Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins publication-title: PLoS One doi: 10.1371/journal.pone.0120751 – volume: 33 start-page: 171 issue: 2 year: 1996 ident: 10.1016/j.biomaterials.2019.119707_bib90 article-title: Photophysical and photochemical properties of potential porphyrin and chlorin photosensitizers for PDT publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/1011-1344(95)07241-1 – year: 2000 ident: 10.1016/j.biomaterials.2019.119707_bib101 – volume: 24 start-page: 193 issue: 2 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib178 article-title: Anti-cancer drug delivery using metal organic frameworks (MOFs) publication-title: Curr. Med. Chem. doi: 10.2174/0929867323666160926151216 – volume: 12 start-page: 6243 issue: 45 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib200 article-title: A porphyrin‐based conjugated polymer for highly efficient in vitro and in vivo photothermal therapy publication-title: Small doi: 10.1002/smll.201602293 – volume: 353 start-page: 445 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib52 article-title: Physicochemical properties of liposome-incorporated 2-(morpholin-4-yl) ethoxy phthalocyanines and their photodynamic activity against oral cancer cells publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2017.12.005 – volume: 115 start-page: 10938 issue: 19 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib47 article-title: New developments in liposomal drug delivery publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00046 – volume: 53 start-page: 17 year: 1978 ident: 10.1016/j.biomaterials.2019.119707_bib8 article-title: Nanoparticles-a new colloidal drug delivery system publication-title: Pharm. Acta Helv. – volume: 94 start-page: 575 issue: 7 year: 2003 ident: 10.1016/j.biomaterials.2019.119707_bib104 article-title: Cell adhesion system and human cancer morphogenesis publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2003.tb01485.x – volume: 15 start-page: 541 issue: 8 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib115 article-title: Non-viral vectors for gene-based therapy publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3763 – volume: 27 start-page: 2614 issue: 10 year: 2009 ident: 10.1016/j.biomaterials.2019.119707_bib132 article-title: Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging publication-title: Stem Cells doi: 10.1002/stem.187 – volume: 65 start-page: 21 issue: 1 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib15 article-title: Nanoparticles in drug delivery: past, present and future publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.04.010 – volume: 3 start-page: 3681 issue: 18 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib43 article-title: Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00315F – volume: 160 start-page: 117 issue: 2 year: 2012 ident: 10.1016/j.biomaterials.2019.119707_bib48 article-title: Doxil®—the first FDA-approved nano-drug: lessons learned publication-title: J. Control. Release doi: 10.1016/j.jconrel.2012.03.020 – volume: 26 issue: 6 year: 2009 ident: 10.1016/j.biomaterials.2019.119707_bib59 article-title: Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic publication-title: Crit. Rev. Ther. Drug Carrier Syst. doi: 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 – volume: 11 start-page: 12321 issue: 13 year: 2019 ident: 10.1016/j.biomaterials.2019.119707_bib156 article-title: Facile fabrication of nanoscale porphyrinic covalent organic polymers for combined photodynamic and photothermal cancer therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00361 – volume: 168 start-page: 225 issue: 2 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib134 article-title: Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: effective photoinduced in vitro killing of osteosarcoma publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.03.012 – volume: 115 start-page: 11079 issue: 19 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib175 article-title: Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00125 – volume: 24 start-page: 641 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib186 article-title: Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer (II): doxorubicin loaded hydrogel as a dual fluorescent drug delivery system for simultaneous imaging tracking in vivo publication-title: Drug Deliv. doi: 10.1080/10717544.2017.1289570 – volume: 18 start-page: 1953 issue: 15 year: 2006 ident: 10.1016/j.biomaterials.2019.119707_bib79 article-title: Quantum dots in biological and biomedical research: recent progress and present challenges publication-title: Adv. Mater. doi: 10.1002/adma.200500786 – volume: 3 issue: 2 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib68 article-title: Biodegradable and renal clearable inorganic nanoparticles publication-title: Adv. Sci. doi: 10.1002/advs.201500223 – volume: 94 start-page: 1428 issue: 4 year: 2008 ident: 10.1016/j.biomaterials.2019.119707_bib121 article-title: Packaging of a polymer by a viral capsid: the interplay between polymer length and capsid size publication-title: Biophys. J. doi: 10.1529/biophysj.107.117473 – volume: 42 start-page: 9690 issue: 12 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib147 article-title: A pH-responsive and magnetic Fe3O4@silica@MIL-100(Fe)/β-CD nanocomposite as a drug nanocarrier: loading and release study of cephalexin publication-title: New J. Chem. doi: 10.1039/C8NJ01375F – volume: 26 start-page: 831 issue: 3 year: 2008 ident: 10.1016/j.biomaterials.2019.119707_bib130 article-title: Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma publication-title: Stem Cells doi: 10.1634/stemcells.2007-0758 – volume: 209 start-page: 171 issue: 2 year: 2004 ident: 10.1016/j.biomaterials.2019.119707_bib73 article-title: Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles publication-title: Cancer Lett. doi: 10.1016/j.canlet.2004.02.004 – volume: 15 start-page: 1093 issue: 11n12 year: 2011 ident: 10.1016/j.biomaterials.2019.119707_bib20 article-title: Origin of aromatic character in porphyrinoid systems publication-title: J. Porphyr. Phthalocyanines doi: 10.1142/S1088424611004063 – volume: 1 start-page: 123 issue: 3 year: 1992 ident: 10.1016/j.biomaterials.2019.119707_bib11 article-title: Submicron-sized parenteral carrier systems based on solid lipids publication-title: Pharm. Pharmacol. Lett. – volume: 12 start-page: 527 issue: 9 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib195 article-title: Opportunities and challenges of radiotherapy for treating cancer publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2015.120 – volume: 17 start-page: 2128 issue: 6 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib144 article-title: Incorporation of porphyrin to π-conjugated backbone for polymer-dot-sensitized photodynamic therapy publication-title: Biomacromolecules doi: 10.1021/acs.biomac.6b00356 – volume: 139 start-page: 8705 issue: 25 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib157 article-title: 3D porphyrin-based covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04141 – volume: 7 start-page: 2541 issue: 3 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib70 article-title: Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly publication-title: ACS Nano doi: 10.1021/nn3058642 – ident: 10.1016/j.biomaterials.2019.119707_bib114 doi: 10.1159/000485072 – volume: 5 start-page: 3546 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib94 article-title: Porphyrin–phospholipid liposomes permeabilized by near-infrared light publication-title: Nat. Commun. doi: 10.1038/ncomms4546 – volume: 28 start-page: 23 issue: 1 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib98 article-title: Biointerfacing and applications of cell membrane-coated nanoparticles publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.6b00569 – volume: 46 start-page: 5265 issue: 29 year: 2010 ident: 10.1016/j.biomaterials.2019.119707_bib61 article-title: Stabilized liposomal nanohybrid cerasomes for drug delivery applications publication-title: Chem. Commun. doi: 10.1039/b926367e – volume: 6 start-page: 707 issue: 5 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib171 article-title: Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02970E – volume: 102 start-page: 5590 issue: 17 year: 1980 ident: 10.1016/j.biomaterials.2019.119707_bib31 article-title: Determination of the lifetime of singlet oxygen in water-d2 using 9, 10-anthracenedipropionic acid, a water-soluble probe publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00537a030 – volume: 138 start-page: 12502 issue: 38 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib172 article-title: Chlorin-based nanoscale metal–organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06663 – volume: 10 start-page: 3483 issue: 23 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib199 article-title: Engineered porphyrin loaded core-shell nanoparticles for selective sonodynamic anticancer treatment publication-title: Nanomedicine doi: 10.2217/nnm.15.150 – volume: 19 start-page: 3297 issue: 10 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib168 article-title: formation of a metalloporphyrin‐based nanoreactor by postsynthetic metal–ion exchange of a polyhedral‐cage containing a metal–metalloporphyrin framework publication-title: Chem.–A Eur. J. doi: 10.1002/chem.201204358 – volume: 33 start-page: 417 issue: 2 year: 1994 ident: 10.1016/j.biomaterials.2019.119707_bib123 article-title: Interaction of cationic porphyrins with DNA publication-title: Biochemistry doi: 10.1021/bi00168a005 – volume: 23 issue: 36 year: 2011 ident: 10.1016/j.biomaterials.2019.119707_bib108 article-title: Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers publication-title: Adv. Mater. – volume: 200 start-page: 373 issue: 4 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib136 article-title: Extracellular vesicles: exosomes, microvesicles, and friends publication-title: J. Cell Biol. doi: 10.1083/jcb.201211138 – volume: 52 start-page: 11278 issue: 43 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib129 article-title: Virus-mimetic cytoplasm-cleavable magnetic/silica nanoclusters for enhanced gene delivery to mesenchymal stem cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301113 – volume: 58 start-page: 8799 issue: 26 year: 2019 ident: 10.1016/j.biomaterials.2019.119707_bib160 article-title: Porphyrin nanocage-embedded single-molecular nanoparticles for cancer nanotheranostics publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201903277 – volume: 1 start-page: 61 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib2 article-title: Ultra-sensitive electrochemical on-line determination of clarithromycin based on poly (L-Aspartic acid)/graphite oxide/pristine graphene/glassy carbon electrode publication-title: Asian J. Nanosci. Mater. – volume: 112 start-page: 1232 issue: 2 year: 2012 ident: 10.1016/j.biomaterials.2019.119707_bib177 article-title: Metal–organic frameworks in biomedicine publication-title: Chem. Rev. doi: 10.1021/cr200256v – volume: 311 start-page: 622 issue: 5761 year: 2006 ident: 10.1016/j.biomaterials.2019.119707_bib83 article-title: Toxic potential of materials at the nanolevel publication-title: Science doi: 10.1126/science.1114397 – start-page: 1706759 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib111 article-title: Cell membrane coating nanotechnology publication-title: Adv. Mater. doi: 10.1002/adma.201706759 – volume: 135 start-page: 17105 issue: 45 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib37 article-title: Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408084j – start-page: 1 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib113 article-title: Biomedical and catalytic opportunities of virus-like particles in nanotechnology publication-title: Adv. Virus Res. – volume: 1066 start-page: 29 issue: 1 year: 1991 ident: 10.1016/j.biomaterials.2019.119707_bib60 article-title: Liposomes containing synthetic lipid derivatives of poly (ethylene glycol) show prolonged circulation half-lives in vivo publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/0005-2736(91)90246-5 – volume: 32 start-page: 7127 issue: 29 year: 2011 ident: 10.1016/j.biomaterials.2019.119707_bib27 article-title: A review of NIR dyes in cancer targeting and imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.06.024 – start-page: 25 year: 2019 ident: 10.1016/j.biomaterials.2019.119707_bib153 article-title: 2 - microporous organic polymer nanocomposites for adsorption applications – volume: 187 start-page: 133 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib18 article-title: State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.05.036 – volume: 37 start-page: 735 issue: 10 year: 2004 ident: 10.1016/j.biomaterials.2019.119707_bib87 article-title: Directly linked porphyrin arrays with tunable excitonic interactions publication-title: Acc. Chem. Res. doi: 10.1021/ar030242e – volume: 6 start-page: 1159 issue: 4 year: 2006 ident: 10.1016/j.biomaterials.2019.119707_bib194 article-title: Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2006.327 – volume: 75 start-page: 2169 issue: 8 year: 1995 ident: 10.1016/j.biomaterials.2019.119707_bib62 article-title: Hand‐foot syndrome associated with liposome‐encapsulated doxorubicin therapy publication-title: Cancer doi: 10.1002/1097-0142(19950415)75:8<2169::AID-CNCR2820750822>3.0.CO;2-H – volume: 128 start-page: 3114 issue: 10 year: 2006 ident: 10.1016/j.biomaterials.2019.119707_bib65 article-title: Cerasome as an infusible, cell-friendly, and serum-compatible transfection agent in a viral size publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058016i – volume: 21 start-page: 4058 issue: 21 year: 2011 ident: 10.1016/j.biomaterials.2019.119707_bib143 article-title: Design guidelines for conjugated polymers with light-activated anticancer activity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100840 – volume: 134 start-page: 16464 issue: 40 year: 2012 ident: 10.1016/j.biomaterials.2019.119707_bib88 article-title: Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305988f – volume: 15 start-page: 1219 issue: 10 year: 2009 ident: 10.1016/j.biomaterials.2019.119707_bib77 article-title: Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging publication-title: Nat. Med. doi: 10.1038/nm.1971 – volume: 31 start-page: 331 issue: 1 year: 1979 ident: 10.1016/j.biomaterials.2019.119707_bib9 article-title: Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.1979.tb13510.x – year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib106 – volume: 4 start-page: 26 issue: 1 year: 2008 ident: 10.1016/j.biomaterials.2019.119707_bib82 article-title: Cytotoxicity of nanoparticles publication-title: Small doi: 10.1002/smll.200700595 – volume: 106 start-page: 148 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib137 publication-title: Extracell. Vesicles Drug Deliv. – volume: 44 start-page: 957 issue: 10 year: 2011 ident: 10.1016/j.biomaterials.2019.119707_bib174 article-title: Nanoscale metal–organic frameworks for biomedical imaging and drug delivery publication-title: Acc. Chem. Res. doi: 10.1021/ar200028a – volume: 3 start-page: 380 issue: 5 year: 2003 ident: 10.1016/j.biomaterials.2019.119707_bib72 article-title: Photodynamic therapy for cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1071 – volume: 43 start-page: 5841 issue: 16 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib169 article-title: Metal–metalloporphyrin frameworks: a resurging class of functional materials publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00001C – volume: 44 start-page: 189 issue: 3 year: 2019 ident: 10.1016/j.biomaterials.2019.119707_bib24 article-title: Porphyrin-based nanocomposites for tumor photodynamic therapy publication-title: MRS Bull. doi: 10.1557/mrs.2019.42 – volume: 496 start-page: 100 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib40 article-title: Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.02.006 – volume: 109 start-page: 1659 issue: 5 year: 2009 ident: 10.1016/j.biomaterials.2019.119707_bib166 article-title: Supramolecular chemistry of metalloporphyrins publication-title: Chem. Rev. doi: 10.1021/cr800247a – volume: 7 start-page: 17371 issue: 31 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib95 article-title: Imaging-guided drug release from glutathione-responsive supramolecular porphysome nanovesicles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b06026 – volume: 63 start-page: 125 issue: 1 year: 1997 ident: 10.1016/j.biomaterials.2019.119707_bib12 article-title: Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4 – volume: 12 start-page: 6145 issue: 32 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib19 article-title: Deciphering aromaticity in porphyrinoids via adaptive natural density partitioning publication-title: Org. Biomol. Chem. doi: 10.1039/C4OB01018C – volume: 138 start-page: 1234 issue: 4 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib183 article-title: From highly crystalline to outer surface-functionalized covalent organic Frameworks A modulation approach publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10708 – volume: 2 start-page: 277 issue: 3 year: 2007 ident: 10.1016/j.biomaterials.2019.119707_bib49 article-title: Liposomal daunorubicin as treatment for Kaposi's sarcoma publication-title: Int. J. Nanomed. – volume: 55 start-page: 2594 issue: 16 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib146 article-title: Porphyrin‐based covalent triazine frameworks: porosity, adsorption performance, and drug delivery publication-title: J. Polym. Sci. A Polym. Chem. doi: 10.1002/pola.28543 – start-page: 1553 issue: 15 year: 2007 ident: 10.1016/j.biomaterials.2019.119707_bib34 article-title: Self-organization of porphyrin units induced by magnetic field during sol–gel polymerization publication-title: Chem. Commun. doi: 10.1039/B616421H – volume: 11 start-page: 40 issue: 1 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib190 article-title: Nanocomposite hydrogels and their applications in drug delivery and tissue engineering publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2015.1962 – volume: 2 start-page: 751 issue: 12 year: 2007 ident: 10.1016/j.biomaterials.2019.119707_bib84 article-title: Nanocarriers as an emerging platform for cancer therapy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.387 – volume: 2 start-page: 760 issue: 6 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib141 article-title: Conjugated-polymer-Amplified sensing, imaging, and therapy publication-title: Chem doi: 10.1016/j.chempr.2017.05.002 – volume: 85 start-page: 705 issue: 3 year: 2009 ident: 10.1016/j.biomaterials.2019.119707_bib53 article-title: Photoinduced nitric oxide and singlet oxygen release from ZnPC liposome vehicle associated with the nitrosyl ruthenium complex: synergistic effects in photodynamic therapy application publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2008.00481.x – volume: 3 start-page: 1242 issue: 1 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib127 article-title: Virus activated artificial ECM induces the osteoblastic differentiation of mesenchymal stem cells without osteogenic supplements publication-title: Sci. Rep. doi: 10.1038/srep01242 – volume: 18 start-page: 4141 issue: 12 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib125 article-title: Physalis mottle virus-like particles as nanocarriers for imaging reagents and drugs publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01196 – volume: 36 start-page: 968 issue: 4 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib3 article-title: Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work? publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.02.016 – volume: 35 start-page: 2818 issue: 9 year: 1996 ident: 10.1016/j.biomaterials.2019.119707_bib22 article-title: Structure of a DNA− porphyrin complex publication-title: Biochemistry doi: 10.1021/bi952443z – volume: 84 start-page: 323 issue: 2 year: 1977 ident: 10.1016/j.biomaterials.2019.119707_bib7 article-title: Nanocapsules: a new type of lysosomotropic carrier publication-title: FEBS Lett. doi: 10.1016/0014-5793(77)80717-5 – volume: 1065 start-page: 42 issue: 1 year: 1991 ident: 10.1016/j.biomaterials.2019.119707_bib51 article-title: Liposomes as models to study the distribution of porphyrins in cell membranes publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/0005-2736(91)90008-V – volume: 30 start-page: 504 issue: 7 year: 2009 ident: 10.1016/j.biomaterials.2019.119707_bib142 article-title: Enhanced one- and two-photon excitation emission of a porphyrin photosensitizer by FRET from a conjugated polyelectrolyte, macromol publication-title: Rapid Commun doi: 10.1002/marc.200800655 – volume: 9 start-page: 4484 issue: 4 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib92 article-title: A PEGylation-free biomimetic porphyrin nanoplatform for personalized cancer theranostics publication-title: ACS Nano doi: 10.1021/acsnano.5b01077 – volume: 462 start-page: 154 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib32 article-title: Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.09.060 – volume: 10 start-page: 1528 issue: 2 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib180 article-title: High antimicrobial activity of metal–organic framework-templated porphyrin polymer thin films publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14866 – volume: 106 start-page: 157 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib124 article-title: Bioengineered protein-based nanocage for drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2016.03.002 – volume: 10 start-page: 324 issue: 4 year: 2011 ident: 10.1016/j.biomaterials.2019.119707_bib71 article-title: Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents publication-title: Nat. Mater. doi: 10.1038/nmat2986 – volume: 4 start-page: 858 issue: 9 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib42 article-title: Mn-porphyrin conjugated Au nanoshells encapsulating doxorubicin for potential magnetic resonance imaging and light triggered synergistic therapy of cancer publication-title: Theranostics doi: 10.7150/thno.8818 – volume: 205 start-page: 35 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib138 article-title: Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.11.029 – volume: 11 start-page: 7006 issue: 7 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib112 article-title: Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy publication-title: ACS Nano doi: 10.1021/acsnano.7b02533 – volume: 28 start-page: 9320 issue: 42 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib182 article-title: Nanoscale polymer metal–organic framework hybrids for effective photothermal therapy of colon cancers publication-title: Adv. Mater. doi: 10.1002/adma.201602997 – volume: 262 start-page: 137 issue: 2 year: 1998 ident: 10.1016/j.biomaterials.2019.119707_bib80 article-title: Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory publication-title: Anal. Biochem. doi: 10.1006/abio.1998.2759 – volume: 3 start-page: 1240 issue: 8 year: 2014 ident: 10.1016/j.biomaterials.2019.119707_bib91 article-title: Targeting‐triggered porphysome nanostructure disruption for activatable photodynamic therapy publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201300651 – volume: 61 start-page: 214 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib187 article-title: Fluorescent nanogel based on four-arm PEG–PCL copolymer with porphyrin core for bioimaging publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.12.037 – volume: 101 start-page: 1629 issue: 6 year: 2001 ident: 10.1016/j.biomaterials.2019.119707_bib161 article-title: From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids publication-title: Chem. Rev. doi: 10.1021/cr9900432 – volume: 8 start-page: 95 issue: 4 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib23 article-title: Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging publication-title: Biosensors doi: 10.3390/bios8040095 – volume: 1 start-page: 401 issue: 4 year: 1972 ident: 10.1016/j.biomaterials.2019.119707_bib103 article-title: Evidence for a receptor recognizing antigen complexed immunoglobulin on the surface of activated mouse thymus lymphocytes publication-title: Scand. J. Immunol. doi: 10.1111/j.1365-3083.1972.tb03306.x – volume: 38 start-page: 108 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib119 article-title: Plant viruses and bacteriophages for drug delivery in medicine and biotechnology publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2017.03.013 – volume: 85 start-page: 693 issue: 9 year: 1981 ident: 10.1016/j.biomaterials.2019.119707_bib139 article-title: Oxygen reduction on transition‐metal porphyrins in acid electrolyte I. Activity publication-title: Ber. Bunsen Ges. Phys. Chem. doi: 10.1002/bbpc.19810850917 – volume: 99 start-page: 5088 issue: 8 year: 2002 ident: 10.1016/j.biomaterials.2019.119707_bib164 article-title: Extending supramolecular fullerene-porphyrin chemistry to pillared metal-organic frameworks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.072602399 – volume: 148 start-page: 405 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib55 article-title: Photophysical studies of graphene quantum dots-Pyrene-derivatized porphyrins conjugates when encapsulated within Pluronic F127 micelles publication-title: Dyes Pigments doi: 10.1016/j.dyepig.2017.09.031 – volume: 14 start-page: 790 issue: 4 year: 2003 ident: 10.1016/j.biomaterials.2019.119707_bib56 article-title: Polycation liposome enhances the endocytic uptake of photosensitizer into cells in the presence of serum publication-title: Bioconjug. Chem. doi: 10.1021/bc025648a – year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib64 – volume: 40 start-page: 340 issue: 1 year: 2011 ident: 10.1016/j.biomaterials.2019.119707_bib26 article-title: The role of porphyrin chemistry in tumor imaging and photodynamic therapy publication-title: Chem. Soc. Rev. doi: 10.1039/B915149B – volume: 15 start-page: 1476 issue: 12 year: 2016 ident: 10.1016/j.biomaterials.2019.119707_bib96 article-title: A novel photosensitizer: an l-glutamide lipid conjugate with improved properties for photodynamic therapy publication-title: Photochem. Photobiol. Sci. doi: 10.1039/C6PP00304D – volume: 115 start-page: 243 issue: 3 year: 2006 ident: 10.1016/j.biomaterials.2019.119707_bib63 article-title: Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes publication-title: J. Control. Release doi: 10.1016/j.jconrel.2006.08.001 – volume: 28 start-page: 1804901 issue: 43 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib155 article-title: Covalent organic polymers based on fluorinated porphyrin as oxygen nanoshuttles for tumor hypoxia relief and enhanced photodynamic therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804901 – volume: 30 start-page: 1036 issue: 6 year: 2009 ident: 10.1016/j.biomaterials.2019.119707_bib131 article-title: In vitro behavior of neural stem cells in response to different chemical functional groups publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.10.028 – volume: 26 start-page: 345 issue: 2 year: 2015 ident: 10.1016/j.biomaterials.2019.119707_bib69 article-title: Self-sensing porphysomes for fluorescence-guided photothermal therapy publication-title: Bioconjug. Chem. doi: 10.1021/bc500595d – volume: 2 start-page: 561 issue: 4 year: 2017 ident: 10.1016/j.biomaterials.2019.119707_bib181 article-title: Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery publication-title: Chem doi: 10.1016/j.chempr.2017.02.005 – volume: 4 start-page: 46 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib35 article-title: Gemcitabine delivery and photodynamic therapy in cancer cells via porphyrin‐ethylene‐based periodic mesoporous organosilica nanoparticles publication-title: ChemNanoMat doi: 10.1002/cnma.201700264 – volume: 10 start-page: 52 issue: 1 year: 2013 ident: 10.1016/j.biomaterials.2019.119707_bib193 article-title: Past, present, and future of radiotherapy for the benefit of patients publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2012.203 – volume: 141 start-page: 146 issue: 2 year: 2007 ident: 10.1016/j.biomaterials.2019.119707_bib118 article-title: Inactivation and purification of cowpea mosaic virus-like particles displaying peptide antigens from Bacillus anthracis publication-title: J. Virol Methods doi: 10.1016/j.jviromet.2006.12.008 – volume: 143 start-page: 3249 issue: 14 year: 2018 ident: 10.1016/j.biomaterials.2019.119707_bib6 article-title: Optical assays based on colloidal inorganic nanoparticles publication-title: Analyst doi: 10.1039/C8AN00731D |
SSID | ssj0014042 |
Score | 2.650625 |
SecondaryResourceType | review_article |
Snippet | Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in... Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the "pigments of life". They have a wide role in... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119707 |
SubjectTerms | Animals biocompatible materials Drug delivery drugs fluorescence Gold hydrophilicity hydrophobicity immunosuppression magnetism Metal Nanoparticles Mice Mice, Nude Nanocomposite Nanocomposites Nanoparticle Nanoparticles Photochemotherapy Porphyrin Porphyrins precision medicine Theranostic Nanomedicine Theranostics Tissue Distribution |
Title | Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961219308257 https://dx.doi.org/10.1016/j.biomaterials.2019.119707 https://www.ncbi.nlm.nih.gov/pubmed/31874428 https://www.proquest.com/docview/2330598205 https://www.proquest.com/docview/2524303692 https://pubmed.ncbi.nlm.nih.gov/PMC7008091 |
Volume | 232 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-5905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AKRWK dateStart: 19800101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KBdGHovXr_Cgr-Jpes5vN7iA-lGI5FftkoQ9C2GR3MUVzxV4ffPFvdyabhDsVOfDpIDcTkp3Z2dnsb34D8MqoxjmtbcaNbLPC0JzDJpZZxKMYfVCRfhhtcVYuzov3F_piB07GWhiGVQ6xP8X0PloPV-bDaM6v2nbOsCSJTICFTLmiuaKc2b_Ipw9_TjAPZo-RCcZIT0HSI_Foj_HiEne3SqZmmBce8qkat5b9-yL1ZxL6O5ZybXE6vQd7Q1YpjtOD34ed0O3D3TWuwX24_XE4RX8AnylXpPuI4fz_WrSdoDScBpxEM17XvOhct2S4OWO6SIJSW5GgHxQdRYKPk1T7rW9yJFznRark-vEQzk_ffjpZZEOXhawpC73KFDprA0p75I12eV2oEp3CEvNgNTa0fXaoShuVirImy5qAhbI2GkM7KfRWPYLdbtmFJyC8NNHGOm-iVIWX6KSuowmFq0tvco8zwHFYq2agIOdOGF-rEWt2Wa2bpGKTVMkkM1CT7lUi4thK6_VovWosNaXgWNF6sZX2m0l7wym31n85OkxFs5aPYlwXljckpCjOImVf-h8yWhacYKCcwePkZNObK26lSDvHGZgN95sEmDV885-u_dKzhxveJGD-9D_f7RnckfzpoQewP4fd1feb8ILys1V90E_AA7h1_O7D4uwXwZ8-9Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC7iBtQcRKPGja8WvI6704_pLsRDCIaNSfaUQA7C0PNonJDMBt0c_PdWzYtdFVnwNDBTNUx3Vddj-usqgPdW5d4b4yJuZBtpS2sO85BEAachFKUKdGG0xTyZXegvl-ZyCw77szAMq-xsf2vTG2vd3Zl0szm5raoJw5IkcgEs5JIrxt6DbW3IJo9g--D4ZDYfNhP0tOmhw_QRM_S1RxuYF59y98tW2oz0wg-8scbdZf_up_6MQ3-HU674p6PH8KgLLMVB--1PYKusd2FnpdzgLtw_6zbSn8JXChfpPaKDAPwQVS0oEqc5J9KIXVshal8vGHHOsC6ioOhWtOgPMpCiRZATVXXT9DkSvi5Ee5jr5zO4OPp8fjiLukYLUZ5os4wUeudKlG5aWOPjTKsEvcIE49IZzCmD9qgSF5QKMiPh2hK1ci5YS8kUFk49h1G9qMsXIAppgwtZnAepdCHRS5MFW2qfJYWNCxwD9tOa5l0Vcm6GcZ32cLOrdFUkKYskbUUyBjXw3ra1ODbi-thLL-1Pm5J9TMllbMT9aeBe08uN-d_1CpPSwuXdGF-XizsiUmRqkQIw8w8aIzXHGCjHsNcq2TByxd0UKXkcg11Tv4GAC4evP6mrb00Bcct5Asb7_zm2t_Bgdn52mp4ez09ewkPJfyIaPPsrGC2_35WvKVxbZm-65fgLbZZBoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+porphyrin-based+nanocomposites+for+effective+targeted+imaging+and+therapy&rft.jtitle=Biomaterials&rft.au=Rabiee%2C+Navid&rft.au=Yaraki%2C+Mohammad+Tavakkoli&rft.au=Garakani%2C+Soha+Mokhtari&rft.au=Garakani%2C+Shima+Mokhtari&rft.date=2020-02-01&rft.eissn=1878-5905&rft.volume=232&rft.spage=119707&rft_id=info:doi/10.1016%2Fj.biomaterials.2019.119707&rft_id=info%3Apmid%2F31874428&rft.externalDocID=31874428 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |