A dynamic early-warning method for bridge structural safety based on data reconstruction and depth prediction

The structural response of bridges involves a complex interplay of various coupled effects, rendering the identification of long-term variation trends inherently challenging. Consequently, effectively detecting and alerting abnormal monitoring data for bridge structures under complex coupled loads r...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0324816
Main Authors Men, Yanqing, Li, Hu, Liu, Fengzhou, Huang, Yongliang, Gao, Mingxin, Wang, Xiaohui, Xie, Hao, Cao, Jianxin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0324816

Cover

Abstract The structural response of bridges involves a complex interplay of various coupled effects, rendering the identification of long-term variation trends inherently challenging. Consequently, effectively detecting and alerting abnormal monitoring data for bridge structures under complex coupled loads remains a significant difficulty. To address this issue, this study proposes a dynamic early-warning method for bridge structural safety, leveraging data reconstruction and deep learning-based prediction. First, the singular value decomposition (SVD) algorithm is employed to decompose and reconstruct the monitoring data based on the contribution rate of influencing factors, thereby decoupling the data from various coupled effects. Second, a deep learning architecture utilizing a long short-term memory (LSTM) network is applied to establish a prediction model for each group of decomposed monitoring data, significantly enhancing prediction accuracy. Building on this foundation, the dynamic early-warning system for bridge structural safety is realized by integrating anomaly diagnosis theory with both predicted and measured data. A validation case using measured strain data demonstrates that the proposed method accurately predicts bridge strain data and calculates real-time adaptive thresholds, enabling real-time detection of anomalous monitoring data.
AbstractList The structural response of bridges involves a complex interplay of various coupled effects, rendering the identification of long-term variation trends inherently challenging. Consequently, effectively detecting and alerting abnormal monitoring data for bridge structures under complex coupled loads remains a significant difficulty. To address this issue, this study proposes a dynamic early-warning method for bridge structural safety, leveraging data reconstruction and deep learning-based prediction. First, the singular value decomposition (SVD) algorithm is employed to decompose and reconstruct the monitoring data based on the contribution rate of influencing factors, thereby decoupling the data from various coupled effects. Second, a deep learning architecture utilizing a long short-term memory (LSTM) network is applied to establish a prediction model for each group of decomposed monitoring data, significantly enhancing prediction accuracy. Building on this foundation, the dynamic early-warning system for bridge structural safety is realized by integrating anomaly diagnosis theory with both predicted and measured data. A validation case using measured strain data demonstrates that the proposed method accurately predicts bridge strain data and calculates real-time adaptive thresholds, enabling real-time detection of anomalous monitoring data.
The structural response of bridges involves a complex interplay of various coupled effects, rendering the identification of long-term variation trends inherently challenging. Consequently, effectively detecting and alerting abnormal monitoring data for bridge structures under complex coupled loads remains a significant difficulty. To address this issue, this study proposes a dynamic early-warning method for bridge structural safety, leveraging data reconstruction and deep learning-based prediction. First, the singular value decomposition (SVD) algorithm is employed to decompose and reconstruct the monitoring data based on the contribution rate of influencing factors, thereby decoupling the data from various coupled effects. Second, a deep learning architecture utilizing a long short-term memory (LSTM) network is applied to establish a prediction model for each group of decomposed monitoring data, significantly enhancing prediction accuracy. Building on this foundation, the dynamic early-warning system for bridge structural safety is realized by integrating anomaly diagnosis theory with both predicted and measured data. A validation case using measured strain data demonstrates that the proposed method accurately predicts bridge strain data and calculates real-time adaptive thresholds, enabling real-time detection of anomalous monitoring data.The structural response of bridges involves a complex interplay of various coupled effects, rendering the identification of long-term variation trends inherently challenging. Consequently, effectively detecting and alerting abnormal monitoring data for bridge structures under complex coupled loads remains a significant difficulty. To address this issue, this study proposes a dynamic early-warning method for bridge structural safety, leveraging data reconstruction and deep learning-based prediction. First, the singular value decomposition (SVD) algorithm is employed to decompose and reconstruct the monitoring data based on the contribution rate of influencing factors, thereby decoupling the data from various coupled effects. Second, a deep learning architecture utilizing a long short-term memory (LSTM) network is applied to establish a prediction model for each group of decomposed monitoring data, significantly enhancing prediction accuracy. Building on this foundation, the dynamic early-warning system for bridge structural safety is realized by integrating anomaly diagnosis theory with both predicted and measured data. A validation case using measured strain data demonstrates that the proposed method accurately predicts bridge strain data and calculates real-time adaptive thresholds, enabling real-time detection of anomalous monitoring data.
Audience Academic
Author Li, Hu
Xie, Hao
Huang, Yongliang
Gao, Mingxin
Cao, Jianxin
Men, Yanqing
Wang, Xiaohui
Liu, Fengzhou
AuthorAffiliation 1 Jinan Rail Transit Grp Co Ltd, Jinan, China
5 Shandong Rail Transit Research Institute Co Ltd, Jinan, China
2 Shandong Hi-speed Group Co Ltd, Jinan, China
3 School of Oilu Transportation, Shandong University, Jinan, China
6 Jinan Rail Transit Urban Construction Segment Manufacturing Co Ltd, Jinan, China
4 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, China
University 20 Aout 1955 skikda, Algeria, ALGERIA
AuthorAffiliation_xml – name: 1 Jinan Rail Transit Grp Co Ltd, Jinan, China
– name: University 20 Aout 1955 skikda, Algeria, ALGERIA
– name: 6 Jinan Rail Transit Urban Construction Segment Manufacturing Co Ltd, Jinan, China
– name: 5 Shandong Rail Transit Research Institute Co Ltd, Jinan, China
– name: 2 Shandong Hi-speed Group Co Ltd, Jinan, China
– name: 4 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, China
– name: 3 School of Oilu Transportation, Shandong University, Jinan, China
Author_xml – sequence: 1
  givenname: Yanqing
  surname: Men
  fullname: Men, Yanqing
– sequence: 2
  givenname: Hu
  surname: Li
  fullname: Li, Hu
– sequence: 3
  givenname: Fengzhou
  surname: Liu
  fullname: Liu, Fengzhou
– sequence: 4
  givenname: Yongliang
  surname: Huang
  fullname: Huang, Yongliang
– sequence: 5
  givenname: Mingxin
  surname: Gao
  fullname: Gao, Mingxin
– sequence: 6
  givenname: Xiaohui
  surname: Wang
  fullname: Wang, Xiaohui
– sequence: 7
  givenname: Hao
  surname: Xie
  fullname: Xie, Hao
– sequence: 8
  givenname: Jianxin
  orcidid: 0000-0003-2710-0012
  surname: Cao
  fullname: Cao, Jianxin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40460166$$D View this record in MEDLINE/PubMed
BookMark eNqNk11r2zAUhs3oWD-2fzA2wWBsF8kkS5HtqxHKPgqFwjp2K46l48RBkTJJXpd_P6VxSzN6UXRh8fo5r86HdFocOe-wKF4zOmW8Yp9WfggO7HST5SnlpaiZfFacsIaXE1lSfvRgf1ycxriidMZrKV8Ux4IKSZmUJ8V6TszWwbrXBCHY7eQGguvdgqwxLb0hnQ-kDb1ZIIkpDDoNASyJ0GHakhYiGuIdMZCABNTe7aE-a-AMMbhJS7IJaPpb8WXxvAMb8dX4PSuuv375ef59cnn17eJ8fjnRUog0Mci5YBIqNGbWaMgbLTS2ANgB7wyaFivklazbllZNbTpkwCsA2hgj-Fnxdu-6sT6qsU9R8ZLNZg2lVZWJiz1hPKzUJvRrCFvloVe3gg8LBSH12qJivC55Ply0MxBdJaHhlKHUtK4Fb-ud12zvNbgNbG_A2ntDRtVuVHcpqN2o1DiqHPd5zHJo12g0uhTAHiRz-Mf1S7XwfxQrGS8bSbPDh9Eh-N8DxqTWfdRoLTj0w1hwlbPnGX33H_p4W0ZqAbny3nU-H6x3pmpei1JSScsdNX2Eystgvka5xK7P-kHAx4OAzCT8mxYwxKgurn88nb36dci-f8AuEWxaRm-H3U2Lh-Cbh62-7_HdM8iA2AM6-BgDdk8b4T_4bh2w
Cites_doi 10.1002/stc.2288
10.1061/(ASCE)BE.1943-5592.0001553
10.1177/1475921711419995
10.1111/mice.12447
10.3390/buildings14030763
10.1080/15732479.2020.1815225
10.1177/14759217211006792
10.3390/s22166185
10.1061/(ASCE)BE.1943-5592.0001085
10.3390/buildings13030788
10.1177/13694332221133604
10.1016/j.enconman.2021.113944
10.1177/1475921720942836
10.1007/s13349-022-00571-7
10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z
10.1155/2021/6658575
10.3390/s24216863
10.3390/buildings14092964
10.1007/s40999-022-00770-9
10.1111/mice.12313
10.1109/JIOT.2017.2716114
10.1002/stc.2618
10.1177/1369433220924793
10.1061/AJRUA6.0001203
10.1007/s13349-021-00524-6
10.1080/15732479.2020.1785512
10.1007/s11831-020-09471-9
10.1109/JIOT.2020.2977220
10.1088/0964-1726/15/1/041
10.1177/1475921720918378
10.1177/14759217221078766
10.1061/(ASCE)BE.1943-5592.0001003
10.1002/stc.2552
10.1177/1475921717722060
10.1109/JIOT.2020.2988050
10.1016/j.measurement.2021.110234
10.1007/s13349-023-00690-9
10.1177/1475921717735505
10.1109/JIOT.2022.3141417
10.1080/15732479.2022.2096081
10.1111/j.1467-8667.2008.00541.x
10.1002/stc.515
10.1177/1475921710365419
10.1177/1475921709352149
10.1016/j.optcom.2018.08.078
10.1016/j.jsv.2024.118597
ContentType Journal Article
Copyright Copyright: © 2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Men et al 2025 Men et al
2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Men et al 2025 Men et al
– notice: 2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0324816
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database (Proquest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Proquest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals) eJournal Collection
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic



CrossRef
PubMed
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate A dynamic early-warning method for bridge structural safety based on data reconstruction and depth prediction
EISSN 1932-6203
ExternalDocumentID 3215590077
oai_doaj_org_article_138234ce4b5a4f76a9301e6c08843b87
10.1371/journal.pone.0324816
PMC12132960
A842606027
40460166
10_1371_journal_pone_0324816
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 2023M741361
– grantid: ZR2023QE339
– grantid: ZR2024ME059
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c644t-de33416a7edd59caa7ec4cebaaefa3fdedbe7e3768bb0798dfe1a37aa09dd43
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sat Sep 06 10:12:20 EDT 2025
Fri Oct 03 12:52:34 EDT 2025
Sun Oct 26 03:16:42 EDT 2025
Tue Sep 30 17:04:20 EDT 2025
Fri Sep 05 15:57:00 EDT 2025
Tue Oct 07 08:03:10 EDT 2025
Mon Oct 20 22:40:01 EDT 2025
Mon Oct 20 16:51:14 EDT 2025
Thu Oct 16 15:34:08 EDT 2025
Thu Oct 16 15:34:38 EDT 2025
Tue Jun 17 02:10:56 EDT 2025
Mon Jul 21 05:59:04 EDT 2025
Wed Oct 01 05:59:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-de33416a7edd59caa7ec4cebaaefa3fdedbe7e3768bb0798dfe1a37aa09dd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: Conflicts of Interest The authors declare no conflicts of interest.
ORCID 0000-0003-2710-0012
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pone.0324816
PMID 40460166
PQID 3215590077
PQPubID 1436336
PageCount e0324816
ParticipantIDs plos_journals_3215590077
doaj_primary_oai_doaj_org_article_138234ce4b5a4f76a9301e6c08843b87
unpaywall_primary_10_1371_journal_pone_0324816
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12132960
proquest_miscellaneous_3215572343
proquest_journals_3215590077
gale_infotracmisc_A842606027
gale_infotracacademiconefile_A842606027
gale_incontextgauss_ISR_A842606027
gale_incontextgauss_IOV_A842606027
gale_healthsolutions_A842606027
pubmed_primary_40460166
crossref_primary_10_1371_journal_pone_0324816
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250603
PublicationDateYYYYMMDD 2025-06-03
PublicationDate_xml – month: 6
  year: 2025
  text: 20250603
  day: 3
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References H Sohn (pone.0324816.ref012) 2008; 23
T Fukuoka (pone.0324816.ref013) 2023; 13
J Cao (pone.0324816.ref005) 2021; 12
XC Sun (pone.0324816.ref019) 2020; 7
Z Dou (pone.0324816.ref046) 2019; 430
V Meruane (pone.0324816.ref049) 2012; 11
L Sun (pone.0324816.ref023) 2011; 7981
Y Zhu (pone.0324816.ref035) 2023; 13
J Cao (pone.0324816.ref009) 2022; 22
W Hu (pone.0324816.ref021) 2018; 17
P Omenzetter (pone.0324816.ref029) 2006; 15
Z Fan (pone.0324816.ref016) 2020; 23
Z Rastin (pone.0324816.ref038) 2021; 2021
Y Lu (pone.0324816.ref040) 2024; 590
E Zhu (pone.0324816.ref008) 2022; 12
M Flah (pone.0324816.ref024) 2020; 28
X Xiao (pone.0324816.ref041) 2024; 24
R Wang (pone.0324816.ref039) 2021; 20
F Azhari (pone.0324816.ref015) 2020; 25
M He (pone.0324816.ref007) 2024; 20
L Ou (pone.0324816.ref018) 2020; 7
J Chen (pone.0324816.ref028) 2022; 22
S Eftekhar Azam (pone.0324816.ref027) 2018; 26
Y Zhang (pone.0324816.ref033) 2019; 34
M Kohiyama (pone.0324816.ref026) 2020; 27
B Kostic (pone.0324816.ref017) 2017; 22
Fan Wei (pone.0324816.ref025) 2010; 10
B Peeters (pone.0324816.ref001) 2001; 30
J Cao (pone.0324816.ref004) 2022; 21
Q Xia (pone.0324816.ref022) 2017; 22
M Azim (pone.0324816.ref010) 2021; 17
H Zhao (pone.0324816.ref045) 2020; 27
S Li (pone.0324816.ref011) 2024; 14
W Jiang (pone.0324816.ref047) 2022; 8
J Liu (pone.0324816.ref002) 2024; 19
H Dang (pone.0324816.ref034) 2021; 17
WSL Wah (pone.0324816.ref050) 2018; 17
C Wang (pone.0324816.ref043) 2022; 25
R Jia (pone.0324816.ref031) 2018; 5
Z Fan (pone.0324816.ref006) 2020; 23
E Zacchei (pone.0324816.ref014) 2023; 21
Z Shang (pone.0324816.ref037) 2020; 20
B Du (pone.0324816.ref036) 2022; 9
M Kaloop (pone.0324816.ref030) 2022; 187
Y Xia (pone.0324816.ref020) 2013; 20
T Yin (pone.0324816.ref003) 2024; 14
S Ghazimoghadam (pone.0324816.ref042) 2024; 229
K Jaseena (pone.0324816.ref044) 2021; 234
N Serker (pone.0324816.ref048) 2010; 9
Y Lin (pone.0324816.ref032) 2017; 32
References_xml – volume: 26
  issue: 2
  year: 2018
  ident: pone.0324816.ref027
  article-title: Damage detection in structural systems utilizing artificial neural networks and proper orthogonal decomposition
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2288
– volume: 25
  start-page: 04020040
  issue: 7
  year: 2020
  ident: pone.0324816.ref015
  article-title: Warning time-based framework for bridge scour monitoring
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001553
– volume: 11
  start-page: 345
  issue: 3
  year: 2012
  ident: pone.0324816.ref049
  article-title: Structural damage assessment under varying temperature conditions
  publication-title: Struct Health Monit
  doi: 10.1177/1475921711419995
– volume: 34
  start-page: 822
  issue: 9
  year: 2019
  ident: pone.0324816.ref033
  article-title: Vibration based structural state identification by a 1-dimensional convolutional neural network
  publication-title: Comput Aided Civil Infrastruct Eng
  doi: 10.1111/mice.12447
– volume: 14
  start-page: 763
  year: 2024
  ident: pone.0324816.ref011
  article-title: Research on bridge integrity assessment and early warning monitoring methods based on bearing reaction force
  publication-title: Buildings
  doi: 10.3390/buildings14030763
– volume: 17
  start-page: 1474
  issue: 11
  year: 2021
  ident: pone.0324816.ref034
  article-title: Deep learning-based detection of structural damage using time-series data
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2020.1815225
– volume: 21
  start-page: 571
  issue: 2
  year: 2022
  ident: pone.0324816.ref004
  article-title: Damage cross detection between bridges monitored within one cluster using the difference ratio of projected strain monitoring data
  publication-title: Struct Health Monit
  doi: 10.1177/14759217211006792
– volume: 22
  start-page: 6185
  issue: 16
  year: 2022
  ident: pone.0324816.ref028
  article-title: Dynamic warning method for structural health monitoring data based on ARIMA: case study of Hong Kong-Zhuhai-Macao bridge immersed tunnel
  publication-title: Sensors (Basel)
  doi: 10.3390/s22166185
– volume: 22
  start-page: 04017065
  issue: 10
  year: 2017
  ident: pone.0324816.ref017
  article-title: Vibration-based damage detection of bridges under varying temperature effects using time-series analysis and artificial neural networks
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001085
– volume: 13
  start-page: 788
  year: 2023
  ident: pone.0324816.ref013
  article-title: Detection of bridge damages by image processing using the deep learning transformer model
  publication-title: Buildings
  doi: 10.3390/buildings13030788
– volume: 25
  start-page: 3450
  issue: 16
  year: 2022
  ident: pone.0324816.ref043
  article-title: LSTM approach for condition assessment of suspension bridges based on time-series deflection and temperature data
  publication-title: Adv Struct Eng
  doi: 10.1177/13694332221133604
– volume: 234
  start-page: 113944
  year: 2021
  ident: pone.0324816.ref044
  article-title: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.113944
– volume: 7981
  year: 2011
  ident: pone.0324816.ref023
  article-title: Bridge condition assessment based on long-term strain monitoring
  publication-title: Proceedings of SPIE, Sensors Smart Struct Tech Civil, Mech Aerospace Syst
– volume: 20
  start-page: 1880
  issue: 4
  year: 2020
  ident: pone.0324816.ref037
  article-title: Vibration-based damage detection for bridges by deep convolutional denoising autoencoder
  publication-title: Struct Health Monit
  doi: 10.1177/1475921720942836
– volume: 12
  start-page: 725
  year: 2022
  ident: pone.0324816.ref008
  article-title: Research on bridge structure sam based on real-time monitoring
  publication-title: J Civil Struct Health Monit
  doi: 10.1007/s13349-022-00571-7
– volume: 30
  start-page: 149
  issue: 2
  year: 2001
  ident: pone.0324816.ref001
  article-title: One-year monitoring of the Z24-Bridge: environmental effects versus damage events
  publication-title: Earthquake Engng Struct Dyn
  doi: 10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z
– volume: 2021
  start-page: 6658575
  year: 2021
  ident: pone.0324816.ref038
  article-title: Unsupervised structural damage detection technique based on a deep convolutional autoencoder
  publication-title: Shock Vib
  doi: 10.1155/2021/6658575
– volume: 24
  start-page: 6863
  issue: 21
  year: 2024
  ident: pone.0324816.ref041
  article-title: A novel method of bridge deflection prediction using probabilistic deep learning and measured data
  publication-title: Sensors (Basel)
  doi: 10.3390/s24216863
– volume: 14
  start-page: 2964
  issue: 9
  year: 2024
  ident: pone.0324816.ref003
  article-title: Bridge surface defect localization based on panoramic image generation and deep learning-assisted detection method
  publication-title: Buildings
  doi: 10.3390/buildings14092964
– volume: 21
  start-page: 427
  issue: 3
  year: 2023
  ident: pone.0324816.ref014
  article-title: Structural health monitoring and mathematical modelling of a site-specific concrete bridge under moving two-axle vehicles
  publication-title: Int J Civ Eng
  doi: 10.1007/s40999-022-00770-9
– volume: 32
  start-page: 1025
  issue: 12
  year: 2017
  ident: pone.0324816.ref032
  article-title: Structural Damage Detection with Automatic Feature‐Extraction through Deep Learning
  publication-title: Comput aided Civil Eng
  doi: 10.1111/mice.12313
– volume: 5
  start-page: 581
  issue: 2
  year: 2018
  ident: pone.0324816.ref031
  article-title: Data driven congestion trends prediction of urban transportation
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2017.2716114
– volume: 27
  issue: 11
  year: 2020
  ident: pone.0324816.ref045
  article-title: Digital modeling on the nonlinear mapping between multi-source monitoring data of in-service bridges
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2618
– volume: 23
  start-page: 2789
  issue: 13
  year: 2020
  ident: pone.0324816.ref016
  article-title: A cointegration approach for cable anomaly warning based on structural health monitoring data: an application to cable-stayed bridges
  publication-title: Adv Struct Eng
  doi: 10.1177/1369433220924793
– volume: 8
  start-page: 04021082
  issue: 1
  year: 2022
  ident: pone.0324816.ref047
  article-title: Data normalization and anomaly detection in a steel plate-girder bridge using LSTM
  publication-title: ASCE-ASME J Risk Uncertainty Eng Syst A Civ Eng
  doi: 10.1061/AJRUA6.0001203
– volume: 12
  start-page: 47
  issue: 1
  year: 2021
  ident: pone.0324816.ref005
  article-title: Probabilistic SDDLV method for localizing damage in bridges monitored within one cluster under time-varying environmental temperatures
  publication-title: J Civil Struct Health Monit
  doi: 10.1007/s13349-021-00524-6
– volume: 17
  start-page: 1019
  issue: 8
  year: 2021
  ident: pone.0324816.ref010
  article-title: Data-driven damage identification technique for steel truss railroad bridges utilizing principal component analysis of strain response
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2020.1785512
– volume: 28
  start-page: 2621
  issue: 4
  year: 2020
  ident: pone.0324816.ref024
  article-title: Machine learning algorithms in civil structural health monitoring: a systematic review
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-020-09471-9
– volume: 7
  start-page: 5246
  issue: 6
  year: 2020
  ident: pone.0324816.ref018
  article-title: Singular spectrum analysis for local differential privacy of classifications in the smart grid
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2977220
– volume: 15
  start-page: 129
  issue: 1
  year: 2006
  ident: pone.0324816.ref029
  article-title: Application of time series analysis for bridge monitoring
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/15/1/041
– volume: 20
  start-page: 1443
  issue: 4
  year: 2021
  ident: pone.0324816.ref039
  article-title: Deep residual network framework for structural health monitoring
  publication-title: Struct Health Monit
  doi: 10.1177/1475921720918378
– volume: 22
  start-page: 105
  issue: 1
  year: 2022
  ident: pone.0324816.ref009
  article-title: Damage localization for bridges monitored within one cluster based on spatiotemporal correlation model of strain monitoring data
  publication-title: Struct Health Monit
  doi: 10.1177/14759217221078766
– volume: 22
  start-page: 04016124
  issue: 3
  year: 2017
  ident: pone.0324816.ref022
  article-title: In-service condition assessment of a long-span suspension bridge using temperature-induced strain data
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001003
– volume: 27
  issue: 8
  year: 2020
  ident: pone.0324816.ref026
  article-title: Detection method of unlearned pattern using support vector machine in damage classification based on deep neural network
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2552
– volume: 17
  start-page: 850
  issue: 4
  year: 2018
  ident: pone.0324816.ref050
  article-title: Separating damage from environmental effects affecting civil structures for near real-time damage detection
  publication-title: Struct Health Monit
  doi: 10.1177/1475921717722060
– volume: 7
  start-page: 9943
  issue: 10
  year: 2020
  ident: pone.0324816.ref019
  article-title: Toward self-adaptive selection of kernel functions for support vector regression in IoT-based marine data prediction
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2988050
– volume: 187
  start-page: 110234
  year: 2022
  ident: pone.0324816.ref030
  article-title: Safety and reliability evaluations of bridge behaviors under ambient truck loads through structural health monitoring and identification model approaches
  publication-title: Meas
  doi: 10.1016/j.measurement.2021.110234
– volume: 13
  start-page: 947
  year: 2023
  ident: pone.0324816.ref035
  article-title: B-CNN: a deep learning method for accelerometer-based fatigue cracks monitoring system
  publication-title: J Civil Struct Health Monit
  doi: 10.1007/s13349-023-00690-9
– volume: 17
  start-page: 1073
  issue: 5
  year: 2018
  ident: pone.0324816.ref021
  article-title: Continuous dynamic monitoring of a prestressed concrete bridge based on strain, inclination and crack measurements over a 14-year span
  publication-title: Struct Health Monit An Int J
  doi: 10.1177/1475921717735505
– volume: 19
  issue: 10
  year: 2024
  ident: pone.0324816.ref002
  article-title: Enhancing bridge damage detection with Mamba-Enhanced HRNet for semantic segmentation
  publication-title: PLoS One
– volume: 9
  start-page: 13364
  issue: 15
  year: 2022
  ident: pone.0324816.ref036
  article-title: Response prediction based on temporal and spatial deep learning model for intelligent structural health monitoring
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3141417
– volume: 229
  start-page: 114410
  year: 2024
  ident: pone.0324816.ref042
  article-title: A novel unsupervised deep learning approach for vibration-based damage diagnosis using a multi-head self-attention LSTM autoencoder
  publication-title: J Title Abb Need
– volume: 20
  start-page: 380
  issue: 3
  year: 2024
  ident: pone.0324816.ref007
  article-title: Identification, tracking and warning of vortex induced vibration using k-means clustering method
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2022.2096081
– volume: 23
  start-page: 324
  issue: 5
  year: 2008
  ident: pone.0324816.ref012
  article-title: Reference‐free damage classification based on cluster analysis
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/j.1467-8667.2008.00541.x
– volume: 23
  start-page: 2789
  issue: 13
  year: 2020
  ident: pone.0324816.ref006
  article-title: A cointegration approach for cable anomaly warning based on structural health monitoring data: an application to cable-stayed bridges
  publication-title: Adv Struct Eng
  doi: 10.1177/1369433220924793
– volume: 20
  start-page: 560
  issue: 4
  year: 2013
  ident: pone.0324816.ref020
  article-title: Field monitoring and numerical analysis of Tsing Ma suspension bridge temperature behavior
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.515
– volume: 10
  start-page: 83
  issue: 1
  year: 2010
  ident: pone.0324816.ref025
  article-title: Vibration-based damage identification methods: a review and comparative study
  publication-title: Struct Health Monit
  doi: 10.1177/1475921710365419
– volume: 9
  start-page: 145
  issue: 2
  year: 2010
  ident: pone.0324816.ref048
  article-title: A nonphysics-based approach for vibrationbased structural health monitoring under changing environmental conditions
  publication-title: Struct Health Monit
  doi: 10.1177/1475921709352149
– volume: 430
  start-page: 407
  year: 2019
  ident: pone.0324816.ref046
  article-title: Filtering-tikhonov regularization inversion for dynamic light scattering data with strong noise
  publication-title: Optics Commun
  doi: 10.1016/j.optcom.2018.08.078
– volume: 590
  start-page: 118597
  year: 2024
  ident: pone.0324816.ref040
  article-title: Unsupervised quantitative structural damage identification method based on BiLSTM networks and probability distribution model
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2024.118597
SSID ssj0053866
Score 2.4809427
Snippet The structural response of bridges involves a complex interplay of various coupled effects, rendering the identification of long-term variation trends...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0324816
SubjectTerms Accuracy
Algorithms
Big Data
Bridge failures
Bridges
China
Computer and Information Sciences
Decomposition
Decoupling
Deep learning
Early warning systems
Engineering and Technology
Evaluation
False alarms
Forecasts and trends
Long short-term memory
Machine learning
Methods
Monitoring
Neural networks
Physical Sciences
Prediction models
Real time
Reconstruction
Research and Analysis Methods
Safety
Safety and security measures
Singular value decomposition
Structural engineering
Structural response
Structural safety
Temperature
Time series
Warning systems
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yL_oinl9XPTWKoD50r9ukSfq4iscpqOCp3FtImvROWNtidznuv3emyZYtHngPvpVmWuh8JDOdmd8Q8tJX1otS1WnuSpZyxau0xCSvEGVRWFbabIBd_PRZHH_nH0-L051RX1gTFuCBA-MOESOP8cpzWxheS2FKUEkvKrAOzqwa-sgzVW6DqbAHgxULERvlmFwcRrnMu7bx8wx8CIXzzXcOogGvf9yVZ92q7a9yOf-unLy5aTpzeWFWq51j6egOuR39SboM37FHbvjmLtmLFtvT1xFW-s098mtJXRg_Tz2iGqcX4acIDUOkKXivNLRv0QAqi4ActDe1X19SPOwcbRuKFaV0iKJH5FlqGked79bntPuNeR-8eZ-cHL3_9u44jcMW0gpconXqPIMDTRjpnSvKysBFBWy3xvjasNp5Z730sB0pazNZKlf7hWHSmKx0jrMHZNYAc_cJBf-D4UYCcZLlzi6UNDViwOe88EZJlpB0y3fdBUQNPaTVJEQigWka5aSjnBLyFoUz0iIe9nADtERHLdH_0pKEPEPR6tBcOlq1XipE6BcQmyfkxUCBmBgNFt2cmU3f6w9fflyD6OTrhOhVJKpbUJLKxEYH-CbE2ppQHkwowbKryfI-KuKWK71mOSaREYEJntwq59XLz8dlfCkW0jW-3UQaCbwCOTwMujxylmOSfCGA42qi5RPWT1ean-cDJDkCA-YQDCdkPhrEtaT76H9I9zG5leNYZvw5xg7IDPTfPwFfcW2fDtvCHyV-Z70
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvE-NrGQMMQgIe0rWxYycPCHVo00CioA3Q3iw7djakkmRLq2n_PXeJExYxob1V8bVq7st3vvPvCHntMuNEmuRhZFMW8oRnYYpFXiHSODYsNZMGdvHLXBz-4J9P4pM1Mu_uwmBbZecTG0dtywzPyHdZhAU0RJ_5UJ2HODUKq6vdCA3tRyvY9w3E2B2yHiEy1ois7-3Pvx11vhmsWwh_gY7J6a6X17gqCzeeQGyR4NzzaxtUg-Pfe-tRtSjrm0LRfzsq766KSl9d6sXi2nZ1cJ9s-DiTzlrF2CRrrnhANr0l1_Sth5t-95D8nlHbjqWnDtGOw8v2sIS2w6UpRLW0vdZFW7BZBOqgtc7d8oriJmhpWVDsNKVNdt0j0lJdWGpdtTyj1QXWg_DhI3J8sP_942HohzCEGYRKy9A6Bhud0NJZG6eZhg8Zz5zR2uWa5dZZ46QDN5UYM5FpYnM31UxqPUmt5ewxGRXA3C1CIS5h6GAgfzLcmmkidY7Y8BGPnU4kC0jY8V1VLdKGasptEjKUlmkK5aS8nAKyh8LpaREnu3lQXpwqb3YKERYZ_F1uYs1zKXQKDs2JDHwrZyaRAXmBolXtpdPe2tUsQeR-ATl7QF41FIiVUWAzzqle1bX69PXnLYiOjwZEbzxRXoKSZNpfgIB3QgyuAeXOgBIsPhssb6Eidlyp1V_bgG92ynnz8st-GX8UG-wKV648jQRegRyetLrcc5Zj8XwqgOPJQMsHrB-uFL_OGqhyBAyMIEkOyLg3iFtJd_v_L_KU3ItwEDMeh7EdMgLNds8gOlya597k_wCjBWa8
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBEShs7dvJYENNA2kCMofEU2bHDECWJSKpp_PXcxU60wJDKWxWfo_q-nTv_TMgTm2sr0qQII5OykCc8D1Ms8gqRxrFmqZ51sIv7B2LviL87jo83yIv-LMz5-j2T85eeo9O6Ku10BtE_mYtLZFPEkHlPyObRwYfFF1c4jkIRzZg_HfevqaPo04H0D654Ui-r5qI88-92ycurslZnp2q5PBeLdq-R_X4VrgXl-3TV6mn-6w-Ax3WXeZ1c9UkpXTgt2iIbtrxBtrzZN_SZx6Z-fpP8WFDj7rCnFqGRw1P3ZYW6m6gppMDUnQGjDpkWUT1oowrbnlGMmIZWJcW2VNptxQf4WqpKQ42t2xNa_8TiET68RQ5333x6vRf6GxvCHPKqNjSWQVQUSlpj4jRX8CPnudVK2UKxwlijrbTg0xKtZzJNTGHnikmlZqkxnN0mkxIYsE0oJDEMvRFstjQ3ep5IVSCQfMRjqxLJAhL2csxqB8uRdbU5CdsZx7QMeZl5XgbkFQp7oEVQ7e4BCCHzNpohHCODv8t1rHghhUrB-1mRgyPmTCcyIA9RVTJ3QnVwDdkiQZh_ARv8gDzuKBBYo8TOna9q1TTZ2_ef1yA6_DgieuqJigqULlf-tASsCQG7RpQ7I0pwD_loeBsVu-dKk7EIK9EI4wQze2W_ePjRMIwvxW680lYrTyOBVyCHO842Bs5yrLTPBXA8GVnNiPXjkfLbSYdrjuiCEdh1QKaDga0l3bv_O-EeuRLhPc74NY3tkAnour0PyWWrH3if8hsB33k2
  priority: 102
  providerName: Unpaywall
Title A dynamic early-warning method for bridge structural safety based on data reconstruction and depth prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/40460166
https://www.proquest.com/docview/3215590077
https://www.proquest.com/docview/3215572343
https://pubmed.ncbi.nlm.nih.gov/PMC12132960
https://doi.org/10.1371/journal.pone.0324816
https://doaj.org/article/138234ce4b5a4f76a9301e6c08843b87
http://dx.doi.org/10.1371/journal.pone.0324816
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe27gFeEONrHaMYhAQ8pGpiJ04eEOqmlYG0Mm0UdU-RHTsbUpeEptXof89d4kZEFGm8RFV8idL78p3P_h0hb0yiTBCFqePpiDk85IkTYZE3CCLfVyxSgwp28XQcnEz4l6k_3SLrnq2WgeXG1A77SU3ms_6vn6uPYPAfqq4Nwl0_1C_yzPQHECGEbrBNdmCuirCZwylv6gpg3VX1EqMWJ_AGzB6m-9dbWpNVhenfeO5OMcvLTWHp37sr7y2zQq5u5Wz2x9Q1ekge2JiTDmsl2SVbJntEdq1Vl_SdhZ5-_5jcDKmuW9RTg8jHzm29cELrRtMUIlxaH_GiNfAsgnbQUqZmsaI4IWqaZxR3ndIq027QaanMNNWmWFzTYo61Ibz5hFyMjr8dnTi2IYOTQNi0cLRhMOkFUhit_SiR8CPhiVFSmlSyVButjDDgskKlBiIKdWpcyYSUg0hrzp6STgbM3SMUYhSGzgZyKcW1ckMhU8SJ97hvZChYlzhrvsdFjboRV6U3AdlKzbQY5RRbOXXJIQqnoUXM7OpGPr-KrQnGiLbI4HO58iVPRSAjcG4mSMDPcqZC0SUvUbRxfQC1sfx4GCKKfwD5e5e8rigQNyPDjTlXclmW8eev3-9AdHHeInpridIclCSR9jAE_CfE42pRHrQowfqT1vAeKuKaK2XMPCw0I0oTPLlWzs3Dr5phfClutstMvrQ0AngFcnhW63LDWY6FdDcAjoctLW-xvj2S_biuYMsRPNCDhLlL-o1B3Em6-_-pDc_JfQ-7NONaGTsgHVB18wJCx4XqkW0xFXANj1y8jj71yM7h8fjsvFctxvQqbwH3JuOz4eVvzbR0-g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeRgviHFbYTCDQMBDujR24uQBoXKZWnZBYhvqE5YdOxtSScLSqup_4kdyTm4sYkJ72VsVn0TNuXw-J7a_Q8gLG2sbRGHieCZiDg957ES4yBsEke9rFmm3pF08OAzGJ_zz1J-ukd_NWRjcVtlgYgnUJovxG_kO83ABDdln3uW_HOwahaurTQuNyi327GoJJVvxdvIR7PvS83Y_HX8YO3VXASeGuX_uGMsAuQMlrDF-FCv4EfPYaqVsolhirNFWWIi7UGtXRKFJ7FAxoZQbGcMZPPUGuckZIAlEj5i25R0gRxDUh_OYGO7UvjDIs9QOXMhbQuypfmHyK3sEtDNBL59lxWVp7r-7NdcXaa5WSzWbXZgKd--Q23UOS0eV022QNZveJRs1ShT0dU1l_eYe-Tmipmp5Ty0yKTvL6kMMrRpXU8iYaXVkjFZEtkgCQguV2PmK4gRraJZS3MVKy8q9ZbulKjXU2Hx-RvNzXGvCi_fJ0TWY4gHppaDcTUIh52EIXlCbaW70MBQqQd55j_tWhYL1idPoXeYVi4csl_IEVD-V0iTaSdZ26pP3aJxWFjm4ywvZ-amsQ1oieyODv8u1r3giAhUBWNogBtzmTIeiT7bRtLI60NoiiRyF2BUgcD2QeF5KIA9Hiht9TtWiKOTky7crCB197Qi9qoWSDJwkVvXhCngn5PfqSG51JAFN4s7wJjpio5VC_o07uLNxzsuHn7XD-FDcvJfabFHLCNAV2OFh5cutZjkuzA8D0HjY8fKO6rsj6Y-zkgYdyQg9KMD7ZNAGxJWs--j_L7JN1sfHB_tyf3K495jc8rDhM352Y1ukB15un0AWOtdPy-Cn5Pv1Ys0f3uigfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIEEviPJqSqELAgEH5-G1vfYBoUCJGgoFUUA5Ye3LbaXUNnWiKP-Mn8eMvTa1qFAvvUXesRXPzH474539hpBnRkkTRGHiuDpijhd6yolwkzcIIt-XLJKDknbx00Gw9937MPWna-R3fRYGyyprTCyBWmcKv5H3mYsbaMg-009sWcSX3fGb_JeDHaRwp7Vup1G5yL5ZLSF9K15PdsHWz113_P7buz3HdhhwFMQBc0cbBigeCG609iMl4IfylJFCmESwRBstDTcwB0MpBzwKdWKGgnEhBpHWHoOnXiPXOWMRFhPyaZPqAYoEgT2ox_iwb_2il2ep6Q0ghgmxv_q5hbDsF9CsCp18lhUXhbz_Vm7eXKS5WC3FbHZuWRzfJrdsPEtHlQNukDWT3iEbFjEK-tLSWr-6S05HVK9ScXqiqEFWZWdZfZShVRNrCtEzrY6P0YrUFglBaCESM19RXGw1zVKKFa20zOIb5lsqUk21yefHND_DfSe8eI8cXoEp7pNOCsrdJBTiH4ZABnma9LQchlwkyEHver4RIWdd4tR6j_OK0SMut_U4ZEKV0mK0U2zt1CVv0TiNLPJxlxeys6PYTu8YmRwZ_F1P-sJLeCAiAE4TKMBwj8mQd8kOmjauDrc2qBKPQuwQEAxckHhaSiAnR4refSQWRRFPPv-4hNDh15bQCyuUZOAkStiDFvBOyPXVktxuSQKyqNbwJjpirZUi_jsH4c7aOS8eftIM40OxkC812cLKcNAV2OFB5cuNZj3cpB8GoPGw5eUt1bdH0pPjkhIdiQldSMa7pNdMiEtZd-v_L7JDbgDKxB8nB_sPybqLvZ_xCxzbJh1wcvMIAtK5fFzOfUp-Xi3U_AFQW6TC
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBEShs7dvJYENNA2kCMofEU2bHDECWJSKpp_PXcxU60wJDKWxWfo_q-nTv_TMgTm2sr0qQII5OykCc8D1Ms8gqRxrFmqZ51sIv7B2LviL87jo83yIv-LMz5-j2T85eeo9O6Ku10BtE_mYtLZFPEkHlPyObRwYfFF1c4jkIRzZg_HfevqaPo04H0D654Ui-r5qI88-92ycurslZnp2q5PBeLdq-R_X4VrgXl-3TV6mn-6w-Ax3WXeZ1c9UkpXTgt2iIbtrxBtrzZN_SZx6Z-fpP8WFDj7rCnFqGRw1P3ZYW6m6gppMDUnQGjDpkWUT1oowrbnlGMmIZWJcW2VNptxQf4WqpKQ42t2xNa_8TiET68RQ5333x6vRf6GxvCHPKqNjSWQVQUSlpj4jRX8CPnudVK2UKxwlijrbTg0xKtZzJNTGHnikmlZqkxnN0mkxIYsE0oJDEMvRFstjQ3ep5IVSCQfMRjqxLJAhL2csxqB8uRdbU5CdsZx7QMeZl5XgbkFQp7oEVQ7e4BCCHzNpohHCODv8t1rHghhUrB-1mRgyPmTCcyIA9RVTJ3QnVwDdkiQZh_ARv8gDzuKBBYo8TOna9q1TTZ2_ef1yA6_DgieuqJigqULlf-tASsCQG7RpQ7I0pwD_loeBsVu-dKk7EIK9EI4wQze2W_ePjRMIwvxW680lYrTyOBVyCHO842Bs5yrLTPBXA8GVnNiPXjkfLbSYdrjuiCEdh1QKaDga0l3bv_O-EeuRLhPc74NY3tkAnour0PyWWrH3if8hsB33k2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+early-warning+method+for+bridge+structural+safety+based+on+data+reconstruction+and+depth+prediction&rft.jtitle=PloS+one&rft.au=Men%2C+Yanqing&rft.au=Li%2C+Hu&rft.au=Liu%2C+Fengzhou&rft.au=Huang%2C+Yongliang&rft.date=2025-06-03&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0324816&rft_id=info:doi/10.1371%2Fjournal.pone.0324816&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0324816
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon