A dynamic early-warning method for bridge structural safety based on data reconstruction and depth prediction
The structural response of bridges involves a complex interplay of various coupled effects, rendering the identification of long-term variation trends inherently challenging. Consequently, effectively detecting and alerting abnormal monitoring data for bridge structures under complex coupled loads r...
Saved in:
| Published in | PloS one Vol. 20; no. 6; p. e0324816 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
03.06.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0324816 |
Cover
| Abstract | The structural response of bridges involves a complex interplay of various coupled effects, rendering the identification of long-term variation trends inherently challenging. Consequently, effectively detecting and alerting abnormal monitoring data for bridge structures under complex coupled loads remains a significant difficulty. To address this issue, this study proposes a dynamic early-warning method for bridge structural safety, leveraging data reconstruction and deep learning-based prediction. First, the singular value decomposition (SVD) algorithm is employed to decompose and reconstruct the monitoring data based on the contribution rate of influencing factors, thereby decoupling the data from various coupled effects. Second, a deep learning architecture utilizing a long short-term memory (LSTM) network is applied to establish a prediction model for each group of decomposed monitoring data, significantly enhancing prediction accuracy. Building on this foundation, the dynamic early-warning system for bridge structural safety is realized by integrating anomaly diagnosis theory with both predicted and measured data. A validation case using measured strain data demonstrates that the proposed method accurately predicts bridge strain data and calculates real-time adaptive thresholds, enabling real-time detection of anomalous monitoring data. |
|---|---|
| AbstractList | The structural response of bridges involves a complex interplay of various coupled effects, rendering the identification of long-term variation trends inherently challenging. Consequently, effectively detecting and alerting abnormal monitoring data for bridge structures under complex coupled loads remains a significant difficulty. To address this issue, this study proposes a dynamic early-warning method for bridge structural safety, leveraging data reconstruction and deep learning-based prediction. First, the singular value decomposition (SVD) algorithm is employed to decompose and reconstruct the monitoring data based on the contribution rate of influencing factors, thereby decoupling the data from various coupled effects. Second, a deep learning architecture utilizing a long short-term memory (LSTM) network is applied to establish a prediction model for each group of decomposed monitoring data, significantly enhancing prediction accuracy. Building on this foundation, the dynamic early-warning system for bridge structural safety is realized by integrating anomaly diagnosis theory with both predicted and measured data. A validation case using measured strain data demonstrates that the proposed method accurately predicts bridge strain data and calculates real-time adaptive thresholds, enabling real-time detection of anomalous monitoring data. The structural response of bridges involves a complex interplay of various coupled effects, rendering the identification of long-term variation trends inherently challenging. Consequently, effectively detecting and alerting abnormal monitoring data for bridge structures under complex coupled loads remains a significant difficulty. To address this issue, this study proposes a dynamic early-warning method for bridge structural safety, leveraging data reconstruction and deep learning-based prediction. First, the singular value decomposition (SVD) algorithm is employed to decompose and reconstruct the monitoring data based on the contribution rate of influencing factors, thereby decoupling the data from various coupled effects. Second, a deep learning architecture utilizing a long short-term memory (LSTM) network is applied to establish a prediction model for each group of decomposed monitoring data, significantly enhancing prediction accuracy. Building on this foundation, the dynamic early-warning system for bridge structural safety is realized by integrating anomaly diagnosis theory with both predicted and measured data. A validation case using measured strain data demonstrates that the proposed method accurately predicts bridge strain data and calculates real-time adaptive thresholds, enabling real-time detection of anomalous monitoring data.The structural response of bridges involves a complex interplay of various coupled effects, rendering the identification of long-term variation trends inherently challenging. Consequently, effectively detecting and alerting abnormal monitoring data for bridge structures under complex coupled loads remains a significant difficulty. To address this issue, this study proposes a dynamic early-warning method for bridge structural safety, leveraging data reconstruction and deep learning-based prediction. First, the singular value decomposition (SVD) algorithm is employed to decompose and reconstruct the monitoring data based on the contribution rate of influencing factors, thereby decoupling the data from various coupled effects. Second, a deep learning architecture utilizing a long short-term memory (LSTM) network is applied to establish a prediction model for each group of decomposed monitoring data, significantly enhancing prediction accuracy. Building on this foundation, the dynamic early-warning system for bridge structural safety is realized by integrating anomaly diagnosis theory with both predicted and measured data. A validation case using measured strain data demonstrates that the proposed method accurately predicts bridge strain data and calculates real-time adaptive thresholds, enabling real-time detection of anomalous monitoring data. |
| Audience | Academic |
| Author | Li, Hu Xie, Hao Huang, Yongliang Gao, Mingxin Cao, Jianxin Men, Yanqing Wang, Xiaohui Liu, Fengzhou |
| AuthorAffiliation | 1 Jinan Rail Transit Grp Co Ltd, Jinan, China 5 Shandong Rail Transit Research Institute Co Ltd, Jinan, China 2 Shandong Hi-speed Group Co Ltd, Jinan, China 3 School of Oilu Transportation, Shandong University, Jinan, China 6 Jinan Rail Transit Urban Construction Segment Manufacturing Co Ltd, Jinan, China 4 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, China University 20 Aout 1955 skikda, Algeria, ALGERIA |
| AuthorAffiliation_xml | – name: 1 Jinan Rail Transit Grp Co Ltd, Jinan, China – name: University 20 Aout 1955 skikda, Algeria, ALGERIA – name: 6 Jinan Rail Transit Urban Construction Segment Manufacturing Co Ltd, Jinan, China – name: 5 Shandong Rail Transit Research Institute Co Ltd, Jinan, China – name: 2 Shandong Hi-speed Group Co Ltd, Jinan, China – name: 4 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, China – name: 3 School of Oilu Transportation, Shandong University, Jinan, China |
| Author_xml | – sequence: 1 givenname: Yanqing surname: Men fullname: Men, Yanqing – sequence: 2 givenname: Hu surname: Li fullname: Li, Hu – sequence: 3 givenname: Fengzhou surname: Liu fullname: Liu, Fengzhou – sequence: 4 givenname: Yongliang surname: Huang fullname: Huang, Yongliang – sequence: 5 givenname: Mingxin surname: Gao fullname: Gao, Mingxin – sequence: 6 givenname: Xiaohui surname: Wang fullname: Wang, Xiaohui – sequence: 7 givenname: Hao surname: Xie fullname: Xie, Hao – sequence: 8 givenname: Jianxin orcidid: 0000-0003-2710-0012 surname: Cao fullname: Cao, Jianxin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40460166$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk11r2zAUhs3oWD-2fzA2wWBsF8kkS5HtqxHKPgqFwjp2K46l48RBkTJJXpd_P6VxSzN6UXRh8fo5r86HdFocOe-wKF4zOmW8Yp9WfggO7HST5SnlpaiZfFacsIaXE1lSfvRgf1ycxriidMZrKV8Ux4IKSZmUJ8V6TszWwbrXBCHY7eQGguvdgqwxLb0hnQ-kDb1ZIIkpDDoNASyJ0GHakhYiGuIdMZCABNTe7aE-a-AMMbhJS7IJaPpb8WXxvAMb8dX4PSuuv375ef59cnn17eJ8fjnRUog0Mci5YBIqNGbWaMgbLTS2ANgB7wyaFivklazbllZNbTpkwCsA2hgj-Fnxdu-6sT6qsU9R8ZLNZg2lVZWJiz1hPKzUJvRrCFvloVe3gg8LBSH12qJivC55Ply0MxBdJaHhlKHUtK4Fb-ud12zvNbgNbG_A2ntDRtVuVHcpqN2o1DiqHPd5zHJo12g0uhTAHiRz-Mf1S7XwfxQrGS8bSbPDh9Eh-N8DxqTWfdRoLTj0w1hwlbPnGX33H_p4W0ZqAbny3nU-H6x3pmpei1JSScsdNX2Eystgvka5xK7P-kHAx4OAzCT8mxYwxKgurn88nb36dci-f8AuEWxaRm-H3U2Lh-Cbh62-7_HdM8iA2AM6-BgDdk8b4T_4bh2w |
| Cites_doi | 10.1002/stc.2288 10.1061/(ASCE)BE.1943-5592.0001553 10.1177/1475921711419995 10.1111/mice.12447 10.3390/buildings14030763 10.1080/15732479.2020.1815225 10.1177/14759217211006792 10.3390/s22166185 10.1061/(ASCE)BE.1943-5592.0001085 10.3390/buildings13030788 10.1177/13694332221133604 10.1016/j.enconman.2021.113944 10.1177/1475921720942836 10.1007/s13349-022-00571-7 10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z 10.1155/2021/6658575 10.3390/s24216863 10.3390/buildings14092964 10.1007/s40999-022-00770-9 10.1111/mice.12313 10.1109/JIOT.2017.2716114 10.1002/stc.2618 10.1177/1369433220924793 10.1061/AJRUA6.0001203 10.1007/s13349-021-00524-6 10.1080/15732479.2020.1785512 10.1007/s11831-020-09471-9 10.1109/JIOT.2020.2977220 10.1088/0964-1726/15/1/041 10.1177/1475921720918378 10.1177/14759217221078766 10.1061/(ASCE)BE.1943-5592.0001003 10.1002/stc.2552 10.1177/1475921717722060 10.1109/JIOT.2020.2988050 10.1016/j.measurement.2021.110234 10.1007/s13349-023-00690-9 10.1177/1475921717735505 10.1109/JIOT.2022.3141417 10.1080/15732479.2022.2096081 10.1111/j.1467-8667.2008.00541.x 10.1002/stc.515 10.1177/1475921710365419 10.1177/1475921709352149 10.1016/j.optcom.2018.08.078 10.1016/j.jsv.2024.118597 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Men et al 2025 Men et al 2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Men et al 2025 Men et al – notice: 2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0324816 |
| DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database (Proquest) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Proquest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ (Directory of Open Access Journals) eJournal Collection |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | A dynamic early-warning method for bridge structural safety based on data reconstruction and depth prediction |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3215590077 oai_doaj_org_article_138234ce4b5a4f76a9301e6c08843b87 10.1371/journal.pone.0324816 PMC12132960 A842606027 40460166 10_1371_journal_pone_0324816 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: ; grantid: 2023M741361 – grantid: ZR2023QE339 – grantid: ZR2024ME059 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c644t-de33416a7edd59caa7ec4cebaaefa3fdedbe7e3768bb0798dfe1a37aa09dd43 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sat Sep 06 10:12:20 EDT 2025 Fri Oct 03 12:52:34 EDT 2025 Sun Oct 26 03:16:42 EDT 2025 Tue Sep 30 17:04:20 EDT 2025 Fri Sep 05 15:57:00 EDT 2025 Tue Oct 07 08:03:10 EDT 2025 Mon Oct 20 22:40:01 EDT 2025 Mon Oct 20 16:51:14 EDT 2025 Thu Oct 16 15:34:08 EDT 2025 Thu Oct 16 15:34:38 EDT 2025 Tue Jun 17 02:10:56 EDT 2025 Mon Jul 21 05:59:04 EDT 2025 Wed Oct 01 05:59:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright: © 2025 Men et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c644t-de33416a7edd59caa7ec4cebaaefa3fdedbe7e3768bb0798dfe1a37aa09dd43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: Conflicts of Interest The authors declare no conflicts of interest. |
| ORCID | 0000-0003-2710-0012 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pone.0324816 |
| PMID | 40460166 |
| PQID | 3215590077 |
| PQPubID | 1436336 |
| PageCount | e0324816 |
| ParticipantIDs | plos_journals_3215590077 doaj_primary_oai_doaj_org_article_138234ce4b5a4f76a9301e6c08843b87 unpaywall_primary_10_1371_journal_pone_0324816 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12132960 proquest_miscellaneous_3215572343 proquest_journals_3215590077 gale_infotracmisc_A842606027 gale_infotracacademiconefile_A842606027 gale_incontextgauss_ISR_A842606027 gale_incontextgauss_IOV_A842606027 gale_healthsolutions_A842606027 pubmed_primary_40460166 crossref_primary_10_1371_journal_pone_0324816 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250603 |
| PublicationDateYYYYMMDD | 2025-06-03 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250603 day: 3 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | H Sohn (pone.0324816.ref012) 2008; 23 T Fukuoka (pone.0324816.ref013) 2023; 13 J Cao (pone.0324816.ref005) 2021; 12 XC Sun (pone.0324816.ref019) 2020; 7 Z Dou (pone.0324816.ref046) 2019; 430 V Meruane (pone.0324816.ref049) 2012; 11 L Sun (pone.0324816.ref023) 2011; 7981 Y Zhu (pone.0324816.ref035) 2023; 13 J Cao (pone.0324816.ref009) 2022; 22 W Hu (pone.0324816.ref021) 2018; 17 P Omenzetter (pone.0324816.ref029) 2006; 15 Z Fan (pone.0324816.ref016) 2020; 23 Z Rastin (pone.0324816.ref038) 2021; 2021 Y Lu (pone.0324816.ref040) 2024; 590 E Zhu (pone.0324816.ref008) 2022; 12 M Flah (pone.0324816.ref024) 2020; 28 X Xiao (pone.0324816.ref041) 2024; 24 R Wang (pone.0324816.ref039) 2021; 20 F Azhari (pone.0324816.ref015) 2020; 25 M He (pone.0324816.ref007) 2024; 20 L Ou (pone.0324816.ref018) 2020; 7 J Chen (pone.0324816.ref028) 2022; 22 S Eftekhar Azam (pone.0324816.ref027) 2018; 26 Y Zhang (pone.0324816.ref033) 2019; 34 M Kohiyama (pone.0324816.ref026) 2020; 27 B Kostic (pone.0324816.ref017) 2017; 22 Fan Wei (pone.0324816.ref025) 2010; 10 B Peeters (pone.0324816.ref001) 2001; 30 J Cao (pone.0324816.ref004) 2022; 21 Q Xia (pone.0324816.ref022) 2017; 22 M Azim (pone.0324816.ref010) 2021; 17 H Zhao (pone.0324816.ref045) 2020; 27 S Li (pone.0324816.ref011) 2024; 14 W Jiang (pone.0324816.ref047) 2022; 8 J Liu (pone.0324816.ref002) 2024; 19 H Dang (pone.0324816.ref034) 2021; 17 WSL Wah (pone.0324816.ref050) 2018; 17 C Wang (pone.0324816.ref043) 2022; 25 R Jia (pone.0324816.ref031) 2018; 5 Z Fan (pone.0324816.ref006) 2020; 23 E Zacchei (pone.0324816.ref014) 2023; 21 Z Shang (pone.0324816.ref037) 2020; 20 B Du (pone.0324816.ref036) 2022; 9 M Kaloop (pone.0324816.ref030) 2022; 187 Y Xia (pone.0324816.ref020) 2013; 20 T Yin (pone.0324816.ref003) 2024; 14 S Ghazimoghadam (pone.0324816.ref042) 2024; 229 K Jaseena (pone.0324816.ref044) 2021; 234 N Serker (pone.0324816.ref048) 2010; 9 Y Lin (pone.0324816.ref032) 2017; 32 |
| References_xml | – volume: 26 issue: 2 year: 2018 ident: pone.0324816.ref027 article-title: Damage detection in structural systems utilizing artificial neural networks and proper orthogonal decomposition publication-title: Struct Control Health Monit doi: 10.1002/stc.2288 – volume: 25 start-page: 04020040 issue: 7 year: 2020 ident: pone.0324816.ref015 article-title: Warning time-based framework for bridge scour monitoring publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0001553 – volume: 11 start-page: 345 issue: 3 year: 2012 ident: pone.0324816.ref049 article-title: Structural damage assessment under varying temperature conditions publication-title: Struct Health Monit doi: 10.1177/1475921711419995 – volume: 34 start-page: 822 issue: 9 year: 2019 ident: pone.0324816.ref033 article-title: Vibration based structural state identification by a 1-dimensional convolutional neural network publication-title: Comput Aided Civil Infrastruct Eng doi: 10.1111/mice.12447 – volume: 14 start-page: 763 year: 2024 ident: pone.0324816.ref011 article-title: Research on bridge integrity assessment and early warning monitoring methods based on bearing reaction force publication-title: Buildings doi: 10.3390/buildings14030763 – volume: 17 start-page: 1474 issue: 11 year: 2021 ident: pone.0324816.ref034 article-title: Deep learning-based detection of structural damage using time-series data publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2020.1815225 – volume: 21 start-page: 571 issue: 2 year: 2022 ident: pone.0324816.ref004 article-title: Damage cross detection between bridges monitored within one cluster using the difference ratio of projected strain monitoring data publication-title: Struct Health Monit doi: 10.1177/14759217211006792 – volume: 22 start-page: 6185 issue: 16 year: 2022 ident: pone.0324816.ref028 article-title: Dynamic warning method for structural health monitoring data based on ARIMA: case study of Hong Kong-Zhuhai-Macao bridge immersed tunnel publication-title: Sensors (Basel) doi: 10.3390/s22166185 – volume: 22 start-page: 04017065 issue: 10 year: 2017 ident: pone.0324816.ref017 article-title: Vibration-based damage detection of bridges under varying temperature effects using time-series analysis and artificial neural networks publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0001085 – volume: 13 start-page: 788 year: 2023 ident: pone.0324816.ref013 article-title: Detection of bridge damages by image processing using the deep learning transformer model publication-title: Buildings doi: 10.3390/buildings13030788 – volume: 25 start-page: 3450 issue: 16 year: 2022 ident: pone.0324816.ref043 article-title: LSTM approach for condition assessment of suspension bridges based on time-series deflection and temperature data publication-title: Adv Struct Eng doi: 10.1177/13694332221133604 – volume: 234 start-page: 113944 year: 2021 ident: pone.0324816.ref044 article-title: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.113944 – volume: 7981 year: 2011 ident: pone.0324816.ref023 article-title: Bridge condition assessment based on long-term strain monitoring publication-title: Proceedings of SPIE, Sensors Smart Struct Tech Civil, Mech Aerospace Syst – volume: 20 start-page: 1880 issue: 4 year: 2020 ident: pone.0324816.ref037 article-title: Vibration-based damage detection for bridges by deep convolutional denoising autoencoder publication-title: Struct Health Monit doi: 10.1177/1475921720942836 – volume: 12 start-page: 725 year: 2022 ident: pone.0324816.ref008 article-title: Research on bridge structure sam based on real-time monitoring publication-title: J Civil Struct Health Monit doi: 10.1007/s13349-022-00571-7 – volume: 30 start-page: 149 issue: 2 year: 2001 ident: pone.0324816.ref001 article-title: One-year monitoring of the Z24-Bridge: environmental effects versus damage events publication-title: Earthquake Engng Struct Dyn doi: 10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z – volume: 2021 start-page: 6658575 year: 2021 ident: pone.0324816.ref038 article-title: Unsupervised structural damage detection technique based on a deep convolutional autoencoder publication-title: Shock Vib doi: 10.1155/2021/6658575 – volume: 24 start-page: 6863 issue: 21 year: 2024 ident: pone.0324816.ref041 article-title: A novel method of bridge deflection prediction using probabilistic deep learning and measured data publication-title: Sensors (Basel) doi: 10.3390/s24216863 – volume: 14 start-page: 2964 issue: 9 year: 2024 ident: pone.0324816.ref003 article-title: Bridge surface defect localization based on panoramic image generation and deep learning-assisted detection method publication-title: Buildings doi: 10.3390/buildings14092964 – volume: 21 start-page: 427 issue: 3 year: 2023 ident: pone.0324816.ref014 article-title: Structural health monitoring and mathematical modelling of a site-specific concrete bridge under moving two-axle vehicles publication-title: Int J Civ Eng doi: 10.1007/s40999-022-00770-9 – volume: 32 start-page: 1025 issue: 12 year: 2017 ident: pone.0324816.ref032 article-title: Structural Damage Detection with Automatic Feature‐Extraction through Deep Learning publication-title: Comput aided Civil Eng doi: 10.1111/mice.12313 – volume: 5 start-page: 581 issue: 2 year: 2018 ident: pone.0324816.ref031 article-title: Data driven congestion trends prediction of urban transportation publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2017.2716114 – volume: 27 issue: 11 year: 2020 ident: pone.0324816.ref045 article-title: Digital modeling on the nonlinear mapping between multi-source monitoring data of in-service bridges publication-title: Struct Control Health Monit doi: 10.1002/stc.2618 – volume: 23 start-page: 2789 issue: 13 year: 2020 ident: pone.0324816.ref016 article-title: A cointegration approach for cable anomaly warning based on structural health monitoring data: an application to cable-stayed bridges publication-title: Adv Struct Eng doi: 10.1177/1369433220924793 – volume: 8 start-page: 04021082 issue: 1 year: 2022 ident: pone.0324816.ref047 article-title: Data normalization and anomaly detection in a steel plate-girder bridge using LSTM publication-title: ASCE-ASME J Risk Uncertainty Eng Syst A Civ Eng doi: 10.1061/AJRUA6.0001203 – volume: 12 start-page: 47 issue: 1 year: 2021 ident: pone.0324816.ref005 article-title: Probabilistic SDDLV method for localizing damage in bridges monitored within one cluster under time-varying environmental temperatures publication-title: J Civil Struct Health Monit doi: 10.1007/s13349-021-00524-6 – volume: 17 start-page: 1019 issue: 8 year: 2021 ident: pone.0324816.ref010 article-title: Data-driven damage identification technique for steel truss railroad bridges utilizing principal component analysis of strain response publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2020.1785512 – volume: 28 start-page: 2621 issue: 4 year: 2020 ident: pone.0324816.ref024 article-title: Machine learning algorithms in civil structural health monitoring: a systematic review publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-020-09471-9 – volume: 7 start-page: 5246 issue: 6 year: 2020 ident: pone.0324816.ref018 article-title: Singular spectrum analysis for local differential privacy of classifications in the smart grid publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2977220 – volume: 15 start-page: 129 issue: 1 year: 2006 ident: pone.0324816.ref029 article-title: Application of time series analysis for bridge monitoring publication-title: Smart Mater Struct doi: 10.1088/0964-1726/15/1/041 – volume: 20 start-page: 1443 issue: 4 year: 2021 ident: pone.0324816.ref039 article-title: Deep residual network framework for structural health monitoring publication-title: Struct Health Monit doi: 10.1177/1475921720918378 – volume: 22 start-page: 105 issue: 1 year: 2022 ident: pone.0324816.ref009 article-title: Damage localization for bridges monitored within one cluster based on spatiotemporal correlation model of strain monitoring data publication-title: Struct Health Monit doi: 10.1177/14759217221078766 – volume: 22 start-page: 04016124 issue: 3 year: 2017 ident: pone.0324816.ref022 article-title: In-service condition assessment of a long-span suspension bridge using temperature-induced strain data publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0001003 – volume: 27 issue: 8 year: 2020 ident: pone.0324816.ref026 article-title: Detection method of unlearned pattern using support vector machine in damage classification based on deep neural network publication-title: Struct Control Health Monit doi: 10.1002/stc.2552 – volume: 17 start-page: 850 issue: 4 year: 2018 ident: pone.0324816.ref050 article-title: Separating damage from environmental effects affecting civil structures for near real-time damage detection publication-title: Struct Health Monit doi: 10.1177/1475921717722060 – volume: 7 start-page: 9943 issue: 10 year: 2020 ident: pone.0324816.ref019 article-title: Toward self-adaptive selection of kernel functions for support vector regression in IoT-based marine data prediction publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2988050 – volume: 187 start-page: 110234 year: 2022 ident: pone.0324816.ref030 article-title: Safety and reliability evaluations of bridge behaviors under ambient truck loads through structural health monitoring and identification model approaches publication-title: Meas doi: 10.1016/j.measurement.2021.110234 – volume: 13 start-page: 947 year: 2023 ident: pone.0324816.ref035 article-title: B-CNN: a deep learning method for accelerometer-based fatigue cracks monitoring system publication-title: J Civil Struct Health Monit doi: 10.1007/s13349-023-00690-9 – volume: 17 start-page: 1073 issue: 5 year: 2018 ident: pone.0324816.ref021 article-title: Continuous dynamic monitoring of a prestressed concrete bridge based on strain, inclination and crack measurements over a 14-year span publication-title: Struct Health Monit An Int J doi: 10.1177/1475921717735505 – volume: 19 issue: 10 year: 2024 ident: pone.0324816.ref002 article-title: Enhancing bridge damage detection with Mamba-Enhanced HRNet for semantic segmentation publication-title: PLoS One – volume: 9 start-page: 13364 issue: 15 year: 2022 ident: pone.0324816.ref036 article-title: Response prediction based on temporal and spatial deep learning model for intelligent structural health monitoring publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3141417 – volume: 229 start-page: 114410 year: 2024 ident: pone.0324816.ref042 article-title: A novel unsupervised deep learning approach for vibration-based damage diagnosis using a multi-head self-attention LSTM autoencoder publication-title: J Title Abb Need – volume: 20 start-page: 380 issue: 3 year: 2024 ident: pone.0324816.ref007 article-title: Identification, tracking and warning of vortex induced vibration using k-means clustering method publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2022.2096081 – volume: 23 start-page: 324 issue: 5 year: 2008 ident: pone.0324816.ref012 article-title: Reference‐free damage classification based on cluster analysis publication-title: Comput Aided Civ Infrastruct Eng doi: 10.1111/j.1467-8667.2008.00541.x – volume: 23 start-page: 2789 issue: 13 year: 2020 ident: pone.0324816.ref006 article-title: A cointegration approach for cable anomaly warning based on structural health monitoring data: an application to cable-stayed bridges publication-title: Adv Struct Eng doi: 10.1177/1369433220924793 – volume: 20 start-page: 560 issue: 4 year: 2013 ident: pone.0324816.ref020 article-title: Field monitoring and numerical analysis of Tsing Ma suspension bridge temperature behavior publication-title: Struct Control Health Monit doi: 10.1002/stc.515 – volume: 10 start-page: 83 issue: 1 year: 2010 ident: pone.0324816.ref025 article-title: Vibration-based damage identification methods: a review and comparative study publication-title: Struct Health Monit doi: 10.1177/1475921710365419 – volume: 9 start-page: 145 issue: 2 year: 2010 ident: pone.0324816.ref048 article-title: A nonphysics-based approach for vibrationbased structural health monitoring under changing environmental conditions publication-title: Struct Health Monit doi: 10.1177/1475921709352149 – volume: 430 start-page: 407 year: 2019 ident: pone.0324816.ref046 article-title: Filtering-tikhonov regularization inversion for dynamic light scattering data with strong noise publication-title: Optics Commun doi: 10.1016/j.optcom.2018.08.078 – volume: 590 start-page: 118597 year: 2024 ident: pone.0324816.ref040 article-title: Unsupervised quantitative structural damage identification method based on BiLSTM networks and probability distribution model publication-title: J Sound Vib doi: 10.1016/j.jsv.2024.118597 |
| SSID | ssj0053866 |
| Score | 2.4809427 |
| Snippet | The structural response of bridges involves a complex interplay of various coupled effects, rendering the identification of long-term variation trends... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0324816 |
| SubjectTerms | Accuracy Algorithms Big Data Bridge failures Bridges China Computer and Information Sciences Decomposition Decoupling Deep learning Early warning systems Engineering and Technology Evaluation False alarms Forecasts and trends Long short-term memory Machine learning Methods Monitoring Neural networks Physical Sciences Prediction models Real time Reconstruction Research and Analysis Methods Safety Safety and security measures Singular value decomposition Structural engineering Structural response Structural safety Temperature Time series Warning systems |
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yL_oinl9XPTWKoD50r9ukSfq4iscpqOCp3FtImvROWNtidznuv3emyZYtHngPvpVmWuh8JDOdmd8Q8tJX1otS1WnuSpZyxau0xCSvEGVRWFbabIBd_PRZHH_nH0-L051RX1gTFuCBA-MOESOP8cpzWxheS2FKUEkvKrAOzqwa-sgzVW6DqbAHgxULERvlmFwcRrnMu7bx8wx8CIXzzXcOogGvf9yVZ92q7a9yOf-unLy5aTpzeWFWq51j6egOuR39SboM37FHbvjmLtmLFtvT1xFW-s098mtJXRg_Tz2iGqcX4acIDUOkKXivNLRv0QAqi4ActDe1X19SPOwcbRuKFaV0iKJH5FlqGked79bntPuNeR-8eZ-cHL3_9u44jcMW0gpconXqPIMDTRjpnSvKysBFBWy3xvjasNp5Z730sB0pazNZKlf7hWHSmKx0jrMHZNYAc_cJBf-D4UYCcZLlzi6UNDViwOe88EZJlpB0y3fdBUQNPaTVJEQigWka5aSjnBLyFoUz0iIe9nADtERHLdH_0pKEPEPR6tBcOlq1XipE6BcQmyfkxUCBmBgNFt2cmU3f6w9fflyD6OTrhOhVJKpbUJLKxEYH-CbE2ppQHkwowbKryfI-KuKWK71mOSaREYEJntwq59XLz8dlfCkW0jW-3UQaCbwCOTwMujxylmOSfCGA42qi5RPWT1ean-cDJDkCA-YQDCdkPhrEtaT76H9I9zG5leNYZvw5xg7IDPTfPwFfcW2fDtvCHyV-Z70 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvE-NrGQMMQgIe0rWxYycPCHVo00CioA3Q3iw7djakkmRLq2n_PXeJExYxob1V8bVq7st3vvPvCHntMuNEmuRhZFMW8oRnYYpFXiHSODYsNZMGdvHLXBz-4J9P4pM1Mu_uwmBbZecTG0dtywzPyHdZhAU0RJ_5UJ2HODUKq6vdCA3tRyvY9w3E2B2yHiEy1ois7-3Pvx11vhmsWwh_gY7J6a6X17gqCzeeQGyR4NzzaxtUg-Pfe-tRtSjrm0LRfzsq766KSl9d6sXi2nZ1cJ9s-DiTzlrF2CRrrnhANr0l1_Sth5t-95D8nlHbjqWnDtGOw8v2sIS2w6UpRLW0vdZFW7BZBOqgtc7d8oriJmhpWVDsNKVNdt0j0lJdWGpdtTyj1QXWg_DhI3J8sP_942HohzCEGYRKy9A6Bhud0NJZG6eZhg8Zz5zR2uWa5dZZ46QDN5UYM5FpYnM31UxqPUmt5ewxGRXA3C1CIS5h6GAgfzLcmmkidY7Y8BGPnU4kC0jY8V1VLdKGasptEjKUlmkK5aS8nAKyh8LpaREnu3lQXpwqb3YKERYZ_F1uYs1zKXQKDs2JDHwrZyaRAXmBolXtpdPe2tUsQeR-ATl7QF41FIiVUWAzzqle1bX69PXnLYiOjwZEbzxRXoKSZNpfgIB3QgyuAeXOgBIsPhssb6Eidlyp1V_bgG92ynnz8st-GX8UG-wKV648jQRegRyetLrcc5Zj8XwqgOPJQMsHrB-uFL_OGqhyBAyMIEkOyLg3iFtJd_v_L_KU3ItwEDMeh7EdMgLNds8gOlya597k_wCjBWa8 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBEShs7dvJYENNA2kCMofEU2bHDECWJSKpp_PXcxU60wJDKWxWfo_q-nTv_TMgTm2sr0qQII5OykCc8D1Ms8gqRxrFmqZ51sIv7B2LviL87jo83yIv-LMz5-j2T85eeo9O6Ku10BtE_mYtLZFPEkHlPyObRwYfFF1c4jkIRzZg_HfevqaPo04H0D654Ui-r5qI88-92ycurslZnp2q5PBeLdq-R_X4VrgXl-3TV6mn-6w-Ax3WXeZ1c9UkpXTgt2iIbtrxBtrzZN_SZx6Z-fpP8WFDj7rCnFqGRw1P3ZYW6m6gppMDUnQGjDpkWUT1oowrbnlGMmIZWJcW2VNptxQf4WqpKQ42t2xNa_8TiET68RQ5333x6vRf6GxvCHPKqNjSWQVQUSlpj4jRX8CPnudVK2UKxwlijrbTg0xKtZzJNTGHnikmlZqkxnN0mkxIYsE0oJDEMvRFstjQ3ep5IVSCQfMRjqxLJAhL2csxqB8uRdbU5CdsZx7QMeZl5XgbkFQp7oEVQ7e4BCCHzNpohHCODv8t1rHghhUrB-1mRgyPmTCcyIA9RVTJ3QnVwDdkiQZh_ARv8gDzuKBBYo8TOna9q1TTZ2_ef1yA6_DgieuqJigqULlf-tASsCQG7RpQ7I0pwD_loeBsVu-dKk7EIK9EI4wQze2W_ePjRMIwvxW680lYrTyOBVyCHO842Bs5yrLTPBXA8GVnNiPXjkfLbSYdrjuiCEdh1QKaDga0l3bv_O-EeuRLhPc74NY3tkAnour0PyWWrH3if8hsB33k2 priority: 102 providerName: Unpaywall |
| Title | A dynamic early-warning method for bridge structural safety based on data reconstruction and depth prediction |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40460166 https://www.proquest.com/docview/3215590077 https://www.proquest.com/docview/3215572343 https://pubmed.ncbi.nlm.nih.gov/PMC12132960 https://doi.org/10.1371/journal.pone.0324816 https://doaj.org/article/138234ce4b5a4f76a9301e6c08843b87 http://dx.doi.org/10.1371/journal.pone.0324816 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe27gFeEONrHaMYhAQ8pGpiJ04eEOqmlYG0Mm0UdU-RHTsbUpeEptXof89d4kZEFGm8RFV8idL78p3P_h0hb0yiTBCFqePpiDk85IkTYZE3CCLfVyxSgwp28XQcnEz4l6k_3SLrnq2WgeXG1A77SU3ms_6vn6uPYPAfqq4Nwl0_1C_yzPQHECGEbrBNdmCuirCZwylv6gpg3VX1EqMWJ_AGzB6m-9dbWpNVhenfeO5OMcvLTWHp37sr7y2zQq5u5Wz2x9Q1ekge2JiTDmsl2SVbJntEdq1Vl_SdhZ5-_5jcDKmuW9RTg8jHzm29cELrRtMUIlxaH_GiNfAsgnbQUqZmsaI4IWqaZxR3ndIq027QaanMNNWmWFzTYo61Ibz5hFyMjr8dnTi2IYOTQNi0cLRhMOkFUhit_SiR8CPhiVFSmlSyVButjDDgskKlBiIKdWpcyYSUg0hrzp6STgbM3SMUYhSGzgZyKcW1ckMhU8SJ97hvZChYlzhrvsdFjboRV6U3AdlKzbQY5RRbOXXJIQqnoUXM7OpGPr-KrQnGiLbI4HO58iVPRSAjcG4mSMDPcqZC0SUvUbRxfQC1sfx4GCKKfwD5e5e8rigQNyPDjTlXclmW8eev3-9AdHHeInpridIclCSR9jAE_CfE42pRHrQowfqT1vAeKuKaK2XMPCw0I0oTPLlWzs3Dr5phfClutstMvrQ0AngFcnhW63LDWY6FdDcAjoctLW-xvj2S_biuYMsRPNCDhLlL-o1B3Em6-_-pDc_JfQ-7NONaGTsgHVB18wJCx4XqkW0xFXANj1y8jj71yM7h8fjsvFctxvQqbwH3JuOz4eVvzbR0-g |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeRgviHFbYTCDQMBDujR24uQBoXKZWnZBYhvqE5YdOxtSScLSqup_4kdyTm4sYkJ72VsVn0TNuXw-J7a_Q8gLG2sbRGHieCZiDg957ES4yBsEke9rFmm3pF08OAzGJ_zz1J-ukd_NWRjcVtlgYgnUJovxG_kO83ABDdln3uW_HOwahaurTQuNyi327GoJJVvxdvIR7PvS83Y_HX8YO3VXASeGuX_uGMsAuQMlrDF-FCv4EfPYaqVsolhirNFWWIi7UGtXRKFJ7FAxoZQbGcMZPPUGuckZIAlEj5i25R0gRxDUh_OYGO7UvjDIs9QOXMhbQuypfmHyK3sEtDNBL59lxWVp7r-7NdcXaa5WSzWbXZgKd--Q23UOS0eV022QNZveJRs1ShT0dU1l_eYe-Tmipmp5Ty0yKTvL6kMMrRpXU8iYaXVkjFZEtkgCQguV2PmK4gRraJZS3MVKy8q9ZbulKjXU2Hx-RvNzXGvCi_fJ0TWY4gHppaDcTUIh52EIXlCbaW70MBQqQd55j_tWhYL1idPoXeYVi4csl_IEVD-V0iTaSdZ26pP3aJxWFjm4ywvZ-amsQ1oieyODv8u1r3giAhUBWNogBtzmTIeiT7bRtLI60NoiiRyF2BUgcD2QeF5KIA9Hiht9TtWiKOTky7crCB197Qi9qoWSDJwkVvXhCngn5PfqSG51JAFN4s7wJjpio5VC_o07uLNxzsuHn7XD-FDcvJfabFHLCNAV2OFh5cutZjkuzA8D0HjY8fKO6rsj6Y-zkgYdyQg9KMD7ZNAGxJWs--j_L7JN1sfHB_tyf3K495jc8rDhM352Y1ukB15un0AWOtdPy-Cn5Pv1Ys0f3uigfw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIEEviPJqSqELAgEH5-G1vfYBoUCJGgoFUUA5Ye3LbaXUNnWiKP-Mn8eMvTa1qFAvvUXesRXPzH474539hpBnRkkTRGHiuDpijhd6yolwkzcIIt-XLJKDknbx00Gw9937MPWna-R3fRYGyyprTCyBWmcKv5H3mYsbaMg-009sWcSX3fGb_JeDHaRwp7Vup1G5yL5ZLSF9K15PdsHWz113_P7buz3HdhhwFMQBc0cbBigeCG609iMl4IfylJFCmESwRBstDTcwB0MpBzwKdWKGgnEhBpHWHoOnXiPXOWMRFhPyaZPqAYoEgT2ox_iwb_2il2ep6Q0ghgmxv_q5hbDsF9CsCp18lhUXhbz_Vm7eXKS5WC3FbHZuWRzfJrdsPEtHlQNukDWT3iEbFjEK-tLSWr-6S05HVK9ScXqiqEFWZWdZfZShVRNrCtEzrY6P0YrUFglBaCESM19RXGw1zVKKFa20zOIb5lsqUk21yefHND_DfSe8eI8cXoEp7pNOCsrdJBTiH4ZABnma9LQchlwkyEHver4RIWdd4tR6j_OK0SMut_U4ZEKV0mK0U2zt1CVv0TiNLPJxlxeys6PYTu8YmRwZ_F1P-sJLeCAiAE4TKMBwj8mQd8kOmjauDrc2qBKPQuwQEAxckHhaSiAnR4refSQWRRFPPv-4hNDh15bQCyuUZOAkStiDFvBOyPXVktxuSQKyqNbwJjpirZUi_jsH4c7aOS8eftIM40OxkC812cLKcNAV2OFB5cuNZj3cpB8GoPGw5eUt1bdH0pPjkhIdiQldSMa7pNdMiEtZd-v_L7JDbgDKxB8nB_sPybqLvZ_xCxzbJh1wcvMIAtK5fFzOfUp-Xi3U_AFQW6TC |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBEShs7dvJYENNA2kCMofEU2bHDECWJSKpp_PXcxU60wJDKWxWfo_q-nTv_TMgTm2sr0qQII5OykCc8D1Ms8gqRxrFmqZ51sIv7B2LviL87jo83yIv-LMz5-j2T85eeo9O6Ku10BtE_mYtLZFPEkHlPyObRwYfFF1c4jkIRzZg_HfevqaPo04H0D654Ui-r5qI88-92ycurslZnp2q5PBeLdq-R_X4VrgXl-3TV6mn-6w-Ax3WXeZ1c9UkpXTgt2iIbtrxBtrzZN_SZx6Z-fpP8WFDj7rCnFqGRw1P3ZYW6m6gppMDUnQGjDpkWUT1oowrbnlGMmIZWJcW2VNptxQf4WqpKQ42t2xNa_8TiET68RQ5333x6vRf6GxvCHPKqNjSWQVQUSlpj4jRX8CPnudVK2UKxwlijrbTg0xKtZzJNTGHnikmlZqkxnN0mkxIYsE0oJDEMvRFstjQ3ep5IVSCQfMRjqxLJAhL2csxqB8uRdbU5CdsZx7QMeZl5XgbkFQp7oEVQ7e4BCCHzNpohHCODv8t1rHghhUrB-1mRgyPmTCcyIA9RVTJ3QnVwDdkiQZh_ARv8gDzuKBBYo8TOna9q1TTZ2_ef1yA6_DgieuqJigqULlf-tASsCQG7RpQ7I0pwD_loeBsVu-dKk7EIK9EI4wQze2W_ePjRMIwvxW680lYrTyOBVyCHO842Bs5yrLTPBXA8GVnNiPXjkfLbSYdrjuiCEdh1QKaDga0l3bv_O-EeuRLhPc74NY3tkAnour0PyWWrH3if8hsB33k2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+early-warning+method+for+bridge+structural+safety+based+on+data+reconstruction+and+depth+prediction&rft.jtitle=PloS+one&rft.au=Men%2C+Yanqing&rft.au=Li%2C+Hu&rft.au=Liu%2C+Fengzhou&rft.au=Huang%2C+Yongliang&rft.date=2025-06-03&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0324816&rft_id=info:doi/10.1371%2Fjournal.pone.0324816&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0324816 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |