LiMMCov: An interactive research tool for efficiently selecting covariance structures in linear mixed models using insights from time series analysis

The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised by repeated measurements on subjects over time, demand careful handling of inherent correlations to avoid biased estimates and invalid infer...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0325834
Main Authors Savieri, Perseverence, Stas, Lara, Barbé, Kurt
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 11.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0325834

Cover

Abstract The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised by repeated measurements on subjects over time, demand careful handling of inherent correlations to avoid biased estimates and invalid inferences. Incorrect covariance structure specification can lead to inflated type I error rates, reduced statistical power, and inefficient estimation, ultimately compromising the reliability of statistical inferences. Traditional methods for selecting appropriate covariance structures, such as AIC and BIC, often fall short, particularly as model complexity increases or sample sizes decrease. Studies have shown that these criteria can misidentify the correct structure, resulting in suboptimal parameter estimates and poor assessment of standard errors for fixed effects. Additionally, relying on trial-and-error comparisons in LMMs can lead to overfitting and arbitrary decisions, further undermining the robustness of model selection and inference. To address this challenge, we introduce LiMMCov, an interactive app that uniquely integrates time-series concepts into the process of covariance structure selection. Unlike existing tools, LiMMCov allows researchers to explore and model complex structures using autoregressive models, a novel feature that enhances the accuracy of model specification. The app provides interactive visualisations of residuals, offering insights into underlying patterns that traditional methods may overlook. LiMMCov facilitates a systematic approach to covariance structure selection with a user-friendly interface and integrated theoretical guidance. This paper details the development and features of LiMMCov, demonstrates its application with an example dataset, and discusses its potential impact on research. The app is freely accessible at https://zq9mvv-vub0square.shinyapps.io/LiMMCov-research-tool/ .
AbstractList The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised by repeated measurements on subjects over time, demand careful handling of inherent correlations to avoid biased estimates and invalid inferences. Incorrect covariance structure specification can lead to inflated type I error rates, reduced statistical power, and inefficient estimation, ultimately compromising the reliability of statistical inferences. Traditional methods for selecting appropriate covariance structures, such as AIC and BIC, often fall short, particularly as model complexity increases or sample sizes decrease. Studies have shown that these criteria can misidentify the correct structure, resulting in suboptimal parameter estimates and poor assessment of standard errors for fixed effects. Additionally, relying on trial-and-error comparisons in LMMs can lead to overfitting and arbitrary decisions, further undermining the robustness of model selection and inference. To address this challenge, we introduce LiMMCov, an interactive app that uniquely integrates time-series concepts into the process of covariance structure selection. Unlike existing tools, LiMMCov allows researchers to explore and model complex structures using autoregressive models, a novel feature that enhances the accuracy of model specification. The app provides interactive visualisations of residuals, offering insights into underlying patterns that traditional methods may overlook. LiMMCov facilitates a systematic approach to covariance structure selection with a user-friendly interface and integrated theoretical guidance. This paper details the development and features of LiMMCov, demonstrates its application with an example dataset, and discusses its potential impact on research. The app is freely accessible at https://zq9mvv-vub0square.shinyapps.io/LiMMCov-research-tool/.
The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised by repeated measurements on subjects over time, demand careful handling of inherent correlations to avoid biased estimates and invalid inferences. Incorrect covariance structure specification can lead to inflated type I error rates, reduced statistical power, and inefficient estimation, ultimately compromising the reliability of statistical inferences. Traditional methods for selecting appropriate covariance structures, such as AIC and BIC, often fall short, particularly as model complexity increases or sample sizes decrease. Studies have shown that these criteria can misidentify the correct structure, resulting in suboptimal parameter estimates and poor assessment of standard errors for fixed effects. Additionally, relying on trial-and-error comparisons in LMMs can lead to overfitting and arbitrary decisions, further undermining the robustness of model selection and inference. To address this challenge, we introduce LiMMCov, an interactive app that uniquely integrates time-series concepts into the process of covariance structure selection. Unlike existing tools, LiMMCov allows researchers to explore and model complex structures using autoregressive models, a novel feature that enhances the accuracy of model specification. The app provides interactive visualisations of residuals, offering insights into underlying patterns that traditional methods may overlook. LiMMCov facilitates a systematic approach to covariance structure selection with a user-friendly interface and integrated theoretical guidance. This paper details the development and features of LiMMCov, demonstrates its application with an example dataset, and discusses its potential impact on research. The app is freely accessible at
The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised by repeated measurements on subjects over time, demand careful handling of inherent correlations to avoid biased estimates and invalid inferences. Incorrect covariance structure specification can lead to inflated type I error rates, reduced statistical power, and inefficient estimation, ultimately compromising the reliability of statistical inferences. Traditional methods for selecting appropriate covariance structures, such as AIC and BIC, often fall short, particularly as model complexity increases or sample sizes decrease. Studies have shown that these criteria can misidentify the correct structure, resulting in suboptimal parameter estimates and poor assessment of standard errors for fixed effects. Additionally, relying on trial-and-error comparisons in LMMs can lead to overfitting and arbitrary decisions, further undermining the robustness of model selection and inference. To address this challenge, we introduce LiMMCov, an interactive app that uniquely integrates time-series concepts into the process of covariance structure selection. Unlike existing tools, LiMMCov allows researchers to explore and model complex structures using autoregressive models, a novel feature that enhances the accuracy of model specification. The app provides interactive visualisations of residuals, offering insights into underlying patterns that traditional methods may overlook. LiMMCov facilitates a systematic approach to covariance structure selection with a user-friendly interface and integrated theoretical guidance. This paper details the development and features of LiMMCov, demonstrates its application with an example dataset, and discusses its potential impact on research. The app is freely accessible at https://zq9mvv-vub0square.shinyapps.io/LiMMCov-research-tool/.The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised by repeated measurements on subjects over time, demand careful handling of inherent correlations to avoid biased estimates and invalid inferences. Incorrect covariance structure specification can lead to inflated type I error rates, reduced statistical power, and inefficient estimation, ultimately compromising the reliability of statistical inferences. Traditional methods for selecting appropriate covariance structures, such as AIC and BIC, often fall short, particularly as model complexity increases or sample sizes decrease. Studies have shown that these criteria can misidentify the correct structure, resulting in suboptimal parameter estimates and poor assessment of standard errors for fixed effects. Additionally, relying on trial-and-error comparisons in LMMs can lead to overfitting and arbitrary decisions, further undermining the robustness of model selection and inference. To address this challenge, we introduce LiMMCov, an interactive app that uniquely integrates time-series concepts into the process of covariance structure selection. Unlike existing tools, LiMMCov allows researchers to explore and model complex structures using autoregressive models, a novel feature that enhances the accuracy of model specification. The app provides interactive visualisations of residuals, offering insights into underlying patterns that traditional methods may overlook. LiMMCov facilitates a systematic approach to covariance structure selection with a user-friendly interface and integrated theoretical guidance. This paper details the development and features of LiMMCov, demonstrates its application with an example dataset, and discusses its potential impact on research. The app is freely accessible at https://zq9mvv-vub0square.shinyapps.io/LiMMCov-research-tool/.
Audience Academic
Author Barbé, Kurt
Savieri, Perseverence
Stas, Lara
AuthorAffiliation 2 Core Facility - Support for Quantitative and Qualitative Research (SQUARE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
1 Biostatistics and Medical Informatics Research Group (BISI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
Cairo University, EGYPT
AuthorAffiliation_xml – name: 2 Core Facility - Support for Quantitative and Qualitative Research (SQUARE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
– name: 1 Biostatistics and Medical Informatics Research Group (BISI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
– name: Cairo University, EGYPT
Author_xml – sequence: 1
  givenname: Perseverence
  orcidid: 0000-0001-7853-0421
  surname: Savieri
  fullname: Savieri, Perseverence
– sequence: 2
  givenname: Lara
  surname: Stas
  fullname: Stas, Lara
– sequence: 3
  givenname: Kurt
  surname: Barbé
  fullname: Barbé, Kurt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40498721$$D View this record in MEDLINE/PubMed
BookMark eNqNk11r2zAUhs3oWD-2fzA2wWBsF8kk6yP2bkYo-yikFLayWyHLx4mKLGWSnDU_ZP93ypKWZPSi-MLm6HlfnfMefFocOe-gKF4SPCZ0Qj7c-CE4ZcfLXB5jWvKKsifFCalpORIlpkd738fFaYw3GHNaCfGsOGaY1dWkJCfFn5m5vDz3q49o6pBxCYLSyawABYiggl6g5L1FnQ8Ius5oAy7ZNYpgIXNujrRfqWCU04BiCoNOQ1ZmJ2SNywaoN7fQot63YCMa4kZiXDTzRYqoC75HyfRZCsFkmcoDraOJz4unnbIRXuzeZ8X1l8_X599Gs6uvF-fT2UgLxtJI87bRuFO8rLFuSN01JSNcc1ZCNWkhnwLvqGCENUwIxbFSCgvSCV4Kokp6Vrze2i6tj3IXaJS0JBXGFHOciYst0Xp1I5fB9CqspVdG_iv4MJcqJKMtSC6A1lW-o8Ga6bKtaqyqtuZNDbwpqcpefOs1uKVa_1bW3hsSLDc7vWtBbnYqdzvNuk-7Loemh1bnDQRlD5o5PHFmIed-JUlJ-ATXPDu82zkE_2uAmGRvogZrlQM_bAcmOUQhMvrmP_ThWHbUXOXJjet8vlhvTOW0YpRjJiY0U-MHqPy00BudR-xMrh8I3h8IMpPgNs3VEKO8-PH98ezVz0P27R67AGXTIno7JONdPARf7Ud9n_Hd_5IBtgV08DEG6B63wr_22yuk
Cites_doi 10.1002/1521-4036(200011)42:7<807::AID-BIMJ807>3.0.CO;2-3
10.1080/00273170701540537
10.1007/978-1-4614-3900-4
10.1007/BF02294361
10.1080/03610929908832460
10.1016/j.jclinepi.2022.08.016
10.1201/9781351259446
10.1080/03610919808813497
10.1186/s13104-023-06625-3
10.1081/SAC-200055719
10.1109/TAC.1974.1100705
10.3844/jmssp.2014.309.315
10.12688/f1000research.55027.1
10.1080/00949655.2018.1520854
10.1093/oso/9780198524847.001.0001
10.1093/biomet/76.2.297
10.1080/00031305.1997.10473981
10.1007/978-1-4419-0300-6
10.1186/s12865-024-00659-3
10.1207/s15327906mbr4002_2
10.1080/10705511.2017.1417046
10.1016/j.sciaf.2021.e00820
10.1002/(SICI)1097-0258(19990415)18:7<835::AID-SIM75>3.0.CO;2-7
10.1027/1614-2241.4.1.10
10.1201/b17622
10.1207/S15327906MBR3703_4
10.1214/aos/1176344136
10.1201/9780429273285
10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>3.0.CO;2-Q
10.1037/a0026971
10.3102/10769986023004323
10.1007/b97287
10.1093/acprof:oso/9780195152968.001.0001
10.3200/JEXE.77.3.255-284
10.1371/journal.pone.0279565
10.1201/9781420011579
ContentType Journal Article
Copyright Copyright: © 2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Savieri et al 2025 Savieri et al
2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Savieri et al 2025 Savieri et al
– notice: 2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0325834
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Agricultural Science Database
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Statistics
DocumentTitleAlternate LiMMCov: An interactive research tool for efficiently selecting covariance structures in linear mixed models
EISSN 1932-6203
ExternalDocumentID 3218003050
oai_doaj_org_article_56e39850ab0c4c2d890a8d95b9e5b23a
10.1371/journal.pone.0325834
PMC12157095
A843504673
40498721
10_1371_journal_pone_0325834
Genre Journal Article
GeographicLocations Belgium
GeographicLocations_xml – name: Belgium
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c644t-c5dbc0fa5290cb19fb2415c542e87de5dbe5f36414b466a50aaa061f65261a23
IEDL.DBID M48
ISSN 1932-6203
IngestDate Tue Sep 30 23:54:34 EDT 2025
Wed Aug 27 01:30:14 EDT 2025
Tue Aug 19 23:33:18 EDT 2025
Tue Sep 30 17:02:58 EDT 2025
Fri Sep 05 15:53:56 EDT 2025
Fri Jul 25 09:17:21 EDT 2025
Thu Jul 03 02:07:00 EDT 2025
Tue Jul 01 05:40:59 EDT 2025
Fri Jun 27 03:22:17 EDT 2025
Fri Jun 27 03:22:21 EDT 2025
Tue Jul 01 05:42:22 EDT 2025
Mon Jul 21 06:01:51 EDT 2025
Wed Oct 01 05:52:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-c5dbc0fa5290cb19fb2415c542e87de5dbe5f36414b466a50aaa061f65261a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-7853-0421
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pone.0325834
PMID 40498721
PQID 3218003050
PQPubID 1436336
PageCount e0325834
ParticipantIDs plos_journals_3218003050
doaj_primary_oai_doaj_org_article_56e39850ab0c4c2d890a8d95b9e5b23a
unpaywall_primary_10_1371_journal_pone_0325834
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12157095
proquest_miscellaneous_3218152966
proquest_journals_3218003050
gale_infotracmisc_A843504673
gale_infotracacademiconefile_A843504673
gale_incontextgauss_ISR_A843504673
gale_incontextgauss_IOV_A843504673
gale_healthsolutions_A843504673
pubmed_primary_40498721
crossref_primary_10_1371_journal_pone_0325834
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250611
PublicationDateYYYYMMDD 2025-06-11
PublicationDate_xml – month: 6
  year: 2025
  text: 20250611
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P Diggle (pone.0325834.ref024) 2002
C Brien (pone.0325834.ref037) 2024
L Ji (pone.0325834.ref049) 2018; 25
RC Littell (pone.0325834.ref009) 2000; 19
G Molenberghs (pone.0325834.ref047) 2014
A Gałecki (pone.0325834.ref007) 2013
R Core Team (pone.0325834.ref043) 2023
C Chatfield (pone.0325834.ref035) 2019
G Molenberghs (pone.0325834.ref002)
CS Davis (pone.0325834.ref023) 2002
AS Tegegne (pone.0325834.ref038) 2021; 12
O Kwok (pone.0325834.ref020) 2007; 42
A Hussein AL-Marshadi (pone.0325834.ref019) 2007; 2
G Vallejo (pone.0325834.ref027) 2005; 40
HJ Keselman (pone.0325834.ref017) 1998; 27
pone.0325834.ref031
R Littell (pone.0325834.ref004) 2002
S Liu (pone.0325834.ref010) 2012; 17
E Lesaffre (pone.0325834.ref045) 2000; 42
LR Marusich (pone.0325834.ref046) 2021; 10
E Lesaffre (pone.0325834.ref044) 1999; 18
J Ferron (pone.0325834.ref015) 2002; 37
G Fitzmaurice (pone.0325834.ref001) 2008
JD Singer (pone.0325834.ref005) 1998; 23
RK Kowalchuk (pone.0325834.ref028) 2004; 64
R Core Team (pone.0325834.ref041) 2023
PS Nyasulu (pone.0325834.ref042) 2022; 17
PJ Diggle (pone.0325834.ref006) 2002
GM Fitzmaurice (pone.0325834.ref003) 2012
MW Heymans (pone.0325834.ref050) 2022; 151
G Schwarz (pone.0325834.ref014) 1978; 6
KS Dawson (pone.0325834.ref030) 1997; 51
EV Gomez (pone.0325834.ref016) 2005; 34
AH Al-Marshadi (pone.0325834.ref018) 2014; 10
HJ Keselman (pone.0325834.ref026) 1999; 28
DL Murphy (pone.0325834.ref021) 2009; 77
CM HURVICH (pone.0325834.ref012) 1989; 76
pone.0325834.ref022
J Singer (pone.0325834.ref025) 2003
N Nooraee (pone.0325834.ref048) 2018; 88
GG Gebrerufael (pone.0325834.ref040) 2024; 25
NS Muhie (pone.0325834.ref039) 2023; 16
D Hedeker (pone.0325834.ref029) 2007
RH Shumway (pone.0325834.ref032) 2019
H Akaike (pone.0325834.ref011) 1974; 19
GEP Box (pone.0325834.ref033) 2015
S Theodoridis (pone.0325834.ref036) 2015
G Vallejo (pone.0325834.ref008) 2008; 4
H Bozdogan (pone.0325834.ref013) 1987; 52
W Chang (pone.0325834.ref034) 2023
References_xml – volume: 2
  start-page: 88
  issue: 2
  year: 2007
  ident: pone.0325834.ref019
  article-title: The new approach to guide the selection of the covariance structure in mixed model
  publication-title: Res J Med Med Sci
– volume: 42
  start-page: 807
  issue: 7
  year: 2000
  ident: pone.0325834.ref045
  article-title: Flexible modelling of the covariance matrix in a linear random effects model
  publication-title: Biom J
  doi: 10.1002/1521-4036(200011)42:7<807::AID-BIMJ807>3.0.CO;2-3
– volume: 42
  start-page: 557
  issue: 3
  year: 2007
  ident: pone.0325834.ref020
  article-title: The impact of misspecifying the within-subject covariance structure in multiwave longitudinal multilevel models: a monte carlo study
  publication-title: Multivariate Behav Res
  doi: 10.1080/00273170701540537
– volume: 64
  start-page: 224
  issue: 2
  year: 2004
  ident: pone.0325834.ref028
  article-title: The analysis of repeated measurements with mixed-model adjusted F tests
  publication-title: J Educ Behav Stat
– volume-title: Linear mixed-effects model
  year: 2013
  ident: pone.0325834.ref007
  doi: 10.1007/978-1-4614-3900-4
– year: 2012
  ident: pone.0325834.ref003
– volume: 52
  start-page: 345
  issue: 3
  year: 1987
  ident: pone.0325834.ref013
  article-title: Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions
  publication-title: Psychometrika
  doi: 10.1007/BF02294361
– volume: 28
  start-page: 2967
  issue: 12
  year: 1999
  ident: pone.0325834.ref026
  article-title: The analysis of repeated measurements: a comparison of mixed-model satterthwaite f tests and a nonpooled adjusted degrees of freedom multivariate test
  publication-title: Communications in Statistics - Theory and Methods
  doi: 10.1080/03610929908832460
– volume: 151
  start-page: 185
  year: 2022
  ident: pone.0325834.ref050
  article-title: Handling missing data in clinical research
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2022.08.016
– volume-title: The Analysis of Time Series: An Introduction with R, Seventh Edition
  year: 2019
  ident: pone.0325834.ref035
  doi: 10.1201/9781351259446
– volume: 27
  start-page: 591
  issue: 3
  year: 1998
  ident: pone.0325834.ref017
  article-title: A comparison of two approaches for selecting covariance structures in the analysis of repeated measurements
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610919808813497
– volume: 16
  start-page: 357
  issue: 1
  year: 2023
  ident: pone.0325834.ref039
  article-title: Predictors for CD4 cell count and hemoglobin level with survival time to default for HIV positive adults under ART treatment at University of Gondar Comprehensive and Specialized Hospital, Ethiopia
  publication-title: BMC Res Notes
  doi: 10.1186/s13104-023-06625-3
– year: 2023
  ident: pone.0325834.ref043
– volume: 34
  start-page: 377
  issue: 2
  year: 2005
  ident: pone.0325834.ref016
  article-title: Performance of the kenward–roger method when the covariance structure is selected using AIC and BIC
  publication-title: Commun Stat Simul Comput
  doi: 10.1081/SAC-200055719
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  ident: pone.0325834.ref011
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans Automat Contr
  doi: 10.1109/TAC.1974.1100705
– volume: 10
  start-page: 309
  issue: 3
  year: 2014
  ident: pone.0325834.ref018
  article-title: Selecting the covariance structure in mixed model using statistical methods calibration
  publication-title: J Math Stat
  doi: 10.3844/jmssp.2014.309.315
– volume: 10
  start-page: 697
  year: 2021
  ident: pone.0325834.ref046
  article-title: rmcorrShiny: A web and standalone application for repeated measures correlation
  publication-title: F1000Res
  doi: 10.12688/f1000research.55027.1
– volume: 88
  start-page: 3415
  issue: 17
  year: 2018
  ident: pone.0325834.ref048
  article-title: Strategies for handling missing data in longitudinal studies with questionnaires
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2018.1520854
– volume-title: Analysis of longitudinal
  year: 2002
  ident: pone.0325834.ref006
  doi: 10.1093/oso/9780198524847.001.0001
– volume: 76
  start-page: 297
  issue: 2
  year: 1989
  ident: pone.0325834.ref012
  article-title: Regression and time series model selection in small samples
  publication-title: Biometrika
  doi: 10.1093/biomet/76.2.297
– volume: 51
  start-page: 275
  issue: 3
  year: 1997
  ident: pone.0325834.ref030
  article-title: Two graphical techniques useful in detecting correlation structure in repeated measures data
  publication-title: Am Stat
  doi: 10.1080/00031305.1997.10473981
– volume-title: Analysis of longitudinal data
  year: 2002
  ident: pone.0325834.ref024
  doi: 10.1093/oso/9780198524847.001.0001
– volume-title: Modeling contextual effects in longitudinal studies
  year: 2007
  ident: pone.0325834.ref029
  article-title: Mixed-effects regression models with heterogeneous variance: Analyzing ecological momentary assessment (EMA) data of smoking
– volume-title: Time series analysis: forecasting and control
  year: 2015
  ident: pone.0325834.ref033
– volume-title: Linear Mixed Models for Longitudinal Data
  ident: pone.0325834.ref002
  doi: 10.1007/978-1-4419-0300-6
– volume: 25
  start-page: 64
  issue: 1
  year: 2024
  ident: pone.0325834.ref040
  article-title: Predictors of change in CD4 cell count over time for HIV/AIDS patients on ART follow-up in northern Ethiopia: a retrospective longitudinal study
  publication-title: BMC Immunol
  doi: 10.1186/s12865-024-00659-3
– ident: pone.0325834.ref022
– volume: 40
  start-page: 179
  issue: 2
  year: 2005
  ident: pone.0325834.ref027
  article-title: Comparison of two procedures for analyzing small sets of repeated measures data
  publication-title: Multivariate Behav Res
  doi: 10.1207/s15327906mbr4002_2
– volume: 25
  start-page: 715
  issue: 5
  year: 2018
  ident: pone.0325834.ref049
  article-title: Handling missing data in the modeling of intensive longitudinal data
  publication-title: Struct Equ Modeling
  doi: 10.1080/10705511.2017.1417046
– volume: 12
  year: 2021
  ident: pone.0325834.ref038
  article-title: Predictors associated with the variation of CD4 cell count and body mass index (BMI) for HIV positive adults under ART
  publication-title: Scientific African
  doi: 10.1016/j.sciaf.2021.e00820
– volume: 18
  start-page: 835
  issue: 7
  year: 1999
  ident: pone.0325834.ref044
  article-title: Assessing the goodness-of-fit of the Laird and Ware model--an example: the jimma infant survival differential longitudinal study
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19990415)18:7<835::AID-SIM75>3.0.CO;2-7
– year: 2024
  ident: pone.0325834.ref037
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2023
  ident: pone.0325834.ref041
– volume: 4
  start-page: 10
  issue: 1
  year: 2008
  ident: pone.0325834.ref008
  article-title: Consequences of misspecifying the error covariance structure in linear mixed models for longitudinal data
  publication-title: Methodology
  doi: 10.1027/1614-2241.4.1.10
– volume-title: Handbook of missing data methodology
  year: 2014
  ident: pone.0325834.ref047
  doi: 10.1201/b17622
– volume: 37
  start-page: 379
  issue: 3
  year: 2002
  ident: pone.0325834.ref015
  article-title: Effects of misspecifying the first-level error structure in two-level models of change
  publication-title: Multivariate Behav Res
  doi: 10.1207/S15327906MBR3703_4
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: pone.0325834.ref014
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– year: 2002
  ident: pone.0325834.ref004
– volume-title: Time Series: A Data Analysis Approach Using R
  year: 2019
  ident: pone.0325834.ref032
  doi: 10.1201/9780429273285
– volume: 19
  start-page: 1793
  issue: 13
  year: 2000
  ident: pone.0325834.ref009
  article-title: Modelling covariance structure in the analysis of repeated measures data
  publication-title: Stat Med
  doi: 10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>3.0.CO;2-Q
– volume: 17
  start-page: 15
  issue: 1
  year: 2012
  ident: pone.0325834.ref010
  article-title: Selecting a linear mixed model for longitudinal data: repeated measures analysis of variance, covariance pattern model, and growth curve approaches
  publication-title: Psychol Methods
  doi: 10.1037/a0026971
– volume: 23
  start-page: 323
  issue: 4
  year: 1998
  ident: pone.0325834.ref005
  article-title: Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models
  publication-title: J Educational and Behavioral Statistics
  doi: 10.3102/10769986023004323
– volume-title: Machine learning: a Bayesian and optimization perspective
  year: 2015
  ident: pone.0325834.ref036
– volume-title: Statistical Methods for the Analysis of Repeated Measurements
  year: 2002
  ident: pone.0325834.ref023
  doi: 10.1007/b97287
– year: 2023
  ident: pone.0325834.ref034
– volume-title: Applied longitudinal data analysis: modeling change and event occurrence
  year: 2003
  ident: pone.0325834.ref025
  doi: 10.1093/acprof:oso/9780195152968.001.0001
– volume: 77
  start-page: 255
  issue: 3
  year: 2009
  ident: pone.0325834.ref021
  article-title: The performance of multilevel growth curve models under an autoregressive moving average process
  publication-title: J Exp Educ
  doi: 10.3200/JEXE.77.3.255-284
– volume: 17
  issue: 12
  year: 2022
  ident: pone.0325834.ref042
  article-title: Clinical characteristics associated with mortality of COVID-19 patients admitted to an intensive care unit of a tertiary hospital in South Africa
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0279565
– volume-title: Longitudinal data analysis
  year: 2008
  ident: pone.0325834.ref001
  doi: 10.1201/9781420011579
– ident: pone.0325834.ref031
SSID ssj0053866
Score 2.4825628
Snippet The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0325834
SubjectTerms Algorithms
Autoregressive models
Complexity
Computer and Information Sciences
Covariance
Data analysis
Data visualization
Engineering and Technology
Estimates
Humans
Linear Models
Longitudinal method
Longitudinal Studies
Methods
Mixed-effects models
Parameter estimation
Physical Sciences
Research and Analysis Methods
Researchers
Software
Specifications
Statistics
Structural equation modeling
Time series
Time-series analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyjRM7sbktFVVBLEhQUG-R4zjtSiFZkd2F_hD-LzOON2pEJXrguDvjRJmH_U1if0PIc2ahTK40C5lNDRQo2oaaaxOqKpFpqllVVvi-Y_4xPfrK35-IkwutvnBPWE8P3BtuX6Q2UVJEuogMN3EpVaRlqUShrCjixEEjWMa2xVQ_Bwu8kT8ol2Rs3_tlumwbO42SWMiEjxYix9c_zMqTZd12l0HOv3dOXl83S33-U9f1hWXp8Ba56fEknfXPsUOu2eY22fEZ29GXnlb61R3y-8NiPj9oN6_prKHIEuHOR20s9Xw_Z3TVtjUFEEut45WAm9fntHONcmCBo6bdQGGNUUJ71tk1jIQrUUSq-gf9vvhlS-pa63QU99OfgrDD4r-jeIqFYh97iiEPw7QnQ7lLjg_fHh8chb4pQ2gAOq1CI8rCRJUWsYpMwVRVIAYwgsdWZqUFqRVVknLGCw7OBsdpDZihSgXUajpO7pFJA17YJdSoSOmogIrNxFwq-MllISujrVBMliIg4dZB-bKn3sjd97cMSpbeujk6NPcODcgb9OKgi8TZ7g8Ip9yHU_6vcArIE4yBvD-FOqR_PpOAKyNYVZKAPHMaSJ7R4O6cU73uuvzdp29XUPryeaT0witVLUST0f5EBDwTknKNNPdGmjAFmJF4FyN2a5UuTwC4ueowgpHbKL5c_HQQ40Vxx11j23Wvw_CjfBqQ-33QD5blUFbKLGYBkaN0GJl-LGkWZ467HMlMMoD1AZkOmXMl7z74H959SG7E2L8Ze0-xPTKBZLGPAFSuisdu_vgDDFV4lA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98Be0DY-FjbAICTgIV0-7NRBQqibNg1ECxoD7S1yHKerVJKytIX9Ify_3DlOIGJCe2zvHCW-D9_Zvt8R8tzXkCbn0nd9HSlIUKR2JZPKjfNQRJH08yzH_Y7RODr5wt6f8_M1Mm5qYfBaZeMTjaPOSoV75PshrEUm4PXezr-72DUKT1ebFhrStlbI3hiIsVtkHV0y65H1g6Pxp9PGN3N8AVtAFw78fSuv_rwsdN8LAy5C1lmgDI5_661781lZXReK_nuj8vaymMurH3I2-2u5Ot4kd2ycSYe1YmyRNV1sky1ryRV9aeGmX22TDYw3a7jmu-TXh-lodFiuXtNhQRFKwhRRrTS1oEAXdFGWMwqRLtUGfALeZHZFK9NNB1ZBqsoVZN-oSrSGpl3CSHgSxXBWXtJv0586o6b_TkXx0v0EiBXuEFQUS10oNrunaBcwTFrElHvk7Pjo7PDEtZ0bXAXx1cJVPEuVl0sexJ5K_ThPMVBQnAVaDDINVM3zMGI-SxloBPeklBBY5BGHhE4G4X3SK0AkO4Sq2Iull0JapwImYvjJRCpyJTWPfZFxh7iNtJJ5jc-RmEO6AeQ19VQnKN3EStchByjSlhfRtc0f5eUkscaa8EiHsYC3Sj3FVJCJ2JMii3kaa54GoXTIE1SIpC5VbX1EMhQQfHqw9IQOeWY4EGGjwCs8E7msquTdx683YPp82mF6YZnyElRLSVs2Ad-EyF0dzr0OJ_gJ1SHvoPo2s1IlfywKRjYqfT35aUvGh-K1vEKXy5rHx5P7yCEPagtoZ5ZB7ikGge8Q0bGNztR3KcX0wgCcI-LJAGJ_h_RbM7qRdB_-_0N2yUaA7Zux9ZS_R3pgBvoRxJSL9LF1FL8B5Pd6pA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBESj7s1OatTEwD0YFgm8ZTZDvOVtElFWkL4__g_-UucaMFhlQem7uL6vOdfRff_UzIk9BCmpyr0A9tYiBBUdZXTBlf5rFIEhXmWY7fO0Z7ye4Be3fEj9bIi2UvzPnz-3gQvnQa7U_LwvaDOOIiZpfIesIhV-6R9YO9j8MvzcFx5CdRELvuuH-JdnafGqS_XYp700lZXRRn_l0ueXleTNXZdzWZnNuLdq6R0XIUTQnK1_58pvvm5x8Aj6sO8zq56oJSOmysaIOs2eIG2XBuX9FnDpv6-U3y6_14NNouF6_osKAINVE3WS0sdaBBJ3RWlhMKkTC1NTgFDGZyRqv6th3YJakpF5Cdo6nRBrp2DpLwJorhrvpGT8c_bEbr-3kqikX5x0Cs8AtCRbEVhs7GpyCK8MwVVQ5R5RbZ33mzv73ru5sdfAPx18w3PNMmyBWPZGB0KHONgYThLLJikFmgWp7HCQuZZmAxPFBKQeCRJxwSPhXFt0mvAE1tEmpkIFWgIe0zERMSfjKhRW6U5TIUGfeIv5zwdNrgd6T1Id4A8p5GuykqPXVK98hrtIqWF9G36wcwW6lz5pQnNpYC_pUODDNRJmSgRCa5lpbrKFYeeYg2lTatrO0akg4FBKcBbE2xRx7XHIjAUWCJz7GaV1X69sPhCkyfP3WYnjqmvATrNMq1VcCYENmrw7nV4YR1xHTIm-gBS61UaQzRX51iBiC59IqLyY9aMr4Uy_YKW84bnhBP9hOP3GmcqNUsg9xUDKLQI6LjXh3VdynF-KQGQEdElAHkBh7pt5640uze_V-Be-RKhBc-42VV4RbpgWPY-xCFzvQDt_j8BnFCiP4
  priority: 102
  providerName: Unpaywall
Title LiMMCov: An interactive research tool for efficiently selecting covariance structures in linear mixed models using insights from time series analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/40498721
https://www.proquest.com/docview/3218003050
https://www.proquest.com/docview/3218152966
https://pubmed.ncbi.nlm.nih.gov/PMC12157095
https://doi.org/10.1371/journal.pone.0325834
https://doaj.org/article/56e39850ab0c4c2d890a8d95b9e5b23a
http://dx.doi.org/10.1371/journal.pone.0325834
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrgVEMQgIeUsWJnThICHXTxkB0TGObxlPkOM42qSSlacv2h_D_cuekERED7SVSc-ckvQ_7zh-_I-QlM5Am54q5zIQaEhRlXMWVduM8kGGoWJ7lON8x2g_3jvmnU3G6QpY1WxsBVtemdlhP6ng6Hlz-uHoPDv_OVm2I2LLRYFIWZuAFvpABXyVrMDYxRNMf8XZdQeAH1OvMvhv6XtAcpvvXUzqDlcX0b3vu3mRcVteFpX_vrrw1Lybq6qcaj_8YunbvkjtNzEmHtZGskxVT3CPrjVdX9HUDPf3mPvn1-WI02i4Xb-mwoIgkYc9QLQxtMIHO6awsxxQCXWos9gS8fHxFK1tMBwZBqssFJN9oSbRGpp1DS3gSxWhWTen3i0uTUVt-p6K45_4MiBVOEFQUT7pQrHVP0S2gmWoAUx6Qo92do-09tync4GoIr2auFlmqvVwJP_Z0yuI8xThBC-4bGWUGqEbkQcgZTzkYhPCUUhBX5KGAfE75wUPSK0ALG4Tq2IuVl0JWp30uY_jJZSpzrYyImcyEQ9ylgpJJDc-R2DW6CNKaWroJKjRpFOqQLdRiy4vg2vZGOT1LGl9NRGiCWMJXpZ7m2s9k7CmZxSKNjUj9QDnkGdpAUp9UbbuIZCgh9vRg5Akc8sJyIMBGgTt4ztS8qpKPX05uwPT1sMP0qmHKS7AmrZpTE_CfELirw7nZ4YRuQnfIG2ixS6lUSQDBnc0gPWi5tOLryc9bMj4Ud-UVppzXPAwX7kOHPKqNvpUsh9RTRj5ziOy4Q0f0XUpxcW7xzRHwJILQ3yGD1nNupN3H_xfBE3Lbx-rNWHmKbZIeuIF5CiHlLO2T1eg0gqvcZnjd_dAna1s7-weHfTtJ07e9CNw73j8YfvsN7DB-Lg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4dBeEC2PGgpdEAg4OPVrnV0khEKgSmhSJEhRb9Z6vU4jpXaok5T8EH4G_5EZv8CiQr30mOys5d2Zncd65htCntsawuRY2qatfQUBitSm9KQyRexy35d2HMV43zE69vsn3qdTdrpBflW1MJhWWenEXFFHqcI78gMXbFHu8Frv5t9N7BqFX1erFhqFWBzp9SWEbNnbwQfg7wvHOfw47vXNsquAqcD2L0zFolBZsWSOsFRoizhEI6aY52jeiTSMaha7vmd7oQdvyywpJRi92GcQbEjEOQCNf8tzHYEZZLxXZ5QwXF1Zned27INSGNrzNNFty3UYd72G9cubBNSmoDWfpdlVfu6_6Zqby2Qu15dyNvvLFh7eIbdLJ5Z2C6nbJhs62SHbpZrI6KsSy_r1DtlCZ7bAgr5Lfg6no1EvXb2h3YQiTkVeobXStEQcOqOLNJ1RcKOpzpEt4E1ma5rlrXrAxFKVriC0RzmlBe7tEmbCkyj6yvKCnk9_6IjmzX0yihn9ExjM8Poho1hHQxfTc5iK2M4ZlSUcyz0yvgkG3ietBFiyS6gSlpBWCDGjcjwu4KfHQx4rqZmwecQMYlbcCuYF-EeQfwHsQNBUbHWA3A1K7hrkPbK0pkXo7vyP9GISlJogYL52BYe3Ci3lKSfiwpI8EiwUmoWOKw2yjwIRFHWwtQIKuhw8WwvsmmuQZzkFwnckmB80kcssCwafv12D6OuXBtHLkihOQbSULGsyYE0IC9ag3GtQghJSjeFdFN9qV7Lgz3GFmZVIXz38tB7Gh2LOX6LTZUFjY1qAb5AHxQmod9aDwJZ3HNsgvHE2GlvfHEmmZzl6OsKpdCCwMEi7PkbX4u7D_y9kn2z2x6NhMBwcHz0iWw72icYeV_YeacGR0I_BeV2ET3KVQUlwwyrqN6kWsEw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIcFeEBsfCwxmEAh4SJsvpw4SQmWjrGwdCAbam-U4TlepS8rSdvQP4Y_hv-MucQoRE9rLHts7R7HvfB-O73eEPHU1pMmpdG1XhwoSFKltGUhlR6nPw1C6aZLiecfgMNz7Gnw4Zscr5FddC4PXKmubWBrqJFd4Rt72wReVAa_TTs21iE-7vTeT7zZ2kMIvrXU7jUpF9vXiHNK34nV_F2T9zPN674529mzTYcBWEAdMbcWSWDmpZF7kqNiN0hgdmmKBp3kn0UDVLPXDwA3iAN6cOVJKcIBpyCDxkIh5ANb_WseHTA-L1HvvayfAcKamUg-obaMYrUme6Zbje4z7QcMTlg0Dlm5hdTLOi4ti3n-vbt6YZRO5OJfj8V9-sXeL3DQBLe1WGrhOVnS2QdaNySjoC4Nr_XKDrGFgW-FC3yY_D0aDwU4-f0W7GUXMirJaa66pQR86odM8H1MIqakuUS7gTcYLWpRte8DdUpXPIc1HnaUVBu4MRsKTKMbN8oyejn7ohJaNfgqKt_uHQCzwKKKgWFNDp6NTGIo4zwWVBprlDjm6CgHeJasZiGSTUBU5kXRiyB-VF_AIfgY85qmSmkUuT5hF7FpaYlIBgYjya2AHEqhqqQVKVxjpWuQtinTJizDe5R_52VAYqyBYqP2Iw1vFjgqUl_DIkTyJWBxpFnu-tMg2KoSoamKXxkh0OUS5Dvg43yJPSg6E8shwUwzlrChE_-O3SzB9-dxgem6Y0hxUS0lTnwFzQoiwBudWgxMMkmqQN1F961UpxJ-tCyNrlb6Y_HhJxofi_b9M57OKx8UrAqFF7lU7YLmyASS5vOO5FuGNvdFY-iYlG52USOoIrdKBJMMireU2upR07_9_ItvkOhgncdA_3H9A1jxsGY3trtwtsgo7Qj-EOHYaPyotBiXiii3UbyihtKo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBESj7s1OatTEwD0YFgm8ZTZDvOVtElFWkL4__g_-UucaMFhlQem7uL6vOdfRff_UzIk9BCmpyr0A9tYiBBUdZXTBlf5rFIEhXmWY7fO0Z7ye4Be3fEj9bIi2UvzPnz-3gQvnQa7U_LwvaDOOIiZpfIesIhV-6R9YO9j8MvzcFx5CdRELvuuH-JdnafGqS_XYp700lZXRRn_l0ueXleTNXZdzWZnNuLdq6R0XIUTQnK1_58pvvm5x8Aj6sO8zq56oJSOmysaIOs2eIG2XBuX9FnDpv6-U3y6_14NNouF6_osKAINVE3WS0sdaBBJ3RWlhMKkTC1NTgFDGZyRqv6th3YJakpF5Cdo6nRBrp2DpLwJorhrvpGT8c_bEbr-3kqikX5x0Cs8AtCRbEVhs7GpyCK8MwVVQ5R5RbZ33mzv73ru5sdfAPx18w3PNMmyBWPZGB0KHONgYThLLJikFmgWp7HCQuZZmAxPFBKQeCRJxwSPhXFt0mvAE1tEmpkIFWgIe0zERMSfjKhRW6U5TIUGfeIv5zwdNrgd6T1Id4A8p5GuykqPXVK98hrtIqWF9G36wcwW6lz5pQnNpYC_pUODDNRJmSgRCa5lpbrKFYeeYg2lTatrO0akg4FBKcBbE2xRx7XHIjAUWCJz7GaV1X69sPhCkyfP3WYnjqmvATrNMq1VcCYENmrw7nV4YR1xHTIm-gBS61UaQzRX51iBiC59IqLyY9aMr4Uy_YKW84bnhBP9hOP3GmcqNUsg9xUDKLQI6LjXh3VdynF-KQGQEdElAHkBh7pt5640uze_V-Be-RKhBc-42VV4RbpgWPY-xCFzvQDt_j8BnFCiP4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LiMMCov%3A+An+interactive+research+tool+for+efficiently+selecting+covariance+structures+in+linear+mixed+models+using+insights+from+time+series+analysis&rft.jtitle=PloS+one&rft.au=Savieri%2C+Perseverence&rft.au=Stas%2C+Lara&rft.au=Barb%C3%A9%2C+Kurt&rft.date=2025-06-11&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0325834&rft_id=info:doi/10.1371%2Fjournal.pone.0325834&rft.externalDocID=A843504673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon