LiMMCov: An interactive research tool for efficiently selecting covariance structures in linear mixed models using insights from time series analysis
The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised by repeated measurements on subjects over time, demand careful handling of inherent correlations to avoid biased estimates and invalid infer...
Saved in:
Published in | PloS one Vol. 20; no. 6; p. e0325834 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
11.06.2025
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0325834 |
Cover
Abstract | The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised by repeated measurements on subjects over time, demand careful handling of inherent correlations to avoid biased estimates and invalid inferences. Incorrect covariance structure specification can lead to inflated type I error rates, reduced statistical power, and inefficient estimation, ultimately compromising the reliability of statistical inferences. Traditional methods for selecting appropriate covariance structures, such as AIC and BIC, often fall short, particularly as model complexity increases or sample sizes decrease. Studies have shown that these criteria can misidentify the correct structure, resulting in suboptimal parameter estimates and poor assessment of standard errors for fixed effects. Additionally, relying on trial-and-error comparisons in LMMs can lead to overfitting and arbitrary decisions, further undermining the robustness of model selection and inference. To address this challenge, we introduce LiMMCov, an interactive app that uniquely integrates time-series concepts into the process of covariance structure selection. Unlike existing tools, LiMMCov allows researchers to explore and model complex structures using autoregressive models, a novel feature that enhances the accuracy of model specification. The app provides interactive visualisations of residuals, offering insights into underlying patterns that traditional methods may overlook. LiMMCov facilitates a systematic approach to covariance structure selection with a user-friendly interface and integrated theoretical guidance. This paper details the development and features of LiMMCov, demonstrates its application with an example dataset, and discusses its potential impact on research. The app is freely accessible at https://zq9mvv-vub0square.shinyapps.io/LiMMCov-research-tool/ . |
---|---|
AbstractList | The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised by repeated measurements on subjects over time, demand careful handling of inherent correlations to avoid biased estimates and invalid inferences. Incorrect covariance structure specification can lead to inflated type I error rates, reduced statistical power, and inefficient estimation, ultimately compromising the reliability of statistical inferences. Traditional methods for selecting appropriate covariance structures, such as AIC and BIC, often fall short, particularly as model complexity increases or sample sizes decrease. Studies have shown that these criteria can misidentify the correct structure, resulting in suboptimal parameter estimates and poor assessment of standard errors for fixed effects. Additionally, relying on trial-and-error comparisons in LMMs can lead to overfitting and arbitrary decisions, further undermining the robustness of model selection and inference. To address this challenge, we introduce LiMMCov, an interactive app that uniquely integrates time-series concepts into the process of covariance structure selection. Unlike existing tools, LiMMCov allows researchers to explore and model complex structures using autoregressive models, a novel feature that enhances the accuracy of model specification. The app provides interactive visualisations of residuals, offering insights into underlying patterns that traditional methods may overlook. LiMMCov facilitates a systematic approach to covariance structure selection with a user-friendly interface and integrated theoretical guidance. This paper details the development and features of LiMMCov, demonstrates its application with an example dataset, and discusses its potential impact on research. The app is freely accessible at https://zq9mvv-vub0square.shinyapps.io/LiMMCov-research-tool/. The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised by repeated measurements on subjects over time, demand careful handling of inherent correlations to avoid biased estimates and invalid inferences. Incorrect covariance structure specification can lead to inflated type I error rates, reduced statistical power, and inefficient estimation, ultimately compromising the reliability of statistical inferences. Traditional methods for selecting appropriate covariance structures, such as AIC and BIC, often fall short, particularly as model complexity increases or sample sizes decrease. Studies have shown that these criteria can misidentify the correct structure, resulting in suboptimal parameter estimates and poor assessment of standard errors for fixed effects. Additionally, relying on trial-and-error comparisons in LMMs can lead to overfitting and arbitrary decisions, further undermining the robustness of model selection and inference. To address this challenge, we introduce LiMMCov, an interactive app that uniquely integrates time-series concepts into the process of covariance structure selection. Unlike existing tools, LiMMCov allows researchers to explore and model complex structures using autoregressive models, a novel feature that enhances the accuracy of model specification. The app provides interactive visualisations of residuals, offering insights into underlying patterns that traditional methods may overlook. LiMMCov facilitates a systematic approach to covariance structure selection with a user-friendly interface and integrated theoretical guidance. This paper details the development and features of LiMMCov, demonstrates its application with an example dataset, and discusses its potential impact on research. The app is freely accessible at The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised by repeated measurements on subjects over time, demand careful handling of inherent correlations to avoid biased estimates and invalid inferences. Incorrect covariance structure specification can lead to inflated type I error rates, reduced statistical power, and inefficient estimation, ultimately compromising the reliability of statistical inferences. Traditional methods for selecting appropriate covariance structures, such as AIC and BIC, often fall short, particularly as model complexity increases or sample sizes decrease. Studies have shown that these criteria can misidentify the correct structure, resulting in suboptimal parameter estimates and poor assessment of standard errors for fixed effects. Additionally, relying on trial-and-error comparisons in LMMs can lead to overfitting and arbitrary decisions, further undermining the robustness of model selection and inference. To address this challenge, we introduce LiMMCov, an interactive app that uniquely integrates time-series concepts into the process of covariance structure selection. Unlike existing tools, LiMMCov allows researchers to explore and model complex structures using autoregressive models, a novel feature that enhances the accuracy of model specification. The app provides interactive visualisations of residuals, offering insights into underlying patterns that traditional methods may overlook. LiMMCov facilitates a systematic approach to covariance structure selection with a user-friendly interface and integrated theoretical guidance. This paper details the development and features of LiMMCov, demonstrates its application with an example dataset, and discusses its potential impact on research. The app is freely accessible at https://zq9mvv-vub0square.shinyapps.io/LiMMCov-research-tool/.The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised by repeated measurements on subjects over time, demand careful handling of inherent correlations to avoid biased estimates and invalid inferences. Incorrect covariance structure specification can lead to inflated type I error rates, reduced statistical power, and inefficient estimation, ultimately compromising the reliability of statistical inferences. Traditional methods for selecting appropriate covariance structures, such as AIC and BIC, often fall short, particularly as model complexity increases or sample sizes decrease. Studies have shown that these criteria can misidentify the correct structure, resulting in suboptimal parameter estimates and poor assessment of standard errors for fixed effects. Additionally, relying on trial-and-error comparisons in LMMs can lead to overfitting and arbitrary decisions, further undermining the robustness of model selection and inference. To address this challenge, we introduce LiMMCov, an interactive app that uniquely integrates time-series concepts into the process of covariance structure selection. Unlike existing tools, LiMMCov allows researchers to explore and model complex structures using autoregressive models, a novel feature that enhances the accuracy of model specification. The app provides interactive visualisations of residuals, offering insights into underlying patterns that traditional methods may overlook. LiMMCov facilitates a systematic approach to covariance structure selection with a user-friendly interface and integrated theoretical guidance. This paper details the development and features of LiMMCov, demonstrates its application with an example dataset, and discusses its potential impact on research. The app is freely accessible at https://zq9mvv-vub0square.shinyapps.io/LiMMCov-research-tool/. |
Audience | Academic |
Author | Barbé, Kurt Savieri, Perseverence Stas, Lara |
AuthorAffiliation | 2 Core Facility - Support for Quantitative and Qualitative Research (SQUARE), Vrije Universiteit Brussel (VUB), Brussels, Belgium 1 Biostatistics and Medical Informatics Research Group (BISI), Vrije Universiteit Brussel (VUB), Brussels, Belgium Cairo University, EGYPT |
AuthorAffiliation_xml | – name: 2 Core Facility - Support for Quantitative and Qualitative Research (SQUARE), Vrije Universiteit Brussel (VUB), Brussels, Belgium – name: 1 Biostatistics and Medical Informatics Research Group (BISI), Vrije Universiteit Brussel (VUB), Brussels, Belgium – name: Cairo University, EGYPT |
Author_xml | – sequence: 1 givenname: Perseverence orcidid: 0000-0001-7853-0421 surname: Savieri fullname: Savieri, Perseverence – sequence: 2 givenname: Lara surname: Stas fullname: Stas, Lara – sequence: 3 givenname: Kurt surname: Barbé fullname: Barbé, Kurt |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40498721$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk11r2zAUhs3oWD-2fzA2wWBsF8kk6yP2bkYo-yikFLayWyHLx4mKLGWSnDU_ZP93ypKWZPSi-MLm6HlfnfMefFocOe-gKF4SPCZ0Qj7c-CE4ZcfLXB5jWvKKsifFCalpORIlpkd738fFaYw3GHNaCfGsOGaY1dWkJCfFn5m5vDz3q49o6pBxCYLSyawABYiggl6g5L1FnQ8Ius5oAy7ZNYpgIXNujrRfqWCU04BiCoNOQ1ZmJ2SNywaoN7fQot63YCMa4kZiXDTzRYqoC75HyfRZCsFkmcoDraOJz4unnbIRXuzeZ8X1l8_X599Gs6uvF-fT2UgLxtJI87bRuFO8rLFuSN01JSNcc1ZCNWkhnwLvqGCENUwIxbFSCgvSCV4Kokp6Vrze2i6tj3IXaJS0JBXGFHOciYst0Xp1I5fB9CqspVdG_iv4MJcqJKMtSC6A1lW-o8Ga6bKtaqyqtuZNDbwpqcpefOs1uKVa_1bW3hsSLDc7vWtBbnYqdzvNuk-7Loemh1bnDQRlD5o5PHFmIed-JUlJ-ATXPDu82zkE_2uAmGRvogZrlQM_bAcmOUQhMvrmP_ThWHbUXOXJjet8vlhvTOW0YpRjJiY0U-MHqPy00BudR-xMrh8I3h8IMpPgNs3VEKO8-PH98ezVz0P27R67AGXTIno7JONdPARf7Ud9n_Hd_5IBtgV08DEG6B63wr_22yuk |
Cites_doi | 10.1002/1521-4036(200011)42:7<807::AID-BIMJ807>3.0.CO;2-3 10.1080/00273170701540537 10.1007/978-1-4614-3900-4 10.1007/BF02294361 10.1080/03610929908832460 10.1016/j.jclinepi.2022.08.016 10.1201/9781351259446 10.1080/03610919808813497 10.1186/s13104-023-06625-3 10.1081/SAC-200055719 10.1109/TAC.1974.1100705 10.3844/jmssp.2014.309.315 10.12688/f1000research.55027.1 10.1080/00949655.2018.1520854 10.1093/oso/9780198524847.001.0001 10.1093/biomet/76.2.297 10.1080/00031305.1997.10473981 10.1007/978-1-4419-0300-6 10.1186/s12865-024-00659-3 10.1207/s15327906mbr4002_2 10.1080/10705511.2017.1417046 10.1016/j.sciaf.2021.e00820 10.1002/(SICI)1097-0258(19990415)18:7<835::AID-SIM75>3.0.CO;2-7 10.1027/1614-2241.4.1.10 10.1201/b17622 10.1207/S15327906MBR3703_4 10.1214/aos/1176344136 10.1201/9780429273285 10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>3.0.CO;2-Q 10.1037/a0026971 10.3102/10769986023004323 10.1007/b97287 10.1093/acprof:oso/9780195152968.001.0001 10.3200/JEXE.77.3.255-284 10.1371/journal.pone.0279565 10.1201/9781420011579 |
ContentType | Journal Article |
Copyright | Copyright: © 2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Savieri et al 2025 Savieri et al 2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Savieri et al 2025 Savieri et al – notice: 2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.1371/journal.pone.0325834 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Statistics |
DocumentTitleAlternate | LiMMCov: An interactive research tool for efficiently selecting covariance structures in linear mixed models |
EISSN | 1932-6203 |
ExternalDocumentID | 3218003050 oai_doaj_org_article_56e39850ab0c4c2d890a8d95b9e5b23a 10.1371/journal.pone.0325834 PMC12157095 A843504673 40498721 10_1371_journal_pone_0325834 |
Genre | Journal Article |
GeographicLocations | Belgium |
GeographicLocations_xml | – name: Belgium |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c644t-c5dbc0fa5290cb19fb2415c542e87de5dbe5f36414b466a50aaa061f65261a23 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Tue Sep 30 23:54:34 EDT 2025 Wed Aug 27 01:30:14 EDT 2025 Tue Aug 19 23:33:18 EDT 2025 Tue Sep 30 17:02:58 EDT 2025 Fri Sep 05 15:53:56 EDT 2025 Fri Jul 25 09:17:21 EDT 2025 Thu Jul 03 02:07:00 EDT 2025 Tue Jul 01 05:40:59 EDT 2025 Fri Jun 27 03:22:17 EDT 2025 Fri Jun 27 03:22:21 EDT 2025 Tue Jul 01 05:42:22 EDT 2025 Mon Jul 21 06:01:51 EDT 2025 Wed Oct 01 05:52:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright: © 2025 Savieri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c644t-c5dbc0fa5290cb19fb2415c542e87de5dbe5f36414b466a50aaa061f65261a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0001-7853-0421 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pone.0325834 |
PMID | 40498721 |
PQID | 3218003050 |
PQPubID | 1436336 |
PageCount | e0325834 |
ParticipantIDs | plos_journals_3218003050 doaj_primary_oai_doaj_org_article_56e39850ab0c4c2d890a8d95b9e5b23a unpaywall_primary_10_1371_journal_pone_0325834 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12157095 proquest_miscellaneous_3218152966 proquest_journals_3218003050 gale_infotracmisc_A843504673 gale_infotracacademiconefile_A843504673 gale_incontextgauss_ISR_A843504673 gale_incontextgauss_IOV_A843504673 gale_healthsolutions_A843504673 pubmed_primary_40498721 crossref_primary_10_1371_journal_pone_0325834 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250611 |
PublicationDateYYYYMMDD | 2025-06-11 |
PublicationDate_xml | – month: 6 year: 2025 text: 20250611 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2025 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | P Diggle (pone.0325834.ref024) 2002 C Brien (pone.0325834.ref037) 2024 L Ji (pone.0325834.ref049) 2018; 25 RC Littell (pone.0325834.ref009) 2000; 19 G Molenberghs (pone.0325834.ref047) 2014 A Gałecki (pone.0325834.ref007) 2013 R Core Team (pone.0325834.ref043) 2023 C Chatfield (pone.0325834.ref035) 2019 G Molenberghs (pone.0325834.ref002) CS Davis (pone.0325834.ref023) 2002 AS Tegegne (pone.0325834.ref038) 2021; 12 O Kwok (pone.0325834.ref020) 2007; 42 A Hussein AL-Marshadi (pone.0325834.ref019) 2007; 2 G Vallejo (pone.0325834.ref027) 2005; 40 HJ Keselman (pone.0325834.ref017) 1998; 27 pone.0325834.ref031 R Littell (pone.0325834.ref004) 2002 S Liu (pone.0325834.ref010) 2012; 17 E Lesaffre (pone.0325834.ref045) 2000; 42 LR Marusich (pone.0325834.ref046) 2021; 10 E Lesaffre (pone.0325834.ref044) 1999; 18 J Ferron (pone.0325834.ref015) 2002; 37 G Fitzmaurice (pone.0325834.ref001) 2008 JD Singer (pone.0325834.ref005) 1998; 23 RK Kowalchuk (pone.0325834.ref028) 2004; 64 R Core Team (pone.0325834.ref041) 2023 PS Nyasulu (pone.0325834.ref042) 2022; 17 PJ Diggle (pone.0325834.ref006) 2002 GM Fitzmaurice (pone.0325834.ref003) 2012 MW Heymans (pone.0325834.ref050) 2022; 151 G Schwarz (pone.0325834.ref014) 1978; 6 KS Dawson (pone.0325834.ref030) 1997; 51 EV Gomez (pone.0325834.ref016) 2005; 34 AH Al-Marshadi (pone.0325834.ref018) 2014; 10 HJ Keselman (pone.0325834.ref026) 1999; 28 DL Murphy (pone.0325834.ref021) 2009; 77 CM HURVICH (pone.0325834.ref012) 1989; 76 pone.0325834.ref022 J Singer (pone.0325834.ref025) 2003 N Nooraee (pone.0325834.ref048) 2018; 88 GG Gebrerufael (pone.0325834.ref040) 2024; 25 NS Muhie (pone.0325834.ref039) 2023; 16 D Hedeker (pone.0325834.ref029) 2007 RH Shumway (pone.0325834.ref032) 2019 H Akaike (pone.0325834.ref011) 1974; 19 GEP Box (pone.0325834.ref033) 2015 S Theodoridis (pone.0325834.ref036) 2015 G Vallejo (pone.0325834.ref008) 2008; 4 H Bozdogan (pone.0325834.ref013) 1987; 52 W Chang (pone.0325834.ref034) 2023 |
References_xml | – volume: 2 start-page: 88 issue: 2 year: 2007 ident: pone.0325834.ref019 article-title: The new approach to guide the selection of the covariance structure in mixed model publication-title: Res J Med Med Sci – volume: 42 start-page: 807 issue: 7 year: 2000 ident: pone.0325834.ref045 article-title: Flexible modelling of the covariance matrix in a linear random effects model publication-title: Biom J doi: 10.1002/1521-4036(200011)42:7<807::AID-BIMJ807>3.0.CO;2-3 – volume: 42 start-page: 557 issue: 3 year: 2007 ident: pone.0325834.ref020 article-title: The impact of misspecifying the within-subject covariance structure in multiwave longitudinal multilevel models: a monte carlo study publication-title: Multivariate Behav Res doi: 10.1080/00273170701540537 – volume: 64 start-page: 224 issue: 2 year: 2004 ident: pone.0325834.ref028 article-title: The analysis of repeated measurements with mixed-model adjusted F tests publication-title: J Educ Behav Stat – volume-title: Linear mixed-effects model year: 2013 ident: pone.0325834.ref007 doi: 10.1007/978-1-4614-3900-4 – year: 2012 ident: pone.0325834.ref003 – volume: 52 start-page: 345 issue: 3 year: 1987 ident: pone.0325834.ref013 article-title: Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions publication-title: Psychometrika doi: 10.1007/BF02294361 – volume: 28 start-page: 2967 issue: 12 year: 1999 ident: pone.0325834.ref026 article-title: The analysis of repeated measurements: a comparison of mixed-model satterthwaite f tests and a nonpooled adjusted degrees of freedom multivariate test publication-title: Communications in Statistics - Theory and Methods doi: 10.1080/03610929908832460 – volume: 151 start-page: 185 year: 2022 ident: pone.0325834.ref050 article-title: Handling missing data in clinical research publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2022.08.016 – volume-title: The Analysis of Time Series: An Introduction with R, Seventh Edition year: 2019 ident: pone.0325834.ref035 doi: 10.1201/9781351259446 – volume: 27 start-page: 591 issue: 3 year: 1998 ident: pone.0325834.ref017 article-title: A comparison of two approaches for selecting covariance structures in the analysis of repeated measurements publication-title: Commun Stat Simul Comput doi: 10.1080/03610919808813497 – volume: 16 start-page: 357 issue: 1 year: 2023 ident: pone.0325834.ref039 article-title: Predictors for CD4 cell count and hemoglobin level with survival time to default for HIV positive adults under ART treatment at University of Gondar Comprehensive and Specialized Hospital, Ethiopia publication-title: BMC Res Notes doi: 10.1186/s13104-023-06625-3 – year: 2023 ident: pone.0325834.ref043 – volume: 34 start-page: 377 issue: 2 year: 2005 ident: pone.0325834.ref016 article-title: Performance of the kenward–roger method when the covariance structure is selected using AIC and BIC publication-title: Commun Stat Simul Comput doi: 10.1081/SAC-200055719 – volume: 19 start-page: 716 issue: 6 year: 1974 ident: pone.0325834.ref011 article-title: A new look at the statistical model identification publication-title: IEEE Trans Automat Contr doi: 10.1109/TAC.1974.1100705 – volume: 10 start-page: 309 issue: 3 year: 2014 ident: pone.0325834.ref018 article-title: Selecting the covariance structure in mixed model using statistical methods calibration publication-title: J Math Stat doi: 10.3844/jmssp.2014.309.315 – volume: 10 start-page: 697 year: 2021 ident: pone.0325834.ref046 article-title: rmcorrShiny: A web and standalone application for repeated measures correlation publication-title: F1000Res doi: 10.12688/f1000research.55027.1 – volume: 88 start-page: 3415 issue: 17 year: 2018 ident: pone.0325834.ref048 article-title: Strategies for handling missing data in longitudinal studies with questionnaires publication-title: J Stat Comput Simul doi: 10.1080/00949655.2018.1520854 – volume-title: Analysis of longitudinal year: 2002 ident: pone.0325834.ref006 doi: 10.1093/oso/9780198524847.001.0001 – volume: 76 start-page: 297 issue: 2 year: 1989 ident: pone.0325834.ref012 article-title: Regression and time series model selection in small samples publication-title: Biometrika doi: 10.1093/biomet/76.2.297 – volume: 51 start-page: 275 issue: 3 year: 1997 ident: pone.0325834.ref030 article-title: Two graphical techniques useful in detecting correlation structure in repeated measures data publication-title: Am Stat doi: 10.1080/00031305.1997.10473981 – volume-title: Analysis of longitudinal data year: 2002 ident: pone.0325834.ref024 doi: 10.1093/oso/9780198524847.001.0001 – volume-title: Modeling contextual effects in longitudinal studies year: 2007 ident: pone.0325834.ref029 article-title: Mixed-effects regression models with heterogeneous variance: Analyzing ecological momentary assessment (EMA) data of smoking – volume-title: Time series analysis: forecasting and control year: 2015 ident: pone.0325834.ref033 – volume-title: Linear Mixed Models for Longitudinal Data ident: pone.0325834.ref002 doi: 10.1007/978-1-4419-0300-6 – volume: 25 start-page: 64 issue: 1 year: 2024 ident: pone.0325834.ref040 article-title: Predictors of change in CD4 cell count over time for HIV/AIDS patients on ART follow-up in northern Ethiopia: a retrospective longitudinal study publication-title: BMC Immunol doi: 10.1186/s12865-024-00659-3 – ident: pone.0325834.ref022 – volume: 40 start-page: 179 issue: 2 year: 2005 ident: pone.0325834.ref027 article-title: Comparison of two procedures for analyzing small sets of repeated measures data publication-title: Multivariate Behav Res doi: 10.1207/s15327906mbr4002_2 – volume: 25 start-page: 715 issue: 5 year: 2018 ident: pone.0325834.ref049 article-title: Handling missing data in the modeling of intensive longitudinal data publication-title: Struct Equ Modeling doi: 10.1080/10705511.2017.1417046 – volume: 12 year: 2021 ident: pone.0325834.ref038 article-title: Predictors associated with the variation of CD4 cell count and body mass index (BMI) for HIV positive adults under ART publication-title: Scientific African doi: 10.1016/j.sciaf.2021.e00820 – volume: 18 start-page: 835 issue: 7 year: 1999 ident: pone.0325834.ref044 article-title: Assessing the goodness-of-fit of the Laird and Ware model--an example: the jimma infant survival differential longitudinal study publication-title: Stat Med doi: 10.1002/(SICI)1097-0258(19990415)18:7<835::AID-SIM75>3.0.CO;2-7 – year: 2024 ident: pone.0325834.ref037 – volume-title: R: A Language and Environment for Statistical Computing year: 2023 ident: pone.0325834.ref041 – volume: 4 start-page: 10 issue: 1 year: 2008 ident: pone.0325834.ref008 article-title: Consequences of misspecifying the error covariance structure in linear mixed models for longitudinal data publication-title: Methodology doi: 10.1027/1614-2241.4.1.10 – volume-title: Handbook of missing data methodology year: 2014 ident: pone.0325834.ref047 doi: 10.1201/b17622 – volume: 37 start-page: 379 issue: 3 year: 2002 ident: pone.0325834.ref015 article-title: Effects of misspecifying the first-level error structure in two-level models of change publication-title: Multivariate Behav Res doi: 10.1207/S15327906MBR3703_4 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: pone.0325834.ref014 article-title: Estimating the dimension of a model publication-title: Ann Stat doi: 10.1214/aos/1176344136 – year: 2002 ident: pone.0325834.ref004 – volume-title: Time Series: A Data Analysis Approach Using R year: 2019 ident: pone.0325834.ref032 doi: 10.1201/9780429273285 – volume: 19 start-page: 1793 issue: 13 year: 2000 ident: pone.0325834.ref009 article-title: Modelling covariance structure in the analysis of repeated measures data publication-title: Stat Med doi: 10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>3.0.CO;2-Q – volume: 17 start-page: 15 issue: 1 year: 2012 ident: pone.0325834.ref010 article-title: Selecting a linear mixed model for longitudinal data: repeated measures analysis of variance, covariance pattern model, and growth curve approaches publication-title: Psychol Methods doi: 10.1037/a0026971 – volume: 23 start-page: 323 issue: 4 year: 1998 ident: pone.0325834.ref005 article-title: Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models publication-title: J Educational and Behavioral Statistics doi: 10.3102/10769986023004323 – volume-title: Machine learning: a Bayesian and optimization perspective year: 2015 ident: pone.0325834.ref036 – volume-title: Statistical Methods for the Analysis of Repeated Measurements year: 2002 ident: pone.0325834.ref023 doi: 10.1007/b97287 – year: 2023 ident: pone.0325834.ref034 – volume-title: Applied longitudinal data analysis: modeling change and event occurrence year: 2003 ident: pone.0325834.ref025 doi: 10.1093/acprof:oso/9780195152968.001.0001 – volume: 77 start-page: 255 issue: 3 year: 2009 ident: pone.0325834.ref021 article-title: The performance of multilevel growth curve models under an autoregressive moving average process publication-title: J Exp Educ doi: 10.3200/JEXE.77.3.255-284 – volume: 17 issue: 12 year: 2022 ident: pone.0325834.ref042 article-title: Clinical characteristics associated with mortality of COVID-19 patients admitted to an intensive care unit of a tertiary hospital in South Africa publication-title: PLoS One doi: 10.1371/journal.pone.0279565 – volume-title: Longitudinal data analysis year: 2008 ident: pone.0325834.ref001 doi: 10.1201/9781420011579 – ident: pone.0325834.ref031 |
SSID | ssj0053866 |
Score | 2.4825628 |
Snippet | The correct specification of covariance structures in linear mixed models (LMMs) is critical for accurate longitudinal data analysis. These data, characterised... |
SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0325834 |
SubjectTerms | Algorithms Autoregressive models Complexity Computer and Information Sciences Covariance Data analysis Data visualization Engineering and Technology Estimates Humans Linear Models Longitudinal method Longitudinal Studies Methods Mixed-effects models Parameter estimation Physical Sciences Research and Analysis Methods Researchers Software Specifications Statistics Structural equation modeling Time series Time-series analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyjRM7sbktFVVBLEhQUG-R4zjtSiFZkd2F_hD-LzOON2pEJXrguDvjRJmH_U1if0PIc2ahTK40C5lNDRQo2oaaaxOqKpFpqllVVvi-Y_4xPfrK35-IkwutvnBPWE8P3BtuX6Q2UVJEuogMN3EpVaRlqUShrCjixEEjWMa2xVQ_Bwu8kT8ol2Rs3_tlumwbO42SWMiEjxYix9c_zMqTZd12l0HOv3dOXl83S33-U9f1hWXp8Ba56fEknfXPsUOu2eY22fEZ29GXnlb61R3y-8NiPj9oN6_prKHIEuHOR20s9Xw_Z3TVtjUFEEut45WAm9fntHONcmCBo6bdQGGNUUJ71tk1jIQrUUSq-gf9vvhlS-pa63QU99OfgrDD4r-jeIqFYh97iiEPw7QnQ7lLjg_fHh8chb4pQ2gAOq1CI8rCRJUWsYpMwVRVIAYwgsdWZqUFqRVVknLGCw7OBsdpDZihSgXUajpO7pFJA17YJdSoSOmogIrNxFwq-MllISujrVBMliIg4dZB-bKn3sjd97cMSpbeujk6NPcODcgb9OKgi8TZ7g8Ip9yHU_6vcArIE4yBvD-FOqR_PpOAKyNYVZKAPHMaSJ7R4O6cU73uuvzdp29XUPryeaT0witVLUST0f5EBDwTknKNNPdGmjAFmJF4FyN2a5UuTwC4ueowgpHbKL5c_HQQ40Vxx11j23Wvw_CjfBqQ-33QD5blUFbKLGYBkaN0GJl-LGkWZ467HMlMMoD1AZkOmXMl7z74H959SG7E2L8Ze0-xPTKBZLGPAFSuisdu_vgDDFV4lA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98Be0DY-FjbAICTgIV0-7NRBQqibNg1ECxoD7S1yHKerVJKytIX9Ify_3DlOIGJCe2zvHCW-D9_Zvt8R8tzXkCbn0nd9HSlIUKR2JZPKjfNQRJH08yzH_Y7RODr5wt6f8_M1Mm5qYfBaZeMTjaPOSoV75PshrEUm4PXezr-72DUKT1ebFhrStlbI3hiIsVtkHV0y65H1g6Pxp9PGN3N8AVtAFw78fSuv_rwsdN8LAy5C1lmgDI5_661781lZXReK_nuj8vaymMurH3I2-2u5Ot4kd2ycSYe1YmyRNV1sky1ryRV9aeGmX22TDYw3a7jmu-TXh-lodFiuXtNhQRFKwhRRrTS1oEAXdFGWMwqRLtUGfALeZHZFK9NNB1ZBqsoVZN-oSrSGpl3CSHgSxXBWXtJv0586o6b_TkXx0v0EiBXuEFQUS10oNrunaBcwTFrElHvk7Pjo7PDEtZ0bXAXx1cJVPEuVl0sexJ5K_ThPMVBQnAVaDDINVM3zMGI-SxloBPeklBBY5BGHhE4G4X3SK0AkO4Sq2Iull0JapwImYvjJRCpyJTWPfZFxh7iNtJJ5jc-RmEO6AeQ19VQnKN3EStchByjSlhfRtc0f5eUkscaa8EiHsYC3Sj3FVJCJ2JMii3kaa54GoXTIE1SIpC5VbX1EMhQQfHqw9IQOeWY4EGGjwCs8E7msquTdx683YPp82mF6YZnyElRLSVs2Ad-EyF0dzr0OJ_gJ1SHvoPo2s1IlfywKRjYqfT35aUvGh-K1vEKXy5rHx5P7yCEPagtoZ5ZB7ikGge8Q0bGNztR3KcX0wgCcI-LJAGJ_h_RbM7qRdB_-_0N2yUaA7Zux9ZS_R3pgBvoRxJSL9LF1FL8B5Pd6pA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBESj7s1OatTEwD0YFgm8ZTZDvOVtElFWkL4__g_-UucaMFhlQem7uL6vOdfRff_UzIk9BCmpyr0A9tYiBBUdZXTBlf5rFIEhXmWY7fO0Z7ye4Be3fEj9bIi2UvzPnz-3gQvnQa7U_LwvaDOOIiZpfIesIhV-6R9YO9j8MvzcFx5CdRELvuuH-JdnafGqS_XYp700lZXRRn_l0ueXleTNXZdzWZnNuLdq6R0XIUTQnK1_58pvvm5x8Aj6sO8zq56oJSOmysaIOs2eIG2XBuX9FnDpv6-U3y6_14NNouF6_osKAINVE3WS0sdaBBJ3RWlhMKkTC1NTgFDGZyRqv6th3YJakpF5Cdo6nRBrp2DpLwJorhrvpGT8c_bEbr-3kqikX5x0Cs8AtCRbEVhs7GpyCK8MwVVQ5R5RbZ33mzv73ru5sdfAPx18w3PNMmyBWPZGB0KHONgYThLLJikFmgWp7HCQuZZmAxPFBKQeCRJxwSPhXFt0mvAE1tEmpkIFWgIe0zERMSfjKhRW6U5TIUGfeIv5zwdNrgd6T1Id4A8p5GuykqPXVK98hrtIqWF9G36wcwW6lz5pQnNpYC_pUODDNRJmSgRCa5lpbrKFYeeYg2lTatrO0akg4FBKcBbE2xRx7XHIjAUWCJz7GaV1X69sPhCkyfP3WYnjqmvATrNMq1VcCYENmrw7nV4YR1xHTIm-gBS61UaQzRX51iBiC59IqLyY9aMr4Uy_YKW84bnhBP9hOP3GmcqNUsg9xUDKLQI6LjXh3VdynF-KQGQEdElAHkBh7pt5640uze_V-Be-RKhBc-42VV4RbpgWPY-xCFzvQDt_j8BnFCiP4 priority: 102 providerName: Unpaywall |
Title | LiMMCov: An interactive research tool for efficiently selecting covariance structures in linear mixed models using insights from time series analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40498721 https://www.proquest.com/docview/3218003050 https://www.proquest.com/docview/3218152966 https://pubmed.ncbi.nlm.nih.gov/PMC12157095 https://doi.org/10.1371/journal.pone.0325834 https://doaj.org/article/56e39850ab0c4c2d890a8d95b9e5b23a http://dx.doi.org/10.1371/journal.pone.0325834 |
UnpaywallVersion | publishedVersion |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrgVEMQgIeUsWJnThICHXTxkB0TGObxlPkOM42qSSlacv2h_D_cuekERED7SVSc-ckvQ_7zh-_I-QlM5Am54q5zIQaEhRlXMWVduM8kGGoWJ7lON8x2g_3jvmnU3G6QpY1WxsBVtemdlhP6ng6Hlz-uHoPDv_OVm2I2LLRYFIWZuAFvpABXyVrMDYxRNMf8XZdQeAH1OvMvhv6XtAcpvvXUzqDlcX0b3vu3mRcVteFpX_vrrw1Lybq6qcaj_8YunbvkjtNzEmHtZGskxVT3CPrjVdX9HUDPf3mPvn1-WI02i4Xb-mwoIgkYc9QLQxtMIHO6awsxxQCXWos9gS8fHxFK1tMBwZBqssFJN9oSbRGpp1DS3gSxWhWTen3i0uTUVt-p6K45_4MiBVOEFQUT7pQrHVP0S2gmWoAUx6Qo92do-09tync4GoIr2auFlmqvVwJP_Z0yuI8xThBC-4bGWUGqEbkQcgZTzkYhPCUUhBX5KGAfE75wUPSK0ALG4Tq2IuVl0JWp30uY_jJZSpzrYyImcyEQ9ylgpJJDc-R2DW6CNKaWroJKjRpFOqQLdRiy4vg2vZGOT1LGl9NRGiCWMJXpZ7m2s9k7CmZxSKNjUj9QDnkGdpAUp9UbbuIZCgh9vRg5Akc8sJyIMBGgTt4ztS8qpKPX05uwPT1sMP0qmHKS7AmrZpTE_CfELirw7nZ4YRuQnfIG2ixS6lUSQDBnc0gPWi5tOLryc9bMj4Ud-UVppzXPAwX7kOHPKqNvpUsh9RTRj5ziOy4Q0f0XUpxcW7xzRHwJILQ3yGD1nNupN3H_xfBE3Lbx-rNWHmKbZIeuIF5CiHlLO2T1eg0gqvcZnjd_dAna1s7-weHfTtJ07e9CNw73j8YfvsN7DB-Lg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4dBeEC2PGgpdEAg4OPVrnV0khEKgSmhSJEhRb9Z6vU4jpXaok5T8EH4G_5EZv8CiQr30mOys5d2Zncd65htCntsawuRY2qatfQUBitSm9KQyRexy35d2HMV43zE69vsn3qdTdrpBflW1MJhWWenEXFFHqcI78gMXbFHu8Frv5t9N7BqFX1erFhqFWBzp9SWEbNnbwQfg7wvHOfw47vXNsquAqcD2L0zFolBZsWSOsFRoizhEI6aY52jeiTSMaha7vmd7oQdvyywpJRi92GcQbEjEOQCNf8tzHYEZZLxXZ5QwXF1Zned27INSGNrzNNFty3UYd72G9cubBNSmoDWfpdlVfu6_6Zqby2Qu15dyNvvLFh7eIbdLJ5Z2C6nbJhs62SHbpZrI6KsSy_r1DtlCZ7bAgr5Lfg6no1EvXb2h3YQiTkVeobXStEQcOqOLNJ1RcKOpzpEt4E1ma5rlrXrAxFKVriC0RzmlBe7tEmbCkyj6yvKCnk9_6IjmzX0yihn9ExjM8Poho1hHQxfTc5iK2M4ZlSUcyz0yvgkG3ietBFiyS6gSlpBWCDGjcjwu4KfHQx4rqZmwecQMYlbcCuYF-EeQfwHsQNBUbHWA3A1K7hrkPbK0pkXo7vyP9GISlJogYL52BYe3Ci3lKSfiwpI8EiwUmoWOKw2yjwIRFHWwtQIKuhw8WwvsmmuQZzkFwnckmB80kcssCwafv12D6OuXBtHLkihOQbSULGsyYE0IC9ag3GtQghJSjeFdFN9qV7Lgz3GFmZVIXz38tB7Gh2LOX6LTZUFjY1qAb5AHxQmod9aDwJZ3HNsgvHE2GlvfHEmmZzl6OsKpdCCwMEi7PkbX4u7D_y9kn2z2x6NhMBwcHz0iWw72icYeV_YeacGR0I_BeV2ET3KVQUlwwyrqN6kWsEw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIcFeEBsfCwxmEAh4SJsvpw4SQmWjrGwdCAbam-U4TlepS8rSdvQP4Y_hv-MucQoRE9rLHts7R7HvfB-O73eEPHU1pMmpdG1XhwoSFKltGUhlR6nPw1C6aZLiecfgMNz7Gnw4Zscr5FddC4PXKmubWBrqJFd4Rt72wReVAa_TTs21iE-7vTeT7zZ2kMIvrXU7jUpF9vXiHNK34nV_F2T9zPN674529mzTYcBWEAdMbcWSWDmpZF7kqNiN0hgdmmKBp3kn0UDVLPXDwA3iAN6cOVJKcIBpyCDxkIh5ANb_WseHTA-L1HvvayfAcKamUg-obaMYrUme6Zbje4z7QcMTlg0Dlm5hdTLOi4ti3n-vbt6YZRO5OJfj8V9-sXeL3DQBLe1WGrhOVnS2QdaNySjoC4Nr_XKDrGFgW-FC3yY_D0aDwU4-f0W7GUXMirJaa66pQR86odM8H1MIqakuUS7gTcYLWpRte8DdUpXPIc1HnaUVBu4MRsKTKMbN8oyejn7ohJaNfgqKt_uHQCzwKKKgWFNDp6NTGIo4zwWVBprlDjm6CgHeJasZiGSTUBU5kXRiyB-VF_AIfgY85qmSmkUuT5hF7FpaYlIBgYjya2AHEqhqqQVKVxjpWuQtinTJizDe5R_52VAYqyBYqP2Iw1vFjgqUl_DIkTyJWBxpFnu-tMg2KoSoamKXxkh0OUS5Dvg43yJPSg6E8shwUwzlrChE_-O3SzB9-dxgem6Y0hxUS0lTnwFzQoiwBudWgxMMkmqQN1F961UpxJ-tCyNrlb6Y_HhJxofi_b9M57OKx8UrAqFF7lU7YLmyASS5vOO5FuGNvdFY-iYlG52USOoIrdKBJMMireU2upR07_9_ItvkOhgncdA_3H9A1jxsGY3trtwtsgo7Qj-EOHYaPyotBiXiii3UbyihtKo |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBESj7s1OatTEwD0YFgm8ZTZDvOVtElFWkL4__g_-UucaMFhlQem7uL6vOdfRff_UzIk9BCmpyr0A9tYiBBUdZXTBlf5rFIEhXmWY7fO0Z7ye4Be3fEj9bIi2UvzPnz-3gQvnQa7U_LwvaDOOIiZpfIesIhV-6R9YO9j8MvzcFx5CdRELvuuH-JdnafGqS_XYp700lZXRRn_l0ueXleTNXZdzWZnNuLdq6R0XIUTQnK1_58pvvm5x8Aj6sO8zq56oJSOmysaIOs2eIG2XBuX9FnDpv6-U3y6_14NNouF6_osKAINVE3WS0sdaBBJ3RWlhMKkTC1NTgFDGZyRqv6th3YJakpF5Cdo6nRBrp2DpLwJorhrvpGT8c_bEbr-3kqikX5x0Cs8AtCRbEVhs7GpyCK8MwVVQ5R5RbZ33mzv73ru5sdfAPx18w3PNMmyBWPZGB0KHONgYThLLJikFmgWp7HCQuZZmAxPFBKQeCRJxwSPhXFt0mvAE1tEmpkIFWgIe0zERMSfjKhRW6U5TIUGfeIv5zwdNrgd6T1Id4A8p5GuykqPXVK98hrtIqWF9G36wcwW6lz5pQnNpYC_pUODDNRJmSgRCa5lpbrKFYeeYg2lTatrO0akg4FBKcBbE2xRx7XHIjAUWCJz7GaV1X69sPhCkyfP3WYnjqmvATrNMq1VcCYENmrw7nV4YR1xHTIm-gBS61UaQzRX51iBiC59IqLyY9aMr4Uy_YKW84bnhBP9hOP3GmcqNUsg9xUDKLQI6LjXh3VdynF-KQGQEdElAHkBh7pt5640uze_V-Be-RKhBc-42VV4RbpgWPY-xCFzvQDt_j8BnFCiP4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LiMMCov%3A+An+interactive+research+tool+for+efficiently+selecting+covariance+structures+in+linear+mixed+models+using+insights+from+time+series+analysis&rft.jtitle=PloS+one&rft.au=Savieri%2C+Perseverence&rft.au=Stas%2C+Lara&rft.au=Barb%C3%A9%2C+Kurt&rft.date=2025-06-11&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0325834&rft_id=info:doi/10.1371%2Fjournal.pone.0325834&rft.externalDocID=A843504673 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |