RRFNet: A free-anchor brain tumor detection and classification network based on reparameterization technology
Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consumin...
Saved in:
| Published in | PloS one Vol. 20; no. 6; p. e0325483 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
16.06.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0325483 |
Cover
| Abstract | Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical. |
|---|---|
| AbstractList | Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical. Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical.Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical. |
| Audience | Academic |
| Author | Liu, Wei Guo, Xingxin |
| AuthorAffiliation | Prince Mohammad Bin Fahd University, SAUDI ARABIA School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China |
| AuthorAffiliation_xml | – name: Prince Mohammad Bin Fahd University, SAUDI ARABIA – name: School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0001-7511-3980 surname: Liu fullname: Liu, Wei – sequence: 2 givenname: Xingxin surname: Guo fullname: Guo, Xingxin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40522942$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk11v0zAUhiM0xD7gHyCIhITgoiX-bMINqiYGlSYmlYlb68SxWxfHLnbCKL8ed82mFu1iyoWt1895fT6c0-zIeaey7CUqxohM0IeV74MDO14neVwQzGhJnmQnqCJ4xHFBjvb2x9lpjKuiYKTk_Fl2TAuGcUXxSdbO5xffVPcxn-Y6KDUCJ5c-5HUA4_Kub9O-UZ2SnfEuB9fk0kKMRhsJt5JT3Y0PP_MaomryJAS1hgBtignm745J4UvnrV9snmdPNdioXgzrWXZ98fn6_Ovo8urL7Hx6OZKc0m5UV00hS11ryqsJkg3nkjMoZENIxSYlxUwy1kipa9ZwiViNMamZngCRdV0COcte72zX1kcxNCoKglGFS4JKnIjZjmg8rMQ6mBbCRngw4lbwYSEgdEZaJYAyplUJlNeMakKAITRpGCaqQrxAOnmxnVfv1rC5AWvvDVEhtrO6S0FsZyWGWaW4T0OWfd2qRirXBbAHyRyeOLMUC_9bIIx4xTBNDu8Gh-B_9Sp2ojVRKmvBKd_vCiaYTDhK6Jv_0IfbMlALSJUbp326WG5NxbSkNN1LaJWo8QNU-hrVGplK1CbpBwHvDwIS06k_3QL6GMXs-_zx7NWPQ_btHrtUYLtl9Lbfvrp4CL7ab_V9j-_-gwTQHSCDjzEo_bgR_gPcZRyZ |
| Cites_doi | 10.1016/j.artmed.2021.102180 10.1016/j.patrec.2019.11.019 10.1109/CVPR46437.2021.01352 10.1007/s11042-023-16637-7 10.1016/j.media.2017.07.005 10.1109/ICACCS48705.2020.9074375 10.1109/JBHI.2021.3100758 10.3390/medicina58081090 10.3390/a16040176 10.1109/ICCV.2019.00612 10.1002/mrm.22147 10.1016/j.jocs.2018.12.003 10.1016/j.artmed.2024.102776 10.1109/ACCESS.2018.2878276 10.3390/electronics12143106 10.1109/JBHI.2024.3373018 10.1109/ICASSP49357.2023.10096516 10.1016/j.artmed.2022.102365 10.1109/JTEHM.2022.3176737 10.1016/j.artmed.2019.101769 10.1109/CONIT51480.2021.9498384 10.1016/j.artmed.2024.102788 10.1109/TBME.2013.2271383 10.1109/CVPR.2016.319 10.1109/JBHI.2023.3266614 10.1109/CVPR52733.2024.01605 10.1109/TMI.2020.2994459 10.1109/ACCESS.2023.3242666 10.1016/j.cmpb.2019.05.015 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Liu, Guo 2025 Liu, Guo 2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Liu, Guo 2025 Liu, Guo – notice: 2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0325483 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale Opposing Viewpoints (In Context) Gale Science in Context ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection (subscription) ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database (subscription) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database (subscripiton) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | RRFNet: A free-anchor brain tumor detection and classification network based on reparameterization technology |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3219283182 oai_doaj_org_article_a455fe8a46b54f33a5117d523e91601f 10.1371/journal.pone.0325483 PMC12169524 A844216349 40522942 10_1371_journal_pone_0325483 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – grantid: kq2202260 – grantid: B2023039 – fundername: ; grantid: 2022JJ30438 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG ACCTH AFFHD BAIFH BBTPI 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c644t-b9d0c8fbf46971cd66c65a0cd339578425c55dccfb5d6c15b223b5f7a3cbb8a3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Wed Sep 17 00:39:24 EDT 2025 Fri Oct 03 12:36:28 EDT 2025 Sun Oct 26 04:17:03 EDT 2025 Tue Sep 30 17:02:35 EDT 2025 Fri Sep 05 15:52:45 EDT 2025 Tue Oct 07 07:28:36 EDT 2025 Mon Oct 20 22:41:54 EDT 2025 Thu Oct 30 14:26:14 EDT 2025 Thu Oct 16 15:37:18 EDT 2025 Thu Oct 16 15:37:16 EDT 2025 Tue Jun 24 02:11:03 EDT 2025 Thu Jun 19 02:16:10 EDT 2025 Wed Oct 01 05:59:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright: © 2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c644t-b9d0c8fbf46971cd66c65a0cd339578425c55dccfb5d6c15b223b5f7a3cbb8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors hereby declare that they have no financial or non-financial interests, including personal relationships, that could be perceived as influencing the work reported in this paper. |
| ORCID | 0000-0001-7511-3980 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0325483 |
| PMID | 40522942 |
| PQID | 3219283182 |
| PQPubID | 1436336 |
| PageCount | e0325483 |
| ParticipantIDs | plos_journals_3219283182 doaj_primary_oai_doaj_org_article_a455fe8a46b54f33a5117d523e91601f unpaywall_primary_10_1371_journal_pone_0325483 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12169524 proquest_miscellaneous_3219323761 proquest_journals_3219283182 gale_infotracmisc_A844216349 gale_infotracacademiconefile_A844216349 gale_incontextgauss_ISR_A844216349 gale_incontextgauss_IOV_A844216349 gale_healthsolutions_A844216349 pubmed_primary_40522942 crossref_primary_10_1371_journal_pone_0325483 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250616 |
| PublicationDateYYYYMMDD | 2025-06-16 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250616 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | MI Mahmud (pone.0325483.ref009) 2023; 16 A Kulshreshtha (pone.0325483.ref003) 2024; 16 I Mecheter (pone.0325483.ref024) 2022; 131 S Roy (pone.0325483.ref008) 2020; 39 A Sekhar (pone.0325483.ref004) 2021; 26 J Nalepa (pone.0325483.ref017) 2020; 102 M Yasmin (pone.0325483.ref005) 2012; 19 M Sajjad (pone.0325483.ref029) 2019; 30 I Salehin (pone.0325483.ref028) 2023; 12 pone.0325483.ref030 pone.0325483.ref033 S Solanki (pone.0325483.ref007) 2023; 11 pone.0325483.ref034 S Hossain (pone.0325483.ref022) 2023; 28 pone.0325483.ref031 pone.0325483.ref010 pone.0325483.ref032 A Sravanthi Peddinti (pone.0325483.ref002) 2021; 2115 MI Sharif (pone.0325483.ref001) 2020; 129 A Islam (pone.0325483.ref012) 2013; 60 pone.0325483.ref035 H Liu (pone.0325483.ref025) 2024; 148 pone.0325483.ref036 G Litjens (pone.0325483.ref015) 2017; 42 pone.0325483.ref019 MA Ottom (pone.0325483.ref006) 2022; 10 D Zhang (pone.0325483.ref026) 2024; 149 J Amin (pone.0325483.ref011) 2019; 177 EI Zacharaki (pone.0325483.ref014) 2009; 62 YP Singh (pone.0325483.ref016) 2023; 83 S Maqsood (pone.0325483.ref021) 2022; 58 G Manogaran (pone.0325483.ref013) 2018; 7 pone.0325483.ref023 pone.0325483.ref020 M Jiang (pone.0325483.ref018) 2021; 121 pone.0325483.ref027 |
| References_xml | – volume: 16 start-page: 1517 issue: 3 year: 2024 ident: pone.0325483.ref003 article-title: IFAS: improved fully automatic segmentation convolutional neural network model along with morphological segmentation for brain tumor detection publication-title: Int J Inf Technol – volume: 121 start-page: 102180 year: 2021 ident: pone.0325483.ref018 article-title: A novel deep learning model DDU-net using edge features to enhance brain tumor segmentation on MR images publication-title: Artif Intell Med doi: 10.1016/j.artmed.2021.102180 – volume: 129 year: 2020 ident: pone.0325483.ref001 article-title: Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.019 – ident: pone.0325483.ref033 doi: 10.1109/CVPR46437.2021.01352 – volume: 83 start-page: 39537 issue: 13 year: 2023 ident: pone.0325483.ref016 article-title: A comparative analysis and classification of cancerous brain tumors detection based on classical machine learning and deep transfer learning models publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-16637-7 – volume: 42 start-page: 60 year: 2017 ident: pone.0325483.ref015 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – ident: pone.0325483.ref019 doi: 10.1109/ICACCS48705.2020.9074375 – volume: 26 start-page: 983 issue: 3 year: 2021 ident: pone.0325483.ref004 article-title: Brain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD system publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2021.3100758 – volume: 58 start-page: 1090 issue: 8 year: 2022 ident: pone.0325483.ref021 article-title: Multi-modal brain tumor detection using deep neural network and multiclass SVM publication-title: Medicina doi: 10.3390/medicina58081090 – volume: 16 start-page: 176 issue: 4 year: 2023 ident: pone.0325483.ref009 article-title: A deep analysis of brain tumor detection from mr images using deep learning networks publication-title: Algorithms doi: 10.3390/a16040176 – ident: pone.0325483.ref030 doi: 10.1109/ICCV.2019.00612 – volume: 2115 start-page: 012039 issue: 1 year: 2021 ident: pone.0325483.ref002 article-title: Evolution in diagnosis and detection of brain tumor – review publication-title: J Phys: Conf Ser – volume: 62 start-page: 1609 issue: 6 year: 2009 ident: pone.0325483.ref014 article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme publication-title: Magn Reson Med doi: 10.1002/mrm.22147 – ident: pone.0325483.ref010 – ident: pone.0325483.ref035 – volume: 30 start-page: 174 year: 2019 ident: pone.0325483.ref029 article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.12.003 – volume: 148 start-page: 102776 year: 2024 ident: pone.0325483.ref025 article-title: A deep convolutional neural network for the automatic segmentation of glioblastoma brain tumor: Joint spatial pyramid module and attention mechanism network publication-title: Artif Intell Med doi: 10.1016/j.artmed.2024.102776 – ident: pone.0325483.ref027 – volume: 7 start-page: 12 year: 2018 ident: pone.0325483.ref013 article-title: Machine learning approach-based gamma distribution for brain tumor detection and data sample imbalance analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2878276 – volume: 12 start-page: 3106 issue: 14 year: 2023 ident: pone.0325483.ref028 article-title: A review on dropout regularization approaches for deep neural networks within the scholarly domain publication-title: Electronics doi: 10.3390/electronics12143106 – ident: pone.0325483.ref023 doi: 10.1109/JBHI.2024.3373018 – ident: pone.0325483.ref031 doi: 10.1109/ICASSP49357.2023.10096516 – volume: 131 start-page: 102365 year: 2022 ident: pone.0325483.ref024 article-title: Deep learning with multiresolution handcrafted features for brain MRI segmentation publication-title: Artif Intell Med doi: 10.1016/j.artmed.2022.102365 – volume: 10 start-page: 1800508 year: 2022 ident: pone.0325483.ref006 article-title: Znet: deep learning approach for 2D MRI brain tumor segmentation publication-title: IEEE J Transl Eng Health Med doi: 10.1109/JTEHM.2022.3176737 – volume: 102 start-page: 101769 year: 2020 ident: pone.0325483.ref017 article-title: Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.101769 – ident: pone.0325483.ref020 doi: 10.1109/CONIT51480.2021.9498384 – volume: 149 start-page: 102788 year: 2024 ident: pone.0325483.ref026 article-title: Scalable Swin Transformer network for brain tumor segmentation from incomplete MRI modalities publication-title: Artif Intell Med doi: 10.1016/j.artmed.2024.102788 – volume: 19 start-page: 1484 issue: 10 year: 2012 ident: pone.0325483.ref005 article-title: Brain image analysis: a survey publication-title: World Appl Sci J – volume: 60 start-page: 3204 issue: 11 year: 2013 ident: pone.0325483.ref012 article-title: Multifractal texture estimation for detection and segmentation of brain tumors publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2271383 – ident: pone.0325483.ref032 doi: 10.1109/CVPR.2016.319 – volume: 28 start-page: 1261 issue: 3 year: 2023 ident: pone.0325483.ref022 article-title: Vision transformers, ensemble model, and transfer learning leveraging explainable AI for brain tumor detection and classification publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2023.3266614 – ident: pone.0325483.ref034 doi: 10.1109/CVPR52733.2024.01605 – volume: 39 start-page: 2676 issue: 8 year: 2020 ident: pone.0325483.ref008 article-title: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.2994459 – ident: pone.0325483.ref036 – volume: 11 start-page: 12870 year: 2023 ident: pone.0325483.ref007 article-title: Brain tumor detection and classification using intelligence techniques: an overview publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3242666 – volume: 177 start-page: 69 year: 2019 ident: pone.0325483.ref011 article-title: Brain tumor detection using statistical and machine learning method publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2019.05.015 |
| SSID | ssj0053866 |
| Score | 2.4824307 |
| Snippet | Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0325483 |
| SubjectTerms | Accuracy Algorithms Biology and Life Sciences Boxes Brain Brain - diagnostic imaging Brain cancer Brain Neoplasms - classification Brain Neoplasms - diagnosis Brain Neoplasms - diagnostic imaging Brain tumors Classification Computed tomography Computer and Information Sciences Datasets Deep Learning Feature maps Health aspects Humans Identification and classification Image acquisition Image Processing, Computer-Assisted - methods Image quality Machine learning Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Medical technology Medicine and Health Sciences Neural Networks, Computer Neuroimaging Object recognition Parameters Research and Analysis Methods Tomography, X-Ray Computed - methods Tumors |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yL_oinl9XPTWKoD50r22Sfvi2isspeMJ6yr2FJE08Ybddti3if-9Mmy1XPPAefFuaadnOb5L5TTOZIeRlaR2zhY5D8B0QoDjDwlzHJtSaKfBvSkR9-7bPp-nJN_7pXJxfavWFOWFDeeBBcceKC-FsrniqBXeMKWAIWQnhkwViE8UOV98oL_bB1LAGwyxOU39QjmXxscdlvq0rO48YBEU5mziivl7_uCrPtuu6uYpy_p05ebOrtur3L7VeX3JLyzvktueTdDG8xwG5Yau75MDP2Ia-9mWl39wjm9VqeWrbt3RB3c7aEOC-qHdUY48I2nYb-F3ats_MqqiqSmqQWGMmUQ8erYaEcYp-r6RwYWexbvgG82n8YU7ajh_q75Oz5Yez9yehb7YQGqBEbaiLMjK50w7i5Sw2ZZqaVKjIlAx38nCzzghRGuO0KFMTCw28QguXKWa0zhV7QGYVaPeQUAjAwDKsjZVJuIvhkRAEcw04mtywxAQk3CteboeSGrLfV8sgFBm0JhEo6YEKyDtEZ5TFgtj9BTAT6c1E_stMAvIMsZXD6dJxWstFznkCnJQXAXnRS2BRjAqzbn6ormnkxy_fryH0dTUReuWFXA1WYpQ_6QDvhMW2JpJHE0mY2mYyfIiWuNdKIxn4F-CDEBPCnXvrvHr4-TiMD8VMusrW3SDDMBUqDsjDwZhHzQJ5T5KCw935xMwnqp-OVD8v-prkMfzjQiQ8IPNxRlwL3Uf_A93H5FaCfZmxp1R6RGbtrrNPgCy2-mm_LvwBL1VpDA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wACDkICHdE1spykSQh1aNZAoqAy0t8ifG1KblCYV4r_nLnECERPaWxRfLOU-fL-zz3eEPDfWMTtRUQi-AwIUp1mYqkiHSjEJ_k2KUd2-7eM8OfnKP5yJsx0yb-_CYFpluybWC7UpNO6RHzIwLXCFAIffrn-E2DUKT1fbFhrSt1Ywb-oSY9fIboyVsQZk9-h4_nnRrs1g3UniL9CxcXTo5TVcF7kdjhgESynrOai6jn-3Wg_Wy6K8DIr-m1F5fZuv5a-fcrn8y13NbpGbHmfSaaMYe2TH5rfJnrfkkr705aZf3SGrxWI2t9VrOqVuY20IanBRbKjC3hG02q7g2diqztjKqcwN1Qi4McOoFirNm0Ryiv7QUHixsVhPfIV5Nv6SJ626Dfy75HR2fPruJPRNGEINUKkK1cSMdOqUgzh6HGmTJDoRcqQNwxM-PMTTQhitnRIm0ZFQgDeUcGPJtFKpZPfIIAfu7hMKgRlojLWR1DF3EUwJwTFXXAidahbrgIQt47N1U2ojq8_bxhCiNFzLUFCZF1RAjlA6HS0Wyq5fFJvzzNtdJmF6Z1PJEyW4Y0wCwBwbiL4t4OJR5ALyBGWbNbdOO3PPpinnMWBVPgnIs5oCi2XkmI1zLrdlmb3_9O0KRF8WPaIXnsgVoCVa-hsQ8E9YhKtHedCjBJPXveF91MSWK2X2xzjgy1Y7Lx9-2g3jpJhhl9ti29AwTJGKAnK_UeaOswDq43jC4eu0p-Y91vdH8u8Xda1ysMJkImIekGFnEVeS7oP__8hDciPGTszYRSo5IINqs7WPAB5W6rG3-d_l82e5 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBEShLb-eCtIKqBtILKhsZTZDs2Q7Rp1SZC8Ndzl7jRAkMqb1F8tuLzne938d2ZkCeFscxkKvTBdoCDYjXzUxVqXykmwb5JETTXtx1N4sMT_v5UnO6QF5tcmPPn9ywJXzqODpeL0gwDBu5Myi6R3VgA8h6Q3ZPJx9GX9uA48uMoYC477l9de9anKdLfbcWD5Wyxvghn_h0uebkul_LnDzmbnbNF42vkaDOLNgTl-7Cu1FD_-qPA47bTvE6uOlBKR60U7ZEdU94ge07t1_SZq039_CaZT6fjiale0RG1K2N8kJmzxYoqvGiCVvUcngtTNeFdJZVlQTWicwxHaiSAlm3UOUXjWVB4sTJYfHyOQTkuI5RW3d_-W-R4_Pb4zaHvbmzwNeCqyldZEejUKgtOdxLqIo51LGSgC4bHgXjip4UotLZKFLEOhQJwooRNJNNKpZLdJoMSOLBPKHhxIF7GhFJH3IYwJHjSXHEhdKpZpD3ibxYyX7Z1OfLmcC4Bf6blWo7MzB0zPfIaV7ujxarazQtYhdwpaS5heGtSyWMluGVMAhpNCnDVDYDoILQeeYiykrcpqt3ekI9SziMAtjzzyOOGAitrlBi681XW63X-7sPnLYg-TXtETx2RXYDUaenSJWBOWLGrR3nQo4T9Qfea91GyN1xZ5wyMFIBKcCyh50baL25-1DXjoBiOV5pF3dIwjKcKPXKnVY6Os-ABRFHGoXfaU5se6_st5bezprB5CF-ciYh7ZNhp2Fare_d_O9wjVyK8yBkvoYoPyKBa1eY-oMtKPXCbym-EwXo2 priority: 102 providerName: Unpaywall |
| Title | RRFNet: A free-anchor brain tumor detection and classification network based on reparameterization technology |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40522942 https://www.proquest.com/docview/3219283182 https://www.proquest.com/docview/3219323761 https://pubmed.ncbi.nlm.nih.gov/PMC12169524 https://doi.org/10.1371/journal.pone.0325483 https://doaj.org/article/a455fe8a46b54f33a5117d523e91601f http://dx.doi.org/10.1371/journal.pone.0325483 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe27gFeEONrgVEMQgIeUjVxnA8khLppZSCtTGVF5SmyHXtDapOSpIL999wlaUREkSZeoio-u-195H4Xn-8IeZlow3QkHRt8BwQoRjE7lI6ypWQC_Jvgw6p929nEP515n-Z8vkM2PVsbBhZbQzvsJzXLF4NfP67fg8G_q7o2BM5m0mCVpXowZBDyhGyX7IGvirCZw5nX7iuAdft-c4DuXzM7Dqqq498-rXurRVZsg6J_Z1TeWqcrcf1TLBZ_uKvxXXKnwZl0VCvGPtnR6T2y31hyQV835abf3CfL6XQ80eVbOqIm19oGNbjKciqxdwQt10v4nOiyythKqUgTqhBwY4ZRJVSa1onkFP1hQuFGrrGe-BLzbJpDnrRsX-A_IBfjk4vjU7tpwmArgEqlLaNkqEIjDcTRgaMS31c-F0OVMNzhw008xXmilJE88ZXDJeANyU0gmJIyFOwh6aXA3QNCITADjdHaEcr1jANLQnDsSY9zFSrmKovYG8bHq7rURlzttwUQotRci1FQcSMoixyhdFpaLJRd3cjyy7ixu1jA8kaHwvMl9wxjAgBmkED0rQEXDx1jkWco27g-ddqaezwKPc8FrOpFFnlRUWCxjBSzcS7Fuijij5-_3oDoy7RD9KohMhloiRLNCQj4T1iEq0N52KEEk1ed4QPUxA1XipiB3wGcCLEizNxo5_bh5-0wLooZdqnO1jUNwxQpxyKPamVuOQug3nUjD2aHHTXvsL47kn6_qmqVO_CLI-56Fhm0FnEj6T7-_-96Qm672KUZO0z5h6RX5mv9FKBjKftkN5gHcA2PHbyOP_TJ3tHJ5Hzar17G9KunBdybTc5H334D7LJ5sg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcCgXRHnVUOiCQMDBaez1K0gIhUeU0DZIIUW5rXbXuy1SYofYUdUfxX9kxi-wqFAvvUXeySqe-eaVnZ0h5EWsDdN96djgOyBBMYrZkXSULSUT4N-E3yvGtx1PgtGJ92Xuz7fIr_ouDJZV1jaxMNRxqvA_8gMGqgWuEMLh96ufNk6NwtPVeoRGCYtDfXEOKVv2bvwJ5PvSdYefZx9HdjVVwFbg-3Nb9uOeiow0kBiGjoqDQAW-6KmY4ZEVnkop34-VMtKPA-X4Ehyo9E0omJIyEgy2vUFuegxMCahPOG_yOzAdQVDdzmOhc1CBobtKE93tMcjEItbyfsWQgMYVdFaLNLsszv23XHN7k6zExblYLP7yhcM75HYVxNJBibodsqWTu2SnMhMZfV31sn5zjyyn0-FE52_pgJq11jZg7CxdU4mDKWi-WcLnWOdFOVhCRRJThdE8li8ViKFJWaVO0dnGFB6sNTYrX2IRT3WDlObN6cB9MrsOWTwgnQS4u0soZH0AR60doVzPOLAlZN6e9HxfRYq5yiJ2zXi-Kvt48OIwL4T8p-QaR0HxSlAW-YDSaWixC3fxIF2f8kqpuYDtjY6EF0jfM4wJiF7DGFJ7DUF3zzEW2UfZ8vJKa2NL-CDyPBcCYa9vkecFBXbiSLDU51RssoyPv36_AtG3aYvoVUVkUkCJEtX1Cngn7PDVotxrUYI9Ua3lXURizZWM_9E8-GaNzsuXnzXLuCmW7yU63ZQ0DOuvHIs8LMHccBYyBtfte_DtqAXzFuvbK8mPs6IRugO_uO-7nkW6jUZcSbqP_v8i-2R7NDs-4kfjyeFjcsvFkc84rirYI518vdFPIA7N5dNC-ynh12xtfgOJ657q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYDCDQMBD2ibOV5EQKoxqZTBQN1DfLNuxN6Q2KU2qaX8a_x13iRuImNBe9lbFV6u5-91Xfb4j5FmqDdMD6bngOyBBMYq5ifSUKyUT4N9E2K_Gt30-iPa-BR-n4XSD_FrfhcGyyrVNrAx1miv8j7zHQLXAFUI43DO2LOLr7ujt4qeLE6TwpHU9TqOGyL4-O4X0rXgz3gVZP_f90Yej93uunTDgKogDSlcO0r5KjDSQJMaeSqNIRaHoq5Th8RWeUKkwTJUyMkwj5YUSnKkMTSyYkjIRDLa9Qq7GSA2qFE-bXA_MSBTZm3os9noWGN1Fnulun0FWlrCWJ6wGBjRuobOY5cV5Me-_pZvXV9lCnJ2K2ewvvzi6RW7agJYOawRukg2d3Sab1mQU9KXta_3qDplPJqMDXb6mQ2qWWruAt5N8SSUOqaDlag6fU11WpWEZFVlKFUb2WMpUoYdmdcU6RcebUniw1Ni4fI4FPfY2KS2bk4K75OgyZHGPdDLg7hahkAECNLX2hPID48GWkIUHMghDlSjmK4e4a8bzRd3Tg1cHezHkQjXXOAqKW0E55B1Kp6HFjtzVg3x5zK2CcwHbG52IIJJhYBgTEMnGKaT5GgLwvmccsoOy5fX11sau8GESBD4ExcHAIU8rCuzKkSG-j8WqKPj4y_cLEB1OWkQvLJHJASVK2KsW8E7Y7atFud2iBNuiWstbiMQ1Vwr-Rwvhm2t0nr_8pFnGTbGUL9P5qqZhWIvlOeR-DeaGs5A9-P4ggG8nLZi3WN9eyX6cVE3RPfjFg9APHNJtNOJC0n3w_xfZIdfAzvBP44P9h-SGj9OfcXJVtE065XKlH0FIWsrHlfJTwi_Z2PwGED2jLQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBEShLb-eCtIKqBtILKhsZTZDs2Q7Rp1SZC8Ndzl7jRAkMqb1F8tuLzne938d2ZkCeFscxkKvTBdoCDYjXzUxVqXykmwb5JETTXtx1N4sMT_v5UnO6QF5tcmPPn9ywJXzqODpeL0gwDBu5Myi6R3VgA8h6Q3ZPJx9GX9uA48uMoYC477l9de9anKdLfbcWD5Wyxvghn_h0uebkul_LnDzmbnbNF42vkaDOLNgTl-7Cu1FD_-qPA47bTvE6uOlBKR60U7ZEdU94ge07t1_SZq039_CaZT6fjiale0RG1K2N8kJmzxYoqvGiCVvUcngtTNeFdJZVlQTWicwxHaiSAlm3UOUXjWVB4sTJYfHyOQTkuI5RW3d_-W-R4_Pb4zaHvbmzwNeCqyldZEejUKgtOdxLqIo51LGSgC4bHgXjip4UotLZKFLEOhQJwooRNJNNKpZLdJoMSOLBPKHhxIF7GhFJH3IYwJHjSXHEhdKpZpD3ibxYyX7Z1OfLmcC4Bf6blWo7MzB0zPfIaV7ujxarazQtYhdwpaS5heGtSyWMluGVMAhpNCnDVDYDoILQeeYiykrcpqt3ekI9SziMAtjzzyOOGAitrlBi681XW63X-7sPnLYg-TXtETx2RXYDUaenSJWBOWLGrR3nQo4T9Qfea91GyN1xZ5wyMFIBKcCyh50baL25-1DXjoBiOV5pF3dIwjKcKPXKnVY6Os-ABRFHGoXfaU5se6_st5bezprB5CF-ciYh7ZNhp2Fare_d_O9wjVyK8yBkvoYoPyKBa1eY-oMtKPXCbym-EwXo2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RRFNet%3A+A+free-anchor+brain+tumor+detection+and+classification+network+based+on+reparameterization+technology&rft.jtitle=PloS+one&rft.au=Liu%2C+Wei&rft.au=Guo%2C+Xingxin&rft.date=2025-06-16&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pone.0325483&rft.externalDocID=PMC12169524 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |