RRFNet: A free-anchor brain tumor detection and classification network based on reparameterization technology

Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consumin...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0325483
Main Authors Liu, Wei, Guo, Xingxin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 16.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0325483

Cover

Abstract Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical.
AbstractList Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical.
Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical.Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical.
Audience Academic
Author Liu, Wei
Guo, Xingxin
AuthorAffiliation Prince Mohammad Bin Fahd University, SAUDI ARABIA
School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
AuthorAffiliation_xml – name: Prince Mohammad Bin Fahd University, SAUDI ARABIA
– name: School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0001-7511-3980
  surname: Liu
  fullname: Liu, Wei
– sequence: 2
  givenname: Xingxin
  surname: Guo
  fullname: Guo, Xingxin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40522942$$D View this record in MEDLINE/PubMed
BookMark eNqNk11v0zAUhiM0xD7gHyCIhITgoiX-bMINqiYGlSYmlYlb68SxWxfHLnbCKL8ed82mFu1iyoWt1895fT6c0-zIeaey7CUqxohM0IeV74MDO14neVwQzGhJnmQnqCJ4xHFBjvb2x9lpjKuiYKTk_Fl2TAuGcUXxSdbO5xffVPcxn-Y6KDUCJ5c-5HUA4_Kub9O-UZ2SnfEuB9fk0kKMRhsJt5JT3Y0PP_MaomryJAS1hgBtignm745J4UvnrV9snmdPNdioXgzrWXZ98fn6_Ovo8urL7Hx6OZKc0m5UV00hS11ryqsJkg3nkjMoZENIxSYlxUwy1kipa9ZwiViNMamZngCRdV0COcte72zX1kcxNCoKglGFS4JKnIjZjmg8rMQ6mBbCRngw4lbwYSEgdEZaJYAyplUJlNeMakKAITRpGCaqQrxAOnmxnVfv1rC5AWvvDVEhtrO6S0FsZyWGWaW4T0OWfd2qRirXBbAHyRyeOLMUC_9bIIx4xTBNDu8Gh-B_9Sp2ojVRKmvBKd_vCiaYTDhK6Jv_0IfbMlALSJUbp326WG5NxbSkNN1LaJWo8QNU-hrVGplK1CbpBwHvDwIS06k_3QL6GMXs-_zx7NWPQ_btHrtUYLtl9Lbfvrp4CL7ab_V9j-_-gwTQHSCDjzEo_bgR_gPcZRyZ
Cites_doi 10.1016/j.artmed.2021.102180
10.1016/j.patrec.2019.11.019
10.1109/CVPR46437.2021.01352
10.1007/s11042-023-16637-7
10.1016/j.media.2017.07.005
10.1109/ICACCS48705.2020.9074375
10.1109/JBHI.2021.3100758
10.3390/medicina58081090
10.3390/a16040176
10.1109/ICCV.2019.00612
10.1002/mrm.22147
10.1016/j.jocs.2018.12.003
10.1016/j.artmed.2024.102776
10.1109/ACCESS.2018.2878276
10.3390/electronics12143106
10.1109/JBHI.2024.3373018
10.1109/ICASSP49357.2023.10096516
10.1016/j.artmed.2022.102365
10.1109/JTEHM.2022.3176737
10.1016/j.artmed.2019.101769
10.1109/CONIT51480.2021.9498384
10.1016/j.artmed.2024.102788
10.1109/TBME.2013.2271383
10.1109/CVPR.2016.319
10.1109/JBHI.2023.3266614
10.1109/CVPR52733.2024.01605
10.1109/TMI.2020.2994459
10.1109/ACCESS.2023.3242666
10.1016/j.cmpb.2019.05.015
ContentType Journal Article
Copyright Copyright: © 2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Liu, Guo 2025 Liu, Guo
2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Liu, Guo 2025 Liu, Guo
– notice: 2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0325483
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale Opposing Viewpoints (In Context)
Gale Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection (subscription)
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database (subscription)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (subscripiton)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
CrossRef


MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate RRFNet: A free-anchor brain tumor detection and classification network based on reparameterization technology
EISSN 1932-6203
ExternalDocumentID 3219283182
oai_doaj_org_article_a455fe8a46b54f33a5117d523e91601f
10.1371/journal.pone.0325483
PMC12169524
A844216349
40522942
10_1371_journal_pone_0325483
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – grantid: kq2202260
– grantid: B2023039
– fundername: ;
  grantid: 2022JJ30438
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
ACCTH
AFFHD
BAIFH
BBTPI
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c644t-b9d0c8fbf46971cd66c65a0cd339578425c55dccfb5d6c15b223b5f7a3cbb8a3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Sep 17 00:39:24 EDT 2025
Fri Oct 03 12:36:28 EDT 2025
Sun Oct 26 04:17:03 EDT 2025
Tue Sep 30 17:02:35 EDT 2025
Fri Sep 05 15:52:45 EDT 2025
Tue Oct 07 07:28:36 EDT 2025
Mon Oct 20 22:41:54 EDT 2025
Thu Oct 30 14:26:14 EDT 2025
Thu Oct 16 15:37:18 EDT 2025
Thu Oct 16 15:37:16 EDT 2025
Tue Jun 24 02:11:03 EDT 2025
Thu Jun 19 02:16:10 EDT 2025
Wed Oct 01 05:59:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2025 Liu, Guo. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-b9d0c8fbf46971cd66c65a0cd339578425c55dccfb5d6c15b223b5f7a3cbb8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors hereby declare that they have no financial or non-financial interests, including personal relationships, that could be perceived as influencing the work reported in this paper.
ORCID 0000-0001-7511-3980
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0325483
PMID 40522942
PQID 3219283182
PQPubID 1436336
PageCount e0325483
ParticipantIDs plos_journals_3219283182
doaj_primary_oai_doaj_org_article_a455fe8a46b54f33a5117d523e91601f
unpaywall_primary_10_1371_journal_pone_0325483
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12169524
proquest_miscellaneous_3219323761
proquest_journals_3219283182
gale_infotracmisc_A844216349
gale_infotracacademiconefile_A844216349
gale_incontextgauss_ISR_A844216349
gale_incontextgauss_IOV_A844216349
gale_healthsolutions_A844216349
pubmed_primary_40522942
crossref_primary_10_1371_journal_pone_0325483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250616
PublicationDateYYYYMMDD 2025-06-16
PublicationDate_xml – month: 6
  year: 2025
  text: 20250616
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References MI Mahmud (pone.0325483.ref009) 2023; 16
A Kulshreshtha (pone.0325483.ref003) 2024; 16
I Mecheter (pone.0325483.ref024) 2022; 131
S Roy (pone.0325483.ref008) 2020; 39
A Sekhar (pone.0325483.ref004) 2021; 26
J Nalepa (pone.0325483.ref017) 2020; 102
M Yasmin (pone.0325483.ref005) 2012; 19
M Sajjad (pone.0325483.ref029) 2019; 30
I Salehin (pone.0325483.ref028) 2023; 12
pone.0325483.ref030
pone.0325483.ref033
S Solanki (pone.0325483.ref007) 2023; 11
pone.0325483.ref034
S Hossain (pone.0325483.ref022) 2023; 28
pone.0325483.ref031
pone.0325483.ref010
pone.0325483.ref032
A Sravanthi Peddinti (pone.0325483.ref002) 2021; 2115
MI Sharif (pone.0325483.ref001) 2020; 129
A Islam (pone.0325483.ref012) 2013; 60
pone.0325483.ref035
H Liu (pone.0325483.ref025) 2024; 148
pone.0325483.ref036
G Litjens (pone.0325483.ref015) 2017; 42
pone.0325483.ref019
MA Ottom (pone.0325483.ref006) 2022; 10
D Zhang (pone.0325483.ref026) 2024; 149
J Amin (pone.0325483.ref011) 2019; 177
EI Zacharaki (pone.0325483.ref014) 2009; 62
YP Singh (pone.0325483.ref016) 2023; 83
S Maqsood (pone.0325483.ref021) 2022; 58
G Manogaran (pone.0325483.ref013) 2018; 7
pone.0325483.ref023
pone.0325483.ref020
M Jiang (pone.0325483.ref018) 2021; 121
pone.0325483.ref027
References_xml – volume: 16
  start-page: 1517
  issue: 3
  year: 2024
  ident: pone.0325483.ref003
  article-title: IFAS: improved fully automatic segmentation convolutional neural network model along with morphological segmentation for brain tumor detection
  publication-title: Int J Inf Technol
– volume: 121
  start-page: 102180
  year: 2021
  ident: pone.0325483.ref018
  article-title: A novel deep learning model DDU-net using edge features to enhance brain tumor segmentation on MR images
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102180
– volume: 129
  year: 2020
  ident: pone.0325483.ref001
  article-title: Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.019
– ident: pone.0325483.ref033
  doi: 10.1109/CVPR46437.2021.01352
– volume: 83
  start-page: 39537
  issue: 13
  year: 2023
  ident: pone.0325483.ref016
  article-title: A comparative analysis and classification of cancerous brain tumors detection based on classical machine learning and deep transfer learning models
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-16637-7
– volume: 42
  start-page: 60
  year: 2017
  ident: pone.0325483.ref015
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– ident: pone.0325483.ref019
  doi: 10.1109/ICACCS48705.2020.9074375
– volume: 26
  start-page: 983
  issue: 3
  year: 2021
  ident: pone.0325483.ref004
  article-title: Brain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD system
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2021.3100758
– volume: 58
  start-page: 1090
  issue: 8
  year: 2022
  ident: pone.0325483.ref021
  article-title: Multi-modal brain tumor detection using deep neural network and multiclass SVM
  publication-title: Medicina
  doi: 10.3390/medicina58081090
– volume: 16
  start-page: 176
  issue: 4
  year: 2023
  ident: pone.0325483.ref009
  article-title: A deep analysis of brain tumor detection from mr images using deep learning networks
  publication-title: Algorithms
  doi: 10.3390/a16040176
– ident: pone.0325483.ref030
  doi: 10.1109/ICCV.2019.00612
– volume: 2115
  start-page: 012039
  issue: 1
  year: 2021
  ident: pone.0325483.ref002
  article-title: Evolution in diagnosis and detection of brain tumor – review
  publication-title: J Phys: Conf Ser
– volume: 62
  start-page: 1609
  issue: 6
  year: 2009
  ident: pone.0325483.ref014
  article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22147
– ident: pone.0325483.ref010
– ident: pone.0325483.ref035
– volume: 30
  start-page: 174
  year: 2019
  ident: pone.0325483.ref029
  article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.12.003
– volume: 148
  start-page: 102776
  year: 2024
  ident: pone.0325483.ref025
  article-title: A deep convolutional neural network for the automatic segmentation of glioblastoma brain tumor: Joint spatial pyramid module and attention mechanism network
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2024.102776
– ident: pone.0325483.ref027
– volume: 7
  start-page: 12
  year: 2018
  ident: pone.0325483.ref013
  article-title: Machine learning approach-based gamma distribution for brain tumor detection and data sample imbalance analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2878276
– volume: 12
  start-page: 3106
  issue: 14
  year: 2023
  ident: pone.0325483.ref028
  article-title: A review on dropout regularization approaches for deep neural networks within the scholarly domain
  publication-title: Electronics
  doi: 10.3390/electronics12143106
– ident: pone.0325483.ref023
  doi: 10.1109/JBHI.2024.3373018
– ident: pone.0325483.ref031
  doi: 10.1109/ICASSP49357.2023.10096516
– volume: 131
  start-page: 102365
  year: 2022
  ident: pone.0325483.ref024
  article-title: Deep learning with multiresolution handcrafted features for brain MRI segmentation
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2022.102365
– volume: 10
  start-page: 1800508
  year: 2022
  ident: pone.0325483.ref006
  article-title: Znet: deep learning approach for 2D MRI brain tumor segmentation
  publication-title: IEEE J Transl Eng Health Med
  doi: 10.1109/JTEHM.2022.3176737
– volume: 102
  start-page: 101769
  year: 2020
  ident: pone.0325483.ref017
  article-title: Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101769
– ident: pone.0325483.ref020
  doi: 10.1109/CONIT51480.2021.9498384
– volume: 149
  start-page: 102788
  year: 2024
  ident: pone.0325483.ref026
  article-title: Scalable Swin Transformer network for brain tumor segmentation from incomplete MRI modalities
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2024.102788
– volume: 19
  start-page: 1484
  issue: 10
  year: 2012
  ident: pone.0325483.ref005
  article-title: Brain image analysis: a survey
  publication-title: World Appl Sci J
– volume: 60
  start-page: 3204
  issue: 11
  year: 2013
  ident: pone.0325483.ref012
  article-title: Multifractal texture estimation for detection and segmentation of brain tumors
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2271383
– ident: pone.0325483.ref032
  doi: 10.1109/CVPR.2016.319
– volume: 28
  start-page: 1261
  issue: 3
  year: 2023
  ident: pone.0325483.ref022
  article-title: Vision transformers, ensemble model, and transfer learning leveraging explainable AI for brain tumor detection and classification
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2023.3266614
– ident: pone.0325483.ref034
  doi: 10.1109/CVPR52733.2024.01605
– volume: 39
  start-page: 2676
  issue: 8
  year: 2020
  ident: pone.0325483.ref008
  article-title: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2994459
– ident: pone.0325483.ref036
– volume: 11
  start-page: 12870
  year: 2023
  ident: pone.0325483.ref007
  article-title: Brain tumor detection and classification using intelligence techniques: an overview
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3242666
– volume: 177
  start-page: 69
  year: 2019
  ident: pone.0325483.ref011
  article-title: Brain tumor detection using statistical and machine learning method
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2019.05.015
SSID ssj0053866
Score 2.4824307
Snippet Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0325483
SubjectTerms Accuracy
Algorithms
Biology and Life Sciences
Boxes
Brain
Brain - diagnostic imaging
Brain cancer
Brain Neoplasms - classification
Brain Neoplasms - diagnosis
Brain Neoplasms - diagnostic imaging
Brain tumors
Classification
Computed tomography
Computer and Information Sciences
Datasets
Deep Learning
Feature maps
Health aspects
Humans
Identification and classification
Image acquisition
Image Processing, Computer-Assisted - methods
Image quality
Machine learning
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Medical technology
Medicine and Health Sciences
Neural Networks, Computer
Neuroimaging
Object recognition
Parameters
Research and Analysis Methods
Tomography, X-Ray Computed - methods
Tumors
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yL_oinl9XPTWKoD50r22Sfvi2isspeMJ6yr2FJE08Ybddti3if-9Mmy1XPPAefFuaadnOb5L5TTOZIeRlaR2zhY5D8B0QoDjDwlzHJtSaKfBvSkR9-7bPp-nJN_7pXJxfavWFOWFDeeBBcceKC-FsrniqBXeMKWAIWQnhkwViE8UOV98oL_bB1LAGwyxOU39QjmXxscdlvq0rO48YBEU5mziivl7_uCrPtuu6uYpy_p05ebOrtur3L7VeX3JLyzvktueTdDG8xwG5Yau75MDP2Ia-9mWl39wjm9VqeWrbt3RB3c7aEOC-qHdUY48I2nYb-F3ats_MqqiqSmqQWGMmUQ8erYaEcYp-r6RwYWexbvgG82n8YU7ajh_q75Oz5Yez9yehb7YQGqBEbaiLMjK50w7i5Sw2ZZqaVKjIlAx38nCzzghRGuO0KFMTCw28QguXKWa0zhV7QGYVaPeQUAjAwDKsjZVJuIvhkRAEcw04mtywxAQk3CteboeSGrLfV8sgFBm0JhEo6YEKyDtEZ5TFgtj9BTAT6c1E_stMAvIMsZXD6dJxWstFznkCnJQXAXnRS2BRjAqzbn6ormnkxy_fryH0dTUReuWFXA1WYpQ_6QDvhMW2JpJHE0mY2mYyfIiWuNdKIxn4F-CDEBPCnXvrvHr4-TiMD8VMusrW3SDDMBUqDsjDwZhHzQJ5T5KCw935xMwnqp-OVD8v-prkMfzjQiQ8IPNxRlwL3Uf_A93H5FaCfZmxp1R6RGbtrrNPgCy2-mm_LvwBL1VpDA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wACDkICHdE1spykSQh1aNZAoqAy0t8ifG1KblCYV4r_nLnECERPaWxRfLOU-fL-zz3eEPDfWMTtRUQi-AwIUp1mYqkiHSjEJ_k2KUd2-7eM8OfnKP5yJsx0yb-_CYFpluybWC7UpNO6RHzIwLXCFAIffrn-E2DUKT1fbFhrSt1Ywb-oSY9fIboyVsQZk9-h4_nnRrs1g3UniL9CxcXTo5TVcF7kdjhgESynrOai6jn-3Wg_Wy6K8DIr-m1F5fZuv5a-fcrn8y13NbpGbHmfSaaMYe2TH5rfJnrfkkr705aZf3SGrxWI2t9VrOqVuY20IanBRbKjC3hG02q7g2diqztjKqcwN1Qi4McOoFirNm0Ryiv7QUHixsVhPfIV5Nv6SJ626Dfy75HR2fPruJPRNGEINUKkK1cSMdOqUgzh6HGmTJDoRcqQNwxM-PMTTQhitnRIm0ZFQgDeUcGPJtFKpZPfIIAfu7hMKgRlojLWR1DF3EUwJwTFXXAidahbrgIQt47N1U2ojq8_bxhCiNFzLUFCZF1RAjlA6HS0Wyq5fFJvzzNtdJmF6Z1PJEyW4Y0wCwBwbiL4t4OJR5ALyBGWbNbdOO3PPpinnMWBVPgnIs5oCi2XkmI1zLrdlmb3_9O0KRF8WPaIXnsgVoCVa-hsQ8E9YhKtHedCjBJPXveF91MSWK2X2xzjgy1Y7Lx9-2g3jpJhhl9ti29AwTJGKAnK_UeaOswDq43jC4eu0p-Y91vdH8u8Xda1ysMJkImIekGFnEVeS7oP__8hDciPGTszYRSo5IINqs7WPAB5W6rG3-d_l82e5
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBEShLb-eCtIKqBtILKhsZTZDs2Q7Rp1SZC8Ndzl7jRAkMqb1F8tuLzne938d2ZkCeFscxkKvTBdoCDYjXzUxVqXykmwb5JETTXtx1N4sMT_v5UnO6QF5tcmPPn9ywJXzqODpeL0gwDBu5Myi6R3VgA8h6Q3ZPJx9GX9uA48uMoYC477l9de9anKdLfbcWD5Wyxvghn_h0uebkul_LnDzmbnbNF42vkaDOLNgTl-7Cu1FD_-qPA47bTvE6uOlBKR60U7ZEdU94ge07t1_SZq039_CaZT6fjiale0RG1K2N8kJmzxYoqvGiCVvUcngtTNeFdJZVlQTWicwxHaiSAlm3UOUXjWVB4sTJYfHyOQTkuI5RW3d_-W-R4_Pb4zaHvbmzwNeCqyldZEejUKgtOdxLqIo51LGSgC4bHgXjip4UotLZKFLEOhQJwooRNJNNKpZLdJoMSOLBPKHhxIF7GhFJH3IYwJHjSXHEhdKpZpD3ibxYyX7Z1OfLmcC4Bf6blWo7MzB0zPfIaV7ujxarazQtYhdwpaS5heGtSyWMluGVMAhpNCnDVDYDoILQeeYiykrcpqt3ekI9SziMAtjzzyOOGAitrlBi681XW63X-7sPnLYg-TXtETx2RXYDUaenSJWBOWLGrR3nQo4T9Qfea91GyN1xZ5wyMFIBKcCyh50baL25-1DXjoBiOV5pF3dIwjKcKPXKnVY6Os-ABRFHGoXfaU5se6_st5bezprB5CF-ciYh7ZNhp2Fare_d_O9wjVyK8yBkvoYoPyKBa1eY-oMtKPXCbym-EwXo2
  priority: 102
  providerName: Unpaywall
Title RRFNet: A free-anchor brain tumor detection and classification network based on reparameterization technology
URI https://www.ncbi.nlm.nih.gov/pubmed/40522942
https://www.proquest.com/docview/3219283182
https://www.proquest.com/docview/3219323761
https://pubmed.ncbi.nlm.nih.gov/PMC12169524
https://doi.org/10.1371/journal.pone.0325483
https://doaj.org/article/a455fe8a46b54f33a5117d523e91601f
http://dx.doi.org/10.1371/journal.pone.0325483
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe27gFeEONrgVEMQgIeUjVxnA8khLppZSCtTGVF5SmyHXtDapOSpIL999wlaUREkSZeoio-u-195H4Xn-8IeZlow3QkHRt8BwQoRjE7lI6ypWQC_Jvgw6p929nEP515n-Z8vkM2PVsbBhZbQzvsJzXLF4NfP67fg8G_q7o2BM5m0mCVpXowZBDyhGyX7IGvirCZw5nX7iuAdft-c4DuXzM7Dqqq498-rXurRVZsg6J_Z1TeWqcrcf1TLBZ_uKvxXXKnwZl0VCvGPtnR6T2y31hyQV835abf3CfL6XQ80eVbOqIm19oGNbjKciqxdwQt10v4nOiyythKqUgTqhBwY4ZRJVSa1onkFP1hQuFGrrGe-BLzbJpDnrRsX-A_IBfjk4vjU7tpwmArgEqlLaNkqEIjDcTRgaMS31c-F0OVMNzhw008xXmilJE88ZXDJeANyU0gmJIyFOwh6aXA3QNCITADjdHaEcr1jANLQnDsSY9zFSrmKovYG8bHq7rURlzttwUQotRci1FQcSMoixyhdFpaLJRd3cjyy7ixu1jA8kaHwvMl9wxjAgBmkED0rQEXDx1jkWco27g-ddqaezwKPc8FrOpFFnlRUWCxjBSzcS7Fuijij5-_3oDoy7RD9KohMhloiRLNCQj4T1iEq0N52KEEk1ed4QPUxA1XipiB3wGcCLEizNxo5_bh5-0wLooZdqnO1jUNwxQpxyKPamVuOQug3nUjD2aHHTXvsL47kn6_qmqVO_CLI-56Fhm0FnEj6T7-_-96Qm672KUZO0z5h6RX5mv9FKBjKftkN5gHcA2PHbyOP_TJ3tHJ5Hzar17G9KunBdybTc5H334D7LJ5sg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcCgXRHnVUOiCQMDBaez1K0gIhUeU0DZIIUW5rXbXuy1SYofYUdUfxX9kxi-wqFAvvUXeySqe-eaVnZ0h5EWsDdN96djgOyBBMYrZkXSULSUT4N-E3yvGtx1PgtGJ92Xuz7fIr_ouDJZV1jaxMNRxqvA_8gMGqgWuEMLh96ufNk6NwtPVeoRGCYtDfXEOKVv2bvwJ5PvSdYefZx9HdjVVwFbg-3Nb9uOeiow0kBiGjoqDQAW-6KmY4ZEVnkop34-VMtKPA-X4Ehyo9E0omJIyEgy2vUFuegxMCahPOG_yOzAdQVDdzmOhc1CBobtKE93tMcjEItbyfsWQgMYVdFaLNLsszv23XHN7k6zExblYLP7yhcM75HYVxNJBibodsqWTu2SnMhMZfV31sn5zjyyn0-FE52_pgJq11jZg7CxdU4mDKWi-WcLnWOdFOVhCRRJThdE8li8ViKFJWaVO0dnGFB6sNTYrX2IRT3WDlObN6cB9MrsOWTwgnQS4u0soZH0AR60doVzPOLAlZN6e9HxfRYq5yiJ2zXi-Kvt48OIwL4T8p-QaR0HxSlAW-YDSaWixC3fxIF2f8kqpuYDtjY6EF0jfM4wJiF7DGFJ7DUF3zzEW2UfZ8vJKa2NL-CDyPBcCYa9vkecFBXbiSLDU51RssoyPv36_AtG3aYvoVUVkUkCJEtX1Cngn7PDVotxrUYI9Ua3lXURizZWM_9E8-GaNzsuXnzXLuCmW7yU63ZQ0DOuvHIs8LMHccBYyBtfte_DtqAXzFuvbK8mPs6IRugO_uO-7nkW6jUZcSbqP_v8i-2R7NDs-4kfjyeFjcsvFkc84rirYI518vdFPIA7N5dNC-ynh12xtfgOJ657q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYDCDQMBD2ibOV5EQKoxqZTBQN1DfLNuxN6Q2KU2qaX8a_x13iRuImNBe9lbFV6u5-91Xfb4j5FmqDdMD6bngOyBBMYq5ifSUKyUT4N9E2K_Gt30-iPa-BR-n4XSD_FrfhcGyyrVNrAx1miv8j7zHQLXAFUI43DO2LOLr7ujt4qeLE6TwpHU9TqOGyL4-O4X0rXgz3gVZP_f90Yej93uunTDgKogDSlcO0r5KjDSQJMaeSqNIRaHoq5Th8RWeUKkwTJUyMkwj5YUSnKkMTSyYkjIRDLa9Qq7GSA2qFE-bXA_MSBTZm3os9noWGN1Fnulun0FWlrCWJ6wGBjRuobOY5cV5Me-_pZvXV9lCnJ2K2ewvvzi6RW7agJYOawRukg2d3Sab1mQU9KXta_3qDplPJqMDXb6mQ2qWWruAt5N8SSUOqaDlag6fU11WpWEZFVlKFUb2WMpUoYdmdcU6RcebUniw1Ni4fI4FPfY2KS2bk4K75OgyZHGPdDLg7hahkAECNLX2hPID48GWkIUHMghDlSjmK4e4a8bzRd3Tg1cHezHkQjXXOAqKW0E55B1Kp6HFjtzVg3x5zK2CcwHbG52IIJJhYBgTEMnGKaT5GgLwvmccsoOy5fX11sau8GESBD4ExcHAIU8rCuzKkSG-j8WqKPj4y_cLEB1OWkQvLJHJASVK2KsW8E7Y7atFud2iBNuiWstbiMQ1Vwr-Rwvhm2t0nr_8pFnGTbGUL9P5qqZhWIvlOeR-DeaGs5A9-P4ggG8nLZi3WN9eyX6cVE3RPfjFg9APHNJtNOJC0n3w_xfZIdfAzvBP44P9h-SGj9OfcXJVtE065XKlH0FIWsrHlfJTwi_Z2PwGED2jLQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBEShLb-eCtIKqBtILKhsZTZDs2Q7Rp1SZC8Ndzl7jRAkMqb1F8tuLzne938d2ZkCeFscxkKvTBdoCDYjXzUxVqXykmwb5JETTXtx1N4sMT_v5UnO6QF5tcmPPn9ywJXzqODpeL0gwDBu5Myi6R3VgA8h6Q3ZPJx9GX9uA48uMoYC477l9de9anKdLfbcWD5Wyxvghn_h0uebkul_LnDzmbnbNF42vkaDOLNgTl-7Cu1FD_-qPA47bTvE6uOlBKR60U7ZEdU94ge07t1_SZq039_CaZT6fjiale0RG1K2N8kJmzxYoqvGiCVvUcngtTNeFdJZVlQTWicwxHaiSAlm3UOUXjWVB4sTJYfHyOQTkuI5RW3d_-W-R4_Pb4zaHvbmzwNeCqyldZEejUKgtOdxLqIo51LGSgC4bHgXjip4UotLZKFLEOhQJwooRNJNNKpZLdJoMSOLBPKHhxIF7GhFJH3IYwJHjSXHEhdKpZpD3ibxYyX7Z1OfLmcC4Bf6blWo7MzB0zPfIaV7ujxarazQtYhdwpaS5heGtSyWMluGVMAhpNCnDVDYDoILQeeYiykrcpqt3ekI9SziMAtjzzyOOGAitrlBi681XW63X-7sPnLYg-TXtETx2RXYDUaenSJWBOWLGrR3nQo4T9Qfea91GyN1xZ5wyMFIBKcCyh50baL25-1DXjoBiOV5pF3dIwjKcKPXKnVY6Os-ABRFHGoXfaU5se6_st5bezprB5CF-ciYh7ZNhp2Fare_d_O9wjVyK8yBkvoYoPyKBa1eY-oMtKPXCbym-EwXo2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RRFNet%3A+A+free-anchor+brain+tumor+detection+and+classification+network+based+on+reparameterization+technology&rft.jtitle=PloS+one&rft.au=Liu%2C+Wei&rft.au=Guo%2C+Xingxin&rft.date=2025-06-16&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pone.0325483&rft.externalDocID=PMC12169524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon