Ground-truth-free deep learning approach for accelerated quantitative parameter mapping with memory efficient learning

Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where th...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0324496
Main Authors Fujita, Naoto, Yokosawa, Suguru, Shirai, Toru, Terada, Yasuhiko
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 02.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0324496

Cover

Abstract Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI.
AbstractList Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI.
Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI.Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI.
Audience Academic
Author Fujita, Naoto
Yokosawa, Suguru
Shirai, Toru
Terada, Yasuhiko
AuthorAffiliation Helwan University Faculty of Engineering, EGYPT
1 Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
2 FUJIFILM Corporation, Medical Systems Research and Development Center, Imaging Research Group, Minato City, Japan
AuthorAffiliation_xml – name: 1 Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
– name: 2 FUJIFILM Corporation, Medical Systems Research and Development Center, Imaging Research Group, Minato City, Japan
– name: Helwan University Faculty of Engineering, EGYPT
Author_xml – sequence: 1
  givenname: Naoto
  surname: Fujita
  fullname: Fujita, Naoto
– sequence: 2
  givenname: Suguru
  surname: Yokosawa
  fullname: Yokosawa, Suguru
– sequence: 3
  givenname: Toru
  surname: Shirai
  fullname: Shirai, Toru
– sequence: 4
  givenname: Yasuhiko
  orcidid: 0000-0002-8583-3057
  surname: Terada
  fullname: Terada, Yasuhiko
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40455714$$D View this record in MEDLINE/PubMed
BookMark eNqNk1tr3DAQhU1JaS7tPyitoVDah93q5ttTCaFNA4FAb69i1hrtKtiSI8lJ8-8rdzfLbslD8IPN6JujmXPwcXZgncUse03JnPKKfrp2o7fQzYdUnhPOhGjKZ9kRbTiblYzwg53vw-w4hGtCCl6X5YvsUBBRFBUVR9ntuXejVbPox7iaaY-YK8Qh7xC8NXaZwzB4B-0q187n0LbYoYeIKr8ZwUYTIZpbzAfw0GNEn_epYeq7M3GV99g7f5-j1qY1aONW9mX2XEMX8NXmfZL9-vrl59m32eXV-cXZ6eWsLYWIM1CCQ6maetGoqlBKqIYUFXAECrAAsmjautELQnTFNNUESiZ4IwQVui1oQfhJ9natO3QuyI1lQXI2HYqC8URcrAnl4FoO3vTg76UDI_8VnF9K8NG0HcqyrnjBqdIlIUIQ3qCoeCVEtSAVKcvptmKtNdoB7u-g67aClMgptYcR5JSa3KSW-j5vphwXPao2OeWh2xtm_8SalVy6W0kZZQ2jIil82Ch4dzNiiLI3IWXVgUU3rhdmXNS0Tui7_9DHbdlQS0ibG6tduridROVpLZioiopNWvNHqPQo7E2bVtQm1fcaPu41JCbin7iEMQR58eP709mr3_vs-x12hdDFVXDdGI2zYR98s2v11uOHPyIBYg203oXgUT8twr-2tR96
Cites_doi 10.1002/mrm.1910380414
10.1109/TMI.2021.3084288
10.1186/s43055-023-01097-8
10.1002/mrm.28659
10.1002/mrm.30045
10.1002/jmri.25883
10.1109/TCI.2023.3299212
10.1002/mrm.28378
10.3390/s23031713
10.1016/j.media.2022.102538
10.1148/ryai.2020190007
10.1002/mrm.29786
10.1002/mrm.27355
10.1002/mrm.21391
10.1109/TMI.2012.2188039
10.1002/mrm.29721
10.2463/mrms.mp.2021-0045
10.1109/TMI.2018.2865356
10.1109/TCI.2020.3025735
10.1109/TMI.2017.2785879
10.1038/nature11971
10.1002/mrm.26977
10.1002/mrm.10171
10.1109/TMI.2017.2760978
10.1109/JPROC.2022.3141367
10.1002/mrm.1241
10.1016/j.mri.2021.12.003
10.1002/mrm.24751
10.1016/0730-725X(94)92350-7
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1016/j.cmpb.2020.105817
10.1002/mrm.25770
10.1016/j.media.2021.102017
10.1002/mrm.28148
10.1002/mrm.22036
10.1109/CVPR.2016.90
10.1016/j.jmr.2017.05.007
10.2463/mrms.mp.2023-0031
10.1002/mrm.27707
10.1002/mrm.1910050502
10.1007/978-3-030-88552-6_4
10.1002/mrm.25135
10.1109/TCI.2021.3097596
10.1126/science.171.3976.1151
10.1002/mrm.30018
10.1002/mp.14306
10.1016/j.mri.2016.12.018
10.1038/s41598-024-62294-7
ContentType Journal Article
Copyright Copyright: © 2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Fujita et al 2025 Fujita et al
2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Fujita et al 2025 Fujita et al
– notice: 2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0324496
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Agricultural Science Database

CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Fast zero-shot quantitative MRI with memory efficient learning
EISSN 1932-6203
ExternalDocumentID 3215034523
oai_doaj_org_article_6873531df60044039e4737447b070660
10.1371/journal.pone.0324496
PMC12129214
A842475728
40455714
10_1371_journal_pone_0324496
Genre Journal Article
GeographicLocations Japan
United States--US
GeographicLocations_xml – name: Japan
– name: United States--US
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: JP24K00891
– grantid: JPMJBS2414
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c644t-ad43a6d98b9d75dd4d9057a3ea1aaba0b9c89fb00f72f1f0a624394414fc51503
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Sep 10 00:19:36 EDT 2025
Fri Oct 03 12:51:46 EDT 2025
Sun Oct 26 03:31:13 EDT 2025
Tue Sep 30 17:04:11 EDT 2025
Fri Sep 05 15:58:10 EDT 2025
Tue Oct 07 07:41:11 EDT 2025
Mon Oct 20 22:40:34 EDT 2025
Mon Oct 20 16:56:03 EDT 2025
Thu Oct 16 15:39:28 EDT 2025
Thu Oct 16 15:39:30 EDT 2025
Tue Jul 01 05:42:30 EDT 2025
Mon Jul 21 06:01:06 EDT 2025
Wed Oct 01 05:52:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-ad43a6d98b9d75dd4d9057a3ea1aaba0b9c89fb00f72f1f0a624394414fc51503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: SY and TS are employees of FUJIFILM Corporation. This does not alter our adherence to PLOS ONE policies on sharing data and materials. The authors have no other competing interests to declare.
ORCID 0000-0002-8583-3057
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0324496
PMID 40455714
PQID 3215034523
PQPubID 1436336
PageCount e0324496
ParticipantIDs plos_journals_3215034523
doaj_primary_oai_doaj_org_article_6873531df60044039e4737447b070660
unpaywall_primary_10_1371_journal_pone_0324496
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12129214
proquest_miscellaneous_3215234818
proquest_journals_3215034523
gale_infotracmisc_A842475728
gale_infotracacademiconefile_A842475728
gale_incontextgauss_ISR_A842475728
gale_incontextgauss_IOV_A842475728
gale_healthsolutions_A842475728
pubmed_primary_40455714
crossref_primary_10_1371_journal_pone_0324496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250602
PublicationDateYYYYMMDD 2025-06-02
PublicationDate_xml – month: 6
  year: 2025
  text: 20250602
  day: 2
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References EN Manson (pone.0324496.ref055) 2023; 54
G Yang (pone.0324496.ref013) 2018; 37
F Liu (pone.0324496.ref024) 2021; 85
N Stikov (pone.0324496.ref029) 2015; 73
BE Dietrich (pone.0324496.ref054) 2016; 75
J Schlemper (pone.0324496.ref012) 2018; 37
W Bian (pone.0324496.ref026) 2024; 92
M Zalbagi Darestani (pone.0324496.ref052) 2021; 7
F Knoll (pone.0324496.ref019) 2019; 81
OY Senouf (pone.0324496.ref050) 2019
MA Griswold (pone.0324496.ref011) 2002; 47
M Acar (pone.0324496.ref046) 2021
B Zhou (pone.0324496.ref047) 2022; 81
M Murphy (pone.0324496.ref034) 2012; 31
K Wang (pone.0324496.ref028) 2021
D Ma (pone.0324496.ref006) 2013; 495
GH Welsch (pone.0324496.ref031) 2009; 62
KP Pruessmann (pone.0324496.ref010) 2001; 46
M Uecker (pone.0324496.ref041) 2014; 71
B Sveinsson (pone.0324496.ref030) 2017; 38
F Liu (pone.0324496.ref016) 2019; 82
Y Jun (pone.0324496.ref025) 2024; 91
Y Jun (pone.0324496.ref048) 2023; 90
D Merkel (pone.0324496.ref038) 2014; 2014
HZ Wang (pone.0324496.ref040) 1987; 5
J Huang (pone.0324496.ref020) 2022; 87
J Yoo (pone.0324496.ref051) 2021; 40
C Millard (pone.0324496.ref049) 2023; 9
Y Jun (pone.0324496.ref017) 2021; 70
CG Xanthis (pone.0324496.ref044) 2021; 198
HM Gach (pone.0324496.ref053) 2020; 47
B Yaman (pone.0324496.ref022) 2020; 84
CA Cocosco (pone.0324496.ref037) 1997; 5
J-S Kang (pone.0324496.ref045) 2023; 23
K Hammernik (pone.0324496.ref015) 2018; 79
B Yaman (pone.0324496.ref023) 2022
F Knoll (pone.0324496.ref018) 2020; 2
HK Aggarwal (pone.0324496.ref014) 2019; 38
R Damadian (pone.0324496.ref001) 1971; 171
M Kellman (pone.0324496.ref027) 2020; 6
Y Chen (pone.0324496.ref035) 2022; 110
S Barbosa (pone.0324496.ref002) 1994; 12
R Kose (pone.0324496.ref039) 2017; 281
Y Taniguchi (pone.0324496.ref005) 2023; 22
DK Sodickson (pone.0324496.ref008) 1997; 38
KP Pruessmann (pone.0324496.ref009) 1999; 42
pone.0324496.ref032
pone.0324496.ref033
SUH Dar (pone.0324496.ref043) 2020; 84
M Lustig (pone.0324496.ref007) 2007; 58
N Fujita (pone.0324496.ref021) 2024; 23
AS Chaudhari (pone.0324496.ref004) 2018; 47
O Jaubert (pone.0324496.ref042) 2024; 14
pone.0324496.ref036
B Shafieizargar (pone.0324496.ref003) 2023; 90
References_xml – volume: 38
  start-page: 591
  issue: 4
  year: 1997
  ident: pone.0324496.ref008
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910380414
– volume: 40
  start-page: 3337
  issue: 12
  year: 2021
  ident: pone.0324496.ref051
  article-title: Time-Dependent Deep Image Prior for Dynamic MRI
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3084288
– volume: 54
  start-page: 146
  issue: 1
  year: 2023
  ident: pone.0324496.ref055
  article-title: Evaluation of the impact of magnetic field homogeneity on image quality in magnetic resonance imaging: a baseline quantitative study at 1.5 T
  publication-title: Egypt J Radiol Nucl Med
  doi: 10.1186/s43055-023-01097-8
– volume-title: International Conference on Learning Representations
  year: 2022
  ident: pone.0324496.ref023
  article-title: Zero-Shot Self-Supervised Learning for MRI Reconstruction.
– volume: 85
  start-page: 3211
  issue: 6
  year: 2021
  ident: pone.0324496.ref024
  article-title: Magnetic resonance parameter mapping using model-guided self-supervised deep learning
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28659
– volume: 92
  start-page: 98
  issue: 1
  year: 2024
  ident: pone.0324496.ref026
  article-title: Improving quantitative MRI using self-supervised deep learning with model reinforcement: Demonstration for rapid T1 mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.30045
– volume: 47
  start-page: 1328
  issue: 5
  year: 2018
  ident: pone.0324496.ref004
  article-title: Five-minute knee MRI for simultaneous morphometry and T2 relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25883
– start-page: 111
  volume-title: Self-supervised learning of inverse problem solvers in medical imaging. Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data
  year: 2019
  ident: pone.0324496.ref050
– volume: 9
  start-page: 707
  year: 2023
  ident: pone.0324496.ref049
  article-title: A Theoretical Framework for Self-Supervised MR Image Reconstruction Using Sub-Sampling via Variable Density Noisier2Noise
  publication-title: IEEE Trans Comput Imaging
  doi: 10.1109/TCI.2023.3299212
– volume: 84
  start-page: 3172
  issue: 6
  year: 2020
  ident: pone.0324496.ref022
  article-title: Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28378
– volume: 2014
  start-page: 2
  issue: 239
  year: 2014
  ident: pone.0324496.ref038
  article-title: Docker: lightweight linux containers for consistent development and deployment
  publication-title: Linux J
– ident: pone.0324496.ref033
– volume: 23
  start-page: 1713
  issue: 3
  year: 2023
  ident: pone.0324496.ref045
  article-title: Neural Architecture Search Survey: A Computer Vision Perspective
  publication-title: Sensors (Basel)
  doi: 10.3390/s23031713
– volume: 81
  start-page: 102538
  year: 2022
  ident: pone.0324496.ref047
  article-title: Dual-domain self-supervised learning for accelerated non-Cartesian MRI reconstruction
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102538
– volume: 2
  issue: 1
  year: 2020
  ident: pone.0324496.ref018
  article-title: fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for Accelerated MR Image Reconstruction Using Machine Learning
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2020190007
– volume: 90
  start-page: 2019
  issue: 5
  year: 2023
  ident: pone.0324496.ref048
  article-title: SSL-QALAS: Self-Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D-QALAS
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29786
– volume: 81
  start-page: 116
  issue: 1
  year: 2019
  ident: pone.0324496.ref019
  article-title: Assessment of the generalization of learned image reconstruction and the potential for transfer learning
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27355
– volume: 58
  start-page: 1182
  issue: 6
  year: 2007
  ident: pone.0324496.ref007
  article-title: Sparse MRI: The application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21391
– volume: 31
  start-page: 1250
  issue: 6
  year: 2012
  ident: pone.0324496.ref034
  article-title: Fast l₁-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2012.2188039
– volume: 90
  start-page: 1172
  issue: 3
  year: 2023
  ident: pone.0324496.ref003
  article-title: Systematic review of reconstruction techniques for accelerated quantitative MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29721
– volume: 22
  start-page: 459
  issue: 4
  year: 2023
  ident: pone.0324496.ref005
  article-title: Three-dimensional Multi-parameter Mapping of Relaxation Times and Susceptibility Using Partially RF-spoiled Gradient Echo
  publication-title: Magn Reson Med Sci
  doi: 10.2463/mrms.mp.2021-0045
– volume: 38
  start-page: 394
  issue: 2
  year: 2019
  ident: pone.0324496.ref014
  article-title: MoDL: Model-Based Deep Learning Architecture for Inverse Problems
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2865356
– volume: 6
  start-page: 1403
  year: 2020
  ident: pone.0324496.ref027
  article-title: Memory-Efficient Learning for Large-Scale Computational Imaging
  publication-title: IEEE Trans Comput Imaging
  doi: 10.1109/TCI.2020.3025735
– volume: 37
  start-page: 1310
  issue: 6
  year: 2018
  ident: pone.0324496.ref013
  article-title: DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2785879
– volume: 495
  start-page: 187
  issue: 7440
  year: 2013
  ident: pone.0324496.ref006
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
  doi: 10.1038/nature11971
– volume: 79
  start-page: 3055
  issue: 6
  year: 2018
  ident: pone.0324496.ref015
  article-title: Learning a variational network for reconstruction of accelerated MRI data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26977
– volume: 47
  start-page: 1202
  issue: 6
  year: 2002
  ident: pone.0324496.ref011
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10171
– volume: 37
  start-page: 491
  issue: 2
  year: 2018
  ident: pone.0324496.ref012
  article-title: A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2760978
– start-page: 461
  volume-title: Med Image Comput Comput Assist Interv – MICCAI 2021
  year: 2021
  ident: pone.0324496.ref028
  article-title: Memory-Efficient Learning for High-Dimensional MRI Reconstruction.
– volume: 110
  start-page: 224
  issue: 2
  year: 2022
  ident: pone.0324496.ref035
  article-title: AI-Based Reconstruction for Fast MRI—A Systematic Review and Meta-Analysis
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2022.3141367
– volume: 46
  start-page: 638
  issue: 4
  year: 2001
  ident: pone.0324496.ref010
  article-title: Advances in sensitivity encoding with arbitrary k-space trajectories
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1241
– volume: 87
  start-page: 38
  year: 2022
  ident: pone.0324496.ref020
  article-title: Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2021.12.003
– volume: 71
  start-page: 990
  issue: 3
  year: 2014
  ident: pone.0324496.ref041
  article-title: ESPIRiT--an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24751
– volume: 12
  start-page: 33
  issue: 1
  year: 1994
  ident: pone.0324496.ref002
  article-title: Magnetic resonance relaxation time mapping in multiple sclerosis: normal appearing white matter and the “invisible” lesion load
  publication-title: Magn Reson Imaging
  doi: 10.1016/0730-725X(94)92350-7
– volume: 42
  start-page: 952
  issue: 5
  year: 1999
  ident: pone.0324496.ref009
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– volume: 198
  start-page: 105817
  year: 2021
  ident: pone.0324496.ref044
  article-title: Simulator-generated training datasets as an alternative to using patient data for machine learning: An example in myocardial segmentation with MRI
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105817
– volume: 75
  start-page: 1831
  issue: 4
  year: 2016
  ident: pone.0324496.ref054
  article-title: A field camera for MR sequence monitoring and system analysis
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25770
– volume: 70
  start-page: 102017
  year: 2021
  ident: pone.0324496.ref017
  article-title: Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102017
– volume: 84
  start-page: 663
  issue: 2
  year: 2020
  ident: pone.0324496.ref043
  article-title: A Transfer-Learning Approach for Accelerated MRI Using Deep Neural Networks
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28148
– volume: 62
  start-page: 544
  issue: 2
  year: 2009
  ident: pone.0324496.ref031
  article-title: Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 Tesla
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22036
– ident: pone.0324496.ref036
  doi: 10.1109/CVPR.2016.90
– volume: 281
  start-page: 51
  year: 2017
  ident: pone.0324496.ref039
  article-title: BlochSolver: A GPU-optimized fast 3D MRI simulator for experimentally compatible pulse sequences
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2017.05.007
– volume: 23
  start-page: 460
  issue: 4
  year: 2024
  ident: pone.0324496.ref021
  article-title: Numerical and clinical evaluation of the robustness of open-source networks for parallel MR imaging reconstruction
  publication-title: Magn Reson Med Sci
  doi: 10.2463/mrms.mp.2023-0031
– volume: 82
  start-page: 174
  issue: 1
  year: 2019
  ident: pone.0324496.ref016
  article-title: MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27707
– volume: 5
  start-page: 399
  issue: 5
  year: 1987
  ident: pone.0324496.ref040
  article-title: Optimizing the precision in T1 relaxation estimation using limited flip angles
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910050502
– volume: 5
  start-page: 425
  issue: 4
  year: 1997
  ident: pone.0324496.ref037
  article-title: Brainweb: online interface to a 3D MRI simulated brain database
  publication-title: Neuroimage
– start-page: 35
  volume-title: Machine learning in medical image reconstruction
  year: 2021
  ident: pone.0324496.ref046
  article-title: Self-supervised dynamic MRI reconstruction.
  doi: 10.1007/978-3-030-88552-6_4
– volume: 73
  start-page: 514
  issue: 2
  year: 2015
  ident: pone.0324496.ref029
  article-title: On the accuracy of T1 mapping: searching for common ground
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25135
– volume: 7
  start-page: 724
  year: 2021
  ident: pone.0324496.ref052
  article-title: Accelerated MRI With Un-Trained Neural Networks
  publication-title: IEEE Trans Comput Imaging
  doi: 10.1109/TCI.2021.3097596
– ident: pone.0324496.ref032
– volume: 171
  start-page: 1151
  issue: 3976
  year: 1971
  ident: pone.0324496.ref001
  article-title: Tumor detection by nuclear magnetic resonance
  publication-title: Science
  doi: 10.1126/science.171.3976.1151
– volume: 91
  start-page: 2459
  issue: 6
  year: 2024
  ident: pone.0324496.ref025
  article-title: Zero-DeepSub: Zero-shot deep subspace reconstruction for rapid multiparametric quantitative MRI using 3D-QALAS
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.30018
– volume: 47
  start-page: 4101
  issue: 9
  year: 2020
  ident: pone.0324496.ref053
  article-title: B0 field homogeneity recommendations, specifications, and measurement units for MRI in radiation therapy
  publication-title: Med Phys
  doi: 10.1002/mp.14306
– volume: 38
  start-page: 63
  year: 2017
  ident: pone.0324496.ref030
  article-title: A simple analytic method for estimating T2 in the knee from DESS
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2016.12.018
– volume: 14
  start-page: 11774
  issue: 1
  year: 2024
  ident: pone.0324496.ref042
  article-title: Training deep learning based dynamic MR image reconstruction using open-source natural videos
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-62294-7
SSID ssj0053866
Score 2.4811091
Snippet Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging....
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0324496
SubjectTerms Algorithms
Analysis
Biology and Life Sciences
Brain - diagnostic imaging
Computer and Information Sciences
Datasets
Deep Learning
Humans
Image acquisition
Image contrast
Image processing
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mapping
Medical imaging
Medicine and Health Sciences
Memory
Methods
Neural networks
Parameters
Performance evaluation
Research and Analysis Methods
Self-supervised learning
Social Sciences
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdQL3BBbHysYwODkIBDusR27Pg4ENNAAiRgaLfIie0OqU3L2oD23_Oe40aNmMQOXOsXq3lf_tl572dCXoBVWeoMT0QGZhA2hzzoIBlWqXYyrwEjODyH_PhJnp6JD-f5-dZVX1gT1tEDd4o7koXi4CfWy3A7MtdOKK6EUBU4q5Rht54WerOZ6nIwRLGUsVGOq-wo2mWyXDRukgKGEEjSv7UQBb7-PiuPlrPF6jrI-Xfl5O22WZqr32Y221qWTu6RuxFP0uPuPXbILdfskp0YsSv6KtJKv75PfuExU2OT9WW7vkj8pXPUOrek8d6IKd3Qi1PAsdTUNSxIyCNh6c_WNKEXDTIjRa7wOdbQ0LlBbocpxaNcOseK3SvqAiMF_O1-2gfk7OTdt7enSbx1IakBG60TYwU30uqi0lbl1gqrAdMZ7kxmTGXSSteF9hCtXjGf-dRIFrprM-FrAEcpf0hGDeh5j9C09qzIuORGc6Gd1Qayi5eV1w5Mp9WYJBsTlMuOXKMMX9gUbEo6_ZVosjKabEzeoJ16WaTGDj-Aw5TRYcp_OcyYPEUrl12faR_g5XEhmFC5YsWYPA8SSI_RYP3N1LSrVfn-8_cbCH39MhB6GYX8AvylNrHnAd4JabcGkgcDSQjyejC8hz650cqq5AxVLXLG4cmNn14__Kwfxkmxpq5xi7aTYdiHDbM_6ty616wApJ-rTIxJMXD4geqHI82Pi8BOngEY0gwfnfSxcSPr7v8P6z4mdxje0IznZOyAjCCm3CHAxnX1JGSIPzPMZ_0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gCXivLqQgGDkIBDtont2PEBoRa1KkgsqFDUW-TEzhZpN0n3Aeq_ZybrhEZUqNf1xNrMy-PJzDeEvAKpstAZHogIxCBsDH7QgTPMQu1knEOM4DAP-Xksj0_Fp7P4bIOM214YLKtsfWLjqG2VY458j8PZFHIB96b39UWAU6Pw62o7QsP40Qr2XQMxdotsMkTGGpDNg8Px15PWN4N1S-kb6LiK9ry8RnVVulEIsYVA8P4rB1SD499560E9rRbXhaL_VlTeXpW1ufxtptMrx9XRXbLl40y6v1aMbbLhyntk21vygr7xcNNv75NfmH4qbbCcr5bnQTF3jlrnaurnSUxoCztOIb6lwAI4qBBfwtKLlSmbHjXwmBQxxGdYW0NnBjEfJhRTvHSGlbyX1DVIFfC3u20fkNOjw-8fjgM_jSHIIWZaBsYKbqTVSaatiq0VVkOsZ7gzkTGZCTOdJ7oAKy4UK6IiNJI1XbeRKPIYZfeQDErg8w6hYV6wJOKSG82FdlYb8DqFzArtIALSakiCVgRpvQbdSJsvbwouK2v-pSiy1ItsSA5QTh0tQmY3P1TzSeotMJWJ4uBwbCGbMdtcO6G4EkJl4PWkDIfkOUo5Xfefdoaf7ieCCRUrlgzJy4YCYTNKrMuZmNVikX788uMGRN9OekSvPVFRgb7kxvdCwDshHFePcrdHCcaf95Z3UCdbrizSv2YCT7Z6ev3yi24ZN8Vau9JVqzUNw_5s2P3RWq07zgq4AcQqEkOS9BS-x_r-SvnzvEEtB3tkmuGjo842biTdx_9_kSfkDsOZzJgZY7tkANbinkKguMyeeev_A9EcaMg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZG9wAvwPi1wgCDkACJlMR27PixIKaBtIGAoe0pcmKnQ7RpWRvQ-Ou5S5xogSGV1_hsyXe-8xf77jMhT8CqLHSGByICMwgbQxx0EAyzUDsZ54ARHJ5D7h_IvUPx7ig-2iAv2lqY8_f3XEUvvUZHi3npRiHs_kLLS2RTxoC8B2Tz8ODD-Li5OGaBZCH31XH_6trbfWqS_i4UDxbT-fIinPl3uuTlqlyYs59mOj23F-1eI_vtLJoUlG-japWN8l9_EDyuO83r5KoHpXTcrKItsuHKG2TLu_2SPvPc1M9vkh94VlXaYHVarU6C4tQ5ap1bUP_4xIS2HOUUwDA1eQ67GpJRWPq9MmVd0AbhlSLh-AwTcejMIEHEhOJ5MJ1h2u8ZdTWtBaihG_YWOdx98_n1XuCfbghyAFirwFjBjbQ6ybRVsbXCagCGhjsTGZOZMNN5ogtw-UKxIipCI1ldohuJIgeEFfLbZFCCLrYJDfOCJRGX3GgutLPaQIgqZFZoB3BJqyEJWpOmi4ahI62v6RT82TT6S1GtqVfrkLxCu3eyyK9dfwB7pN5dU5koDtHJFrJ-k5trJxRXQqgMQqSU4ZA8xFWTNsWqXZRIx4lgQsWKJUPyuJZAjo0Sk3gmplou07fvv6wh9OljT-ipFyrmsP5y4wsnYE7I3dWT3OlJQqTIe83buMZbrSxTzlDVImYcerbr_uLmR10zDoqJeaWbV40Mw2JuGP1O4yadZgX8LsQqEkOS9Byop_p-S_n1pKY4jwBRaYZdR52vrWXdu__b4R65wvBJZzxYYztkAP7j7gPOXGUPfHj5DRx3e2Q
  priority: 102
  providerName: Unpaywall
Title Ground-truth-free deep learning approach for accelerated quantitative parameter mapping with memory efficient learning
URI https://www.ncbi.nlm.nih.gov/pubmed/40455714
https://www.proquest.com/docview/3215034523
https://www.proquest.com/docview/3215234818
https://pubmed.ncbi.nlm.nih.gov/PMC12129214
https://doi.org/10.1371/journal.pone.0324496
https://doaj.org/article/6873531df60044039e4737447b070660
http://dx.doi.org/10.1371/journal.pone.0324496
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrhVEMQgIeUiW2E8cPCHXTykBamQZF3VPkJE6H1KZdP4D-99w5HyKiSH3JQ3yx2jvf-eeP-x0hr8GqzDWaO8IDM4jUhzhoIBjGrjKBnwBGMLgPeTEIzofi88gf7ZGqZmupwOXWpR3WkxouJt3ft5sP4PDvbdUG6VUfdeez3HRdQAhCBfvkAOYqhcUcLkR9rgDebU8vEbU4AXN5mUz3v14ak5Xl9K8jd2s-mS23wdJ_b1feWedzvfmlJ5O_pq7-fXKvxJy0VwySQ7Jn8gfksPTqJX1bUk-_e0h-4lZUnjqrxXp142QLY2hqzJyWtSXGtKIgp4B1qU4SmLSQayKlt2ud23w1iJ4U-cSneM-GTjXyP4wpbvfSKd7q3VBjWSvgZ9fdPiLD_tm303OnrMzgJICfVo5OBddBqsJYpdJPU5EqwH2aG-1pHWs3VkmoMvDoTLLMy1wdMJuB64ksAQDl8seklYOejwh1k4yFHg-4VlwokyoNESgL4kwZQENKtolTmSCaFwQckT2Fk7BwKfQXocmi0mRtcoJ2qmWRPtu-mC3GUemNURBKDsEnzQJbcpsrIySXQsgYImAQuG3yAq0cFbmodRCIeqFgQvqShW3yykoghUaOd3TGer1cRp--fN9B6OtVQ-hNKZTNYLwkusyLgP-E1FwNyeOGJASCpNF8hGOy0soy4gxVLXzG4ctqnG5vflk3Y6d47y43s3UhwzBXG3p_UgzrWrMCVgO-9ESbhI0B31B9syX_cWMZzD0ATIrhp93aN3ay7tNd1P6M3GVYpRn3ytgxaYHPmOcAHVdxh-zLkYRneOrhs_-xQw5OzgaXVx27GdOx0QLeDQeXves_El9y8Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHl1oVCDQMAh2yR24viAUHlUu_SBBC3aW3BiZ4u0m6SbXar9U_xGZvKiERXqpdf1xMp6xt-MnZlvCHkBWnVto5jFHVAD1x7goAEwjGxpfC-GGMHgPeThkT884Z_H3niN_G5qYTCtssHEEqh1FuMd-Q4D32QzDuemd_mZhV2j8Otq00KjMot9szqHI1vxdvQR9PvSdfc-HX8YWnVXASsG37-wlOZM-VoGkdTC05prCTGLYkY5SkXKjmQcyASsMRFu4iS28t2yetThSezhO8C8N8hNzgBLYP-IcXvAA-zw_bo8jwlnp7aGQZ6lZmBD5MKxNcAF91d2CWh9QS-fZsVlge6_-ZrryzRXq3M1nV5whnt3yO06iqW7ldltkDWT3iUbNU4U9HVNZv3mHvmFl1upthbz5eLUSubGUG1MTutuFRPakJpTiJ6pimNwg8heoenZUqVlBRzgMUWG8hlm7tCZQkaJCcULZDrDPOEVNSUPBrx2O-19cnItWnlAeims8yahdpy4gcN8piTj0mipANMSP0qkgfhKij6xGhWEeUXpEZbf9QQchar1C1FlYa2yPnmPemplkZC7_CGbT8J6f4d-IBjAmU78sok3k4YLJjgXEWCq79t9so1aDqvq1hZWwt2Au1x4wg365HkpgaQcKWb9TNSyKMLRl-9XEPr2tSP0qhZKMrCXWNWVFvCfkOyrI7nVkQRoiTvDm2iTzaoU4d9NCE82dnr58LN2GCfFTL7UZMtKxsXqb5j9YWXW7cpyOF94wuF9EnQMvrP03ZH052nJie5ACCZdfHTQ7o0raffR___INlkfHh8ehAejo_3H5JaL3Z_xDs7dIj3YOeYJhKSL6GmJA5T8uG7g-QOLi5-B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYTCDQMBD2iR24vgBocGYVgYDMYb6FpzY6ZDaJGtapv5r_HXc5YtFTGgve40vVuI7_3y2735HyDPQqmsbxSzugBq49gAHDYBhZEvjezH4CAbPIT8d-HtH_MPYG6-R300uDIZVNphYArXOYjwjHzJYm2zGYd80TOqwiC87u2_yEwsrSOFNa1NOozKRfbM6he1b8Xq0A7p-7rq777-927PqCgNWDH7AwlKaM-VrGURSC09rriX4L4oZ5SgVKTuScSATsMxEuImT2Mp3y0xShyexh98D_V4hVwVjEsMJxbjd7AGO-H6dqseEM6wtY5BnqRnY4MVwLBNwZiksKwa060Ivn2bFeU7vv7Gb15dprlanajo9szDu3iI3a4-WblcmuE7WTHqbrNeYUdCXNbH1qzvkFx50pdpazJeLYyuZG0O1MTmtK1dMaENwTsGTpiqOYUlEJgtNT5YqLbPhAJspspXPMIqHzhSyS0woHibTGcYMr6gpOTHgs9tu75KjS9HKPdJLYZw3CLXjxA0c5jMlGZdGSwX4lvhRIg34WlL0idWoIMwreo-wvOMTsC2qxi9ElYW1yvrkLeqplUVy7vJBNp-E9VwP_UAwgDad-GVBbyYNF0xwLiLAV9-3-2QLtRxWma4txITbAXe58IQb9MnTUgIJOlI09YlaFkU4-vz9AkKHXztCL2qhJAN7iVWddQH_hMRfHcnNjiTATNxp3kCbbEalCP9OSHizsdPzm5-0zdgpRvWlJltWMi5mgkPv9yuzbkeWw17DEw7vk6Bj8J2h77akP49LfnQH3DHp4quDdm5cSLsP_v8jW-QaQE74cXSw_5DccLEQNB7HuZukBxPHPALvdBE9LmGAkh-XjTt_AD1Po8Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZG9wAvwPi1wgCDkACJlMR27PixIKaBtIGAoe0pcmKnQ7RpWRvQ-Ou5S5xogSGV1_hsyXe-8xf77jMhT8CqLHSGByICMwgbQxx0EAyzUDsZ54ARHJ5D7h_IvUPx7ig-2iAv2lqY8_f3XEUvvUZHi3npRiHs_kLLS2RTxoC8B2Tz8ODD-Li5OGaBZCH31XH_6trbfWqS_i4UDxbT-fIinPl3uuTlqlyYs59mOj23F-1eI_vtLJoUlG-japWN8l9_EDyuO83r5KoHpXTcrKItsuHKG2TLu_2SPvPc1M9vkh94VlXaYHVarU6C4tQ5ap1bUP_4xIS2HOUUwDA1eQ67GpJRWPq9MmVd0AbhlSLh-AwTcejMIEHEhOJ5MJ1h2u8ZdTWtBaihG_YWOdx98_n1XuCfbghyAFirwFjBjbQ6ybRVsbXCagCGhjsTGZOZMNN5ogtw-UKxIipCI1ldohuJIgeEFfLbZFCCLrYJDfOCJRGX3GgutLPaQIgqZFZoB3BJqyEJWpOmi4ahI62v6RT82TT6S1GtqVfrkLxCu3eyyK9dfwB7pN5dU5koDtHJFrJ-k5trJxRXQqgMQqSU4ZA8xFWTNsWqXZRIx4lgQsWKJUPyuJZAjo0Sk3gmplou07fvv6wh9OljT-ipFyrmsP5y4wsnYE7I3dWT3OlJQqTIe83buMZbrSxTzlDVImYcerbr_uLmR10zDoqJeaWbV40Mw2JuGP1O4yadZgX8LsQqEkOS9Byop_p-S_n1pKY4jwBRaYZdR52vrWXdu__b4R65wvBJZzxYYztkAP7j7gPOXGUPfHj5DRx3e2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ground-truth-free+deep+learning+approach+for+accelerated+quantitative+parameter+mapping+with+memory+efficient+learning&rft.jtitle=PloS+one&rft.au=Fujita%2C+Naoto&rft.au=Yokosawa%2C+Suguru&rft.au=Shirai%2C+Toru&rft.au=Terada%2C+Yasuhiko&rft.date=2025-06-02&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0324496&rft_id=info:doi/10.1371%2Fjournal.pone.0324496&rft.externalDBID=IOV&rft.externalDocID=A842475728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon