Ground-truth-free deep learning approach for accelerated quantitative parameter mapping with memory efficient learning
Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where th...
Saved in:
| Published in | PloS one Vol. 20; no. 6; p. e0324496 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
02.06.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0324496 |
Cover
| Abstract | Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI. |
|---|---|
| AbstractList | Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI. Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI.Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI. |
| Audience | Academic |
| Author | Fujita, Naoto Yokosawa, Suguru Shirai, Toru Terada, Yasuhiko |
| AuthorAffiliation | Helwan University Faculty of Engineering, EGYPT 1 Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan 2 FUJIFILM Corporation, Medical Systems Research and Development Center, Imaging Research Group, Minato City, Japan |
| AuthorAffiliation_xml | – name: 1 Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan – name: 2 FUJIFILM Corporation, Medical Systems Research and Development Center, Imaging Research Group, Minato City, Japan – name: Helwan University Faculty of Engineering, EGYPT |
| Author_xml | – sequence: 1 givenname: Naoto surname: Fujita fullname: Fujita, Naoto – sequence: 2 givenname: Suguru surname: Yokosawa fullname: Yokosawa, Suguru – sequence: 3 givenname: Toru surname: Shirai fullname: Shirai, Toru – sequence: 4 givenname: Yasuhiko orcidid: 0000-0002-8583-3057 surname: Terada fullname: Terada, Yasuhiko |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40455714$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk1tr3DAQhU1JaS7tPyitoVDah93q5ttTCaFNA4FAb69i1hrtKtiSI8lJ8-8rdzfLbslD8IPN6JujmXPwcXZgncUse03JnPKKfrp2o7fQzYdUnhPOhGjKZ9kRbTiblYzwg53vw-w4hGtCCl6X5YvsUBBRFBUVR9ntuXejVbPox7iaaY-YK8Qh7xC8NXaZwzB4B-0q187n0LbYoYeIKr8ZwUYTIZpbzAfw0GNEn_epYeq7M3GV99g7f5-j1qY1aONW9mX2XEMX8NXmfZL9-vrl59m32eXV-cXZ6eWsLYWIM1CCQ6maetGoqlBKqIYUFXAECrAAsmjautELQnTFNNUESiZ4IwQVui1oQfhJ9natO3QuyI1lQXI2HYqC8URcrAnl4FoO3vTg76UDI_8VnF9K8NG0HcqyrnjBqdIlIUIQ3qCoeCVEtSAVKcvptmKtNdoB7u-g67aClMgptYcR5JSa3KSW-j5vphwXPao2OeWh2xtm_8SalVy6W0kZZQ2jIil82Ch4dzNiiLI3IWXVgUU3rhdmXNS0Tui7_9DHbdlQS0ibG6tduridROVpLZioiopNWvNHqPQo7E2bVtQm1fcaPu41JCbin7iEMQR58eP709mr3_vs-x12hdDFVXDdGI2zYR98s2v11uOHPyIBYg203oXgUT8twr-2tR96 |
| Cites_doi | 10.1002/mrm.1910380414 10.1109/TMI.2021.3084288 10.1186/s43055-023-01097-8 10.1002/mrm.28659 10.1002/mrm.30045 10.1002/jmri.25883 10.1109/TCI.2023.3299212 10.1002/mrm.28378 10.3390/s23031713 10.1016/j.media.2022.102538 10.1148/ryai.2020190007 10.1002/mrm.29786 10.1002/mrm.27355 10.1002/mrm.21391 10.1109/TMI.2012.2188039 10.1002/mrm.29721 10.2463/mrms.mp.2021-0045 10.1109/TMI.2018.2865356 10.1109/TCI.2020.3025735 10.1109/TMI.2017.2785879 10.1038/nature11971 10.1002/mrm.26977 10.1002/mrm.10171 10.1109/TMI.2017.2760978 10.1109/JPROC.2022.3141367 10.1002/mrm.1241 10.1016/j.mri.2021.12.003 10.1002/mrm.24751 10.1016/0730-725X(94)92350-7 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1016/j.cmpb.2020.105817 10.1002/mrm.25770 10.1016/j.media.2021.102017 10.1002/mrm.28148 10.1002/mrm.22036 10.1109/CVPR.2016.90 10.1016/j.jmr.2017.05.007 10.2463/mrms.mp.2023-0031 10.1002/mrm.27707 10.1002/mrm.1910050502 10.1007/978-3-030-88552-6_4 10.1002/mrm.25135 10.1109/TCI.2021.3097596 10.1126/science.171.3976.1151 10.1002/mrm.30018 10.1002/mp.14306 10.1016/j.mri.2016.12.018 10.1038/s41598-024-62294-7 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Fujita et al 2025 Fujita et al 2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Fujita et al 2025 Fujita et al – notice: 2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0324496 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Fast zero-shot quantitative MRI with memory efficient learning |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3215034523 oai_doaj_org_article_6873531df60044039e4737447b070660 10.1371/journal.pone.0324496 PMC12129214 A842475728 40455714 10_1371_journal_pone_0324496 |
| Genre | Journal Article |
| GeographicLocations | Japan United States--US |
| GeographicLocations_xml | – name: Japan – name: United States--US |
| GrantInformation_xml | – fundername: ; – fundername: ; grantid: JP24K00891 – grantid: JPMJBS2414 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c644t-ad43a6d98b9d75dd4d9057a3ea1aaba0b9c89fb00f72f1f0a624394414fc51503 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Wed Sep 10 00:19:36 EDT 2025 Fri Oct 03 12:51:46 EDT 2025 Sun Oct 26 03:31:13 EDT 2025 Tue Sep 30 17:04:11 EDT 2025 Fri Sep 05 15:58:10 EDT 2025 Tue Oct 07 07:41:11 EDT 2025 Mon Oct 20 22:40:34 EDT 2025 Mon Oct 20 16:56:03 EDT 2025 Thu Oct 16 15:39:28 EDT 2025 Thu Oct 16 15:39:30 EDT 2025 Tue Jul 01 05:42:30 EDT 2025 Mon Jul 21 06:01:06 EDT 2025 Wed Oct 01 05:52:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright: © 2025 Fujita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c644t-ad43a6d98b9d75dd4d9057a3ea1aaba0b9c89fb00f72f1f0a624394414fc51503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: SY and TS are employees of FUJIFILM Corporation. This does not alter our adherence to PLOS ONE policies on sharing data and materials. The authors have no other competing interests to declare. |
| ORCID | 0000-0002-8583-3057 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0324496 |
| PMID | 40455714 |
| PQID | 3215034523 |
| PQPubID | 1436336 |
| PageCount | e0324496 |
| ParticipantIDs | plos_journals_3215034523 doaj_primary_oai_doaj_org_article_6873531df60044039e4737447b070660 unpaywall_primary_10_1371_journal_pone_0324496 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12129214 proquest_miscellaneous_3215234818 proquest_journals_3215034523 gale_infotracmisc_A842475728 gale_infotracacademiconefile_A842475728 gale_incontextgauss_ISR_A842475728 gale_incontextgauss_IOV_A842475728 gale_healthsolutions_A842475728 pubmed_primary_40455714 crossref_primary_10_1371_journal_pone_0324496 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250602 |
| PublicationDateYYYYMMDD | 2025-06-02 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250602 day: 2 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | EN Manson (pone.0324496.ref055) 2023; 54 G Yang (pone.0324496.ref013) 2018; 37 F Liu (pone.0324496.ref024) 2021; 85 N Stikov (pone.0324496.ref029) 2015; 73 BE Dietrich (pone.0324496.ref054) 2016; 75 J Schlemper (pone.0324496.ref012) 2018; 37 W Bian (pone.0324496.ref026) 2024; 92 M Zalbagi Darestani (pone.0324496.ref052) 2021; 7 F Knoll (pone.0324496.ref019) 2019; 81 OY Senouf (pone.0324496.ref050) 2019 MA Griswold (pone.0324496.ref011) 2002; 47 M Acar (pone.0324496.ref046) 2021 B Zhou (pone.0324496.ref047) 2022; 81 M Murphy (pone.0324496.ref034) 2012; 31 K Wang (pone.0324496.ref028) 2021 D Ma (pone.0324496.ref006) 2013; 495 GH Welsch (pone.0324496.ref031) 2009; 62 KP Pruessmann (pone.0324496.ref010) 2001; 46 M Uecker (pone.0324496.ref041) 2014; 71 B Sveinsson (pone.0324496.ref030) 2017; 38 F Liu (pone.0324496.ref016) 2019; 82 Y Jun (pone.0324496.ref025) 2024; 91 Y Jun (pone.0324496.ref048) 2023; 90 D Merkel (pone.0324496.ref038) 2014; 2014 HZ Wang (pone.0324496.ref040) 1987; 5 J Huang (pone.0324496.ref020) 2022; 87 J Yoo (pone.0324496.ref051) 2021; 40 C Millard (pone.0324496.ref049) 2023; 9 Y Jun (pone.0324496.ref017) 2021; 70 CG Xanthis (pone.0324496.ref044) 2021; 198 HM Gach (pone.0324496.ref053) 2020; 47 B Yaman (pone.0324496.ref022) 2020; 84 CA Cocosco (pone.0324496.ref037) 1997; 5 J-S Kang (pone.0324496.ref045) 2023; 23 K Hammernik (pone.0324496.ref015) 2018; 79 B Yaman (pone.0324496.ref023) 2022 F Knoll (pone.0324496.ref018) 2020; 2 HK Aggarwal (pone.0324496.ref014) 2019; 38 R Damadian (pone.0324496.ref001) 1971; 171 M Kellman (pone.0324496.ref027) 2020; 6 Y Chen (pone.0324496.ref035) 2022; 110 S Barbosa (pone.0324496.ref002) 1994; 12 R Kose (pone.0324496.ref039) 2017; 281 Y Taniguchi (pone.0324496.ref005) 2023; 22 DK Sodickson (pone.0324496.ref008) 1997; 38 KP Pruessmann (pone.0324496.ref009) 1999; 42 pone.0324496.ref032 pone.0324496.ref033 SUH Dar (pone.0324496.ref043) 2020; 84 M Lustig (pone.0324496.ref007) 2007; 58 N Fujita (pone.0324496.ref021) 2024; 23 AS Chaudhari (pone.0324496.ref004) 2018; 47 O Jaubert (pone.0324496.ref042) 2024; 14 pone.0324496.ref036 B Shafieizargar (pone.0324496.ref003) 2023; 90 |
| References_xml | – volume: 38 start-page: 591 issue: 4 year: 1997 ident: pone.0324496.ref008 article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays publication-title: Magn Reson Med doi: 10.1002/mrm.1910380414 – volume: 40 start-page: 3337 issue: 12 year: 2021 ident: pone.0324496.ref051 article-title: Time-Dependent Deep Image Prior for Dynamic MRI publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3084288 – volume: 54 start-page: 146 issue: 1 year: 2023 ident: pone.0324496.ref055 article-title: Evaluation of the impact of magnetic field homogeneity on image quality in magnetic resonance imaging: a baseline quantitative study at 1.5 T publication-title: Egypt J Radiol Nucl Med doi: 10.1186/s43055-023-01097-8 – volume-title: International Conference on Learning Representations year: 2022 ident: pone.0324496.ref023 article-title: Zero-Shot Self-Supervised Learning for MRI Reconstruction. – volume: 85 start-page: 3211 issue: 6 year: 2021 ident: pone.0324496.ref024 article-title: Magnetic resonance parameter mapping using model-guided self-supervised deep learning publication-title: Magn Reson Med doi: 10.1002/mrm.28659 – volume: 92 start-page: 98 issue: 1 year: 2024 ident: pone.0324496.ref026 article-title: Improving quantitative MRI using self-supervised deep learning with model reinforcement: Demonstration for rapid T1 mapping publication-title: Magn Reson Med doi: 10.1002/mrm.30045 – volume: 47 start-page: 1328 issue: 5 year: 2018 ident: pone.0324496.ref004 article-title: Five-minute knee MRI for simultaneous morphometry and T2 relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25883 – start-page: 111 volume-title: Self-supervised learning of inverse problem solvers in medical imaging. Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data year: 2019 ident: pone.0324496.ref050 – volume: 9 start-page: 707 year: 2023 ident: pone.0324496.ref049 article-title: A Theoretical Framework for Self-Supervised MR Image Reconstruction Using Sub-Sampling via Variable Density Noisier2Noise publication-title: IEEE Trans Comput Imaging doi: 10.1109/TCI.2023.3299212 – volume: 84 start-page: 3172 issue: 6 year: 2020 ident: pone.0324496.ref022 article-title: Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data publication-title: Magn Reson Med doi: 10.1002/mrm.28378 – volume: 2014 start-page: 2 issue: 239 year: 2014 ident: pone.0324496.ref038 article-title: Docker: lightweight linux containers for consistent development and deployment publication-title: Linux J – ident: pone.0324496.ref033 – volume: 23 start-page: 1713 issue: 3 year: 2023 ident: pone.0324496.ref045 article-title: Neural Architecture Search Survey: A Computer Vision Perspective publication-title: Sensors (Basel) doi: 10.3390/s23031713 – volume: 81 start-page: 102538 year: 2022 ident: pone.0324496.ref047 article-title: Dual-domain self-supervised learning for accelerated non-Cartesian MRI reconstruction publication-title: Med Image Anal doi: 10.1016/j.media.2022.102538 – volume: 2 issue: 1 year: 2020 ident: pone.0324496.ref018 article-title: fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for Accelerated MR Image Reconstruction Using Machine Learning publication-title: Radiol Artif Intell doi: 10.1148/ryai.2020190007 – volume: 90 start-page: 2019 issue: 5 year: 2023 ident: pone.0324496.ref048 article-title: SSL-QALAS: Self-Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D-QALAS publication-title: Magn Reson Med doi: 10.1002/mrm.29786 – volume: 81 start-page: 116 issue: 1 year: 2019 ident: pone.0324496.ref019 article-title: Assessment of the generalization of learned image reconstruction and the potential for transfer learning publication-title: Magn Reson Med doi: 10.1002/mrm.27355 – volume: 58 start-page: 1182 issue: 6 year: 2007 ident: pone.0324496.ref007 article-title: Sparse MRI: The application of compressed sensing for rapid MR imaging publication-title: Magn Reson Med doi: 10.1002/mrm.21391 – volume: 31 start-page: 1250 issue: 6 year: 2012 ident: pone.0324496.ref034 article-title: Fast l₁-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2188039 – volume: 90 start-page: 1172 issue: 3 year: 2023 ident: pone.0324496.ref003 article-title: Systematic review of reconstruction techniques for accelerated quantitative MRI publication-title: Magn Reson Med doi: 10.1002/mrm.29721 – volume: 22 start-page: 459 issue: 4 year: 2023 ident: pone.0324496.ref005 article-title: Three-dimensional Multi-parameter Mapping of Relaxation Times and Susceptibility Using Partially RF-spoiled Gradient Echo publication-title: Magn Reson Med Sci doi: 10.2463/mrms.mp.2021-0045 – volume: 38 start-page: 394 issue: 2 year: 2019 ident: pone.0324496.ref014 article-title: MoDL: Model-Based Deep Learning Architecture for Inverse Problems publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2865356 – volume: 6 start-page: 1403 year: 2020 ident: pone.0324496.ref027 article-title: Memory-Efficient Learning for Large-Scale Computational Imaging publication-title: IEEE Trans Comput Imaging doi: 10.1109/TCI.2020.3025735 – volume: 37 start-page: 1310 issue: 6 year: 2018 ident: pone.0324496.ref013 article-title: DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2785879 – volume: 495 start-page: 187 issue: 7440 year: 2013 ident: pone.0324496.ref006 article-title: Magnetic resonance fingerprinting publication-title: Nature doi: 10.1038/nature11971 – volume: 79 start-page: 3055 issue: 6 year: 2018 ident: pone.0324496.ref015 article-title: Learning a variational network for reconstruction of accelerated MRI data publication-title: Magn Reson Med doi: 10.1002/mrm.26977 – volume: 47 start-page: 1202 issue: 6 year: 2002 ident: pone.0324496.ref011 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med doi: 10.1002/mrm.10171 – volume: 37 start-page: 491 issue: 2 year: 2018 ident: pone.0324496.ref012 article-title: A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2760978 – start-page: 461 volume-title: Med Image Comput Comput Assist Interv – MICCAI 2021 year: 2021 ident: pone.0324496.ref028 article-title: Memory-Efficient Learning for High-Dimensional MRI Reconstruction. – volume: 110 start-page: 224 issue: 2 year: 2022 ident: pone.0324496.ref035 article-title: AI-Based Reconstruction for Fast MRI—A Systematic Review and Meta-Analysis publication-title: Proc IEEE doi: 10.1109/JPROC.2022.3141367 – volume: 46 start-page: 638 issue: 4 year: 2001 ident: pone.0324496.ref010 article-title: Advances in sensitivity encoding with arbitrary k-space trajectories publication-title: Magn Reson Med doi: 10.1002/mrm.1241 – volume: 87 start-page: 38 year: 2022 ident: pone.0324496.ref020 article-title: Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2021.12.003 – volume: 71 start-page: 990 issue: 3 year: 2014 ident: pone.0324496.ref041 article-title: ESPIRiT--an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA publication-title: Magn Reson Med doi: 10.1002/mrm.24751 – volume: 12 start-page: 33 issue: 1 year: 1994 ident: pone.0324496.ref002 article-title: Magnetic resonance relaxation time mapping in multiple sclerosis: normal appearing white matter and the “invisible” lesion load publication-title: Magn Reson Imaging doi: 10.1016/0730-725X(94)92350-7 – volume: 42 start-page: 952 issue: 5 year: 1999 ident: pone.0324496.ref009 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 198 start-page: 105817 year: 2021 ident: pone.0324496.ref044 article-title: Simulator-generated training datasets as an alternative to using patient data for machine learning: An example in myocardial segmentation with MRI publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105817 – volume: 75 start-page: 1831 issue: 4 year: 2016 ident: pone.0324496.ref054 article-title: A field camera for MR sequence monitoring and system analysis publication-title: Magn Reson Med doi: 10.1002/mrm.25770 – volume: 70 start-page: 102017 year: 2021 ident: pone.0324496.ref017 article-title: Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method publication-title: Med Image Anal doi: 10.1016/j.media.2021.102017 – volume: 84 start-page: 663 issue: 2 year: 2020 ident: pone.0324496.ref043 article-title: A Transfer-Learning Approach for Accelerated MRI Using Deep Neural Networks publication-title: Magn Reson Med doi: 10.1002/mrm.28148 – volume: 62 start-page: 544 issue: 2 year: 2009 ident: pone.0324496.ref031 article-title: Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 Tesla publication-title: Magn Reson Med doi: 10.1002/mrm.22036 – ident: pone.0324496.ref036 doi: 10.1109/CVPR.2016.90 – volume: 281 start-page: 51 year: 2017 ident: pone.0324496.ref039 article-title: BlochSolver: A GPU-optimized fast 3D MRI simulator for experimentally compatible pulse sequences publication-title: J Magn Reson doi: 10.1016/j.jmr.2017.05.007 – volume: 23 start-page: 460 issue: 4 year: 2024 ident: pone.0324496.ref021 article-title: Numerical and clinical evaluation of the robustness of open-source networks for parallel MR imaging reconstruction publication-title: Magn Reson Med Sci doi: 10.2463/mrms.mp.2023-0031 – volume: 82 start-page: 174 issue: 1 year: 2019 ident: pone.0324496.ref016 article-title: MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping publication-title: Magn Reson Med doi: 10.1002/mrm.27707 – volume: 5 start-page: 399 issue: 5 year: 1987 ident: pone.0324496.ref040 article-title: Optimizing the precision in T1 relaxation estimation using limited flip angles publication-title: Magn Reson Med doi: 10.1002/mrm.1910050502 – volume: 5 start-page: 425 issue: 4 year: 1997 ident: pone.0324496.ref037 article-title: Brainweb: online interface to a 3D MRI simulated brain database publication-title: Neuroimage – start-page: 35 volume-title: Machine learning in medical image reconstruction year: 2021 ident: pone.0324496.ref046 article-title: Self-supervised dynamic MRI reconstruction. doi: 10.1007/978-3-030-88552-6_4 – volume: 73 start-page: 514 issue: 2 year: 2015 ident: pone.0324496.ref029 article-title: On the accuracy of T1 mapping: searching for common ground publication-title: Magn Reson Med doi: 10.1002/mrm.25135 – volume: 7 start-page: 724 year: 2021 ident: pone.0324496.ref052 article-title: Accelerated MRI With Un-Trained Neural Networks publication-title: IEEE Trans Comput Imaging doi: 10.1109/TCI.2021.3097596 – ident: pone.0324496.ref032 – volume: 171 start-page: 1151 issue: 3976 year: 1971 ident: pone.0324496.ref001 article-title: Tumor detection by nuclear magnetic resonance publication-title: Science doi: 10.1126/science.171.3976.1151 – volume: 91 start-page: 2459 issue: 6 year: 2024 ident: pone.0324496.ref025 article-title: Zero-DeepSub: Zero-shot deep subspace reconstruction for rapid multiparametric quantitative MRI using 3D-QALAS publication-title: Magn Reson Med doi: 10.1002/mrm.30018 – volume: 47 start-page: 4101 issue: 9 year: 2020 ident: pone.0324496.ref053 article-title: B0 field homogeneity recommendations, specifications, and measurement units for MRI in radiation therapy publication-title: Med Phys doi: 10.1002/mp.14306 – volume: 38 start-page: 63 year: 2017 ident: pone.0324496.ref030 article-title: A simple analytic method for estimating T2 in the knee from DESS publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2016.12.018 – volume: 14 start-page: 11774 issue: 1 year: 2024 ident: pone.0324496.ref042 article-title: Training deep learning based dynamic MR image reconstruction using open-source natural videos publication-title: Sci Rep doi: 10.1038/s41598-024-62294-7 |
| SSID | ssj0053866 |
| Score | 2.4811091 |
| Snippet | Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging.... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0324496 |
| SubjectTerms | Algorithms Analysis Biology and Life Sciences Brain - diagnostic imaging Computer and Information Sciences Datasets Deep Learning Humans Image acquisition Image contrast Image processing Image Processing, Computer-Assisted - methods Image quality Image reconstruction Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Mapping Medical imaging Medicine and Health Sciences Memory Methods Neural networks Parameters Performance evaluation Research and Analysis Methods Self-supervised learning Social Sciences |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdQL3BBbHysYwODkIBDusR27Pg4ENNAAiRgaLfIie0OqU3L2oD23_Oe40aNmMQOXOsXq3lf_tl572dCXoBVWeoMT0QGZhA2hzzoIBlWqXYyrwEjODyH_PhJnp6JD-f5-dZVX1gT1tEDd4o7koXi4CfWy3A7MtdOKK6EUBU4q5Rht54WerOZ6nIwRLGUsVGOq-wo2mWyXDRukgKGEEjSv7UQBb7-PiuPlrPF6jrI-Xfl5O22WZqr32Y221qWTu6RuxFP0uPuPXbILdfskp0YsSv6KtJKv75PfuExU2OT9WW7vkj8pXPUOrek8d6IKd3Qi1PAsdTUNSxIyCNh6c_WNKEXDTIjRa7wOdbQ0LlBbocpxaNcOseK3SvqAiMF_O1-2gfk7OTdt7enSbx1IakBG60TYwU30uqi0lbl1gqrAdMZ7kxmTGXSSteF9hCtXjGf-dRIFrprM-FrAEcpf0hGDeh5j9C09qzIuORGc6Gd1Qayi5eV1w5Mp9WYJBsTlMuOXKMMX9gUbEo6_ZVosjKabEzeoJ16WaTGDj-Aw5TRYcp_OcyYPEUrl12faR_g5XEhmFC5YsWYPA8SSI_RYP3N1LSrVfn-8_cbCH39MhB6GYX8AvylNrHnAd4JabcGkgcDSQjyejC8hz650cqq5AxVLXLG4cmNn14__Kwfxkmxpq5xi7aTYdiHDbM_6ty616wApJ-rTIxJMXD4geqHI82Pi8BOngEY0gwfnfSxcSPr7v8P6z4mdxje0IznZOyAjCCm3CHAxnX1JGSIPzPMZ_0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gCXivLqQgGDkIBDtont2PEBoRa1KkgsqFDUW-TEzhZpN0n3Aeq_ZybrhEZUqNf1xNrMy-PJzDeEvAKpstAZHogIxCBsDH7QgTPMQu1knEOM4DAP-Xksj0_Fp7P4bIOM214YLKtsfWLjqG2VY458j8PZFHIB96b39UWAU6Pw62o7QsP40Qr2XQMxdotsMkTGGpDNg8Px15PWN4N1S-kb6LiK9ry8RnVVulEIsYVA8P4rB1SD499560E9rRbXhaL_VlTeXpW1ufxtptMrx9XRXbLl40y6v1aMbbLhyntk21vygr7xcNNv75NfmH4qbbCcr5bnQTF3jlrnaurnSUxoCztOIb6lwAI4qBBfwtKLlSmbHjXwmBQxxGdYW0NnBjEfJhRTvHSGlbyX1DVIFfC3u20fkNOjw-8fjgM_jSHIIWZaBsYKbqTVSaatiq0VVkOsZ7gzkTGZCTOdJ7oAKy4UK6IiNJI1XbeRKPIYZfeQDErg8w6hYV6wJOKSG82FdlYb8DqFzArtIALSakiCVgRpvQbdSJsvbwouK2v-pSiy1ItsSA5QTh0tQmY3P1TzSeotMJWJ4uBwbCGbMdtcO6G4EkJl4PWkDIfkOUo5Xfefdoaf7ieCCRUrlgzJy4YCYTNKrMuZmNVikX788uMGRN9OekSvPVFRgb7kxvdCwDshHFePcrdHCcaf95Z3UCdbrizSv2YCT7Z6ev3yi24ZN8Vau9JVqzUNw_5s2P3RWq07zgq4AcQqEkOS9BS-x_r-SvnzvEEtB3tkmuGjo842biTdx_9_kSfkDsOZzJgZY7tkANbinkKguMyeeev_A9EcaMg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZG9wAvwPi1wgCDkACJlMR27PixIKaBtIGAoe0pcmKnQ7RpWRvQ-Ou5S5xogSGV1_hsyXe-8xf77jMhT8CqLHSGByICMwgbQxx0EAyzUDsZ54ARHJ5D7h_IvUPx7ig-2iAv2lqY8_f3XEUvvUZHi3npRiHs_kLLS2RTxoC8B2Tz8ODD-Li5OGaBZCH31XH_6trbfWqS_i4UDxbT-fIinPl3uuTlqlyYs59mOj23F-1eI_vtLJoUlG-japWN8l9_EDyuO83r5KoHpXTcrKItsuHKG2TLu_2SPvPc1M9vkh94VlXaYHVarU6C4tQ5ap1bUP_4xIS2HOUUwDA1eQ67GpJRWPq9MmVd0AbhlSLh-AwTcejMIEHEhOJ5MJ1h2u8ZdTWtBaihG_YWOdx98_n1XuCfbghyAFirwFjBjbQ6ybRVsbXCagCGhjsTGZOZMNN5ogtw-UKxIipCI1ldohuJIgeEFfLbZFCCLrYJDfOCJRGX3GgutLPaQIgqZFZoB3BJqyEJWpOmi4ahI62v6RT82TT6S1GtqVfrkLxCu3eyyK9dfwB7pN5dU5koDtHJFrJ-k5trJxRXQqgMQqSU4ZA8xFWTNsWqXZRIx4lgQsWKJUPyuJZAjo0Sk3gmplou07fvv6wh9OljT-ipFyrmsP5y4wsnYE7I3dWT3OlJQqTIe83buMZbrSxTzlDVImYcerbr_uLmR10zDoqJeaWbV40Mw2JuGP1O4yadZgX8LsQqEkOS9Byop_p-S_n1pKY4jwBRaYZdR52vrWXdu__b4R65wvBJZzxYYztkAP7j7gPOXGUPfHj5DRx3e2Q priority: 102 providerName: Unpaywall |
| Title | Ground-truth-free deep learning approach for accelerated quantitative parameter mapping with memory efficient learning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40455714 https://www.proquest.com/docview/3215034523 https://www.proquest.com/docview/3215234818 https://pubmed.ncbi.nlm.nih.gov/PMC12129214 https://doi.org/10.1371/journal.pone.0324496 https://doaj.org/article/6873531df60044039e4737447b070660 http://dx.doi.org/10.1371/journal.pone.0324496 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrhVEMQgIeUiW2E8cPCHXTykBamQZF3VPkJE6H1KZdP4D-99w5HyKiSH3JQ3yx2jvf-eeP-x0hr8GqzDWaO8IDM4jUhzhoIBjGrjKBnwBGMLgPeTEIzofi88gf7ZGqZmupwOXWpR3WkxouJt3ft5sP4PDvbdUG6VUfdeez3HRdQAhCBfvkAOYqhcUcLkR9rgDebU8vEbU4AXN5mUz3v14ak5Xl9K8jd2s-mS23wdJ_b1feWedzvfmlJ5O_pq7-fXKvxJy0VwySQ7Jn8gfksPTqJX1bUk-_e0h-4lZUnjqrxXp142QLY2hqzJyWtSXGtKIgp4B1qU4SmLSQayKlt2ud23w1iJ4U-cSneM-GTjXyP4wpbvfSKd7q3VBjWSvgZ9fdPiLD_tm303OnrMzgJICfVo5OBddBqsJYpdJPU5EqwH2aG-1pHWs3VkmoMvDoTLLMy1wdMJuB64ksAQDl8seklYOejwh1k4yFHg-4VlwokyoNESgL4kwZQENKtolTmSCaFwQckT2Fk7BwKfQXocmi0mRtcoJ2qmWRPtu-mC3GUemNURBKDsEnzQJbcpsrIySXQsgYImAQuG3yAq0cFbmodRCIeqFgQvqShW3yykoghUaOd3TGer1cRp--fN9B6OtVQ-hNKZTNYLwkusyLgP-E1FwNyeOGJASCpNF8hGOy0soy4gxVLXzG4ctqnG5vflk3Y6d47y43s3UhwzBXG3p_UgzrWrMCVgO-9ESbhI0B31B9syX_cWMZzD0ATIrhp93aN3ay7tNd1P6M3GVYpRn3ytgxaYHPmOcAHVdxh-zLkYRneOrhs_-xQw5OzgaXVx27GdOx0QLeDQeXves_El9y8Q |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHl1oVCDQMAh2yR24viAUHlUu_SBBC3aW3BiZ4u0m6SbXar9U_xGZvKiERXqpdf1xMp6xt-MnZlvCHkBWnVto5jFHVAD1x7goAEwjGxpfC-GGMHgPeThkT884Z_H3niN_G5qYTCtssHEEqh1FuMd-Q4D32QzDuemd_mZhV2j8Otq00KjMot9szqHI1vxdvQR9PvSdfc-HX8YWnVXASsG37-wlOZM-VoGkdTC05prCTGLYkY5SkXKjmQcyASsMRFu4iS28t2yetThSezhO8C8N8hNzgBLYP-IcXvAA-zw_bo8jwlnp7aGQZ6lZmBD5MKxNcAF91d2CWh9QS-fZsVlge6_-ZrryzRXq3M1nV5whnt3yO06iqW7ldltkDWT3iUbNU4U9HVNZv3mHvmFl1upthbz5eLUSubGUG1MTutuFRPakJpTiJ6pimNwg8heoenZUqVlBRzgMUWG8hlm7tCZQkaJCcULZDrDPOEVNSUPBrx2O-19cnItWnlAeims8yahdpy4gcN8piTj0mipANMSP0qkgfhKij6xGhWEeUXpEZbf9QQchar1C1FlYa2yPnmPemplkZC7_CGbT8J6f4d-IBjAmU78sok3k4YLJjgXEWCq79t9so1aDqvq1hZWwt2Au1x4wg365HkpgaQcKWb9TNSyKMLRl-9XEPr2tSP0qhZKMrCXWNWVFvCfkOyrI7nVkQRoiTvDm2iTzaoU4d9NCE82dnr58LN2GCfFTL7UZMtKxsXqb5j9YWXW7cpyOF94wuF9EnQMvrP03ZH052nJie5ACCZdfHTQ7o0raffR___INlkfHh8ehAejo_3H5JaL3Z_xDs7dIj3YOeYJhKSL6GmJA5T8uG7g-QOLi5-B |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYTCDQMBD2iR24vgBocGYVgYDMYb6FpzY6ZDaJGtapv5r_HXc5YtFTGgve40vVuI7_3y2735HyDPQqmsbxSzugBq49gAHDYBhZEvjezH4CAbPIT8d-HtH_MPYG6-R300uDIZVNphYArXOYjwjHzJYm2zGYd80TOqwiC87u2_yEwsrSOFNa1NOozKRfbM6he1b8Xq0A7p-7rq777-927PqCgNWDH7AwlKaM-VrGURSC09rriX4L4oZ5SgVKTuScSATsMxEuImT2Mp3y0xShyexh98D_V4hVwVjEsMJxbjd7AGO-H6dqseEM6wtY5BnqRnY4MVwLBNwZiksKwa060Ivn2bFeU7vv7Gb15dprlanajo9szDu3iI3a4-WblcmuE7WTHqbrNeYUdCXNbH1qzvkFx50pdpazJeLYyuZG0O1MTmtK1dMaENwTsGTpiqOYUlEJgtNT5YqLbPhAJspspXPMIqHzhSyS0woHibTGcYMr6gpOTHgs9tu75KjS9HKPdJLYZw3CLXjxA0c5jMlGZdGSwX4lvhRIg34WlL0idWoIMwreo-wvOMTsC2qxi9ElYW1yvrkLeqplUVy7vJBNp-E9VwP_UAwgDad-GVBbyYNF0xwLiLAV9-3-2QLtRxWma4txITbAXe58IQb9MnTUgIJOlI09YlaFkU4-vz9AkKHXztCL2qhJAN7iVWddQH_hMRfHcnNjiTATNxp3kCbbEalCP9OSHizsdPzm5-0zdgpRvWlJltWMi5mgkPv9yuzbkeWw17DEw7vk6Bj8J2h77akP49LfnQH3DHp4quDdm5cSLsP_v8jW-QaQE74cXSw_5DccLEQNB7HuZukBxPHPALvdBE9LmGAkh-XjTt_AD1Po8Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZG9wAvwPi1wgCDkACJlMR27PixIKaBtIGAoe0pcmKnQ7RpWRvQ-Ou5S5xogSGV1_hsyXe-8xf77jMhT8CqLHSGByICMwgbQxx0EAyzUDsZ54ARHJ5D7h_IvUPx7ig-2iAv2lqY8_f3XEUvvUZHi3npRiHs_kLLS2RTxoC8B2Tz8ODD-Li5OGaBZCH31XH_6trbfWqS_i4UDxbT-fIinPl3uuTlqlyYs59mOj23F-1eI_vtLJoUlG-japWN8l9_EDyuO83r5KoHpXTcrKItsuHKG2TLu_2SPvPc1M9vkh94VlXaYHVarU6C4tQ5ap1bUP_4xIS2HOUUwDA1eQ67GpJRWPq9MmVd0AbhlSLh-AwTcejMIEHEhOJ5MJ1h2u8ZdTWtBaihG_YWOdx98_n1XuCfbghyAFirwFjBjbQ6ybRVsbXCagCGhjsTGZOZMNN5ogtw-UKxIipCI1ldohuJIgeEFfLbZFCCLrYJDfOCJRGX3GgutLPaQIgqZFZoB3BJqyEJWpOmi4ahI62v6RT82TT6S1GtqVfrkLxCu3eyyK9dfwB7pN5dU5koDtHJFrJ-k5trJxRXQqgMQqSU4ZA8xFWTNsWqXZRIx4lgQsWKJUPyuJZAjo0Sk3gmplou07fvv6wh9OljT-ipFyrmsP5y4wsnYE7I3dWT3OlJQqTIe83buMZbrSxTzlDVImYcerbr_uLmR10zDoqJeaWbV40Mw2JuGP1O4yadZgX8LsQqEkOS9Byop_p-S_n1pKY4jwBRaYZdR52vrWXdu__b4R65wvBJZzxYYztkAP7j7gPOXGUPfHj5DRx3e2Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ground-truth-free+deep+learning+approach+for+accelerated+quantitative+parameter+mapping+with+memory+efficient+learning&rft.jtitle=PloS+one&rft.au=Fujita%2C+Naoto&rft.au=Yokosawa%2C+Suguru&rft.au=Shirai%2C+Toru&rft.au=Terada%2C+Yasuhiko&rft.date=2025-06-02&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0324496&rft_id=info:doi/10.1371%2Fjournal.pone.0324496&rft.externalDBID=IOV&rft.externalDocID=A842475728 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |