Diagnosis of knee meniscal injuries using artificial intelligence: A systematic review and meta-analysis of diagnostic performance

The aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI) algorithms in detecting meniscal injuries. A systematic search was performed in the Scopus, PubMed, EBSCO, Cinahl, Web of Science, IEEE Xplore, and Cochrane Cen...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0326339
Main Authors Mohammadi, Soheil, Jahanshahi, Ali, Shahrabi Farahani, Mohammad, Salehi, Mohammad Amin, Frounchi, Negin, Guermazi, Ali
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 24.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0326339

Cover

Abstract The aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI) algorithms in detecting meniscal injuries. A systematic search was performed in the Scopus, PubMed, EBSCO, Cinahl, Web of Science, IEEE Xplore, and Cochrane Central databases on July, 2024. The included studies' reporting quality and risk of bias were evaluated using the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and the Prediction Model Study Risk of Bias Assessment Tool (PROBAST), respectively. Also, a meta-analysis was done using contingency tables to estimate diagnostic performance metrics (sensitivity and specificity), and a meta-regression analysis was performed to investigate the effect of the following variables on the main outcome: imaging view, data augmentation and transfer learning usage, and presence of meniscal tear in the injury, with a corresponding 95% confidence interval (CI) and a P-value of 0.05 as a threshold for significance. Among 28 included studies, 92 contingency tables were extracted from 15 studies. The reference standard of the studies were mostly expert radiologists, orthopedics, or surgical reports. The pooled sensitivity and specificity for AI algorithms on internal validation were 81% (95% CI: 78, 85), and 78% (95% CI: 72, 83), and for clinicians on internal validation were 85% (95% CI: 76, 91), and 88% (95% CI: 83, 92), respectively. The pooled sensitivity and specificity for studies validating algorithms with an external test set were 82% (95% CI: 74, 88), and 88% (95% CI: 84, 91), respectively. The results of this study imply the lower diagnostic performance of AI-based algorithms in knee meniscal injuries compared with clinicians.
AbstractList The aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI) algorithms in detecting meniscal injuries. A systematic search was performed in the Scopus, PubMed, EBSCO, Cinahl, Web of Science, IEEE Xplore, and Cochrane Central databases on July, 2024. The included studies' reporting quality and risk of bias were evaluated using the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and the Prediction Model Study Risk of Bias Assessment Tool (PROBAST), respectively. Also, a meta-analysis was done using contingency tables to estimate diagnostic performance metrics (sensitivity and specificity), and a meta-regression analysis was performed to investigate the effect of the following variables on the main outcome: imaging view, data augmentation and transfer learning usage, and presence of meniscal tear in the injury, with a corresponding 95% confidence interval (CI) and a P-value of 0.05 as a threshold for significance. Among 28 included studies, 92 contingency tables were extracted from 15 studies. The reference standard of the studies were mostly expert radiologists, orthopedics, or surgical reports. The pooled sensitivity and specificity for AI algorithms on internal validation were 81% (95% CI: 78, 85), and 78% (95% CI: 72, 83), and for clinicians on internal validation were 85% (95% CI: 76, 91), and 88% (95% CI: 83, 92), respectively. The pooled sensitivity and specificity for studies validating algorithms with an external test set were 82% (95% CI: 74, 88), and 88% (95% CI: 84, 91), respectively. The results of this study imply the lower diagnostic performance of AI-based algorithms in knee meniscal injuries compared with clinicians.
Aim of the study The aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI) algorithms in detecting meniscal injuries. Materials and methods A systematic search was performed in the Scopus, PubMed, EBSCO, Cinahl, Web of Science, IEEE Xplore, and Cochrane Central databases on July, 2024. The included studies' reporting quality and risk of bias were evaluated using the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and the Prediction Model Study Risk of Bias Assessment Tool (PROBAST), respectively. Also, a meta-analysis was done using contingency tables to estimate diagnostic performance metrics (sensitivity and specificity), and a meta-regression analysis was performed to investigate the effect of the following variables on the main outcome: imaging view, data augmentation and transfer learning usage, and presence of meniscal tear in the injury, with a corresponding 95% confidence interval (CI) and a P-value of 0.05 as a threshold for significance. Results Among 28 included studies, 92 contingency tables were extracted from 15 studies. The reference standard of the studies were mostly expert radiologists, orthopedics, or surgical reports. The pooled sensitivity and specificity for AI algorithms on internal validation were 81% (95% CI: 78, 85), and 78% (95% CI: 72, 83), and for clinicians on internal validation were 85% (95% CI: 76, 91), and 88% (95% CI: 83, 92), respectively. The pooled sensitivity and specificity for studies validating algorithms with an external test set were 82% (95% CI: 74, 88), and 88% (95% CI: 84, 91), respectively. Conclusion The results of this study imply the lower diagnostic performance of AI-based algorithms in knee meniscal injuries compared with clinicians.
The aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI) algorithms in detecting meniscal injuries. A systematic search was performed in the Scopus, PubMed, EBSCO, Cinahl, Web of Science, IEEE Xplore, and Cochrane Central databases on July, 2024. The included studies' reporting quality and risk of bias were evaluated using the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and the Prediction Model Study Risk of Bias Assessment Tool (PROBAST), respectively. Also, a meta-analysis was done using contingency tables to estimate diagnostic performance metrics (sensitivity and specificity), and a meta-regression analysis was performed to investigate the effect of the following variables on the main outcome: imaging view, data augmentation and transfer learning usage, and presence of meniscal tear in the injury, with a corresponding 95% confidence interval (CI) and a P-value of 0.05 as a threshold for significance. Among 28 included studies, 92 contingency tables were extracted from 15 studies. The reference standard of the studies were mostly expert radiologists, orthopedics, or surgical reports. The pooled sensitivity and specificity for AI algorithms on internal validation were 81% (95% CI: 78, 85), and 78% (95% CI: 72, 83), and for clinicians on internal validation were 85% (95% CI: 76, 91), and 88% (95% CI: 83, 92), respectively. The pooled sensitivity and specificity for studies validating algorithms with an external test set were 82% (95% CI: 74, 88), and 88% (95% CI: 84, 91), respectively. The results of this study imply the lower diagnostic performance of AI-based algorithms in knee meniscal injuries compared with clinicians.
Aim of the studyThe aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI) algorithms in detecting meniscal injuries.Materials and methodsA systematic search was performed in the Scopus, PubMed, EBSCO, Cinahl, Web of Science, IEEE Xplore, and Cochrane Central databases on July, 2024. The included studies' reporting quality and risk of bias were evaluated using the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and the Prediction Model Study Risk of Bias Assessment Tool (PROBAST), respectively. Also, a meta-analysis was done using contingency tables to estimate diagnostic performance metrics (sensitivity and specificity), and a meta-regression analysis was performed to investigate the effect of the following variables on the main outcome: imaging view, data augmentation and transfer learning usage, and presence of meniscal tear in the injury, with a corresponding 95% confidence interval (CI) and a P-value of 0.05 as a threshold for significance.ResultsAmong 28 included studies, 92 contingency tables were extracted from 15 studies. The reference standard of the studies were mostly expert radiologists, orthopedics, or surgical reports. The pooled sensitivity and specificity for AI algorithms on internal validation were 81% (95% CI: 78, 85), and 78% (95% CI: 72, 83), and for clinicians on internal validation were 85% (95% CI: 76, 91), and 88% (95% CI: 83, 92), respectively. The pooled sensitivity and specificity for studies validating algorithms with an external test set were 82% (95% CI: 74, 88), and 88% (95% CI: 84, 91), respectively.ConclusionThe results of this study imply the lower diagnostic performance of AI-based algorithms in knee meniscal injuries compared with clinicians.
The aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI) algorithms in detecting meniscal injuries.AIM OF THE STUDYThe aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI) algorithms in detecting meniscal injuries.A systematic search was performed in the Scopus, PubMed, EBSCO, Cinahl, Web of Science, IEEE Xplore, and Cochrane Central databases on July, 2024. The included studies' reporting quality and risk of bias were evaluated using the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and the Prediction Model Study Risk of Bias Assessment Tool (PROBAST), respectively. Also, a meta-analysis was done using contingency tables to estimate diagnostic performance metrics (sensitivity and specificity), and a meta-regression analysis was performed to investigate the effect of the following variables on the main outcome: imaging view, data augmentation and transfer learning usage, and presence of meniscal tear in the injury, with a corresponding 95% confidence interval (CI) and a P-value of 0.05 as a threshold for significance.MATERIALS AND METHODSA systematic search was performed in the Scopus, PubMed, EBSCO, Cinahl, Web of Science, IEEE Xplore, and Cochrane Central databases on July, 2024. The included studies' reporting quality and risk of bias were evaluated using the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and the Prediction Model Study Risk of Bias Assessment Tool (PROBAST), respectively. Also, a meta-analysis was done using contingency tables to estimate diagnostic performance metrics (sensitivity and specificity), and a meta-regression analysis was performed to investigate the effect of the following variables on the main outcome: imaging view, data augmentation and transfer learning usage, and presence of meniscal tear in the injury, with a corresponding 95% confidence interval (CI) and a P-value of 0.05 as a threshold for significance.Among 28 included studies, 92 contingency tables were extracted from 15 studies. The reference standard of the studies were mostly expert radiologists, orthopedics, or surgical reports. The pooled sensitivity and specificity for AI algorithms on internal validation were 81% (95% CI: 78, 85), and 78% (95% CI: 72, 83), and for clinicians on internal validation were 85% (95% CI: 76, 91), and 88% (95% CI: 83, 92), respectively. The pooled sensitivity and specificity for studies validating algorithms with an external test set were 82% (95% CI: 74, 88), and 88% (95% CI: 84, 91), respectively.RESULTSAmong 28 included studies, 92 contingency tables were extracted from 15 studies. The reference standard of the studies were mostly expert radiologists, orthopedics, or surgical reports. The pooled sensitivity and specificity for AI algorithms on internal validation were 81% (95% CI: 78, 85), and 78% (95% CI: 72, 83), and for clinicians on internal validation were 85% (95% CI: 76, 91), and 88% (95% CI: 83, 92), respectively. The pooled sensitivity and specificity for studies validating algorithms with an external test set were 82% (95% CI: 74, 88), and 88% (95% CI: 84, 91), respectively.The results of this study imply the lower diagnostic performance of AI-based algorithms in knee meniscal injuries compared with clinicians.CONCLUSIONThe results of this study imply the lower diagnostic performance of AI-based algorithms in knee meniscal injuries compared with clinicians.
Aim of the study The aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI) algorithms in detecting meniscal injuries. Materials and methods A systematic search was performed in the Scopus, PubMed, EBSCO, Cinahl, Web of Science, IEEE Xplore, and Cochrane Central databases on July, 2024. The included studies’ reporting quality and risk of bias were evaluated using the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and the Prediction Model Study Risk of Bias Assessment Tool (PROBAST), respectively. Also, a meta-analysis was done using contingency tables to estimate diagnostic performance metrics (sensitivity and specificity), and a meta-regression analysis was performed to investigate the effect of the following variables on the main outcome: imaging view, data augmentation and transfer learning usage, and presence of meniscal tear in the injury, with a corresponding 95% confidence interval (CI) and a P-value of 0.05 as a threshold for significance. Results Among 28 included studies, 92 contingency tables were extracted from 15 studies. The reference standard of the studies were mostly expert radiologists, orthopedics, or surgical reports. The pooled sensitivity and specificity for AI algorithms on internal validation were 81% (95% CI: 78, 85), and 78% (95% CI: 72, 83), and for clinicians on internal validation were 85% (95% CI: 76, 91), and 88% (95% CI: 83, 92), respectively. The pooled sensitivity and specificity for studies validating algorithms with an external test set were 82% (95% CI: 74, 88), and 88% (95% CI: 84, 91), respectively. Conclusion The results of this study imply the lower diagnostic performance of AI-based algorithms in knee meniscal injuries compared with clinicians.
Audience Academic
Author Guermazi, Ali
Shahrabi Farahani, Mohammad
Jahanshahi, Ali
Salehi, Mohammad Amin
Frounchi, Negin
Mohammadi, Soheil
AuthorAffiliation 2 Social Determinants of Health Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
6 Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
Assiut University Faculty of Medicine, EGYPT
5 Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
4 Medical Students Research Committee, Shahed University, Tehran, Iran
1 Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, Missouri, United States of America
3 Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
7 Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, Boston, Massachusetts, United States of America
AuthorAffiliation_xml – name: 5 Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
– name: 1 Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, Missouri, United States of America
– name: 2 Social Determinants of Health Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
– name: 3 Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
– name: 6 Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
– name: Assiut University Faculty of Medicine, EGYPT
– name: 4 Medical Students Research Committee, Shahed University, Tehran, Iran
– name: 7 Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, Boston, Massachusetts, United States of America
Author_xml – sequence: 1
  givenname: Soheil
  surname: Mohammadi
  fullname: Mohammadi, Soheil
– sequence: 2
  givenname: Ali
  orcidid: 0000-0002-6700-6162
  surname: Jahanshahi
  fullname: Jahanshahi, Ali
– sequence: 3
  givenname: Mohammad
  surname: Shahrabi Farahani
  fullname: Shahrabi Farahani, Mohammad
– sequence: 4
  givenname: Mohammad Amin
  orcidid: 0000-0002-5078-4224
  surname: Salehi
  fullname: Salehi, Mohammad Amin
– sequence: 5
  givenname: Negin
  surname: Frounchi
  fullname: Frounchi, Negin
– sequence: 6
  givenname: Ali
  surname: Guermazi
  fullname: Guermazi, Ali
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40554500$$D View this record in MEDLINE/PubMed
BookMark eNqNk0tr3DAUhU1JaR7tPyitoVDaxUxtWZatbsqQvgYCgb624lq-cjS1pYlkJ51tf3k1sRNmShbBCwnpu0f3noOPowNjDUbR8zSZp1mRvlvZwRlo5-twPE8ywrKMP4qOUp6RGSNJdrCzP4yOvV8lSZ6VjD2JDmmS5zRPkqPo70cNjbFe-9iq-LdBjDs02ktoY21Wg9Po48Fr08Tgeq201Dc3PbatbtBIfB8vYr_xPXbQaxk7vNJ4HYOpg1APMwg9bib5enxri63RKes6CAJPo8cKWo_PpvUk-vn504_Tr7Oz8y_L08XZTDJK-xmHSlZM5QUpAJAqlRNeQ0V5QTirWImy3E5HMwVVRRRnjJOUhZ2kOalLnp1EL0fddWu9mOzzIiMk1BWU0kAsR6K2sBJrpztwG2FBi5sD6xqxNUG2KPI8KYoaq5SSlHLJSiCSU6iIZIoRAkErH7UGs4bNNbTtnWCaiG2Cty2IbYJiSjDUfZi6HKoOa4mmd9DuNbN_Y_SFaOyVSElaMs6KoPBmUnD2ckDfiy7kGfICg3YYB-aEp1ka0Ff_offbMlENhMm1UTY8LLeiYlEGcxNOeRmo-T1U-GrstAwjKh3O9wre7hUEpsc_fQOD92L5_dvD2fNf--zrHfYCoe0vvG2HXlvj98EXu1bfeXz7dwSAjoB01nuH6mER_gPTKSTw
Cites_doi 10.1136/rmdopen-2015-000062
10.1016/j.diii.2022.10.010
10.1016/j.jot.2022.05.006
10.1080/13645706.2019.1575882
10.1007/s10278-022-00581-3
10.3390/ijerph20126059
10.1001/jama.2017.19163
10.1002/jmri.26246
10.1117/12.773167
10.1016/j.mri.2012.10.029
10.1186/s12891-022-05468-6
10.3390/make3040050
10.1109/ACCESS.2023.3344456
10.3174/ajnr.A5543
10.1186/s12916-014-0241-z
10.1016/j.eswa.2007.11.036
10.1016/j.cmpb.2021.106297
10.1371/journal.pmed.1002699
10.3390/diagnostics11071225
10.1155/2022/5248338
10.1148/radiol.2018181212
10.1016/j.bspc.2022.104523
10.1016/j.diii.2017.12.005
10.1186/s40001-022-00883-w
10.1016/j.ejmp.2021.02.010
10.3390/diagnostics13122049
10.1016/j.diii.2020.11.013
10.1007/s10278-016-9884-y
10.1111/biom.12817
10.14445/22315381/IJETT-V72I2P106
10.1007/s00256-021-03830-8
10.1016/j.artmed.2018.11.008
10.1007/s10278-020-00329-x
10.1016/j.arthro.2020.09.012
10.1177/08465371221120594
10.7326/M18-1376
10.1016/j.biomaterials.2011.06.037
10.1016/j.semarthrit.2016.11.005
10.1002/jmri.28284
10.1016/j.neucom.2021.09.048
10.1002/ksa.12369
10.1016/j.diii.2022.07.005
10.1016/j.diii.2019.02.007
10.1007/s00256-020-03410-2
10.1007/s10278-024-01198-4
10.2214/AJR.12.8663
10.1148/radiol.211785
10.1093/bmb/ldm022
10.1016/j.joca.2023.09.011
10.1016/j.diii.2019.03.002
10.3389/fbioe.2021.747217
ContentType Journal Article
Copyright Copyright: © 2025 Mohammadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Mohammadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Mohammadi et al 2025 Mohammadi et al
2025 Mohammadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Mohammadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Mohammadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Mohammadi et al 2025 Mohammadi et al
– notice: 2025 Mohammadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0326339
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
ProQuest Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE




MEDLINE - Academic
Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Diagnosis of knee meniscal injuries using artificial intelligence
EISSN 1932-6203
ExternalDocumentID 3223867444
oai_doaj_org_article_55077deb142149c68a2c94ab2c6f622a
10.1371/journal.pone.0326339
PMC12186967
A845209498
40554500
10_1371_journal_pone_0326339
Genre Meta-Analysis
Systematic Review
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c644t-9abcb6f5727aae4ff529dab497296b68ec8386643fabb2f9669216b2fc452d893
IEDL.DBID M48
ISSN 1932-6203
IngestDate Tue Oct 07 09:59:39 EDT 2025
Tue Oct 14 19:05:02 EDT 2025
Sun Oct 26 02:20:22 EDT 2025
Tue Sep 30 17:01:30 EDT 2025
Fri Sep 05 15:48:35 EDT 2025
Tue Oct 07 07:50:56 EDT 2025
Mon Oct 20 22:39:51 EDT 2025
Mon Oct 20 16:50:07 EDT 2025
Thu Oct 16 15:34:37 EDT 2025
Thu Oct 16 15:34:39 EDT 2025
Tue Jul 15 02:10:19 EDT 2025
Wed Jul 02 01:54:01 EDT 2025
Wed Oct 01 06:04:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2025 Mohammadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-9abcb6f5727aae4ff529dab497296b68ec8386643fabb2f9669216b2fc452d893
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Competing Interests: Ali Guermazi is a consultant to Novartis, Coval, Scarcell, 4Moving, Paradigm, Peptinov, Levicept, Pacira, TissueGene, Medipost, ICM and Formation Bio. He is a shareholder of BICL, LLC. This does not alter our adherence to PLOS ONE policies on sharing data and materials. All other authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.
ORCID 0000-0002-6700-6162
0000-0002-5078-4224
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0326339
PMID 40554500
PQID 3223867444
PQPubID 1436336
PageCount e0326339
ParticipantIDs plos_journals_3223867444
doaj_primary_oai_doaj_org_article_55077deb142149c68a2c94ab2c6f622a
unpaywall_primary_10_1371_journal_pone_0326339
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12186967
proquest_miscellaneous_3223929131
proquest_journals_3223867444
gale_infotracmisc_A845209498
gale_infotracacademiconefile_A845209498
gale_incontextgauss_ISR_A845209498
gale_incontextgauss_IOV_A845209498
gale_healthsolutions_A845209498
pubmed_primary_40554500
crossref_primary_10_1371_journal_pone_0326339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250624
PublicationDateYYYYMMDD 2025-06-24
PublicationDate_xml – month: 6
  year: 2025
  text: 20250624
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References B Rizk (pone.0326339.ref044) 2021; 83
S Ebrahimkhani (pone.0326339.ref025) 2022; 467
AC Kara (pone.0326339.ref046) 2021; 3
B Ramakrishna (pone.0326339.ref028) 2008
N Bien (pone.0326339.ref031) 2018; 15
BD Katzman (pone.0326339.ref013) 2023; 104
K Jiang (pone.0326339.ref050) 2025; 38
B Fritz (pone.0326339.ref033) 2020; 49
R Crawford (pone.0326339.ref005) 2007; 84
MHF Zarandi (pone.0326339.ref029) 2016; 29
RM Harbord (pone.0326339.ref019) 2009
Y Ma (pone.0326339.ref053) 2023; 13
P Hamet (pone.0326339.ref010) 2017
E Ölmez (pone.0326339.ref037) 2020; 33
X Qiu (pone.0326339.ref036) 2021; 211
Y-T Chou (pone.0326339.ref039) 2023; 82
F Harman (pone.0326339.ref049) 2023; 11
C Köse (pone.0326339.ref041) 2009; 36
J Li (pone.0326339.ref045) 2022; 34
M Alabousi (pone.0326339.ref017) 2023; 74
Y Mintz (pone.0326339.ref011) 2019; 28
P Xue (pone.0326339.ref014) 2023; 25
M Jarraya (pone.0326339.ref057) 2017; 46
TNK Hung (pone.0326339.ref002) 2023; 57
A Tack (pone.0326339.ref034) 2021; 9
D Shakoor (pone.0326339.ref007) 2019; 290
KN Kunze (pone.0326339.ref054) 2021; 37
AA De Smet (pone.0326339.ref006) 2012; 199
M Mangone (pone.0326339.ref051) 2023; 20
NT Dung (pone.0326339.ref056) 2023; 104
G Zaharchuk (pone.0326339.ref012) 2018; 39
M Favero (pone.0326339.ref003) 2015; 1
RF Wolff (pone.0326339.ref023) 2019; 170
Y-Z Li (pone.0326339.ref038) 2022; 27
S Key (pone.0326339.ref027) 2022; 35
A Saygılı (pone.0326339.ref030) 2019; 97
EA Makris (pone.0326339.ref001) 2011; 32
L Lin (pone.0326339.ref021) 2018; 74
B Astuto (pone.0326339.ref035) 2021; 3
E Güngör (pone.0326339.ref048) 2025; 33
V Pedoia (pone.0326339.ref042) 2019; 49
S Sharma (pone.0326339.ref052) 2022; 2022
F Lecouvet (pone.0326339.ref008) 2018; 99
A Thengade (pone.0326339.ref047) 2024; 72
H Shin (pone.0326339.ref009) 2022; 23
GS Collins (pone.0326339.ref022) 2015; 13
S Kostopoulos (pone.0326339.ref024) 2013; 31
Y Wang (pone.0326339.ref040) 2022; 2022
S Mohammadi (pone.0326339.ref020) 2024; 32
J-I Lee (pone.0326339.ref026) 2021; 11
B Dwamena (pone.0326339.ref018) 2009
A Caudal (pone.0326339.ref058) 2021; 102
RYL Kuo (pone.0326339.ref015) 2022; 304
S Pache (pone.0326339.ref004) 2018
B Fritz (pone.0326339.ref055) 2022; 51
the PRISMA-DTA Group (pone.0326339.ref016) 2018; 319
V Couteaux (pone.0326339.ref032) 2019; 100
V Roblot (pone.0326339.ref043) 2019; 100
References_xml – volume: 1
  year: 2015
  ident: pone.0326339.ref003
  article-title: Early knee osteoarthritis
  publication-title: RMD Open
  doi: 10.1136/rmdopen-2015-000062
– volume: 104
  start-page: 133
  issue: 3
  year: 2023
  ident: pone.0326339.ref056
  article-title: End-to-end deep learning model for segmentation and severity staging of anterior cruciate ligament injuries from MRI
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2022.10.010
– volume: 34
  start-page: 91
  year: 2022
  ident: pone.0326339.ref045
  article-title: Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model
  publication-title: J Orthop Translat
  doi: 10.1016/j.jot.2022.05.006
– volume: 28
  start-page: 73
  issue: 2
  year: 2019
  ident: pone.0326339.ref011
  article-title: Introduction to artificial intelligence in medicine
  publication-title: Minim Invasive Ther Allied Technol
  doi: 10.1080/13645706.2019.1575882
– volume: 35
  start-page: 200
  issue: 2
  year: 2022
  ident: pone.0326339.ref027
  article-title: Meniscal tear and ACL injury detection model based on AlexNet and Iterative ReliefF
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-022-00581-3
– volume: 3
  issue: 3
  year: 2021
  ident: pone.0326339.ref035
  article-title: Automatic deep learning-assisted detection and grading of abnormalities in knee MRI studies
  publication-title: Radiol Artif Intell
– volume: 25
  year: 2023
  ident: pone.0326339.ref014
  article-title: Unassisted clinicians versus deep learning-assisted clinicians in image-based cancer diagnostics: systematic review with meta-analysis
  publication-title: J Med Internet Res
– volume: 20
  start-page: 6059
  issue: 12
  year: 2023
  ident: pone.0326339.ref051
  article-title: A Machine Learning Approach for Knee Injury Detection from Magnetic Resonance Imaging
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph20126059
– volume: 319
  start-page: 388
  issue: 4
  year: 2018
  ident: pone.0326339.ref016
  article-title: Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement
  publication-title: JAMA
  doi: 10.1001/jama.2017.19163
– volume: 49
  start-page: 400
  issue: 2
  year: 2019
  ident: pone.0326339.ref042
  article-title: 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26246
– year: 2009
  ident: pone.0326339.ref019
  article-title: Metandi: meta-analysis of diagnostic accuracy using hierarchical logistic regression
  publication-title: Stata J
– start-page: 691531
  volume-title: Medical Imaging 2008: Computer-Aided Diagnosis
  year: 2008
  ident: pone.0326339.ref028
  article-title: Automated discovery of meniscal tears on MR imaging: a novel high-performance computer-aided detection application for radiologists
  doi: 10.1117/12.773167
– volume: 31
  start-page: 761
  issue: 5
  year: 2013
  ident: pone.0326339.ref024
  article-title: Pattern-recognition system, designed on GPU, for discriminating between injured normal and pathological knee cartilage
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.10.029
– volume: 23
  start-page: 510
  issue: 1
  year: 2022
  ident: pone.0326339.ref009
  article-title: Development of convolutional neural network model for diagnosing meniscus tear using magnetic resonance image
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-022-05468-6
– volume: 3
  start-page: 1009
  issue: 4
  year: 2021
  ident: pone.0326339.ref046
  article-title: Detection and classification of knee injuries from MR Images Using the MRNet Dataset with progressively operating deep learning methods
  publication-title: Mach Learn Knowl Extr
  doi: 10.3390/make3040050
– volume: 11
  start-page: 144349
  year: 2023
  ident: pone.0326339.ref049
  article-title: Deep learning-based meniscus tear detection from accelerated MRI
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3344456
– volume: 39
  start-page: 1776
  issue: 10
  year: 2018
  ident: pone.0326339.ref012
  article-title: Deep learning in neuroradiology
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5543
– volume: 13
  start-page: 1
  year: 2015
  ident: pone.0326339.ref022
  article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement
  publication-title: BMC Med
  doi: 10.1186/s12916-014-0241-z
– volume: 36
  start-page: 1208
  issue: 2
  year: 2009
  ident: pone.0326339.ref041
  article-title: An automatic diagnosis method for the knee meniscus tears in MR images
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.11.036
– volume: 211
  start-page: 106297
  year: 2021
  ident: pone.0326339.ref036
  article-title: Fusion of CNN1 and CNN2-based magnetic resonance image diagnosis of knee meniscus injury and a comparative analysis with computed tomography
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106297
– volume: 15
  issue: 11
  year: 2018
  ident: pone.0326339.ref031
  article-title: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002699
– volume: 11
  start-page: 1225
  issue: 7
  year: 2021
  ident: pone.0326339.ref026
  article-title: Comparison of the predicting performance for fate of medial meniscus posterior root tear based on treatment strategies: a comparison between logistic regression, gradient boosting, and CNN algorithms
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics11071225
– volume: 2022
  start-page: 1
  year: 2022
  ident: pone.0326339.ref052
  article-title: A ResNet50-Based Approach to Detect Multiple Types of Knee Tears Using MRIs
  publication-title: Math Probl Eng
  doi: 10.1155/2022/5248338
– volume: 290
  start-page: 435
  issue: 2
  year: 2019
  ident: pone.0326339.ref007
  article-title: Diagnosis of knee meniscal injuries by using three-dimensional MRI: a systematic review and meta-analysis of diagnostic performance
  publication-title: Radiology
  doi: 10.1148/radiol.2018181212
– volume: 82
  start-page: 104523
  year: 2023
  ident: pone.0326339.ref039
  article-title: Development of artificial intelligence-based clinical decision support system for diagnosis of meniscal injury using magnetic resonance images
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104523
– volume: 99
  start-page: 55
  issue: 2
  year: 2018
  ident: pone.0326339.ref008
  article-title: Magnetic resonance imaging (MRI) of the knee: identification of difficult-to-diagnose meniscal lesions
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2017.12.005
– volume: 27
  start-page: 247
  issue: 1
  year: 2022
  ident: pone.0326339.ref038
  article-title: Automated meniscus segmentation and tear detection of knee MRI with a 3D mask-RCNN
  publication-title: Eur J Med Res
  doi: 10.1186/s40001-022-00883-w
– volume: 2022
  start-page: 2155132
  year: 2022
  ident: pone.0326339.ref040
  article-title: Feasibility of constructing an automatic meniscus injury detection model based on dual-mode magnetic resonance imaging (MRI) radiomics of the knee joint
  publication-title: Comput Math Methods Med
– volume: 83
  start-page: 64
  year: 2021
  ident: pone.0326339.ref044
  article-title: Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2021.02.010
– year: 2009
  ident: pone.0326339.ref018
– volume: 13
  start-page: 2049
  issue: 12
  year: 2023
  ident: pone.0326339.ref053
  article-title: Visual cascaded-progressive convolutional neural network (C-PCNN) for diagnosis of meniscus injury
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics13122049
– volume: 102
  start-page: 321
  issue: 5
  year: 2021
  ident: pone.0326339.ref058
  article-title: Medial meniscal ossicles: associated knee MRI findings in a multicenter case-control study
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2020.11.013
– year: 2018
  ident: pone.0326339.ref004
  article-title: Current concepts review meniscal root tears: current concepts review.
– volume: 29
  start-page: 677
  issue: 6
  year: 2016
  ident: pone.0326339.ref029
  article-title: A computer-aided Type-II fuzzy image processing for diagnosis of meniscus tear
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-016-9884-y
– volume: 74
  start-page: 785
  issue: 3
  year: 2018
  ident: pone.0326339.ref021
  article-title: Quantifying publication bias in meta-analysis
  publication-title: Biometrics
  doi: 10.1111/biom.12817
– volume: 72
  start-page: 47
  issue: 2
  year: 2024
  ident: pone.0326339.ref047
  article-title: Comparative analysis of deep convolutional neural network for detection of knee injuries
  publication-title: Int J Eng Trends Technol
  doi: 10.14445/22315381/IJETT-V72I2P106
– volume: 51
  start-page: 315
  issue: 2
  year: 2022
  ident: pone.0326339.ref055
  article-title: Artificial intelligence for MRI diagnosis of joints: a scoping review of the current state-of-the-art of deep learning-based approaches
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-021-03830-8
– volume: 97
  start-page: 118
  year: 2019
  ident: pone.0326339.ref030
  article-title: An efficient and fast computer-aided method for fully automated diagnosis of meniscal tears from magnetic resonance images
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2018.11.008
– volume: 33
  start-page: 916
  issue: 4
  year: 2020
  ident: pone.0326339.ref037
  article-title: Automatic segmentation of meniscus in multispectral MRI using regions with convolutional neural network (R-CNN)
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-020-00329-x
– volume: 37
  start-page: 771
  issue: 2
  year: 2021
  ident: pone.0326339.ref054
  article-title: Diagnostic performance of artificial intelligence for detection of anterior cruciate ligament and meniscus tears: a systematic review
  publication-title: Arthroscopy-J Arthrosc Relat Surg
  doi: 10.1016/j.arthro.2020.09.012
– volume: 74
  start-page: 471
  issue: 3
  year: 2023
  ident: pone.0326339.ref017
  article-title: Writing a successful systematic review manuscript for a radiology journal
  publication-title: Can Assoc Radiol J
  doi: 10.1177/08465371221120594
– volume: 170
  start-page: 51
  issue: 1
  year: 2019
  ident: pone.0326339.ref023
  article-title: PROBAST: a tool to assess the risk of bias and applicability of prediction model studies
  publication-title: Ann Intern Med
  doi: 10.7326/M18-1376
– volume: 32
  start-page: 7411
  issue: 30
  year: 2011
  ident: pone.0326339.ref001
  article-title: The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.06.037
– volume: 46
  start-page: 552
  issue: 5
  year: 2017
  ident: pone.0326339.ref057
  article-title: Meniscus morphology: Does tear type matter? A narrative review with focus on relevance for osteoarthritis research
  publication-title: Semin Arthritis Rheum
  doi: 10.1016/j.semarthrit.2016.11.005
– volume: 57
  start-page: 740
  issue: 3
  year: 2023
  ident: pone.0326339.ref002
  article-title: Automatic detection of meniscus tears using backbone convolutional neural networks on knee MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28284
– volume: 467
  start-page: 36
  year: 2022
  ident: pone.0326339.ref025
  article-title: Automated segmentation of knee articular cartilage: joint deep and hand-crafted learning-based framework using diffeomorphic mapping
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.09.048
– volume: 33
  start-page: 450
  issue: 2
  year: 2025
  ident: pone.0326339.ref048
  article-title: Achieving high accuracy in meniscus tear detection using advanced deep learning models with a relatively small data set
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1002/ksa.12369
– volume: 104
  start-page: 6
  issue: 1
  year: 2023
  ident: pone.0326339.ref013
  article-title: Artificial intelligence in emergency radiology: a review of applications and possibilities
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2022.07.005
– volume: 100
  start-page: 243
  issue: 4
  year: 2019
  ident: pone.0326339.ref043
  article-title: Artificial intelligence to diagnose meniscus tears on MRI
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2019.02.007
– volume: 49
  start-page: 1207
  issue: 8
  year: 2020
  ident: pone.0326339.ref033
  article-title: Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-020-03410-2
– volume: 38
  start-page: 191
  issue: 1
  year: 2025
  ident: pone.0326339.ref050
  article-title: Fully and weakly supervised deep learning for meniscal injury classification, and location based on MRI
  publication-title: J Imaging Inform Med
  doi: 10.1007/s10278-024-01198-4
– year: 2017
  ident: pone.0326339.ref010
  article-title: Artificial intelligence in medicine
  publication-title: Metabolism
– volume: 199
  start-page: 481
  issue: 3
  year: 2012
  ident: pone.0326339.ref006
  article-title: How I diagnose meniscal tears on knee MRI
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.12.8663
– volume: 304
  start-page: 50
  issue: 1
  year: 2022
  ident: pone.0326339.ref015
  article-title: Artificial intelligence in fracture detection: a systematic review and meta-analysis
  publication-title: Radiology
  doi: 10.1148/radiol.211785
– volume: 84
  start-page: 5
  year: 2007
  ident: pone.0326339.ref005
  article-title: Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: a systematic review
  publication-title: Br Med Bull
  doi: 10.1093/bmb/ldm022
– volume: 32
  start-page: 241
  issue: 3
  year: 2024
  ident: pone.0326339.ref020
  article-title: Artificial intelligence in osteoarthritis detection: a systematic review and meta-analysis
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2023.09.011
– volume: 100
  start-page: 235
  issue: 4
  year: 2019
  ident: pone.0326339.ref032
  article-title: Automatic knee meniscus tear detection and orientation classification with Mask-RCNN
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2019.03.002
– volume: 9
  start-page: 747217
  year: 2021
  ident: pone.0326339.ref034
  article-title: A multi-task deep learning method for detection of meniscal tears in MRI data from the osteoarthritis initiative database
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2021.747217
SSID ssj0053866
Score 2.4825702
SecondaryResourceType review_article
Snippet The aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI) algorithms in...
Aim of the study The aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI)...
Aim of the studyThe aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI)...
Aim of the study The aim was to systematically review the literature and perform a meta-analysis to estimate the performance of artificial intelligence (AI)...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0326339
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Bias
Computer and Information Sciences
Confidence intervals
Contingency
Contingency tables
Data augmentation
Deep learning
Diagnosis
Diagnostic tests
Electronic health records
Health aspects
Humans
Injuries
Injury analysis
Knee
Knee Injuries - diagnosis
Machine learning
Magnetic resonance imaging
Medicine and Health Sciences
Meniscus
Meta-analysis
Orthopedics
Osteoarthritis
People and Places
Performance measurement
Physical Sciences
Prediction models
Regression analysis
Research and Analysis Methods
Science Policy
Sensitivity and Specificity
Statistical analysis
Systematic review
Tables (data)
Tibial Meniscus Injuries - diagnosis
Tibial Meniscus Injuries - diagnostic imaging
Transfer learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQL3BBLK_NsoBBSMAh3cR1nJhbeawWJEACFu0tcvxYCsWtSCvElV_OTOxmG7ESe-BW1VNXmW_sfE5mviHk0aQsM6PzPDXO8RT7IaWNrUQquc60EZVkDh8NvH0njo75m5PiZKvVF-aEBXng4LgD1NsqjcVnFUDmtagU05KrhmnhBGMdNcoquTlMhT0YVrEQsVBuUuYHEZfxcuHtOAPGMsHm4Fs3ok6vv9-VR8v5oj2Pcv6dOXl57Zfq1081n2_dlg6vkauRT9JpuI4dcsn662QnrtiWPomy0k9vkN8vQ1bdrKULR795a-l362ctgERn_iu2rmsppsGfUvRKUJagsy3Jzmd0Ss-Un2moeqHKG5hopVIV9U1wehP-C82WZ6UJN8nx4atPL47S2IEh1cCTVqlUjW6EK4DkKGW5cwWTRjVcAiUXjaisrtDTfOJU0zAHRyfJcgGfNC-YASp0i4w8-HyXUG2awhqpu3bXMIVSWppKFUApFedcJSTdwFEvg9BG3b1tK-GAEnxZI3x1hC8hzxGz3hZlsrsvIHjqGDz1v4InIfcR8TrUnPaLvZ5WHNODuKwS8rCzQKkMj7k4p2rdtvXr958vYPTxw8DocTRyC4gdrWL9A1wTSnANLPcHlrDg9WB4F-Nz45W2hj0ZUCjBi_DLTcyeP_ygH8ZJMb_O28U62ABRzid5Qm6HEO89C5QeaHaWJaQaBP_A9cMRP_vSKZXnXcczUSZk3K-TC6G79z_QvUOuMOzWnImU8X0yWv1Y27tAIVfNvW63-AMoanFu
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZG9wAviPFrgQEGIQEP6RLHcRIkhDrYNJAYaLBpb5FjO6VQkrC0Qrzyl3OXOGkjJrS3qr44yt358tm5-46Qp0EUeVr5vqvznLvYD8nNTCzchCtPaREnLMejgQ9H4vCEvz8LzzbIUVcLg2mVXUxsArUuFZ6R74LjBbGIOOevq58udo3Cr6tdCw1pWyvoVw3F2BWyyZAZa0Q29_aPPh13sRlWtxC2gC6I_F1rr3FVFmbsAZIJsGn42guq4fHvo_Wompf1RVD034zKq8uikr9_yfl87XV1cINctziTTlrH2CIbprhJtuxKrulzSzf94hb587bNtpvVtMzp98IY-sMUsxqMR2fFN2xpV1NMj59SdLOWcYLO1qg8X9IJXTFC07YahspCw0QL6UrLe4LT6_ZeKFatShZuk5OD_S9vDl3bmcFVgJ8WbiIzlYk8BPAjpeF5HrJEy4wnANVFJmKjYtQ0D3KZZSyHLVXCfAG_FA-ZBoh0h4wK0Pk2oUpnodGJatpgwxRSqkTHMgSoKcHY0iFuZ460agk40uYrXAQbl1aXKZovteZzyB7arJdF-uzmj_J8mtrVmCKJW6QNHoDBDlGJWDKVwN2ZErlgDG76CC2etrWofRBIJzHHtCGexA550kgghUaBOTpTuazr9N3H00sIfT4eCD2zQnkJvqOkrYuAZ0JqroHkzkASAoEaDG-jf3ZaqdPVkoErO5-9ePhxP4yTYt5dYcplKwMA2g98h9xtXbzXLEB9gN-e55B44PwD1Q9HitnXhsHcbzqhicgh436dXMq69_7_IPfJNYb9mT3hMr5DRovzpXkAoHGRPbSR4C_4aW_H
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSICES-I4TsJb-ZgG0gYCOo2nyPHHKCtpRVIheOQv5xy7WQNDKm9VfXbk853zc3z3O4QexGkaKhlFRBnDiK2HREqdcZIzGUrFs5wa-2lg_4Dvjdmbo-RoAz1Z5sKs3t_HafTUa3Q4n1V6GALWiOP8HNrkCSDvAdocH7wbfXIXx5RwGsY-O-5fXXtvn5akv9uKB_PprD4LZ_4dLnl-Uc3Fj-9iOl15F-1eQvvLWbgQlJPhoimH8ucfBI_rTvMyuuhBKR45K9pCG7q6gra829f4keemfnwV_XrpQvMmNZ4ZfFJpjb_qalLDSuNJ9cXWv6uxjaU_xtYmHT0Fnqzwfj7DI3xKH41d6gwWlYKBGkGEJ0mxwyv3LCs2P81vuIbGu68-vtgjvowDkQC2GpKLUpbcJICUhNDMmITmSpQsB1zPS55pmcUZB2RkRFlSA-evnEYcfkmWUAV46joaVKCXbYSlKhOtctnWzIYhhJC5ykQCuFQwxkSAyHJ5i7lj6yjaK7sUTjlOl4VVceFVHKDn1gY6Wcu13f4Ba1N41y0s41uqtP1aBsdJyTNBZQ5Pp5IbTik89K61oMIlrnY7RjHKmI0xYnkWoPuthOXbqGxAz7FY1HXx-u3hGkIf3veEHnohMwNblMInUcCcLI9XT3KnJwm7huw1b1t7X2qlLmBjh1VIQYvQc-kDZzff65rtoDZIr9KzhZMBtB3FUYBuOJfpNAvnAsDqYRigrOdMPdX3W6rJ55buPGrLpvE0QMPO79Za3Zv_2-EWukBteeeQE8p20KD5ttC3AXM25R2_1fwGE6OCPw
  priority: 102
  providerName: Unpaywall
Title Diagnosis of knee meniscal injuries using artificial intelligence: A systematic review and meta-analysis of diagnostic performance
URI https://www.ncbi.nlm.nih.gov/pubmed/40554500
https://www.proquest.com/docview/3223867444
https://www.proquest.com/docview/3223929131
https://pubmed.ncbi.nlm.nih.gov/PMC12186967
https://doi.org/10.1371/journal.pone.0326339
https://doaj.org/article/55077deb142149c68a2c94ab2c6f622a
http://dx.doi.org/10.1371/journal.pone.0326339
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa27gFeEOPXAqMYhAQ8pEpSx4mREOrGykBamQadylPkOHbpVpLStIK98pdzl6TZIoo08RJV8dlW7872Z-f8HSHPu0HgJMp17cQYZmM-JDvWIbcFU45KeCg8g0cDRwN-OGQfR_5og6xytlYKzNdu7TCf1HA-7fz6cfEWBvybImtD4K4qdWZZqjsO4JFuV2ySLVirBCZzOGL1dwUY3ZxXF-j-VbOxQBU8_vVs3ZpNs3wdFP07ovLGMp3Ji59yOr2yXPVvk1sVzqS90jG2yYZO75DtaiTn9GVFN_3qLvn9roy2m-Q0M_Q81Zp-1-kkB-PRSXqGKe1yiuHxY4puVjJO0MkVKs_XtEcvGaFpeRuGyjSBhhbSlhXvCTaflH2h2OzyysI9MuwffNk_tKvMDLYC_LSwhYxVzI0P4EdKzYzxPZHImAmA6jzmoVYhapp1jYxjz8CWSnguh1-K-V4CEOk-aaWg8x1CVRL7OhGqSIMNTUipRBJKH6CmZIxJi9grc0SzkoAjKr7CBbBxKXUZofmiynwW2UOb1bJIn128yObjqBqNEZK4BYnGAzDYISoeSk8J6N1T3HDPg06foMWj8i5qPQlEvZBh2BAToUWeFRJIoZFijM5YLvM8-vDp9BpCn08aQi8qIZOB7yhZ3YuA_4TUXA3J3YYkTASqUbyD_rnSSh7BXA1WCECLUHPls-uLn9bF2CjG3aU6W5YyAKDdrmuRB6WL15oFqA_w23EsEjacv6H6Zkk6-VYwmLtFJjQeWKRTj5NrWffh__f1iNz0MHezw22P7ZLWYr7UjwFQLuI22QxGATzDfRef_fdtsrV3MDg-aRdHNO1iDoF3w8Fx7-sfB9uBww
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V4VAuiPKqodAFgYCDU3u9XttICAVKldAHErQoN7Ner0Mg2KZOVPXKD-I3MuNXYlGhXnqLsuNdeWd2HuuZbwh56nieFSvbNuMk4Sb2QzIj7Qsz4MpSsfADluDVwOGRGJ7wD2N3vEb-NLUwmFbZ6MRSUceZwjvyHRA8xxce5_xN_svErlH4dbVpoVGJxb4-P4OQrXg92gX-PmNs7_3xu6FZdxUwFdj-uRnISEUiccFwS6l5krgsiGXEA3AzRSR8rXxYCAx1IqOIJRAOBMwW8Etxl8U-gi-Byr_GHdAlcH68cRvgufhcXZ7nePZOLQ39PEt13wI_ycGW5Cvmr-wS0NqCXj7Liosc3X_zNdcXaS7Pz-RstmIM926SG7UXSweV2G2QNZ3eIhu1nijoixrM-uVt8nu3yuWbFjRL6I9Ua_pTp9MCRINO0-_YMK-gmHw_oSjEFZ4Fna4Ahb6iA7rEm6ZVrQ2VaQwTzaUpa1QVnD6u1kKyfFkQcYecXAmH7pJeCnu-SaiKI1fHgSqbbMMUUqog9qULjqwEUZIGMRt2hHkF7xGW3_g8CIuqvQyRfWHNPoO8RZ61tAjOXf6RnU7C-qyHCBHnxRqv1yD-VMKXTAWwOlMiEYzBotvI8bCqdG1VTDjwOSYl8cA3yJOSAgE6UswAmshFUYSjj18uQfT5U4foeU2UZCA7StZVF_BOCPzVodzqUIKaUZ3hTZTPZleKcHkg4clGZi8eftwO46SY1ZfqbFHRgHtuO7ZB7lUi3u4sBBLg3FuWQfyO8He2vjuSTr-V-Oh22WdNeAbpt-fkUty9__8X2Sbrw-PDg_BgdLT_gFxn2AnaEibjW6Q3P13oh-CezqNHpU6g5OtVK6G_NKOmig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIgEviPG1wGAGgYCHtImTOAkSQoVSbQwGAob6FhzHLoWShKXVtFf-LP467vLVRkxoL3ur6out-H4-3znn3xHy0PF9K5G2bSZauybWQzJjFXAzdKUlEx6ETOPRwLsDvnvovpl4kw3yp7kLg2mVjU0sDXWSSTwjHwDwnID7rusOdJ0W8WE0fpH_MrGCFH5pbcppVBDZVyfHEL4Vz_dGoOtHjI1ff361a9YVBkwJfsDCDEUsY6492MSFUK7WHgsTEbshuJw85oGSAQwKm7YWccw0hAYhszn8kq7HkgCJmMD8X_AdJ8R0Qn_SBnsePldf1XN8e1Ajo59nqepb4DM5WJ58bSssKwa0-0Ivn2fFaU7vv7mbl5ZpLk6OxXy-tjGOr5IrtUdLhxUEN8mGSq-RzdpmFPRJTWz99Dr5Pary-mYFzTT9kSpFf6p0VgBM6Cz9jsXzCoqJ-FOKgK64LehsjTT0GR3SFfc0re7dUJEm0NFCmKJmWMHuk2osFMtXlyNukMNz0dBN0kthzrcIlUnsqSSUZcFt6EIIGSaB8MCpFQArYRCzUUeUV1QfUfm9z4cQqZrLCNUX1eozyEvUWSuLRN3lH9nRNKrXfYR0cX6i8KgNYlHJA8FkCKMzyTVnDAbdQY1H1a3X1txEw8DFBCU3DAzyoJRAso4UYT8Vy6KI9t5_OYPQp48doce1kM4AO1LUNzDgnZAErCO53ZEEkyM7zVuIz2ZWimi1OOHJBrOnN99vm7FTzPBLVbasZMBVtx3bILcqiLczC0EFOPqWZZCgA_7O1Hdb0tm3kivdLmuucd8g_XadnEm7t___IjvkIpif6O3ewf4dcplhUWiLm8zdJr3F0VLdBU91Ed8rTQIlX8_bBv0FHqOqzQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSICES-I4TsJb-ZgG0gYCOo2nyPHHKCtpRVIheOQv5xy7WQNDKm9VfXbk853zc3z3O4QexGkaKhlFRBnDiK2HREqdcZIzGUrFs5wa-2lg_4Dvjdmbo-RoAz1Z5sKs3t_HafTUa3Q4n1V6GALWiOP8HNrkCSDvAdocH7wbfXIXx5RwGsY-O-5fXXtvn5akv9uKB_PprD4LZ_4dLnl-Uc3Fj-9iOl15F-1eQvvLWbgQlJPhoimH8ucfBI_rTvMyuuhBKR45K9pCG7q6gra829f4keemfnwV_XrpQvMmNZ4ZfFJpjb_qalLDSuNJ9cXWv6uxjaU_xtYmHT0Fnqzwfj7DI3xKH41d6gwWlYKBGkGEJ0mxwyv3LCs2P81vuIbGu68-vtgjvowDkQC2GpKLUpbcJICUhNDMmITmSpQsB1zPS55pmcUZB2RkRFlSA-evnEYcfkmWUAV46joaVKCXbYSlKhOtctnWzIYhhJC5ykQCuFQwxkSAyHJ5i7lj6yjaK7sUTjlOl4VVceFVHKDn1gY6Wcu13f4Ba1N41y0s41uqtP1aBsdJyTNBZQ5Pp5IbTik89K61oMIlrnY7RjHKmI0xYnkWoPuthOXbqGxAz7FY1HXx-u3hGkIf3veEHnohMwNblMInUcCcLI9XT3KnJwm7huw1b1t7X2qlLmBjh1VIQYvQc-kDZzff65rtoDZIr9KzhZMBtB3FUYBuOJfpNAvnAsDqYRigrOdMPdX3W6rJ55buPGrLpvE0QMPO79Za3Zv_2-EWukBteeeQE8p20KD5ttC3AXM25R2_1fwGE6OCPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+knee+meniscal+injuries+using+artificial+intelligence%3A+A+systematic+review+and+meta-analysis+of+diagnostic+performance&rft.jtitle=PloS+one&rft.au=Mohammadi%2C+Soheil&rft.au=Jahanshahi%2C+Ali&rft.au=Shahrabi+Farahani%2C+Mohammad&rft.au=Salehi%2C+Mohammad+Amin&rft.date=2025-06-24&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pone.0326339&rft.externalDocID=PMC12186967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon