Prediction and accuracy improvement of insulin pump in-fusion deviation based on LSTM and PID

In order to further improve the injection precision of the PH300 insulin pump, this paper optimizes and improves the mechanical structure and control algorithm of the PH300. The improved PH300 uses a proportional-integral-derivative controller based on back propagation neural network (BP-PID) algori...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0324261
Main Authors Wang, Leijie, Guo, Xudong, Peng, Qiuyue, Zhang, Hongmei, Yang, Yuan, Wang, Hongyan, Wang, Yongxin, Liang, Haofang, Ming, Wuyi, Zhang, Zhen
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 04.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0324261

Cover

More Information
Summary:In order to further improve the injection precision of the PH300 insulin pump, this paper optimizes and improves the mechanical structure and control algorithm of the PH300. The improved PH300 uses a proportional-integral-derivative controller based on back propagation neural network (BP-PID) algorithm to control operation, and the experimental results show that the minimum effective single infusion dose of the improved PH300 is 0.047 U, which is reduced by 50.52%. The deviation reduction of low-dose infusion (0.1U-0.9U) ranged from 1.47% to 10.87%, with a mean of 4.91%. The mean deviation of the improved PH300 decreases by 12.85% after a 24h low basal rate (0.5U/h) injection. In addition, Long Short-Term Memory (LSTM) was used to predict the deviation during injection, and the predicted values were uniformly compensated for in subsequent injection experiments. The LSTM model performed best with a training set of 85%, a test set of 15%, an epoch of 300, a batch number of 256, and 32 hidden layer neurons. After compensation, the mean infusion deviation for large doses was reduced by 12.05%, and the maximum deviation by 14.12%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0324261