Guanine-Decorated Graphene Nanostructures for Sensitive Monitoring of Neuron-Specific Enolase Based on an Enzyme-Free Electrocatalytic Reaction

A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. T...

Full description

Saved in:
Bibliographic Details
Published inAnalytical Sciences Vol. 29; no. 12; pp. 1195 - 1201
Main Authors LI, Guang-Zhou, TIAN, Feng
Format Journal Article
LanguageEnglish
Published Singapore The Japan Society for Analytical Chemistry 2013
Springer Nature Singapore
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0910-6340
1348-2246
1348-2246
DOI10.2116/analsci.29.1195

Cover

Abstract A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)32+ through the catalytic oxidation of Ru(bpy)32+ toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL−1 NSE with a detection limit of 1.0 pg mL−1 at the 3Sblank level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8 – 7.0%.
AbstractList A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy) 3 2+ through the catalytic oxidation of Ru(bpy) 3 2+ toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL –1 NSE with a detection limit of 1.0 pg mL –1 at the 3 S blank level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8 – 7.0%.
A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)3(2+) through the catalytic oxidation of Ru(bpy)3(2+) toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL(-1) NSE with a detection limit of 1.0 pg mL(-1) at the 3S(blank) level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8-7.0%.
A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)32+ through the catalytic oxidation of Ru(bpy)32+ toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL-1 NSE with a detection limit of 1.0 pg mL-1 at the 3Sblank level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8 - 7.0%.
A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)32+ through the catalytic oxidation of Ru(bpy)32+ toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL−1 NSE with a detection limit of 1.0 pg mL−1 at the 3Sblank level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8 – 7.0%.
A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)3(2+) through the catalytic oxidation of Ru(bpy)3(2+) toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL(-1) NSE with a detection limit of 1.0 pg mL(-1) at the 3S(blank) level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8-7.0%.A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)3(2+) through the catalytic oxidation of Ru(bpy)3(2+) toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL(-1) NSE with a detection limit of 1.0 pg mL(-1) at the 3S(blank) level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8-7.0%.
Author LI, Guang-Zhou
TIAN, Feng
Author_xml – sequence: 1
  fullname: LI, Guang-Zhou
  organization: Department of Sports and Health, Chongqing Three Gorges University
– sequence: 1
  fullname: TIAN, Feng
  organization: Department of Sports and Health, Chongqing Three Gorges University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24334987$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1vEzEQhi1URD_gzA1Z4sJlU9vr9WaPENKAVIpE4WzNeseto40dbC9S-BP8ZXaVpIJKvdiS_Txjz7zn5MQHj4S85mwmOFeX4KFPxs1EM-O8qZ6RM17KeSGEVCfkjDWcFaqU7JScp7RmjIu5EC_IqZBlKZt5fUb-rAbwzmPxEU2IkLGjqwjbe_RIb8CHlONg8hAxURsivUWfXHa_kH4J3uUQnb-jwdIbHGLwxe0WjbPO0KUPPSSkH8alo8FT8OPZ790Gi6uISJc9mhyDgQz9Lo_CNwSTXfAvyXM7toSvDvsF-XG1_L74VFx_XX1evL8ujJIyF7WpoOWlqitZouVz2cpWdLWyVqFSDTBrWot2XE0HspOqMqyWbSOY7Szwurwg7_Z1tzH8HDBlvXHJYN-DxzAkzWVdV5WoBBvRt4_QdRjiNPiJmjNeq5qP1JsDNbQb7PQ2ug3EnT6OegSqPWBiSCmi1cZlmHrOEVyvOdNTpPoQqRaNniIdvctH3rH00wbbG2k75YPxnw8_qSz2yjpluMOHJyCO4fT4Hy-O1sOtuYeo0Zd_AT9X0Ts
CitedBy_id crossref_primary_10_1016_j_aca_2019_04_032
crossref_primary_10_1016_j_ab_2017_10_009
crossref_primary_10_1021_acsomega_3c06388
crossref_primary_10_1080_10408347_2023_2258982
crossref_primary_10_1007_s12010_022_03802_1
crossref_primary_10_1016_j_lungcan_2024_108078
crossref_primary_10_1042_BSR20192732
crossref_primary_10_1002_elan_201800193
crossref_primary_10_1016_j_jenvman_2024_121072
crossref_primary_10_1016_j_talanta_2019_120251
Cites_doi 10.1039/C2CS35342C
10.1021/ja962255b
10.1016/j.bios.2012.05.006
10.1002/anie.201102941
10.1039/c2cc38493k
10.1002/chem.201203131
10.1021/ja01539a017
10.1002/elan.201200447
10.1515/revac-2012-0021
10.1021/la301963v
10.1039/c3ay26476a
10.1016/j.aca.2012.10.060
10.1021/ac060809f
10.1021/cr020373d
10.1021/la030428m
10.1039/C1CC15383H
10.1016/j.cca.2013.02.014
10.1002/adfm.201100773
10.1021/ac103047c
10.1021/cr300020c
10.4155/bio.12.298
10.1038/nchem.1589
10.1016/S1074-5521(99)80111-2
10.1016/j.bios.2013.02.045
ContentType Journal Article
Copyright 2013 by The Japan Society for Analytical Chemistry
The Japan Society for Analytical Chemistry 2013
Copyright Japan Science and Technology Agency 2013
Copyright_xml – notice: 2013 by The Japan Society for Analytical Chemistry
– notice: The Japan Society for Analytical Chemistry 2013
– notice: Copyright Japan Science and Technology Agency 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
FR3
H8G
JG9
L7M
P64
7X8
DOI 10.2116/analsci.29.1195
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Copper Technical Reference Library
Materials Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Aluminium Industry Abstracts
Technology Research Database
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1348-2246
EndPage 1201
ExternalDocumentID 3184358851
24334987
10_2116_analsci_29_1195
article_analsci_29_12_29_1195_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
23M
2WC
406
5GY
6J9
7.U
AACDK
AAJBT
AASML
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABRTQ
ABTKH
ACAOD
ACGFO
ACIWK
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
AEFQL
AEMSY
AENEX
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFRAH
AGQEE
AHPBZ
AHWEU
AIAKS
AIGIU
AIXLP
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ATHPR
AYFIA
BAWUL
CS3
DIK
DPUIP
E3Z
EBLON
EBS
EJD
F5P
GX1
HH5
IWAJR
JSF
JSH
JZLTJ
KQ8
LLZTM
NPVJJ
OK1
OVT
P2P
RDB
RJT
RNS
ROL
RSV
RZJ
RZV
SJYHP
SOJ
TN5
TR2
UPT
XSB
~02
0R~
3O-
53G
AATNV
ACDTI
AGMZJ
AI.
FIGPU
M~E
TKC
VH1
AAYXX
ABJCF
AEUYN
AFOHR
BGLVJ
CCPQU
CITATION
HMCUK
KB.
M2P
M7P
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
FR3
H8G
JG9
L7M
P64
7X8
ID FETCH-LOGICAL-c644t-7c5ab1367543ef184b4b2d76ff6e669a0fcbfeffcbcda4d465c074b920fdfa173
ISSN 0910-6340
1348-2246
IngestDate Sat Sep 27 20:55:01 EDT 2025
Tue Oct 07 06:25:39 EDT 2025
Wed Feb 19 02:37:11 EST 2025
Wed Oct 01 02:23:19 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Fri Feb 21 02:42:34 EST 2025
Wed Sep 03 06:15:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords electrochemical immunosensor
bioelectrocatalytic reaction
Guanine-decorated graphene nanostructures
neuron-specific enolase
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c644t-7c5ab1367543ef184b4b2d76ff6e669a0fcbfeffcbcda4d465c074b920fdfa173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/analsci/29/12/29_1195/_article/-char/en
PMID 24334987
PQID 1478017671
PQPubID 1966371
PageCount 7
ParticipantIDs proquest_miscellaneous_1477552520
proquest_journals_1478017671
pubmed_primary_24334987
crossref_citationtrail_10_2116_analsci_29_1195
crossref_primary_10_2116_analsci_29_1195
springer_journals_10_2116_analsci_29_1195
jstage_primary_article_analsci_29_12_29_1195_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-00-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013-00-00
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Japan
– name: Tokyo
PublicationTitle Analytical Sciences
PublicationTitleAbbrev ANAL. SCI
PublicationTitleAlternate Anal Sci
PublicationYear 2013
Publisher The Japan Society for Analytical Chemistry
Springer Nature Singapore
Nature Publishing Group
Publisher_xml – name: The Japan Society for Analytical Chemistry
– name: Springer Nature Singapore
– name: Nature Publishing Group
References 17. J. Wang, G. Liu, M. Engelhard, and Y. Lin, Anal. Chem., 2006, 78, 6974.
19. J. Tang, L. Hou, D. Tang, J. Zhou, Z. Wang, J. Li, and G. Chen, Biosens. Bioelectron., 2012, 38, 86.
16. (a) E. Palecek and M. Bartosik, Chem. Rev., 2012, 112, 3427; (b) L. Lv, Z. Guo, J. Wang, and E. Wang, Curr. Pharm. Des., 2012, 18, 2076; (c) X. Li and J. Li, Rev. Anal. Chem., 2011, 30, 23.
30. E. Randviir and C. Banks, Anal. Methods, 2013, 5, 1098.
13. M. Chhowalla, H. Shin, G. Eda, L. Li, K. Loh, and H. Zhang, Nat. Chem., 2013, 5, 263.
9. G. Wang, H. Huang, B. Wang, X. Zhang, and L. Wang, Chem. Commun., 2012, 48, 720.
14. (a) Y. Zhu and J. Tour, ACS Nano, 2011, 5, 2126; (b) Q. Xiang and J. Yu, J. Phys. Chem. Lett., 2013, 4, 753; (c) C. Zhu and S. Dong, Nanoscale, 2013, 5, 1753.
3. (a) R. Okparanma and A. Mouazen, Appl. Spectrosc. Rev., 2013, 48, 458; (b) K. Wooding and R. Auchus, Mol. Cell. Endocrinol., 2013, 371, 201; (c) K. Omidfar, F. Khorsand, and M. Darziani Azizi, Biosens. Bioelectron., 2013, 43, 336; (d) F. Ricci, G. Adometto, and G. Palleschi, Electrochim. Acta, 2012, 84, 74.
7. X. Pei, B. Zhang, J. Tang, B. Liu, W. Lai, and D. Tang, Anal. Chim. Acta, 2013, 758, 1.
24. W. Hummers Jr. and R. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
11. B. Munge, A. Coffey, J. Doucette, B. Somba, R. Malhotra, V. Patel, J. Gutkind, and J. Rushling, Angew. Chem., Int. Ed., 2011, 50, 7915.
29. Q. Wei, Y. Zhao, B. Du, D. Wu, Y. Cai, K. Mao, H. Li, and C. Xu, Adv. Funct. Mater., 2011, 21, 4193.
12. G. Aragay, F. Pino, and A. Merkoci, Chem. Rev., 2012, 112, 5317.
8. W. Wei, M. Wei, and S. Liu, Rev. Anal. Chem., 2012, 31, 163.
15. K. Yang, L. Feng, X. Shi, and Z. Liu, Chem. Soc. Rev., 2013, 42, 530.
20. (a) P. Perez-Tejeda, R. Prado-Gotor, and E. Grueso, Inorg. Chem., 2012, 51, 10825; (b) T. Yoon, M. Lschay, and J. Du, Nat. Chem., 2010, 2, 527.
21. P. Ropp and H. Thorp, Chem. Biol., 1999, 6, 599.
26. (a) J. Kim, Bull. Korean Chem. Soc., 2000, 21, 709; (b) D. Jonhson, K. Glasgow, and H. Thorp, J. Am. Chem. Soc., 1995, 117, 8933; (c) D. Jonhson and H. Thorp, J. Phys. Chem., 1996, 100, 13837.
28. R. Yuan, D. Tang, Y. Chai, X. Zhong, Y. Liu, and J. Dai, Langmuir, 2004, 20, 7240.
6. B. Zhang, D. Tang, I. Goryacheva, R. Niessner, and D. Knopp, Chem. Eur. J., 2013, 19, 2496.
10. Y. Wan, Y. Wang, J. Wu, and D. Zhang, Anal. Chem., 2011, 83, 648.
23. H. Singh, A. Pandey, A. Shrivastava, A. Raizada, S. Singh, and N. Singh, Clin. Chim. Acta, 2013, 419, 136.
5. J. Li, S. Li, and C. Yang, Electroanalysis, 2012, 24, 2213.
2. C. Woolley and M. Hayes, Bioanalysis, 2013, 5, 245.
4. J. Tang, J. Zhou, Q. Li, D. Tang, G. Chen, and H. Yang, Chem. Commun., 2013, 49, 1530.
27. S. Steenken and S. Jovanovic, J. Am. Chem. Soc., 1977, 119, 617.
18. (a) X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, Biosens. Bioelectron., 2013, 47, 32; (b) Y. Tao, Y. Lin, J. Ren, and X. Ou, Biomaterials, 2013, 34, 4810.
22. M. Richter, Chem. Rev., 2004, 104, 3003.
25. M. Holzinger, M. Singh, and S. Cosnier, Langmuir, 2012, 28, 12569.
1. Y. Wan, Y. Su, X. Zhu, G. Liu, and C. Fan, Biosens. Bioelectron., 2013, 47, 1.
ZhangBTangDGoryachevaINiessnerRKnoppDChem. Eur. J.20131924961:CAS:528:DC%2BC3sXkvF2ksQ%3D%3D10.1002/chem.20120313123292875
WanYSuYZhuXLiuGFanCBiosens. Bioelectron.20134711:CAS:528:DC%2BC3sXot1Cnt7c%3D10.1016/j.bios.2013.02.04523542064
WoolleyCHayesMBioanalysis201352451:CAS:528:DC%2BC3sXhtFCmtLs%3D10.4155/bio.12.29823330564
TangJHouLTangDZhouJWangZLiJChenGBiosens. Bioelectron.201238861:CAS:528:DC%2BC38XosVaktb4%3D10.1016/j.bios.2012.05.00622683085
TangJZhouJLiQTangDChenGYangHChem. Commun.20134915301:CAS:528:DC%2BC3sXhsVCntLY%3D10.1039/c2cc38493k
PalecekEBartosikMChem. Rev.20113023
MungeBCoffeyADoucetteJSombaBMalhotraRPatelVGutkindJRushlingJAngew. Chem., Int. Ed.20115079151:CAS:528:DC%2BC3MXotFygsbw%3D10.1002/anie.201102941
ZhuYTourJACS Nano2013517531:CAS:528:DC%2BC3sXis1Chu7s%3D
ZhuXSunLChenYYeZShenZLiGBiosens. Bioelectron.2013344810
WanYWangYWuJZhangDAnal. Chem.2011836481:CAS:528:DC%2BC3cXhs1SrsL3P10.1021/ac103047c21175166
SinghHPandeyAShrivastavaARaizadaASinghSSinghNClin. Chim. Acta20134191361:CAS:528:DC%2BC3sXltFClsLs%3D10.1016/j.cca.2013.02.01423438682
KimJBull. Korean Chem. Soc.199610013837
WangJLiuGEngelhardMLinYAnal. Chem.20067869741:CAS:528:DC%2BD28XosVSnu7c%3D10.1021/ac060809f17007523
RandviirEBanksCAnal. Methods2013510981:CAS:528:DC%2BC3sXivVGlt7w%3D10.1039/c3ay26476a
RoppPThorpHChem. Biol.199965991:CAS:528:DyaK1MXmtFaqtLg%3D10.1016/S1074-5521(99)80111-210467130
OkparanmaRMouazenAAppl. Spectrosc. Rev.20128474
RichterMChem. Rev.200410430031:CAS:528:DC%2BD2cXitlWmsLw%3D10.1021/cr020373d15186186
LiJLiSYangCElectroanalysis20122422131:CAS:528:DC%2BC38XhslSku7rE10.1002/elan.201200447
WeiWWeiMLiuSRev. Anal. Chem.20123116310.1515/revac-2012-0021
HolzingerMSinghMCosnierSLangmuir201228125691:CAS:528:DC%2BC38XhtFChtb3P10.1021/la301963v22860511
Perez-TejedaPPrado-GotorRGruesoEInorg. Chem.20102527
WangGHuangHWangBZhangXWangLChem. Commun.2012487201:CAS:528:DC%2BC3MXhs1SrurzE10.1039/C1CC15383H
PeiXZhangBTangJLiuBLaiWTangDAnal. Chim. Acta201375811:CAS:528:DC%2BC38Xhsleis73O10.1016/j.aca.2012.10.06023245891
SteenkenSJovanovicSJ. Am. Chem. Soc.197711961710.1021/ja962255b
WeiQZhaoYDuBWuDCaiYMaoKLiHXuCAdv. Funct. Mater.20112141931:CAS:528:DC%2BC3MXhtFersb%2FL10.1002/adfm.201100773
ChhowallaMShinHEdaGLiLLohKZhangHNat. Chem.2013526310.1038/nchem.158923511414
YangKFengLShiXLiuZChem. Soc. Rev.2013425301:CAS:528:DC%2BC38XhvVKmtb%2FI10.1039/C2CS35342C23059655
AragayGPinoFMerkociAChem. Rev.201211253171:CAS:528:DC%2BC38Xht1Smu7rP10.1021/cr300020c22897703
YuanRTangDChaiYZhongXLiuYDaiJLangmuir20042072401:CAS:528:DC%2BD2cXlvFanu7s%3D10.1021/la030428m15301511
HummersWJr.OffemanRJ. Am. Chem. Soc.19588013391:CAS:528:DyaG1cXlt1yjuw%3D%3D10.1021/ja01539a017
P Perez-Tejeda (29120012_CR20) 2010; 2
J Tang (29120012_CR19) 2012; 38
J Tang (29120012_CR4) 2013; 49
W Hummers Jr. (29120012_CR24) 1958; 80
G Aragay (29120012_CR12) 2012; 112
M Richter (29120012_CR22) 2004; 104
Y Zhu (29120012_CR14) 2013; 5
E Randviir (29120012_CR30) 2013; 5
R Yuan (29120012_CR28) 2004; 20
J Kim (29120012_CR26) 1996; 100
Q Wei (29120012_CR29) 2011; 21
X Zhu (29120012_CR18) 2013; 34
K Yang (29120012_CR15) 2013; 42
Y Wan (29120012_CR1) 2013; 47
B Munge (29120012_CR11) 2011; 50
S Steenken (29120012_CR27) 1977; 119
Y Wan (29120012_CR10) 2011; 83
J Wang (29120012_CR17) 2006; 78
X Pei (29120012_CR7) 2013; 758
E Palecek (29120012_CR16) 2011; 30
P Ropp (29120012_CR21) 1999; 6
M Holzinger (29120012_CR25) 2012; 28
M Chhowalla (29120012_CR13) 2013; 5
H Singh (29120012_CR23) 2013; 419
J Li (29120012_CR5) 2012; 24
C Woolley (29120012_CR2) 2013; 5
G Wang (29120012_CR9) 2012; 48
R Okparanma (29120012_CR3) 2012; 84
B Zhang (29120012_CR6) 2013; 19
W Wei (29120012_CR8) 2012; 31
References_xml – reference: 7. X. Pei, B. Zhang, J. Tang, B. Liu, W. Lai, and D. Tang, Anal. Chim. Acta, 2013, 758, 1.
– reference: 9. G. Wang, H. Huang, B. Wang, X. Zhang, and L. Wang, Chem. Commun., 2012, 48, 720.
– reference: 14. (a) Y. Zhu and J. Tour, ACS Nano, 2011, 5, 2126; (b) Q. Xiang and J. Yu, J. Phys. Chem. Lett., 2013, 4, 753; (c) C. Zhu and S. Dong, Nanoscale, 2013, 5, 1753.
– reference: 16. (a) E. Palecek and M. Bartosik, Chem. Rev., 2012, 112, 3427; (b) L. Lv, Z. Guo, J. Wang, and E. Wang, Curr. Pharm. Des., 2012, 18, 2076; (c) X. Li and J. Li, Rev. Anal. Chem., 2011, 30, 23.
– reference: 21. P. Ropp and H. Thorp, Chem. Biol., 1999, 6, 599.
– reference: 27. S. Steenken and S. Jovanovic, J. Am. Chem. Soc., 1977, 119, 617.
– reference: 2. C. Woolley and M. Hayes, Bioanalysis, 2013, 5, 245.
– reference: 15. K. Yang, L. Feng, X. Shi, and Z. Liu, Chem. Soc. Rev., 2013, 42, 530.
– reference: 28. R. Yuan, D. Tang, Y. Chai, X. Zhong, Y. Liu, and J. Dai, Langmuir, 2004, 20, 7240.
– reference: 25. M. Holzinger, M. Singh, and S. Cosnier, Langmuir, 2012, 28, 12569.
– reference: 4. J. Tang, J. Zhou, Q. Li, D. Tang, G. Chen, and H. Yang, Chem. Commun., 2013, 49, 1530.
– reference: 22. M. Richter, Chem. Rev., 2004, 104, 3003.
– reference: 5. J. Li, S. Li, and C. Yang, Electroanalysis, 2012, 24, 2213.
– reference: 23. H. Singh, A. Pandey, A. Shrivastava, A. Raizada, S. Singh, and N. Singh, Clin. Chim. Acta, 2013, 419, 136.
– reference: 12. G. Aragay, F. Pino, and A. Merkoci, Chem. Rev., 2012, 112, 5317.
– reference: 24. W. Hummers Jr. and R. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
– reference: 8. W. Wei, M. Wei, and S. Liu, Rev. Anal. Chem., 2012, 31, 163.
– reference: 30. E. Randviir and C. Banks, Anal. Methods, 2013, 5, 1098.
– reference: 18. (a) X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, Biosens. Bioelectron., 2013, 47, 32; (b) Y. Tao, Y. Lin, J. Ren, and X. Ou, Biomaterials, 2013, 34, 4810.
– reference: 11. B. Munge, A. Coffey, J. Doucette, B. Somba, R. Malhotra, V. Patel, J. Gutkind, and J. Rushling, Angew. Chem., Int. Ed., 2011, 50, 7915.
– reference: 29. Q. Wei, Y. Zhao, B. Du, D. Wu, Y. Cai, K. Mao, H. Li, and C. Xu, Adv. Funct. Mater., 2011, 21, 4193.
– reference: 3. (a) R. Okparanma and A. Mouazen, Appl. Spectrosc. Rev., 2013, 48, 458; (b) K. Wooding and R. Auchus, Mol. Cell. Endocrinol., 2013, 371, 201; (c) K. Omidfar, F. Khorsand, and M. Darziani Azizi, Biosens. Bioelectron., 2013, 43, 336; (d) F. Ricci, G. Adometto, and G. Palleschi, Electrochim. Acta, 2012, 84, 74.
– reference: 26. (a) J. Kim, Bull. Korean Chem. Soc., 2000, 21, 709; (b) D. Jonhson, K. Glasgow, and H. Thorp, J. Am. Chem. Soc., 1995, 117, 8933; (c) D. Jonhson and H. Thorp, J. Phys. Chem., 1996, 100, 13837.
– reference: 17. J. Wang, G. Liu, M. Engelhard, and Y. Lin, Anal. Chem., 2006, 78, 6974.
– reference: 6. B. Zhang, D. Tang, I. Goryacheva, R. Niessner, and D. Knopp, Chem. Eur. J., 2013, 19, 2496.
– reference: 19. J. Tang, L. Hou, D. Tang, J. Zhou, Z. Wang, J. Li, and G. Chen, Biosens. Bioelectron., 2012, 38, 86.
– reference: 20. (a) P. Perez-Tejeda, R. Prado-Gotor, and E. Grueso, Inorg. Chem., 2012, 51, 10825; (b) T. Yoon, M. Lschay, and J. Du, Nat. Chem., 2010, 2, 527.
– reference: 13. M. Chhowalla, H. Shin, G. Eda, L. Li, K. Loh, and H. Zhang, Nat. Chem., 2013, 5, 263.
– reference: 10. Y. Wan, Y. Wang, J. Wu, and D. Zhang, Anal. Chem., 2011, 83, 648.
– reference: 1. Y. Wan, Y. Su, X. Zhu, G. Liu, and C. Fan, Biosens. Bioelectron., 2013, 47, 1.
– reference: RandviirEBanksCAnal. Methods2013510981:CAS:528:DC%2BC3sXivVGlt7w%3D10.1039/c3ay26476a
– reference: YuanRTangDChaiYZhongXLiuYDaiJLangmuir20042072401:CAS:528:DC%2BD2cXlvFanu7s%3D10.1021/la030428m15301511
– reference: WoolleyCHayesMBioanalysis201352451:CAS:528:DC%2BC3sXhtFCmtLs%3D10.4155/bio.12.29823330564
– reference: ZhuYTourJACS Nano2013517531:CAS:528:DC%2BC3sXis1Chu7s%3D
– reference: WeiWWeiMLiuSRev. Anal. Chem.20123116310.1515/revac-2012-0021
– reference: HolzingerMSinghMCosnierSLangmuir201228125691:CAS:528:DC%2BC38XhtFChtb3P10.1021/la301963v22860511
– reference: OkparanmaRMouazenAAppl. Spectrosc. Rev.20128474
– reference: PalecekEBartosikMChem. Rev.20113023
– reference: KimJBull. Korean Chem. Soc.199610013837
– reference: WanYSuYZhuXLiuGFanCBiosens. Bioelectron.20134711:CAS:528:DC%2BC3sXot1Cnt7c%3D10.1016/j.bios.2013.02.04523542064
– reference: TangJZhouJLiQTangDChenGYangHChem. Commun.20134915301:CAS:528:DC%2BC3sXhsVCntLY%3D10.1039/c2cc38493k
– reference: WeiQZhaoYDuBWuDCaiYMaoKLiHXuCAdv. Funct. Mater.20112141931:CAS:528:DC%2BC3MXhtFersb%2FL10.1002/adfm.201100773
– reference: YangKFengLShiXLiuZChem. Soc. Rev.2013425301:CAS:528:DC%2BC38XhvVKmtb%2FI10.1039/C2CS35342C23059655
– reference: WangJLiuGEngelhardMLinYAnal. Chem.20067869741:CAS:528:DC%2BD28XosVSnu7c%3D10.1021/ac060809f17007523
– reference: ChhowallaMShinHEdaGLiLLohKZhangHNat. Chem.2013526310.1038/nchem.158923511414
– reference: LiJLiSYangCElectroanalysis20122422131:CAS:528:DC%2BC38XhslSku7rE10.1002/elan.201200447
– reference: ZhangBTangDGoryachevaINiessnerRKnoppDChem. Eur. J.20131924961:CAS:528:DC%2BC3sXkvF2ksQ%3D%3D10.1002/chem.20120313123292875
– reference: PeiXZhangBTangJLiuBLaiWTangDAnal. Chim. Acta201375811:CAS:528:DC%2BC38Xhsleis73O10.1016/j.aca.2012.10.06023245891
– reference: Perez-TejedaPPrado-GotorRGruesoEInorg. Chem.20102527
– reference: AragayGPinoFMerkociAChem. Rev.201211253171:CAS:528:DC%2BC38Xht1Smu7rP10.1021/cr300020c22897703
– reference: ZhuXSunLChenYYeZShenZLiGBiosens. Bioelectron.2013344810
– reference: SinghHPandeyAShrivastavaARaizadaASinghSSinghNClin. Chim. Acta20134191361:CAS:528:DC%2BC3sXltFClsLs%3D10.1016/j.cca.2013.02.01423438682
– reference: TangJHouLTangDZhouJWangZLiJChenGBiosens. Bioelectron.201238861:CAS:528:DC%2BC38XosVaktb4%3D10.1016/j.bios.2012.05.00622683085
– reference: WanYWangYWuJZhangDAnal. Chem.2011836481:CAS:528:DC%2BC3cXhs1SrsL3P10.1021/ac103047c21175166
– reference: HummersWJr.OffemanRJ. Am. Chem. Soc.19588013391:CAS:528:DyaG1cXlt1yjuw%3D%3D10.1021/ja01539a017
– reference: WangGHuangHWangBZhangXWangLChem. Commun.2012487201:CAS:528:DC%2BC3MXhs1SrurzE10.1039/C1CC15383H
– reference: RoppPThorpHChem. Biol.199965991:CAS:528:DyaK1MXmtFaqtLg%3D10.1016/S1074-5521(99)80111-210467130
– reference: RichterMChem. Rev.200410430031:CAS:528:DC%2BD2cXitlWmsLw%3D10.1021/cr020373d15186186
– reference: MungeBCoffeyADoucetteJSombaBMalhotraRPatelVGutkindJRushlingJAngew. Chem., Int. Ed.20115079151:CAS:528:DC%2BC3MXotFygsbw%3D10.1002/anie.201102941
– reference: SteenkenSJovanovicSJ. Am. Chem. Soc.197711961710.1021/ja962255b
– volume: 42
  start-page: 530
  year: 2013
  ident: 29120012_CR15
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35342C
– volume: 119
  start-page: 617
  year: 1977
  ident: 29120012_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja962255b
– volume: 38
  start-page: 86
  year: 2012
  ident: 29120012_CR19
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.05.006
– volume: 50
  start-page: 7915
  year: 2011
  ident: 29120012_CR11
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201102941
– volume: 30
  start-page: 23
  year: 2011
  ident: 29120012_CR16
  publication-title: Chem. Rev.
– volume: 49
  start-page: 1530
  year: 2013
  ident: 29120012_CR4
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc38493k
– volume: 19
  start-page: 2496
  year: 2013
  ident: 29120012_CR6
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201203131
– volume: 80
  start-page: 1339
  year: 1958
  ident: 29120012_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
– volume: 24
  start-page: 2213
  year: 2012
  ident: 29120012_CR5
  publication-title: Electroanalysis
  doi: 10.1002/elan.201200447
– volume: 100
  start-page: 13837
  year: 1996
  ident: 29120012_CR26
  publication-title: Bull. Korean Chem. Soc.
– volume: 31
  start-page: 163
  year: 2012
  ident: 29120012_CR8
  publication-title: Rev. Anal. Chem.
  doi: 10.1515/revac-2012-0021
– volume: 2
  start-page: 527
  year: 2010
  ident: 29120012_CR20
  publication-title: Inorg. Chem.
– volume: 28
  start-page: 12569
  year: 2012
  ident: 29120012_CR25
  publication-title: Langmuir
  doi: 10.1021/la301963v
– volume: 5
  start-page: 1098
  year: 2013
  ident: 29120012_CR30
  publication-title: Anal. Methods
  doi: 10.1039/c3ay26476a
– volume: 758
  start-page: 1
  year: 2013
  ident: 29120012_CR7
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.10.060
– volume: 5
  start-page: 1753
  year: 2013
  ident: 29120012_CR14
  publication-title: ACS Nano
– volume: 78
  start-page: 6974
  year: 2006
  ident: 29120012_CR17
  publication-title: Anal. Chem.
  doi: 10.1021/ac060809f
– volume: 104
  start-page: 3003
  year: 2004
  ident: 29120012_CR22
  publication-title: Chem. Rev.
  doi: 10.1021/cr020373d
– volume: 20
  start-page: 7240
  year: 2004
  ident: 29120012_CR28
  publication-title: Langmuir
  doi: 10.1021/la030428m
– volume: 48
  start-page: 720
  year: 2012
  ident: 29120012_CR9
  publication-title: Chem. Commun.
  doi: 10.1039/C1CC15383H
– volume: 419
  start-page: 136
  year: 2013
  ident: 29120012_CR23
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2013.02.014
– volume: 21
  start-page: 4193
  year: 2011
  ident: 29120012_CR29
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100773
– volume: 83
  start-page: 648
  year: 2011
  ident: 29120012_CR10
  publication-title: Anal. Chem.
  doi: 10.1021/ac103047c
– volume: 112
  start-page: 5317
  year: 2012
  ident: 29120012_CR12
  publication-title: Chem. Rev.
  doi: 10.1021/cr300020c
– volume: 84
  start-page: 74
  year: 2012
  ident: 29120012_CR3
  publication-title: Appl. Spectrosc. Rev.
– volume: 5
  start-page: 245
  year: 2013
  ident: 29120012_CR2
  publication-title: Bioanalysis
  doi: 10.4155/bio.12.298
– volume: 5
  start-page: 263
  year: 2013
  ident: 29120012_CR13
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1589
– volume: 6
  start-page: 599
  year: 1999
  ident: 29120012_CR21
  publication-title: Chem. Biol.
  doi: 10.1016/S1074-5521(99)80111-2
– volume: 47
  start-page: 1
  year: 2013
  ident: 29120012_CR1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.02.045
– volume: 34
  start-page: 4810
  year: 2013
  ident: 29120012_CR18
  publication-title: Biosens. Bioelectron.
SSID ssj0012822
Score 2.0477674
Snippet A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a...
SourceID proquest
pubmed
crossref
springer
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1195
SubjectTerms Analytical Chemistry
bioelectrocatalytic reaction
Catalysis
Chemistry
electrochemical immunosensor
Electrochemical Techniques
Electrochemistry
Electrodes
Graphite - chemistry
Guanine - chemistry
Guanine-decorated graphene nanostructures
Humans
Immunoassay
Nanostructures - chemistry
neuron-specific enolase
Neurons - enzymology
Phosphopyruvate Hydratase - analysis
Phosphopyruvate Hydratase - metabolism
Title Guanine-Decorated Graphene Nanostructures for Sensitive Monitoring of Neuron-Specific Enolase Based on an Enzyme-Free Electrocatalytic Reaction
URI https://www.jstage.jst.go.jp/article/analsci/29/12/29_1195/_article/-char/en
https://link.springer.com/article/10.2116/analsci.29.1195
https://www.ncbi.nlm.nih.gov/pubmed/24334987
https://www.proquest.com/docview/1478017671
https://www.proquest.com/docview/1477552520
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Analytical Sciences, 2013/12/10, Vol.29(12), pp.1195-1201
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1348-2246
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0012822
  issn: 0910-6340
  databaseCode: HH5
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1348-2246
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012822
  issn: 0910-6340
  databaseCode: KQ8
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1348-2246
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012822
  issn: 0910-6340
  databaseCode: DIK
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1348-2246
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012822
  issn: 0910-6340
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1348-2246
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012822
  issn: 0910-6340
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKQIIXxH8CAxkJIVDl0jmx00i8jNGyoTKEaKVpL1Hi2GUIkrG1D9uX4CvwUbmznfTPCgJerCp2I8e_Xy535_MdIU9l1wgTwYsEgOcM7K-QZfBdZnEWC1HIEL4qeMD5_b7cHUfvDsRBq_VzIWppNs076nztuZL_QRWuAa54SvYfkG1uChfgN-ALLSAM7V9hDPiWoCWyN2hDZqg7vsX80yC-UGpWLjfsDAxqG0z4CWPVbaSQe5FPfMCzzc9RMluJ3hypdr8Ec_dUt19DU7RttDJcOz_7ptngROt231XOsY6fs6kLxFcNvk1iZtdZn7lU81jF4Z51xsPcJ-zwczVrnAd72zbmAJZ4suiMcKdI6yzeuOGx1nfm_Y0g8GXocjN1tJO2YQSAcu-D9OLYO0A87fiCcMXsdOukPtiwLt0xwKqOOjzp1COX82vvf0gH4-EwHfUPRsu97nuOpW9ED1TQZ8ffGdYlw_17X6TlErnM0eOD2_4f5_tUGIRrszn6h3PJo3BCL1ems6T3XPkCqv9Er7NqLuzIW0VndINc9xYK3XZ0u0laurxFru7UhQFvkx8XaEdr2tFl2lGgHW1oR-e0o5WhK7SjnnbU0o5WJc1KukA7uko7WtPuDhkP-qOdXebrejAF2veUxUpkOaYKFFGoDax6HuW8iKUxUkuZZF2jcqMNtKrIoiKSQoGimye8awqTbcXhXbJRVqW-T6iBRc91Lyl0CHaxFJmJpAIgeVIYoZUMSKde9VT5pPdYe-VrCsYvwpR6mFKepAhTQJ43fzh2-V5-P_SVg7EZ6AXB0kBeD2968TglSK-AbNbgp16mnIIhHoPKGMt4KyBPmm7AF7fxslJXMzsG5CgXvBuQe440zQx4FIZR0osD8qJm0cLN1z_Hgz9P5CG5xm0JGHQ7bpIN4JB-BIr4NH9s34VfQsDoxw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guanine-Decorated+Graphene+Nanostructures+for+Sensitive+Monitoring+of+Neuron-Specific+Enolase+Based+on+an+Enzyme-Free+Electrocatalytic+Reaction&rft.jtitle=Analytical+sciences&rft.au=LI%2C+Guang-Zhou&rft.au=TIAN%2C+Feng&rft.date=2013&rft.pub=Nature+Publishing+Group&rft.issn=0910-6340&rft.eissn=1348-2246&rft.volume=29&rft.issue=12&rft.spage=1195&rft_id=info:doi/10.2116%2Fanalsci.29.1195&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3184358851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0910-6340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0910-6340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0910-6340&client=summon