Guanine-Decorated Graphene Nanostructures for Sensitive Monitoring of Neuron-Specific Enolase Based on an Enzyme-Free Electrocatalytic Reaction
A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. T...
Saved in:
| Published in | Analytical Sciences Vol. 29; no. 12; pp. 1195 - 1201 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
The Japan Society for Analytical Chemistry
2013
Springer Nature Singapore Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0910-6340 1348-2246 1348-2246 |
| DOI | 10.2116/analsci.29.1195 |
Cover
| Abstract | A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)32+ through the catalytic oxidation of Ru(bpy)32+ toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL−1 NSE with a detection limit of 1.0 pg mL−1 at the 3Sblank level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8 – 7.0%. |
|---|---|
| AbstractList | A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)
3
2+
through the catalytic oxidation of Ru(bpy)
3
2+
toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL
–1
NSE with a detection limit of 1.0 pg mL
–1
at the 3
S
blank
level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8 – 7.0%. A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)3(2+) through the catalytic oxidation of Ru(bpy)3(2+) toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL(-1) NSE with a detection limit of 1.0 pg mL(-1) at the 3S(blank) level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8-7.0%. A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)32+ through the catalytic oxidation of Ru(bpy)32+ toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL-1 NSE with a detection limit of 1.0 pg mL-1 at the 3Sblank level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8 - 7.0%. A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)32+ through the catalytic oxidation of Ru(bpy)32+ toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL−1 NSE with a detection limit of 1.0 pg mL−1 at the 3Sblank level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8 – 7.0%. A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)3(2+) through the catalytic oxidation of Ru(bpy)3(2+) toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL(-1) NSE with a detection limit of 1.0 pg mL(-1) at the 3S(blank) level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8-7.0%.A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)3(2+) through the catalytic oxidation of Ru(bpy)3(2+) toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL(-1) NSE with a detection limit of 1.0 pg mL(-1) at the 3S(blank) level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8-7.0%. |
| Author | LI, Guang-Zhou TIAN, Feng |
| Author_xml | – sequence: 1 fullname: LI, Guang-Zhou organization: Department of Sports and Health, Chongqing Three Gorges University – sequence: 1 fullname: TIAN, Feng organization: Department of Sports and Health, Chongqing Three Gorges University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24334987$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kU1vEzEQhi1URD_gzA1Z4sJlU9vr9WaPENKAVIpE4WzNeseto40dbC9S-BP8ZXaVpIJKvdiS_Txjz7zn5MQHj4S85mwmOFeX4KFPxs1EM-O8qZ6RM17KeSGEVCfkjDWcFaqU7JScp7RmjIu5EC_IqZBlKZt5fUb-rAbwzmPxEU2IkLGjqwjbe_RIb8CHlONg8hAxURsivUWfXHa_kH4J3uUQnb-jwdIbHGLwxe0WjbPO0KUPPSSkH8alo8FT8OPZ790Gi6uISJc9mhyDgQz9Lo_CNwSTXfAvyXM7toSvDvsF-XG1_L74VFx_XX1evL8ujJIyF7WpoOWlqitZouVz2cpWdLWyVqFSDTBrWot2XE0HspOqMqyWbSOY7Szwurwg7_Z1tzH8HDBlvXHJYN-DxzAkzWVdV5WoBBvRt4_QdRjiNPiJmjNeq5qP1JsDNbQb7PQ2ug3EnT6OegSqPWBiSCmi1cZlmHrOEVyvOdNTpPoQqRaNniIdvctH3rH00wbbG2k75YPxnw8_qSz2yjpluMOHJyCO4fT4Hy-O1sOtuYeo0Zd_AT9X0Ts |
| CitedBy_id | crossref_primary_10_1016_j_aca_2019_04_032 crossref_primary_10_1016_j_ab_2017_10_009 crossref_primary_10_1021_acsomega_3c06388 crossref_primary_10_1080_10408347_2023_2258982 crossref_primary_10_1007_s12010_022_03802_1 crossref_primary_10_1016_j_lungcan_2024_108078 crossref_primary_10_1042_BSR20192732 crossref_primary_10_1002_elan_201800193 crossref_primary_10_1016_j_jenvman_2024_121072 crossref_primary_10_1016_j_talanta_2019_120251 |
| Cites_doi | 10.1039/C2CS35342C 10.1021/ja962255b 10.1016/j.bios.2012.05.006 10.1002/anie.201102941 10.1039/c2cc38493k 10.1002/chem.201203131 10.1021/ja01539a017 10.1002/elan.201200447 10.1515/revac-2012-0021 10.1021/la301963v 10.1039/c3ay26476a 10.1016/j.aca.2012.10.060 10.1021/ac060809f 10.1021/cr020373d 10.1021/la030428m 10.1039/C1CC15383H 10.1016/j.cca.2013.02.014 10.1002/adfm.201100773 10.1021/ac103047c 10.1021/cr300020c 10.4155/bio.12.298 10.1038/nchem.1589 10.1016/S1074-5521(99)80111-2 10.1016/j.bios.2013.02.045 |
| ContentType | Journal Article |
| Copyright | 2013 by The Japan Society for Analytical Chemistry The Japan Society for Analytical Chemistry 2013 Copyright Japan Science and Technology Agency 2013 |
| Copyright_xml | – notice: 2013 by The Japan Society for Analytical Chemistry – notice: The Japan Society for Analytical Chemistry 2013 – notice: Copyright Japan Science and Technology Agency 2013 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SE 7SR 7U5 8BQ 8FD FR3 H8G JG9 L7M P64 7X8 |
| DOI | 10.2116/analsci.29.1195 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Copper Technical Reference Library Materials Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Aluminium Industry Abstracts Technology Research Database Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1348-2246 |
| EndPage | 1201 |
| ExternalDocumentID | 3184358851 24334987 10_2116_analsci_29_1195 article_analsci_29_12_29_1195_article_char_en |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 23M 2WC 406 5GY 6J9 7.U AACDK AAJBT AASML ABAKF ABBRH ABDBE ABFSG ABJNI ABRTQ ABTKH ACAOD ACGFO ACIWK ACPIV ACPRK ACSTC ACZOJ ADBBV AEFQL AEMSY AENEX AESKC AEZWR AFBBN AFDZB AFHIU AFRAH AGQEE AHPBZ AHWEU AIAKS AIGIU AIXLP ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ATHPR AYFIA BAWUL CS3 DIK DPUIP E3Z EBLON EBS EJD F5P GX1 HH5 IWAJR JSF JSH JZLTJ KQ8 LLZTM NPVJJ OK1 OVT P2P RDB RJT RNS ROL RSV RZJ RZV SJYHP SOJ TN5 TR2 UPT XSB ~02 0R~ 3O- 53G AATNV ACDTI AGMZJ AI. FIGPU M~E TKC VH1 AAYXX ABJCF AEUYN AFOHR BGLVJ CCPQU CITATION HMCUK KB. M2P M7P M7S PDBOC PHGZM PHGZT PQGLB PTHSS UKHRP CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SE 7SR 7U5 8BQ 8FD FR3 H8G JG9 L7M P64 7X8 |
| ID | FETCH-LOGICAL-c644t-7c5ab1367543ef184b4b2d76ff6e669a0fcbfeffcbcda4d465c074b920fdfa173 |
| ISSN | 0910-6340 1348-2246 |
| IngestDate | Sat Sep 27 20:55:01 EDT 2025 Tue Oct 07 06:25:39 EDT 2025 Wed Feb 19 02:37:11 EST 2025 Wed Oct 01 02:23:19 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Fri Feb 21 02:42:34 EST 2025 Wed Sep 03 06:15:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | electrochemical immunosensor bioelectrocatalytic reaction Guanine-decorated graphene nanostructures neuron-specific enolase |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c644t-7c5ab1367543ef184b4b2d76ff6e669a0fcbfeffcbcda4d465c074b920fdfa173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.jstage.jst.go.jp/article/analsci/29/12/29_1195/_article/-char/en |
| PMID | 24334987 |
| PQID | 1478017671 |
| PQPubID | 1966371 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1477552520 proquest_journals_1478017671 pubmed_primary_24334987 crossref_citationtrail_10_2116_analsci_29_1195 crossref_primary_10_2116_analsci_29_1195 springer_journals_10_2116_analsci_29_1195 jstage_primary_article_analsci_29_12_29_1195_article_char_en |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-00-00 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – year: 2013 text: 2013-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Japan – name: Tokyo |
| PublicationTitle | Analytical Sciences |
| PublicationTitleAbbrev | ANAL. SCI |
| PublicationTitleAlternate | Anal Sci |
| PublicationYear | 2013 |
| Publisher | The Japan Society for Analytical Chemistry Springer Nature Singapore Nature Publishing Group |
| Publisher_xml | – name: The Japan Society for Analytical Chemistry – name: Springer Nature Singapore – name: Nature Publishing Group |
| References | 17. J. Wang, G. Liu, M. Engelhard, and Y. Lin, Anal. Chem., 2006, 78, 6974. 19. J. Tang, L. Hou, D. Tang, J. Zhou, Z. Wang, J. Li, and G. Chen, Biosens. Bioelectron., 2012, 38, 86. 16. (a) E. Palecek and M. Bartosik, Chem. Rev., 2012, 112, 3427; (b) L. Lv, Z. Guo, J. Wang, and E. Wang, Curr. Pharm. Des., 2012, 18, 2076; (c) X. Li and J. Li, Rev. Anal. Chem., 2011, 30, 23. 30. E. Randviir and C. Banks, Anal. Methods, 2013, 5, 1098. 13. M. Chhowalla, H. Shin, G. Eda, L. Li, K. Loh, and H. Zhang, Nat. Chem., 2013, 5, 263. 9. G. Wang, H. Huang, B. Wang, X. Zhang, and L. Wang, Chem. Commun., 2012, 48, 720. 14. (a) Y. Zhu and J. Tour, ACS Nano, 2011, 5, 2126; (b) Q. Xiang and J. Yu, J. Phys. Chem. Lett., 2013, 4, 753; (c) C. Zhu and S. Dong, Nanoscale, 2013, 5, 1753. 3. (a) R. Okparanma and A. Mouazen, Appl. Spectrosc. Rev., 2013, 48, 458; (b) K. Wooding and R. Auchus, Mol. Cell. Endocrinol., 2013, 371, 201; (c) K. Omidfar, F. Khorsand, and M. Darziani Azizi, Biosens. Bioelectron., 2013, 43, 336; (d) F. Ricci, G. Adometto, and G. Palleschi, Electrochim. Acta, 2012, 84, 74. 7. X. Pei, B. Zhang, J. Tang, B. Liu, W. Lai, and D. Tang, Anal. Chim. Acta, 2013, 758, 1. 24. W. Hummers Jr. and R. Offeman, J. Am. Chem. Soc., 1958, 80, 1339. 11. B. Munge, A. Coffey, J. Doucette, B. Somba, R. Malhotra, V. Patel, J. Gutkind, and J. Rushling, Angew. Chem., Int. Ed., 2011, 50, 7915. 29. Q. Wei, Y. Zhao, B. Du, D. Wu, Y. Cai, K. Mao, H. Li, and C. Xu, Adv. Funct. Mater., 2011, 21, 4193. 12. G. Aragay, F. Pino, and A. Merkoci, Chem. Rev., 2012, 112, 5317. 8. W. Wei, M. Wei, and S. Liu, Rev. Anal. Chem., 2012, 31, 163. 15. K. Yang, L. Feng, X. Shi, and Z. Liu, Chem. Soc. Rev., 2013, 42, 530. 20. (a) P. Perez-Tejeda, R. Prado-Gotor, and E. Grueso, Inorg. Chem., 2012, 51, 10825; (b) T. Yoon, M. Lschay, and J. Du, Nat. Chem., 2010, 2, 527. 21. P. Ropp and H. Thorp, Chem. Biol., 1999, 6, 599. 26. (a) J. Kim, Bull. Korean Chem. Soc., 2000, 21, 709; (b) D. Jonhson, K. Glasgow, and H. Thorp, J. Am. Chem. Soc., 1995, 117, 8933; (c) D. Jonhson and H. Thorp, J. Phys. Chem., 1996, 100, 13837. 28. R. Yuan, D. Tang, Y. Chai, X. Zhong, Y. Liu, and J. Dai, Langmuir, 2004, 20, 7240. 6. B. Zhang, D. Tang, I. Goryacheva, R. Niessner, and D. Knopp, Chem. Eur. J., 2013, 19, 2496. 10. Y. Wan, Y. Wang, J. Wu, and D. Zhang, Anal. Chem., 2011, 83, 648. 23. H. Singh, A. Pandey, A. Shrivastava, A. Raizada, S. Singh, and N. Singh, Clin. Chim. Acta, 2013, 419, 136. 5. J. Li, S. Li, and C. Yang, Electroanalysis, 2012, 24, 2213. 2. C. Woolley and M. Hayes, Bioanalysis, 2013, 5, 245. 4. J. Tang, J. Zhou, Q. Li, D. Tang, G. Chen, and H. Yang, Chem. Commun., 2013, 49, 1530. 27. S. Steenken and S. Jovanovic, J. Am. Chem. Soc., 1977, 119, 617. 18. (a) X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, Biosens. Bioelectron., 2013, 47, 32; (b) Y. Tao, Y. Lin, J. Ren, and X. Ou, Biomaterials, 2013, 34, 4810. 22. M. Richter, Chem. Rev., 2004, 104, 3003. 25. M. Holzinger, M. Singh, and S. Cosnier, Langmuir, 2012, 28, 12569. 1. Y. Wan, Y. Su, X. Zhu, G. Liu, and C. Fan, Biosens. Bioelectron., 2013, 47, 1. ZhangBTangDGoryachevaINiessnerRKnoppDChem. Eur. J.20131924961:CAS:528:DC%2BC3sXkvF2ksQ%3D%3D10.1002/chem.20120313123292875 WanYSuYZhuXLiuGFanCBiosens. Bioelectron.20134711:CAS:528:DC%2BC3sXot1Cnt7c%3D10.1016/j.bios.2013.02.04523542064 WoolleyCHayesMBioanalysis201352451:CAS:528:DC%2BC3sXhtFCmtLs%3D10.4155/bio.12.29823330564 TangJHouLTangDZhouJWangZLiJChenGBiosens. Bioelectron.201238861:CAS:528:DC%2BC38XosVaktb4%3D10.1016/j.bios.2012.05.00622683085 TangJZhouJLiQTangDChenGYangHChem. Commun.20134915301:CAS:528:DC%2BC3sXhsVCntLY%3D10.1039/c2cc38493k PalecekEBartosikMChem. Rev.20113023 MungeBCoffeyADoucetteJSombaBMalhotraRPatelVGutkindJRushlingJAngew. Chem., Int. Ed.20115079151:CAS:528:DC%2BC3MXotFygsbw%3D10.1002/anie.201102941 ZhuYTourJACS Nano2013517531:CAS:528:DC%2BC3sXis1Chu7s%3D ZhuXSunLChenYYeZShenZLiGBiosens. Bioelectron.2013344810 WanYWangYWuJZhangDAnal. Chem.2011836481:CAS:528:DC%2BC3cXhs1SrsL3P10.1021/ac103047c21175166 SinghHPandeyAShrivastavaARaizadaASinghSSinghNClin. Chim. Acta20134191361:CAS:528:DC%2BC3sXltFClsLs%3D10.1016/j.cca.2013.02.01423438682 KimJBull. Korean Chem. Soc.199610013837 WangJLiuGEngelhardMLinYAnal. Chem.20067869741:CAS:528:DC%2BD28XosVSnu7c%3D10.1021/ac060809f17007523 RandviirEBanksCAnal. Methods2013510981:CAS:528:DC%2BC3sXivVGlt7w%3D10.1039/c3ay26476a RoppPThorpHChem. Biol.199965991:CAS:528:DyaK1MXmtFaqtLg%3D10.1016/S1074-5521(99)80111-210467130 OkparanmaRMouazenAAppl. Spectrosc. Rev.20128474 RichterMChem. Rev.200410430031:CAS:528:DC%2BD2cXitlWmsLw%3D10.1021/cr020373d15186186 LiJLiSYangCElectroanalysis20122422131:CAS:528:DC%2BC38XhslSku7rE10.1002/elan.201200447 WeiWWeiMLiuSRev. Anal. Chem.20123116310.1515/revac-2012-0021 HolzingerMSinghMCosnierSLangmuir201228125691:CAS:528:DC%2BC38XhtFChtb3P10.1021/la301963v22860511 Perez-TejedaPPrado-GotorRGruesoEInorg. Chem.20102527 WangGHuangHWangBZhangXWangLChem. Commun.2012487201:CAS:528:DC%2BC3MXhs1SrurzE10.1039/C1CC15383H PeiXZhangBTangJLiuBLaiWTangDAnal. Chim. Acta201375811:CAS:528:DC%2BC38Xhsleis73O10.1016/j.aca.2012.10.06023245891 SteenkenSJovanovicSJ. Am. Chem. Soc.197711961710.1021/ja962255b WeiQZhaoYDuBWuDCaiYMaoKLiHXuCAdv. Funct. Mater.20112141931:CAS:528:DC%2BC3MXhtFersb%2FL10.1002/adfm.201100773 ChhowallaMShinHEdaGLiLLohKZhangHNat. Chem.2013526310.1038/nchem.158923511414 YangKFengLShiXLiuZChem. Soc. Rev.2013425301:CAS:528:DC%2BC38XhvVKmtb%2FI10.1039/C2CS35342C23059655 AragayGPinoFMerkociAChem. Rev.201211253171:CAS:528:DC%2BC38Xht1Smu7rP10.1021/cr300020c22897703 YuanRTangDChaiYZhongXLiuYDaiJLangmuir20042072401:CAS:528:DC%2BD2cXlvFanu7s%3D10.1021/la030428m15301511 HummersWJr.OffemanRJ. Am. Chem. Soc.19588013391:CAS:528:DyaG1cXlt1yjuw%3D%3D10.1021/ja01539a017 P Perez-Tejeda (29120012_CR20) 2010; 2 J Tang (29120012_CR19) 2012; 38 J Tang (29120012_CR4) 2013; 49 W Hummers Jr. (29120012_CR24) 1958; 80 G Aragay (29120012_CR12) 2012; 112 M Richter (29120012_CR22) 2004; 104 Y Zhu (29120012_CR14) 2013; 5 E Randviir (29120012_CR30) 2013; 5 R Yuan (29120012_CR28) 2004; 20 J Kim (29120012_CR26) 1996; 100 Q Wei (29120012_CR29) 2011; 21 X Zhu (29120012_CR18) 2013; 34 K Yang (29120012_CR15) 2013; 42 Y Wan (29120012_CR1) 2013; 47 B Munge (29120012_CR11) 2011; 50 S Steenken (29120012_CR27) 1977; 119 Y Wan (29120012_CR10) 2011; 83 J Wang (29120012_CR17) 2006; 78 X Pei (29120012_CR7) 2013; 758 E Palecek (29120012_CR16) 2011; 30 P Ropp (29120012_CR21) 1999; 6 M Holzinger (29120012_CR25) 2012; 28 M Chhowalla (29120012_CR13) 2013; 5 H Singh (29120012_CR23) 2013; 419 J Li (29120012_CR5) 2012; 24 C Woolley (29120012_CR2) 2013; 5 G Wang (29120012_CR9) 2012; 48 R Okparanma (29120012_CR3) 2012; 84 B Zhang (29120012_CR6) 2013; 19 W Wei (29120012_CR8) 2012; 31 |
| References_xml | – reference: 7. X. Pei, B. Zhang, J. Tang, B. Liu, W. Lai, and D. Tang, Anal. Chim. Acta, 2013, 758, 1. – reference: 9. G. Wang, H. Huang, B. Wang, X. Zhang, and L. Wang, Chem. Commun., 2012, 48, 720. – reference: 14. (a) Y. Zhu and J. Tour, ACS Nano, 2011, 5, 2126; (b) Q. Xiang and J. Yu, J. Phys. Chem. Lett., 2013, 4, 753; (c) C. Zhu and S. Dong, Nanoscale, 2013, 5, 1753. – reference: 16. (a) E. Palecek and M. Bartosik, Chem. Rev., 2012, 112, 3427; (b) L. Lv, Z. Guo, J. Wang, and E. Wang, Curr. Pharm. Des., 2012, 18, 2076; (c) X. Li and J. Li, Rev. Anal. Chem., 2011, 30, 23. – reference: 21. P. Ropp and H. Thorp, Chem. Biol., 1999, 6, 599. – reference: 27. S. Steenken and S. Jovanovic, J. Am. Chem. Soc., 1977, 119, 617. – reference: 2. C. Woolley and M. Hayes, Bioanalysis, 2013, 5, 245. – reference: 15. K. Yang, L. Feng, X. Shi, and Z. Liu, Chem. Soc. Rev., 2013, 42, 530. – reference: 28. R. Yuan, D. Tang, Y. Chai, X. Zhong, Y. Liu, and J. Dai, Langmuir, 2004, 20, 7240. – reference: 25. M. Holzinger, M. Singh, and S. Cosnier, Langmuir, 2012, 28, 12569. – reference: 4. J. Tang, J. Zhou, Q. Li, D. Tang, G. Chen, and H. Yang, Chem. Commun., 2013, 49, 1530. – reference: 22. M. Richter, Chem. Rev., 2004, 104, 3003. – reference: 5. J. Li, S. Li, and C. Yang, Electroanalysis, 2012, 24, 2213. – reference: 23. H. Singh, A. Pandey, A. Shrivastava, A. Raizada, S. Singh, and N. Singh, Clin. Chim. Acta, 2013, 419, 136. – reference: 12. G. Aragay, F. Pino, and A. Merkoci, Chem. Rev., 2012, 112, 5317. – reference: 24. W. Hummers Jr. and R. Offeman, J. Am. Chem. Soc., 1958, 80, 1339. – reference: 8. W. Wei, M. Wei, and S. Liu, Rev. Anal. Chem., 2012, 31, 163. – reference: 30. E. Randviir and C. Banks, Anal. Methods, 2013, 5, 1098. – reference: 18. (a) X. Zhu, L. Sun, Y. Chen, Z. Ye, Z. Shen, and G. Li, Biosens. Bioelectron., 2013, 47, 32; (b) Y. Tao, Y. Lin, J. Ren, and X. Ou, Biomaterials, 2013, 34, 4810. – reference: 11. B. Munge, A. Coffey, J. Doucette, B. Somba, R. Malhotra, V. Patel, J. Gutkind, and J. Rushling, Angew. Chem., Int. Ed., 2011, 50, 7915. – reference: 29. Q. Wei, Y. Zhao, B. Du, D. Wu, Y. Cai, K. Mao, H. Li, and C. Xu, Adv. Funct. Mater., 2011, 21, 4193. – reference: 3. (a) R. Okparanma and A. Mouazen, Appl. Spectrosc. Rev., 2013, 48, 458; (b) K. Wooding and R. Auchus, Mol. Cell. Endocrinol., 2013, 371, 201; (c) K. Omidfar, F. Khorsand, and M. Darziani Azizi, Biosens. Bioelectron., 2013, 43, 336; (d) F. Ricci, G. Adometto, and G. Palleschi, Electrochim. Acta, 2012, 84, 74. – reference: 26. (a) J. Kim, Bull. Korean Chem. Soc., 2000, 21, 709; (b) D. Jonhson, K. Glasgow, and H. Thorp, J. Am. Chem. Soc., 1995, 117, 8933; (c) D. Jonhson and H. Thorp, J. Phys. Chem., 1996, 100, 13837. – reference: 17. J. Wang, G. Liu, M. Engelhard, and Y. Lin, Anal. Chem., 2006, 78, 6974. – reference: 6. B. Zhang, D. Tang, I. Goryacheva, R. Niessner, and D. Knopp, Chem. Eur. J., 2013, 19, 2496. – reference: 19. J. Tang, L. Hou, D. Tang, J. Zhou, Z. Wang, J. Li, and G. Chen, Biosens. Bioelectron., 2012, 38, 86. – reference: 20. (a) P. Perez-Tejeda, R. Prado-Gotor, and E. Grueso, Inorg. Chem., 2012, 51, 10825; (b) T. Yoon, M. Lschay, and J. Du, Nat. Chem., 2010, 2, 527. – reference: 13. M. Chhowalla, H. Shin, G. Eda, L. Li, K. Loh, and H. Zhang, Nat. Chem., 2013, 5, 263. – reference: 10. Y. Wan, Y. Wang, J. Wu, and D. Zhang, Anal. Chem., 2011, 83, 648. – reference: 1. Y. Wan, Y. Su, X. Zhu, G. Liu, and C. Fan, Biosens. Bioelectron., 2013, 47, 1. – reference: RandviirEBanksCAnal. Methods2013510981:CAS:528:DC%2BC3sXivVGlt7w%3D10.1039/c3ay26476a – reference: YuanRTangDChaiYZhongXLiuYDaiJLangmuir20042072401:CAS:528:DC%2BD2cXlvFanu7s%3D10.1021/la030428m15301511 – reference: WoolleyCHayesMBioanalysis201352451:CAS:528:DC%2BC3sXhtFCmtLs%3D10.4155/bio.12.29823330564 – reference: ZhuYTourJACS Nano2013517531:CAS:528:DC%2BC3sXis1Chu7s%3D – reference: WeiWWeiMLiuSRev. Anal. Chem.20123116310.1515/revac-2012-0021 – reference: HolzingerMSinghMCosnierSLangmuir201228125691:CAS:528:DC%2BC38XhtFChtb3P10.1021/la301963v22860511 – reference: OkparanmaRMouazenAAppl. Spectrosc. Rev.20128474 – reference: PalecekEBartosikMChem. Rev.20113023 – reference: KimJBull. Korean Chem. Soc.199610013837 – reference: WanYSuYZhuXLiuGFanCBiosens. Bioelectron.20134711:CAS:528:DC%2BC3sXot1Cnt7c%3D10.1016/j.bios.2013.02.04523542064 – reference: TangJZhouJLiQTangDChenGYangHChem. Commun.20134915301:CAS:528:DC%2BC3sXhsVCntLY%3D10.1039/c2cc38493k – reference: WeiQZhaoYDuBWuDCaiYMaoKLiHXuCAdv. Funct. Mater.20112141931:CAS:528:DC%2BC3MXhtFersb%2FL10.1002/adfm.201100773 – reference: YangKFengLShiXLiuZChem. Soc. Rev.2013425301:CAS:528:DC%2BC38XhvVKmtb%2FI10.1039/C2CS35342C23059655 – reference: WangJLiuGEngelhardMLinYAnal. Chem.20067869741:CAS:528:DC%2BD28XosVSnu7c%3D10.1021/ac060809f17007523 – reference: ChhowallaMShinHEdaGLiLLohKZhangHNat. Chem.2013526310.1038/nchem.158923511414 – reference: LiJLiSYangCElectroanalysis20122422131:CAS:528:DC%2BC38XhslSku7rE10.1002/elan.201200447 – reference: ZhangBTangDGoryachevaINiessnerRKnoppDChem. Eur. J.20131924961:CAS:528:DC%2BC3sXkvF2ksQ%3D%3D10.1002/chem.20120313123292875 – reference: PeiXZhangBTangJLiuBLaiWTangDAnal. Chim. Acta201375811:CAS:528:DC%2BC38Xhsleis73O10.1016/j.aca.2012.10.06023245891 – reference: Perez-TejedaPPrado-GotorRGruesoEInorg. Chem.20102527 – reference: AragayGPinoFMerkociAChem. Rev.201211253171:CAS:528:DC%2BC38Xht1Smu7rP10.1021/cr300020c22897703 – reference: ZhuXSunLChenYYeZShenZLiGBiosens. Bioelectron.2013344810 – reference: SinghHPandeyAShrivastavaARaizadaASinghSSinghNClin. Chim. Acta20134191361:CAS:528:DC%2BC3sXltFClsLs%3D10.1016/j.cca.2013.02.01423438682 – reference: TangJHouLTangDZhouJWangZLiJChenGBiosens. Bioelectron.201238861:CAS:528:DC%2BC38XosVaktb4%3D10.1016/j.bios.2012.05.00622683085 – reference: WanYWangYWuJZhangDAnal. Chem.2011836481:CAS:528:DC%2BC3cXhs1SrsL3P10.1021/ac103047c21175166 – reference: HummersWJr.OffemanRJ. Am. Chem. Soc.19588013391:CAS:528:DyaG1cXlt1yjuw%3D%3D10.1021/ja01539a017 – reference: WangGHuangHWangBZhangXWangLChem. Commun.2012487201:CAS:528:DC%2BC3MXhs1SrurzE10.1039/C1CC15383H – reference: RoppPThorpHChem. Biol.199965991:CAS:528:DyaK1MXmtFaqtLg%3D10.1016/S1074-5521(99)80111-210467130 – reference: RichterMChem. Rev.200410430031:CAS:528:DC%2BD2cXitlWmsLw%3D10.1021/cr020373d15186186 – reference: MungeBCoffeyADoucetteJSombaBMalhotraRPatelVGutkindJRushlingJAngew. Chem., Int. Ed.20115079151:CAS:528:DC%2BC3MXotFygsbw%3D10.1002/anie.201102941 – reference: SteenkenSJovanovicSJ. Am. Chem. Soc.197711961710.1021/ja962255b – volume: 42 start-page: 530 year: 2013 ident: 29120012_CR15 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35342C – volume: 119 start-page: 617 year: 1977 ident: 29120012_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja962255b – volume: 38 start-page: 86 year: 2012 ident: 29120012_CR19 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.05.006 – volume: 50 start-page: 7915 year: 2011 ident: 29120012_CR11 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201102941 – volume: 30 start-page: 23 year: 2011 ident: 29120012_CR16 publication-title: Chem. Rev. – volume: 49 start-page: 1530 year: 2013 ident: 29120012_CR4 publication-title: Chem. Commun. doi: 10.1039/c2cc38493k – volume: 19 start-page: 2496 year: 2013 ident: 29120012_CR6 publication-title: Chem. Eur. J. doi: 10.1002/chem.201203131 – volume: 80 start-page: 1339 year: 1958 ident: 29120012_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 24 start-page: 2213 year: 2012 ident: 29120012_CR5 publication-title: Electroanalysis doi: 10.1002/elan.201200447 – volume: 100 start-page: 13837 year: 1996 ident: 29120012_CR26 publication-title: Bull. Korean Chem. Soc. – volume: 31 start-page: 163 year: 2012 ident: 29120012_CR8 publication-title: Rev. Anal. Chem. doi: 10.1515/revac-2012-0021 – volume: 2 start-page: 527 year: 2010 ident: 29120012_CR20 publication-title: Inorg. Chem. – volume: 28 start-page: 12569 year: 2012 ident: 29120012_CR25 publication-title: Langmuir doi: 10.1021/la301963v – volume: 5 start-page: 1098 year: 2013 ident: 29120012_CR30 publication-title: Anal. Methods doi: 10.1039/c3ay26476a – volume: 758 start-page: 1 year: 2013 ident: 29120012_CR7 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.10.060 – volume: 5 start-page: 1753 year: 2013 ident: 29120012_CR14 publication-title: ACS Nano – volume: 78 start-page: 6974 year: 2006 ident: 29120012_CR17 publication-title: Anal. Chem. doi: 10.1021/ac060809f – volume: 104 start-page: 3003 year: 2004 ident: 29120012_CR22 publication-title: Chem. Rev. doi: 10.1021/cr020373d – volume: 20 start-page: 7240 year: 2004 ident: 29120012_CR28 publication-title: Langmuir doi: 10.1021/la030428m – volume: 48 start-page: 720 year: 2012 ident: 29120012_CR9 publication-title: Chem. Commun. doi: 10.1039/C1CC15383H – volume: 419 start-page: 136 year: 2013 ident: 29120012_CR23 publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2013.02.014 – volume: 21 start-page: 4193 year: 2011 ident: 29120012_CR29 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100773 – volume: 83 start-page: 648 year: 2011 ident: 29120012_CR10 publication-title: Anal. Chem. doi: 10.1021/ac103047c – volume: 112 start-page: 5317 year: 2012 ident: 29120012_CR12 publication-title: Chem. Rev. doi: 10.1021/cr300020c – volume: 84 start-page: 74 year: 2012 ident: 29120012_CR3 publication-title: Appl. Spectrosc. Rev. – volume: 5 start-page: 245 year: 2013 ident: 29120012_CR2 publication-title: Bioanalysis doi: 10.4155/bio.12.298 – volume: 5 start-page: 263 year: 2013 ident: 29120012_CR13 publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 6 start-page: 599 year: 1999 ident: 29120012_CR21 publication-title: Chem. Biol. doi: 10.1016/S1074-5521(99)80111-2 – volume: 47 start-page: 1 year: 2013 ident: 29120012_CR1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.02.045 – volume: 34 start-page: 4810 year: 2013 ident: 29120012_CR18 publication-title: Biosens. Bioelectron. |
| SSID | ssj0012822 |
| Score | 2.0477674 |
| Snippet | A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a... |
| SourceID | proquest pubmed crossref springer jstage |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1195 |
| SubjectTerms | Analytical Chemistry bioelectrocatalytic reaction Catalysis Chemistry electrochemical immunosensor Electrochemical Techniques Electrochemistry Electrodes Graphite - chemistry Guanine - chemistry Guanine-decorated graphene nanostructures Humans Immunoassay Nanostructures - chemistry neuron-specific enolase Neurons - enzymology Phosphopyruvate Hydratase - analysis Phosphopyruvate Hydratase - metabolism |
| Title | Guanine-Decorated Graphene Nanostructures for Sensitive Monitoring of Neuron-Specific Enolase Based on an Enzyme-Free Electrocatalytic Reaction |
| URI | https://www.jstage.jst.go.jp/article/analsci/29/12/29_1195/_article/-char/en https://link.springer.com/article/10.2116/analsci.29.1195 https://www.ncbi.nlm.nih.gov/pubmed/24334987 https://www.proquest.com/docview/1478017671 https://www.proquest.com/docview/1477552520 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Analytical Sciences, 2013/12/10, Vol.29(12), pp.1195-1201 |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1348-2246 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0012822 issn: 0910-6340 databaseCode: HH5 dateStart: 19850101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1348-2246 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012822 issn: 0910-6340 databaseCode: KQ8 dateStart: 19850101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1348-2246 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012822 issn: 0910-6340 databaseCode: DIK dateStart: 19850101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1348-2246 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012822 issn: 0910-6340 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1348-2246 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012822 issn: 0910-6340 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKQIIXxH8CAxkJIVDl0jmx00i8jNGyoTKEaKVpL1Hi2GUIkrG1D9uX4CvwUbmznfTPCgJerCp2I8e_Xy535_MdIU9l1wgTwYsEgOcM7K-QZfBdZnEWC1HIEL4qeMD5_b7cHUfvDsRBq_VzIWppNs076nztuZL_QRWuAa54SvYfkG1uChfgN-ALLSAM7V9hDPiWoCWyN2hDZqg7vsX80yC-UGpWLjfsDAxqG0z4CWPVbaSQe5FPfMCzzc9RMluJ3hypdr8Ec_dUt19DU7RttDJcOz_7ptngROt231XOsY6fs6kLxFcNvk1iZtdZn7lU81jF4Z51xsPcJ-zwczVrnAd72zbmAJZ4suiMcKdI6yzeuOGx1nfm_Y0g8GXocjN1tJO2YQSAcu-D9OLYO0A87fiCcMXsdOukPtiwLt0xwKqOOjzp1COX82vvf0gH4-EwHfUPRsu97nuOpW9ED1TQZ8ffGdYlw_17X6TlErnM0eOD2_4f5_tUGIRrszn6h3PJo3BCL1ems6T3XPkCqv9Er7NqLuzIW0VndINc9xYK3XZ0u0laurxFru7UhQFvkx8XaEdr2tFl2lGgHW1oR-e0o5WhK7SjnnbU0o5WJc1KukA7uko7WtPuDhkP-qOdXebrejAF2veUxUpkOaYKFFGoDax6HuW8iKUxUkuZZF2jcqMNtKrIoiKSQoGimye8awqTbcXhXbJRVqW-T6iBRc91Lyl0CHaxFJmJpAIgeVIYoZUMSKde9VT5pPdYe-VrCsYvwpR6mFKepAhTQJ43fzh2-V5-P_SVg7EZ6AXB0kBeD2968TglSK-AbNbgp16mnIIhHoPKGMt4KyBPmm7AF7fxslJXMzsG5CgXvBuQe440zQx4FIZR0osD8qJm0cLN1z_Hgz9P5CG5xm0JGHQ7bpIN4JB-BIr4NH9s34VfQsDoxw |
| linkProvider | Colorado Alliance of Research Libraries |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guanine-Decorated+Graphene+Nanostructures+for+Sensitive+Monitoring+of+Neuron-Specific+Enolase+Based+on+an+Enzyme-Free+Electrocatalytic+Reaction&rft.jtitle=Analytical+sciences&rft.au=LI%2C+Guang-Zhou&rft.au=TIAN%2C+Feng&rft.date=2013&rft.pub=Nature+Publishing+Group&rft.issn=0910-6340&rft.eissn=1348-2246&rft.volume=29&rft.issue=12&rft.spage=1195&rft_id=info:doi/10.2116%2Fanalsci.29.1195&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3184358851 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0910-6340&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0910-6340&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0910-6340&client=summon |