Machine learning driven biomarker selection for medical diagnosis
Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies that associated molecular measurements with diseases such as Alzheimer’s, Liver, and Gastric Cancer. However, the use of thousands of biomar...
Saved in:
| Published in | PloS one Vol. 20; no. 6; p. e0322620 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
11.06.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0322620 |
Cover
| Abstract | Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies that associated molecular measurements with diseases such as Alzheimer’s, Liver, and Gastric Cancer. However, the use of thousands of biomarkers selected from the analytes is not practical for real-world medical diagnosis and is likely undesirable due to potentially formed spurious correlations. In this study, we evaluate 4 different methods for biomarker selection and 5 different machine learning (ML) classifiers for identifying correlations—evaluating 20 approaches in all. We found that contemporary methods outperform previously reported logistic regression in cases where 3 and 10 biomarkers are permitted. When specificity is fixed at 0.9, ML approaches produced a sensitivity of 0.240 (3 biomarkers) and 0.520 (10 biomarkers), while standard logistic regression provided a sensitivity of 0.000 (3 biomarkers) and 0.040 (10 biomarkers). We also noted that causal-based methods for biomarker selection proved to be the most performant when fewer biomarkers were permitted, while univariate feature selection was the most performant when a greater number of biomarkers were permitted. |
|---|---|
| AbstractList | Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies that associated molecular measurements with diseases such as Alzheimer's, Liver, and Gastric Cancer. However, the use of thousands of biomarkers selected from the analytes is not practical for real-world medical diagnosis and is likely undesirable due to potentially formed spurious correlations. In this study, we evaluate 4 different methods for biomarker selection and 5 different machine learning (ML) classifiers for identifying correlations-evaluating 20 approaches in all. We found that contemporary methods outperform previously reported logistic regression in cases where 3 and 10 biomarkers are permitted. When specificity is fixed at 0.9, ML approaches produced a sensitivity of 0.240 (3 biomarkers) and 0.520 (10 biomarkers), while standard logistic regression provided a sensitivity of 0.000 (3 biomarkers) and 0.040 (10 biomarkers). We also noted that causal-based methods for biomarker selection proved to be the most performant when fewer biomarkers were permitted, while univariate feature selection was the most performant when a greater number of biomarkers were permitted. Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies that associated molecular measurements with diseases such as Alzheimer's, Liver, and Gastric Cancer. However, the use of thousands of biomarkers selected from the analytes is not practical for real-world medical diagnosis and is likely undesirable due to potentially formed spurious correlations. In this study, we evaluate 4 different methods for biomarker selection and 5 different machine learning (ML) classifiers for identifying correlations-evaluating 20 approaches in all. We found that contemporary methods outperform previously reported logistic regression in cases where 3 and 10 biomarkers are permitted. When specificity is fixed at 0.9, ML approaches produced a sensitivity of 0.240 (3 biomarkers) and 0.520 (10 biomarkers), while standard logistic regression provided a sensitivity of 0.000 (3 biomarkers) and 0.040 (10 biomarkers). We also noted that causal-based methods for biomarker selection proved to be the most performant when fewer biomarkers were permitted, while univariate feature selection was the most performant when a greater number of biomarkers were permitted.Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies that associated molecular measurements with diseases such as Alzheimer's, Liver, and Gastric Cancer. However, the use of thousands of biomarkers selected from the analytes is not practical for real-world medical diagnosis and is likely undesirable due to potentially formed spurious correlations. In this study, we evaluate 4 different methods for biomarker selection and 5 different machine learning (ML) classifiers for identifying correlations-evaluating 20 approaches in all. We found that contemporary methods outperform previously reported logistic regression in cases where 3 and 10 biomarkers are permitted. When specificity is fixed at 0.9, ML approaches produced a sensitivity of 0.240 (3 biomarkers) and 0.520 (10 biomarkers), while standard logistic regression provided a sensitivity of 0.000 (3 biomarkers) and 0.040 (10 biomarkers). We also noted that causal-based methods for biomarker selection proved to be the most performant when fewer biomarkers were permitted, while univariate feature selection was the most performant when a greater number of biomarkers were permitted. |
| Audience | Academic |
| Author | Chung, Yunro Song, Lusheng Qiu, Ji Ganta, Shashank Agarwal, Ayushi Shakarian, Paulo Bavikadi, Divyagna |
| AuthorAffiliation | 2 Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona, United States of America 3 College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America 1 Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, United States of America University of Hong Kong, HONG KONG |
| AuthorAffiliation_xml | – name: 2 Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona, United States of America – name: University of Hong Kong, HONG KONG – name: 3 College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America – name: 1 Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, United States of America |
| Author_xml | – sequence: 1 givenname: Divyagna orcidid: 0009-0009-3786-2783 surname: Bavikadi fullname: Bavikadi, Divyagna – sequence: 2 givenname: Ayushi surname: Agarwal fullname: Agarwal, Ayushi – sequence: 3 givenname: Shashank surname: Ganta fullname: Ganta, Shashank – sequence: 4 givenname: Yunro surname: Chung fullname: Chung, Yunro – sequence: 5 givenname: Lusheng surname: Song fullname: Song, Lusheng – sequence: 6 givenname: Ji surname: Qiu fullname: Qiu, Ji – sequence: 7 givenname: Paulo surname: Shakarian fullname: Shakarian, Paulo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40498685$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkltv0zAUxyM0xLbCN0AQCQnBQ4tvsZMnVE1cKg1N4vZqOb6kHq5d7GSwb4-7ZlOD9jD5wdbx7_x9_uf4tDjyweuieA7BAmIG312GIXrhFtscXgCMEEXgUXECG4zm-YiPDs7HxWlKlwBUuKb0SXFMAGlqWlcnxfKLkGvrdem0iN76rlTRXmlftjZsRPylY5m007K3wZcmxHKjlZXClcqKzodk09PisREu6WfjPit-fPzw_ezz_Pzi0-pseT6XlJB-zgBV0LBWEK2Z1gqrGrYIC4hQZYQhkDYMQgIkYpgqZJjBQBHKWmgMbliLZ8XLve7WhcRH94ljBGsAIENNJlZ7QgVxybfRZgPXPAjLbwIhdlzE3kqnOQWqNlUN6oYxUoOqrpAmqjFUUqlaSLJWtdca_FZc_xHO3QlCwHcDuC2B7wbAxwHkvPdjlUObWyW176Nwk2KmN96ueReuOESwYujm5TejQgy_B516vrFJaueE12HYG4YVBg3M6Kv_0PvbMlKdyM6tNyE_LHeifFkTXAFCs96sWNxD5aX0xsps0dgcnyS8nSRkptd_-04MKfHVt68PZy9-TtnXB-xaC9evU3DD7gemKfjisNV3Pb793Bkge0DGkFLU5mEj_Ad9qgtU |
| Cites_doi | 10.1007/s11042-023-16236-6 10.1016/j.jprot.2012.03.046 10.5230/jgc.2023.23.e31 10.1371/journal.pone.0256630 10.1186/s12859-019-3027-7 10.1002/hep.31165 10.1016/j.jbi.2011.07.001 10.1016/j.heliyon.2024.e26799 10.1111/joim.12816 10.1021/acs.jproteome.0c00466 10.1007/s11042-024-18473-9 10.1186/1751-0473-3-17 10.1016/j.dajour.2023.100240 10.1371/journal.pone.0240867 10.1002/elan.201501174 10.1038/s41598-024-67892-z 10.1186/s40537-019-0276-2 10.1371/journal.pone.0233514 10.1109/INCOS45849.2019.8951392 10.1371/journal.pone.0212094 10.1038/s41467-020-17419-7 10.1023/A:1010933404324 10.4082/kjfm.2016.37.5.293 10.1016/S1352-2310(97)00447-0 10.1109/NCIM59001.2023.10212832 10.1016/j.health.2022.100032 10.1016/bs.acc.2019.04.003 10.1371/journal.pone.0256500 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Bavikadi et al 2025 Bavikadi et al 2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Bavikadi et al 2025 Bavikadi et al – notice: 2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0322620 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database (Proquest) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Machine learning driven biomarker selection for medical diagnosis |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3218001729 oai_doaj_org_article_60d8f58089774805852e4d9f6c6cdb14 10.1371/journal.pone.0322620 PMC12157214 A843504615 40498685 10_1371_journal_pone_0322620 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c644t-706d1f7ba4ee7eed3d81b23a1225faf416971140c2736d2f7f30d467b1ff397b3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Thu Sep 11 23:50:51 EDT 2025 Tue Oct 14 18:13:22 EDT 2025 Sun Oct 26 03:32:41 EDT 2025 Tue Sep 30 17:03:03 EDT 2025 Fri Sep 05 15:53:57 EDT 2025 Tue Oct 07 07:41:12 EDT 2025 Mon Oct 20 22:40:16 EDT 2025 Mon Oct 20 16:55:11 EDT 2025 Thu Oct 16 15:33:58 EDT 2025 Thu Oct 16 15:34:04 EDT 2025 Tue Jul 01 05:42:22 EDT 2025 Mon Jul 21 06:01:51 EDT 2025 Wed Oct 01 06:00:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright: © 2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c644t-706d1f7ba4ee7eed3d81b23a1225faf416971140c2736d2f7f30d467b1ff397b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: No authors have competing interests. |
| ORCID | 0009-0009-3786-2783 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0322620 |
| PMID | 40498685 |
| PQID | 3218001729 |
| PQPubID | 1436336 |
| PageCount | e0322620 |
| ParticipantIDs | plos_journals_3218001729 doaj_primary_oai_doaj_org_article_60d8f58089774805852e4d9f6c6cdb14 unpaywall_primary_10_1371_journal_pone_0322620 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12157214 proquest_miscellaneous_3218153091 proquest_journals_3218001729 gale_infotracmisc_A843504615 gale_infotracacademiconefile_A843504615 gale_incontextgauss_ISR_A843504615 gale_incontextgauss_IOV_A843504615 gale_healthsolutions_A843504615 pubmed_primary_40498685 crossref_primary_10_1371_journal_pone_0322620 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250611 |
| PublicationDateYYYYMMDD | 2025-06-11 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250611 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | LK Singh (pone.0322620.ref020) 2023; 83 M Shaban (pone.0322620.ref029) 2020; 15 JC Ahn (pone.0322620.ref004) 2021; 73 D Kleinbaum (pone.0322620.ref036) 2002 L Song (pone.0322620.ref010) 2021; 20 S Lopez-Garnier (pone.0322620.ref031) 2019; 14 P Sorino (pone.0322620.ref026) 2020; 15 T Chen (pone.0322620.ref014) 2015 DPM Abellana (pone.0322620.ref021) 2023; 7 JG Richens (pone.0322620.ref035) 2020; 11 S Kleinberg (pone.0322620.ref009) 2011; 44 SS Yadav (pone.0322620.ref028) 2019; 6 L-L Lin (pone.0322620.ref005) 2012; 75 pone.0322620.ref011 LK Singh (pone.0322620.ref019) 2024; 83 pone.0322620.ref016 pone.0322620.ref015 M Rosado (pone.0322620.ref001) 2019; 92 M Heenaye-Mamode Khan (pone.0322620.ref030) 2021; 16 Z Bursac (pone.0322620.ref006) 2008; 3 M Khanna (pone.0322620.ref018) 2024; 10 M Gardner (pone.0322620.ref012) 1998; 32 S-L Zhu (pone.0322620.ref024) 2020; 15 H Du (pone.0322620.ref025) 2024; 14 L McInnes (pone.0322620.ref022) 2020 SN Topkaya (pone.0322620.ref002) 2016; 28 L Breiman (pone.0322620.ref017) 2001; 45 L Singh (pone.0322620.ref034) 2024 A Direkvand-Moghadam (pone.0322620.ref007) 2016; 37 pone.0322620.ref008 JD Álvarez (pone.0322620.ref027) 2019; 20 K Blennow (pone.0322620.ref003) 2018; 284 R Kundu (pone.0322620.ref032) 2021; 16 pone.0322620.ref023 F Pedregosa (pone.0322620.ref013) 2011; 12 J Lee (pone.0322620.ref033) 2023; 23 |
| References_xml | – volume: 83 start-page: 17773 issue: 6 year: 2023 ident: pone.0322620.ref020 article-title: A novel approach for human diseases prediction using nature inspired computing & machine learning approach publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-16236-6 – volume: 75 start-page: 3081 issue: 11 year: 2012 ident: pone.0322620.ref005 article-title: Discovery of biomarkers for gastric cancer: a proteomics approach publication-title: J Proteomics doi: 10.1016/j.jprot.2012.03.046 – volume: 23 start-page: 375 issue: 3 year: 2023 ident: pone.0322620.ref033 article-title: The role of artificial intelligence in gastric cancer: surgical and therapeutic perspectives: a comprehensive review publication-title: J Gastric Cancer doi: 10.5230/jgc.2023.23.e31 – volume: 16 issue: 9 year: 2021 ident: pone.0322620.ref032 article-title: Pneumonia detection in chest X-ray images using an ensemble of deep learning models publication-title: PLoS One doi: 10.1371/journal.pone.0256630 – volume: 20 start-page: 491 issue: 1 year: 2019 ident: pone.0322620.ref027 article-title: An application of machine learning with feature selection to improve diagnosis and classification of neurodegenerative disorders publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-3027-7 – year: 2020 ident: pone.0322620.ref022 article-title: UMAP: uniform manifold approximation and projection for dimension reduction – volume: 73 start-page: 422 issue: 1 year: 2021 ident: pone.0322620.ref004 article-title: Detection of circulating tumor cells and their implications as a biomarker for diagnosis, prognostication, and therapeutic monitoring in hepatocellular carcinoma publication-title: Hepatology doi: 10.1002/hep.31165 – volume: 44 start-page: 1102 issue: 6 year: 2011 ident: pone.0322620.ref009 article-title: A review of causal inference for biomedical informatics publication-title: J Biomed Inform doi: 10.1016/j.jbi.2011.07.001 – volume: 10 issue: 5 year: 2024 ident: pone.0322620.ref018 article-title: An enhanced and efficient approach for feature selection for chronic human disease prediction: a breast cancer study publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e26799 – volume: 284 start-page: 643 issue: 6 year: 2018 ident: pone.0322620.ref003 article-title: Biomarkers for Alzheimer’s disease: current status and prospects for the future publication-title: J Intern Med doi: 10.1111/joim.12816 – volume: 20 start-page: 409 issue: 1 year: 2021 ident: pone.0322620.ref010 article-title: Helicobacter pylori immunoproteomic profiles in gastric cancer publication-title: J Proteome Res doi: 10.1021/acs.jproteome.0c00466 – volume: 83 start-page: 76607 issue: 31 year: 2024 ident: pone.0322620.ref019 article-title: An enhanced soft-computing based strategy for efficient feature selection for timely breast cancer prediction: Wisconsin Diagnostic Breast Cancer dataset case publication-title: Multimed Tools Appl doi: 10.1007/s11042-024-18473-9 – volume: 3 start-page: 17 year: 2008 ident: pone.0322620.ref006 article-title: Purposeful selection of variables in logistic regression publication-title: Source Code Biol Med doi: 10.1186/1751-0473-3-17 – volume: 7 start-page: 100240 year: 2023 ident: pone.0322620.ref021 article-title: A new univariate feature selection algorithm based on the best–worst multi-attribute decision-making method publication-title: Decis Anal J doi: 10.1016/j.dajour.2023.100240 – volume-title: Logistic regression year: 2002 ident: pone.0322620.ref036 – volume: 15 issue: 10 year: 2020 ident: pone.0322620.ref026 article-title: Selecting the best machine learning algorithm to support the diagnosis of non-alcoholic fatty liver disease: A meta learner study publication-title: PLoS One doi: 10.1371/journal.pone.0240867 – volume: 28 start-page: 1402 issue: 7 year: 2016 ident: pone.0322620.ref002 article-title: Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges publication-title: Electroanalysis doi: 10.1002/elan.201501174 – ident: pone.0322620.ref016 – volume: 14 start-page: 17457 issue: 1 year: 2024 ident: pone.0322620.ref025 article-title: Explainable machine learning models for early gastric cancer diagnosis publication-title: Sci Rep doi: 10.1038/s41598-024-67892-z – year: 2024 ident: pone.0322620.ref034 article-title: Nature-inspired algorithms-based optimal features selection strategy for COVID-19 detection using medical images publication-title: New Gener Comput – volume: 6 issue: 1 year: 2019 ident: pone.0322620.ref028 article-title: Deep convolutional neural network based medical image classification for disease diagnosis publication-title: J Big Data doi: 10.1186/s40537-019-0276-2 – start-page: 1 issue: 1 year: 2015 ident: pone.0322620.ref014 article-title: Xgboost: extreme gradient boosting publication-title: R package – volume: 15 issue: 6 year: 2020 ident: pone.0322620.ref029 article-title: A convolutional neural network for the screening and staging of diabetic retinopathy publication-title: PLoS One doi: 10.1371/journal.pone.0233514 – ident: pone.0322620.ref015 doi: 10.1109/INCOS45849.2019.8951392 – volume: 14 issue: 2 year: 2019 ident: pone.0322620.ref031 article-title: Automatic diagnostics of tuberculosis using convolutional neural networks analysis of MODS digital images publication-title: PLoS One doi: 10.1371/journal.pone.0212094 – volume: 11 start-page: 3923 issue: 1 year: 2020 ident: pone.0322620.ref035 article-title: Improving the accuracy of medical diagnosis with causal machine learning publication-title: Nat Commun doi: 10.1038/s41467-020-17419-7 – volume: 45 start-page: 5 year: 2001 ident: pone.0322620.ref017 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 37 start-page: 293 issue: 5 year: 2016 ident: pone.0322620.ref007 article-title: Prevalence and predictive factors of sexual dysfunction in iranian women: univariate and multivariate logistic regression analyses publication-title: Korean J Fam Med doi: 10.4082/kjfm.2016.37.5.293 – volume: 32 start-page: 2627 year: 1998 ident: pone.0322620.ref012 article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences publication-title: Atmosph Environ doi: 10.1016/S1352-2310(97)00447-0 – volume: 15 issue: 12 year: 2020 ident: pone.0322620.ref024 article-title: Application of machine learning in the diagnosis of gastric cancer based on noninvasive characteristics publication-title: PLoS One – ident: pone.0322620.ref008 doi: 10.1109/NCIM59001.2023.10212832 – ident: pone.0322620.ref011 – ident: pone.0322620.ref023 doi: 10.1016/j.health.2022.100032 – volume: 12 start-page: 2825 issue: 1 year: 2011 ident: pone.0322620.ref013 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res – volume: 92 start-page: 141 year: 2019 ident: pone.0322620.ref001 article-title: Advances in biomarker detection: alternative approaches for blood-based biomarker detection publication-title: Adv Clin Chem doi: 10.1016/bs.acc.2019.04.003 – volume: 16 issue: 8 year: 2021 ident: pone.0322620.ref030 article-title: Multi- class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN) publication-title: PLoS One doi: 10.1371/journal.pone.0256500 |
| SSID | ssj0053866 |
| Score | 2.4875124 |
| Snippet | Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0322620 |
| SubjectTerms | Algorithms Alzheimer's disease Biological markers Biology and Life Sciences Biomarkers Biomarkers - analysis Cancer Computer and Information Sciences Correlation Datasets Decision trees Diagnosis Disease Evaluation Experimental methods Feature selection Gastric cancer Health aspects Humans Learning algorithms Liver cancer Logistic Models Machine Learning Medical diagnosis Medical research Medicine and Health Sciences Medicine, Experimental Neural networks Proteins Regression analysis Research methodology Sensitivity Sensitivity and Specificity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQX-AFMb4WGGAQEvCQLokTx3ksiGkgDSRgaG-WHdtjUkmrptW0_547240aMYk98Nq7tsrv7uzfKfdByOuMVYblNk-VU3VaGu5SbUSTastVBQkR0xl2I5984cen5eez6mxn1RfWhIXxwAG4Q54Z4SqRCSQqIgN2W9jSNI63vDXar7AuQLhNpsIZDFHMeWyUY3V-GO0yXS46O83Ahznu9965iPy8_uFUnizni_46yvl35eTtTbdUV5dqPt-5lo7ukbuRT9JZeI49cst298lejNievo1jpd89ILMTXzdpaVwUcU7NCo86ih34WKSzor1figOWokBl6e_wDoeaUI130T8kp0cff3w4TuMChbQFmrNO64yb3NValdbWcBkyAyS1YCqHIHbKARdrasiHshY4DDeFqx3LDJycOncOeIpmj8ikA8j2CdWCY09cU-SmKS2kzWAXVShdAOFsbc0Skm7RlMswJ0P6l2U15BcBConoy4h-Qt4j5IMuTrn2H4DtZbS9_JftE_ICDSZDy-gQq3ImgATiJPkqIa-8Bk666LCU5lxt-l5--vrzBkrfv42U3kQltwDTtyq2L8Az4QStkebBSBPitR2J99G9tqj0kgHL8ql4A9_cutz14peDGH8Uy-M6u9gEHbi6gPsl5HHw0AHZEnJAwQX8rxj57gj6saS7-OUHjePkkbpAnKeDm9_Iuk_-h3WfkjsFLlvGRVH5AZmsVxv7DBjgWj_3wf4HSfhWsQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZG9wAviHFbYIBBSMBDulzt5AGhDm0aSCtoMLS3yI7tMqkkoWmF-Pec4zhhERPaa33aKOf6nfpcCHkZxKmKQx36wgjuJ4oZX6os96VmIoWEKJYBdiOfzNnxWfLxPD3fIvO-FwbLKnufaB21qkv8j3w_hlhkE5b8XfPTx61ReLvar9AQbrWCemtHjN0g2xFOxpqQ7YPD-efT3jeDdTPmGuhiHu47eU2butLTAHSb4d7vSwHKzvEfvPWkWdbtVVD034rKm5uqEb9_ieXyUrg6ukNuO5xJZ51i7JAtXd0lO86SW_rajZt-c4_MTmw9paZugcSCqhW6QIqd-Vi8s6KtXZYDEqQAcemP7m6Hqq5K76K9T86ODr--P_bdYgW_BPiz9nnAVGi4FInWHIJkrAC8RrEIwbiNMIDRcg55UlACtmEqMtzEgQKPKkNjAL_I-AGZVMCyXUJlxrBXLo9ClSca0mkWKBEJGYGwSs1jj_g9N4umm59R2Es0DnlHx4oCuV847nvkAFk-0OL0a_tBvVoUzpgKeEZm0izIELxmAWQ8kU5UbljJSiXDxCPPUGBF10o62HAxywAc4oT51CMvLAVOwKiwxGYhNm1bfPj07RpEX05HRK8ckalB9KVwbQ3wTjhZa0S5N6IEOy5Hx7uoXj1X2uKvxsM3e5W7-vj5cIw_imVzla43HQ2ENMCEHnnYaejA2QRyw4xl8NxspLsj1o9PqovvdgA5TiThEfJ5Oqj5taT76P8v8pjcinC9Mq6GCvfIZL3a6CeA-dbyqTPkPwp4VXI priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wICAkACJhMRO7OSxIKaB1IGAovEU2bE9JkpaNY0Q_PXcJU60wJDKa-_cyOe78-_k-yDkccRSzWITB9JKESSa20DpLA-U4TKFgIipCKuRZ8f8aJ68PUlPdsjzvhbm_Ps9E_ELJ9FwtaxMGIH2cQoB-i5PAXlPyO78-P30S_dwTAMgMVcd96-lo9unbdI_uOLJarGsL8KZf6dLXmqqlfz5Qy4W5-6iw6tk1u-iS0H5FjYbFZa__mjwuO02r5ErDpT6006L9siOqa6TPWf2tf_U9aZ-doNMZ23ypfHdtIlTX6_RX_pYxo-ZPmu_bifrwHH7gIf9791DkK-7lL6z-iaZH77-9OoocFMYghKw0iYQEdexFUomxgi4UZkGpEuZjMETWGkB0OUCgqqoBCDENbXCskiD-1WxtQB2FLtFJhVsa5_4KuNYWJfTWOeJgdibR1pSqSig1tII5pGgP51i1TXbKNoXNwFBSieKAiVUOAl55CUe4cCLrbLbH0C0hbO8Ar6R2TSLMkS6WQThETWJzi0vealVnHjkASpA0dWdDgZfTDNAktiOPvXIo5YD22VUmI9zKpu6Lt68-7wF08cPI6YnjskuQZVK6WogYE_YhmvEeTDiBKMvR-R9VNdeKnXBAKq18XwOK3sVvpj8cCDjn2KOXWWWTccD9x8ASI_c7jR-kGwCgWTGM_huNrKFkejHlOrsa9utHNuXCIpyDgez2ep07_zvgrvkMsXpzDhZKj4gk826MfcAMm7UfecpfgM-eWfd priority: 102 providerName: Unpaywall |
| Title | Machine learning driven biomarker selection for medical diagnosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40498685 https://www.proquest.com/docview/3218001729 https://www.proquest.com/docview/3218153091 https://pubmed.ncbi.nlm.nih.gov/PMC12157214 https://doi.org/10.1371/journal.pone.0322620 https://doaj.org/article/60d8f58089774805852e4d9f6c6cdb14 http://dx.doi.org/10.1371/journal.pone.0322620 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGd4ALYnwtMEpASMAhVT5t54BQN60MpJZpUFROkRPbZVJJStMK9t_znuNGRBS0Sw7xS6L-_J79e_X7IOSFHyUyClTgCS2YF0uqvVzy1MsVFQk4RFHuYzbyeELPpvGHWTLbI9uerRbAeqdrh_2kpqvF4NePq7dg8G9M1wYWbB8aLKtSDXzQUBqCE78Pe1WKzRzGcXuuANZtTi-RtXggFdlkun-9pbNZmZr-7crdWy6qehct_Tu68uamXIqrn2Kx-GPrGt0hty3ndIeNkhyQPVXeJQfWqmv3lS09_foeGY5NbKVybTOJuStXuBy6mKWPgTwrtzaNc2A2XaC77vfmnMeVTcTeZX2fTEenn0_OPNtkwSuACq095lMZaJaLWCkGG2YkgciGkQjA0LXQwNdSBj6TXwDPoTLUTEe-hNU1D7QGLpNHD0ivBMgOiZtzinlzaRjINFbgWlNfilDkIZDSQrHIId4WzWzZ1NLIzIEaAx-kgSJD9DOLvkOOEfJWFithmxvVap5Zw8rgG1wn3OdIZLkP3k-oYplqWtBC5kHskKc4YVmTVtraczbkQBSx2nzikOdGAqthlBhuMxebus7ef_xyDaFPFx2hl1ZIVzD1hbApDvCbsMpWR_KoIwk2XXSGD1G9tqjUWQRMzLjrKTy5Vbndw8_aYXwphtCVqto0MrC9AT90yMNGQ1tkY_ATOeXwXd7R3Q703ZHy8pspRo7VSViIOA9aNb_W7D76PwSPya0QWy1jm6jgiPTWq416AvxvnffJDTZjcOUnAV5H7_pk__h0cn7RN_-o9I3Jw73p5Hz49Te0h10p |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeRgviHFb2WAGgYCHdEmcOskDQuUytWwdEmxT34wT22VSl5Sm1bQ_xW_knMQJi5jQXvZanybK58_nkpwLIS9d1lfM054jjQydQHHjJCqKnURz2YeAiCUuViOPD_nwOPgy6U_WyO-6FgbTKmudWCpqlaf4jnyXgS0qA5b4_fyXg1Oj8OtqPUKjosW-vjiHkK14N_oE-_vK9_c-H30cOnaqgJOC7V86ocuVZ8JEBlqHYCGYAs_NZ9IDZhtpwEGJQwgS3BQMO1e-CQ1zFaiTxDMGjHfC4Lq3yO2AgS6B8xNOmgAPdAfntjyPhd6uZUNvnme658LJ4ThV_JL5K6cENLagM5_lxVWO7r_5muurbC4vzuVsdskY7t0jd60XSwcV7TbIms7ukw2rJwr6xjazfvuADMZltqamdjzFlKoFKliKdf-YGrSgRTmKB_hBwYGmZ9WXI6qqHMDT4iE5vhGAH5FOBpBtEppEHCvxYt9TcaAhWOeukr5MfKBCqkPWJU6NpphX3TlE-YkuhKimgkIg-sKi3yUfEPJGFntrlz_ki6mwR1XAPSLTj9wIXePIhXjK14GKDU95qhIv6JId3DBRFao2GkIMInA9sX99v0telBLYXyPDBJ6pXBWFGH09uYbQ928toddWyOSw9am0RRPwTNi3qyW53ZIELZG2ljeRXjUqhfh7nuCfNeWuXn7eLONFMSkv0_mqkgGDCR5nlzyuGNogG0DkGfEI7hu1uNuCvr2Snf4s25tjv5PQR5x7Dc2vtbtP_v8gO2R9eDQ-EAejw_0tcsfHQc44hMrbJp3lYqWfgne5TJ6VR5qSHzetQ_4A1T6Lfw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGkYAXxLitY7CAQMBD2iRO7eQBocKoVsYGYgz1zTix3U0qSWlaTftr_DrOSZywiAntZa_1aaJ8_nwuybkQ8tyjA0V97bvSSO6Gihk3UVHsJprJAQRENPGwGnn_gO0ehR8ng8ka-V3XwmBaZa0TS0Wt8hTfkfcp2KIyYIn7xqZFfNkZvZ3_cnGCFH5prcdpVBTZ02enEL4Vb8Y7sNcvgmD04dv7XddOGHBT8AOWLveY8g1PZKg1B2tBFXhxAZU-sNxIA85KzCFg8FIw8kwFhhvqKVAtiW8MGPKEwnWvkeuc0hjTCfmkCfZAjzBmS_Uo9_uWGb15numeB6eI4YTxc6awnBjQ2IXOfJYXFzm9_-Zu3lxlc3l2Kmezc4ZxdIfcth6tM6wouE7WdHaXrFudUTivbGPr1_fIcL_M3NSOHVUxddQCla2DPQAwTWjhFOVYHuCKA86087P6iuSoKh_wpLhPjq4E4AekkwFkG8RJIoZVeXHgqzjUELgzT8lAJgHQItWcdolboynmVacOUX6u4xDhVFAIRF9Y9LvkHULeyGKf7fKHfDEV9tgKuEdkBpEXoZsceRBbBTpUsWEpS1Xih12yjRsmqqLVRluIYQRuKPayH3TJs1ICe21kyNqpXBWFGH_-fgmhw68toZdWyOSw9am0BRTwTNjDqyW51ZIEjZG2ljeQXjUqhfh7tuCfNeUuXn7aLONFMUEv0_mqkgHjCd5nlzysGNogG0IUGrEI7hu1uNuCvr2SnRyXrc6x9wkPEOdeQ_NL7e7m_x9km9wA7SE-jQ_2HpFbAc50xnlU_hbpLBcr_RgczWXypDzRDvlx1SrkD7L4j8I |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wICAkACJhMRO7OSxIKaB1IGAovEU2bE9JkpaNY0Q_PXcJU60wJDKa-_cyOe78-_k-yDkccRSzWITB9JKESSa20DpLA-U4TKFgIipCKuRZ8f8aJ68PUlPdsjzvhbm_Ps9E_ELJ9FwtaxMGIH2cQoB-i5PAXlPyO78-P30S_dwTAMgMVcd96-lo9unbdI_uOLJarGsL8KZf6dLXmqqlfz5Qy4W5-6iw6tk1u-iS0H5FjYbFZa__mjwuO02r5ErDpT6006L9siOqa6TPWf2tf_U9aZ-doNMZ23ypfHdtIlTX6_RX_pYxo-ZPmu_bifrwHH7gIf9791DkK-7lL6z-iaZH77-9OoocFMYghKw0iYQEdexFUomxgi4UZkGpEuZjMETWGkB0OUCgqqoBCDENbXCskiD-1WxtQB2FLtFJhVsa5_4KuNYWJfTWOeJgdibR1pSqSig1tII5pGgP51i1TXbKNoXNwFBSieKAiVUOAl55CUe4cCLrbLbH0C0hbO8Ar6R2TSLMkS6WQThETWJzi0vealVnHjkASpA0dWdDgZfTDNAktiOPvXIo5YD22VUmI9zKpu6Lt68-7wF08cPI6YnjskuQZVK6WogYE_YhmvEeTDiBKMvR-R9VNdeKnXBAKq18XwOK3sVvpj8cCDjn2KOXWWWTccD9x8ASI_c7jR-kGwCgWTGM_huNrKFkejHlOrsa9utHNuXCIpyDgez2ep07_zvgrvkMsXpzDhZKj4gk826MfcAMm7UfecpfgM-eWfd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+driven+biomarker+selection+for+medical+diagnosis&rft.jtitle=PloS+one&rft.au=Bavikadi%2C+Divyagna&rft.au=Agarwal%2C+Ayushi&rft.au=Ganta%2C+Shashank&rft.au=Chung%2C+Yunro&rft.date=2025-06-11&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0322620&rft_id=info:doi/10.1371%2Fjournal.pone.0322620&rft.externalDocID=A843504615 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |