Machine learning driven biomarker selection for medical diagnosis

Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies that associated molecular measurements with diseases such as Alzheimer’s, Liver, and Gastric Cancer. However, the use of thousands of biomar...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0322620
Main Authors Bavikadi, Divyagna, Agarwal, Ayushi, Ganta, Shashank, Chung, Yunro, Song, Lusheng, Qiu, Ji, Shakarian, Paulo
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 11.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0322620

Cover

Abstract Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies that associated molecular measurements with diseases such as Alzheimer’s, Liver, and Gastric Cancer. However, the use of thousands of biomarkers selected from the analytes is not practical for real-world medical diagnosis and is likely undesirable due to potentially formed spurious correlations. In this study, we evaluate 4 different methods for biomarker selection and 5 different machine learning (ML) classifiers for identifying correlations—evaluating 20 approaches in all. We found that contemporary methods outperform previously reported logistic regression in cases where 3 and 10 biomarkers are permitted. When specificity is fixed at 0.9, ML approaches produced a sensitivity of 0.240 (3 biomarkers) and 0.520 (10 biomarkers), while standard logistic regression provided a sensitivity of 0.000 (3 biomarkers) and 0.040 (10 biomarkers). We also noted that causal-based methods for biomarker selection proved to be the most performant when fewer biomarkers were permitted, while univariate feature selection was the most performant when a greater number of biomarkers were permitted.
AbstractList Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies that associated molecular measurements with diseases such as Alzheimer's, Liver, and Gastric Cancer. However, the use of thousands of biomarkers selected from the analytes is not practical for real-world medical diagnosis and is likely undesirable due to potentially formed spurious correlations. In this study, we evaluate 4 different methods for biomarker selection and 5 different machine learning (ML) classifiers for identifying correlations-evaluating 20 approaches in all. We found that contemporary methods outperform previously reported logistic regression in cases where 3 and 10 biomarkers are permitted. When specificity is fixed at 0.9, ML approaches produced a sensitivity of 0.240 (3 biomarkers) and 0.520 (10 biomarkers), while standard logistic regression provided a sensitivity of 0.000 (3 biomarkers) and 0.040 (10 biomarkers). We also noted that causal-based methods for biomarker selection proved to be the most performant when fewer biomarkers were permitted, while univariate feature selection was the most performant when a greater number of biomarkers were permitted.
Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies that associated molecular measurements with diseases such as Alzheimer's, Liver, and Gastric Cancer. However, the use of thousands of biomarkers selected from the analytes is not practical for real-world medical diagnosis and is likely undesirable due to potentially formed spurious correlations. In this study, we evaluate 4 different methods for biomarker selection and 5 different machine learning (ML) classifiers for identifying correlations-evaluating 20 approaches in all. We found that contemporary methods outperform previously reported logistic regression in cases where 3 and 10 biomarkers are permitted. When specificity is fixed at 0.9, ML approaches produced a sensitivity of 0.240 (3 biomarkers) and 0.520 (10 biomarkers), while standard logistic regression provided a sensitivity of 0.000 (3 biomarkers) and 0.040 (10 biomarkers). We also noted that causal-based methods for biomarker selection proved to be the most performant when fewer biomarkers were permitted, while univariate feature selection was the most performant when a greater number of biomarkers were permitted.Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies that associated molecular measurements with diseases such as Alzheimer's, Liver, and Gastric Cancer. However, the use of thousands of biomarkers selected from the analytes is not practical for real-world medical diagnosis and is likely undesirable due to potentially formed spurious correlations. In this study, we evaluate 4 different methods for biomarker selection and 5 different machine learning (ML) classifiers for identifying correlations-evaluating 20 approaches in all. We found that contemporary methods outperform previously reported logistic regression in cases where 3 and 10 biomarkers are permitted. When specificity is fixed at 0.9, ML approaches produced a sensitivity of 0.240 (3 biomarkers) and 0.520 (10 biomarkers), while standard logistic regression provided a sensitivity of 0.000 (3 biomarkers) and 0.040 (10 biomarkers). We also noted that causal-based methods for biomarker selection proved to be the most performant when fewer biomarkers were permitted, while univariate feature selection was the most performant when a greater number of biomarkers were permitted.
Audience Academic
Author Chung, Yunro
Song, Lusheng
Qiu, Ji
Ganta, Shashank
Agarwal, Ayushi
Shakarian, Paulo
Bavikadi, Divyagna
AuthorAffiliation 2 Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona, United States of America
3 College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
1 Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, United States of America
University of Hong Kong, HONG KONG
AuthorAffiliation_xml – name: 2 Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona, United States of America
– name: University of Hong Kong, HONG KONG
– name: 3 College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
– name: 1 Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, United States of America
Author_xml – sequence: 1
  givenname: Divyagna
  orcidid: 0009-0009-3786-2783
  surname: Bavikadi
  fullname: Bavikadi, Divyagna
– sequence: 2
  givenname: Ayushi
  surname: Agarwal
  fullname: Agarwal, Ayushi
– sequence: 3
  givenname: Shashank
  surname: Ganta
  fullname: Ganta, Shashank
– sequence: 4
  givenname: Yunro
  surname: Chung
  fullname: Chung, Yunro
– sequence: 5
  givenname: Lusheng
  surname: Song
  fullname: Song, Lusheng
– sequence: 6
  givenname: Ji
  surname: Qiu
  fullname: Qiu, Ji
– sequence: 7
  givenname: Paulo
  surname: Shakarian
  fullname: Shakarian, Paulo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40498685$$D View this record in MEDLINE/PubMed
BookMark eNqNkltv0zAUxyM0xLbCN0AQCQnBQ4tvsZMnVE1cKg1N4vZqOb6kHq5d7GSwb4-7ZlOD9jD5wdbx7_x9_uf4tDjyweuieA7BAmIG312GIXrhFtscXgCMEEXgUXECG4zm-YiPDs7HxWlKlwBUuKb0SXFMAGlqWlcnxfKLkGvrdem0iN76rlTRXmlftjZsRPylY5m007K3wZcmxHKjlZXClcqKzodk09PisREu6WfjPit-fPzw_ezz_Pzi0-pseT6XlJB-zgBV0LBWEK2Z1gqrGrYIC4hQZYQhkDYMQgIkYpgqZJjBQBHKWmgMbliLZ8XLve7WhcRH94ljBGsAIENNJlZ7QgVxybfRZgPXPAjLbwIhdlzE3kqnOQWqNlUN6oYxUoOqrpAmqjFUUqlaSLJWtdca_FZc_xHO3QlCwHcDuC2B7wbAxwHkvPdjlUObWyW176Nwk2KmN96ueReuOESwYujm5TejQgy_B516vrFJaueE12HYG4YVBg3M6Kv_0PvbMlKdyM6tNyE_LHeifFkTXAFCs96sWNxD5aX0xsps0dgcnyS8nSRkptd_-04MKfHVt68PZy9-TtnXB-xaC9evU3DD7gemKfjisNV3Pb793Bkge0DGkFLU5mEj_Ad9qgtU
Cites_doi 10.1007/s11042-023-16236-6
10.1016/j.jprot.2012.03.046
10.5230/jgc.2023.23.e31
10.1371/journal.pone.0256630
10.1186/s12859-019-3027-7
10.1002/hep.31165
10.1016/j.jbi.2011.07.001
10.1016/j.heliyon.2024.e26799
10.1111/joim.12816
10.1021/acs.jproteome.0c00466
10.1007/s11042-024-18473-9
10.1186/1751-0473-3-17
10.1016/j.dajour.2023.100240
10.1371/journal.pone.0240867
10.1002/elan.201501174
10.1038/s41598-024-67892-z
10.1186/s40537-019-0276-2
10.1371/journal.pone.0233514
10.1109/INCOS45849.2019.8951392
10.1371/journal.pone.0212094
10.1038/s41467-020-17419-7
10.1023/A:1010933404324
10.4082/kjfm.2016.37.5.293
10.1016/S1352-2310(97)00447-0
10.1109/NCIM59001.2023.10212832
10.1016/j.health.2022.100032
10.1016/bs.acc.2019.04.003
10.1371/journal.pone.0256500
ContentType Journal Article
Copyright Copyright: © 2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Bavikadi et al 2025 Bavikadi et al
2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Bavikadi et al 2025 Bavikadi et al
– notice: 2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0322620
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database (Proquest)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Agricultural Science Database
MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Machine learning driven biomarker selection for medical diagnosis
EISSN 1932-6203
ExternalDocumentID 3218001729
oai_doaj_org_article_60d8f58089774805852e4d9f6c6cdb14
10.1371/journal.pone.0322620
PMC12157214
A843504615
40498685
10_1371_journal_pone_0322620
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c644t-706d1f7ba4ee7eed3d81b23a1225faf416971140c2736d2f7f30d467b1ff397b3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Thu Sep 11 23:50:51 EDT 2025
Tue Oct 14 18:13:22 EDT 2025
Sun Oct 26 03:32:41 EDT 2025
Tue Sep 30 17:03:03 EDT 2025
Fri Sep 05 15:53:57 EDT 2025
Tue Oct 07 07:41:12 EDT 2025
Mon Oct 20 22:40:16 EDT 2025
Mon Oct 20 16:55:11 EDT 2025
Thu Oct 16 15:33:58 EDT 2025
Thu Oct 16 15:34:04 EDT 2025
Tue Jul 01 05:42:22 EDT 2025
Mon Jul 21 06:01:51 EDT 2025
Wed Oct 01 06:00:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2025 Bavikadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-706d1f7ba4ee7eed3d81b23a1225faf416971140c2736d2f7f30d467b1ff397b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: No authors have competing interests.
ORCID 0009-0009-3786-2783
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0322620
PMID 40498685
PQID 3218001729
PQPubID 1436336
PageCount e0322620
ParticipantIDs plos_journals_3218001729
doaj_primary_oai_doaj_org_article_60d8f58089774805852e4d9f6c6cdb14
unpaywall_primary_10_1371_journal_pone_0322620
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12157214
proquest_miscellaneous_3218153091
proquest_journals_3218001729
gale_infotracmisc_A843504615
gale_infotracacademiconefile_A843504615
gale_incontextgauss_ISR_A843504615
gale_incontextgauss_IOV_A843504615
gale_healthsolutions_A843504615
pubmed_primary_40498685
crossref_primary_10_1371_journal_pone_0322620
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250611
PublicationDateYYYYMMDD 2025-06-11
PublicationDate_xml – month: 6
  year: 2025
  text: 20250611
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References LK Singh (pone.0322620.ref020) 2023; 83
M Shaban (pone.0322620.ref029) 2020; 15
JC Ahn (pone.0322620.ref004) 2021; 73
D Kleinbaum (pone.0322620.ref036) 2002
L Song (pone.0322620.ref010) 2021; 20
S Lopez-Garnier (pone.0322620.ref031) 2019; 14
P Sorino (pone.0322620.ref026) 2020; 15
T Chen (pone.0322620.ref014) 2015
DPM Abellana (pone.0322620.ref021) 2023; 7
JG Richens (pone.0322620.ref035) 2020; 11
S Kleinberg (pone.0322620.ref009) 2011; 44
SS Yadav (pone.0322620.ref028) 2019; 6
L-L Lin (pone.0322620.ref005) 2012; 75
pone.0322620.ref011
LK Singh (pone.0322620.ref019) 2024; 83
pone.0322620.ref016
pone.0322620.ref015
M Rosado (pone.0322620.ref001) 2019; 92
M Heenaye-Mamode Khan (pone.0322620.ref030) 2021; 16
Z Bursac (pone.0322620.ref006) 2008; 3
M Khanna (pone.0322620.ref018) 2024; 10
M Gardner (pone.0322620.ref012) 1998; 32
S-L Zhu (pone.0322620.ref024) 2020; 15
H Du (pone.0322620.ref025) 2024; 14
L McInnes (pone.0322620.ref022) 2020
SN Topkaya (pone.0322620.ref002) 2016; 28
L Breiman (pone.0322620.ref017) 2001; 45
L Singh (pone.0322620.ref034) 2024
A Direkvand-Moghadam (pone.0322620.ref007) 2016; 37
pone.0322620.ref008
JD Álvarez (pone.0322620.ref027) 2019; 20
K Blennow (pone.0322620.ref003) 2018; 284
R Kundu (pone.0322620.ref032) 2021; 16
pone.0322620.ref023
F Pedregosa (pone.0322620.ref013) 2011; 12
J Lee (pone.0322620.ref033) 2023; 23
References_xml – volume: 83
  start-page: 17773
  issue: 6
  year: 2023
  ident: pone.0322620.ref020
  article-title: A novel approach for human diseases prediction using nature inspired computing & machine learning approach
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-16236-6
– volume: 75
  start-page: 3081
  issue: 11
  year: 2012
  ident: pone.0322620.ref005
  article-title: Discovery of biomarkers for gastric cancer: a proteomics approach
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2012.03.046
– volume: 23
  start-page: 375
  issue: 3
  year: 2023
  ident: pone.0322620.ref033
  article-title: The role of artificial intelligence in gastric cancer: surgical and therapeutic perspectives: a comprehensive review
  publication-title: J Gastric Cancer
  doi: 10.5230/jgc.2023.23.e31
– volume: 16
  issue: 9
  year: 2021
  ident: pone.0322620.ref032
  article-title: Pneumonia detection in chest X-ray images using an ensemble of deep learning models
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0256630
– volume: 20
  start-page: 491
  issue: 1
  year: 2019
  ident: pone.0322620.ref027
  article-title: An application of machine learning with feature selection to improve diagnosis and classification of neurodegenerative disorders
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3027-7
– year: 2020
  ident: pone.0322620.ref022
  article-title: UMAP: uniform manifold approximation and projection for dimension reduction
– volume: 73
  start-page: 422
  issue: 1
  year: 2021
  ident: pone.0322620.ref004
  article-title: Detection of circulating tumor cells and their implications as a biomarker for diagnosis, prognostication, and therapeutic monitoring in hepatocellular carcinoma
  publication-title: Hepatology
  doi: 10.1002/hep.31165
– volume: 44
  start-page: 1102
  issue: 6
  year: 2011
  ident: pone.0322620.ref009
  article-title: A review of causal inference for biomedical informatics
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2011.07.001
– volume: 10
  issue: 5
  year: 2024
  ident: pone.0322620.ref018
  article-title: An enhanced and efficient approach for feature selection for chronic human disease prediction: a breast cancer study
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e26799
– volume: 284
  start-page: 643
  issue: 6
  year: 2018
  ident: pone.0322620.ref003
  article-title: Biomarkers for Alzheimer’s disease: current status and prospects for the future
  publication-title: J Intern Med
  doi: 10.1111/joim.12816
– volume: 20
  start-page: 409
  issue: 1
  year: 2021
  ident: pone.0322620.ref010
  article-title: Helicobacter pylori immunoproteomic profiles in gastric cancer
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.0c00466
– volume: 83
  start-page: 76607
  issue: 31
  year: 2024
  ident: pone.0322620.ref019
  article-title: An enhanced soft-computing based strategy for efficient feature selection for timely breast cancer prediction: Wisconsin Diagnostic Breast Cancer dataset case
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-024-18473-9
– volume: 3
  start-page: 17
  year: 2008
  ident: pone.0322620.ref006
  article-title: Purposeful selection of variables in logistic regression
  publication-title: Source Code Biol Med
  doi: 10.1186/1751-0473-3-17
– volume: 7
  start-page: 100240
  year: 2023
  ident: pone.0322620.ref021
  article-title: A new univariate feature selection algorithm based on the best–worst multi-attribute decision-making method
  publication-title: Decis Anal J
  doi: 10.1016/j.dajour.2023.100240
– volume-title: Logistic regression
  year: 2002
  ident: pone.0322620.ref036
– volume: 15
  issue: 10
  year: 2020
  ident: pone.0322620.ref026
  article-title: Selecting the best machine learning algorithm to support the diagnosis of non-alcoholic fatty liver disease: A meta learner study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0240867
– volume: 28
  start-page: 1402
  issue: 7
  year: 2016
  ident: pone.0322620.ref002
  article-title: Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges
  publication-title: Electroanalysis
  doi: 10.1002/elan.201501174
– ident: pone.0322620.ref016
– volume: 14
  start-page: 17457
  issue: 1
  year: 2024
  ident: pone.0322620.ref025
  article-title: Explainable machine learning models for early gastric cancer diagnosis
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-67892-z
– year: 2024
  ident: pone.0322620.ref034
  article-title: Nature-inspired algorithms-based optimal features selection strategy for COVID-19 detection using medical images
  publication-title: New Gener Comput
– volume: 6
  issue: 1
  year: 2019
  ident: pone.0322620.ref028
  article-title: Deep convolutional neural network based medical image classification for disease diagnosis
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0276-2
– start-page: 1
  issue: 1
  year: 2015
  ident: pone.0322620.ref014
  article-title: Xgboost: extreme gradient boosting
  publication-title: R package
– volume: 15
  issue: 6
  year: 2020
  ident: pone.0322620.ref029
  article-title: A convolutional neural network for the screening and staging of diabetic retinopathy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0233514
– ident: pone.0322620.ref015
  doi: 10.1109/INCOS45849.2019.8951392
– volume: 14
  issue: 2
  year: 2019
  ident: pone.0322620.ref031
  article-title: Automatic diagnostics of tuberculosis using convolutional neural networks analysis of MODS digital images
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0212094
– volume: 11
  start-page: 3923
  issue: 1
  year: 2020
  ident: pone.0322620.ref035
  article-title: Improving the accuracy of medical diagnosis with causal machine learning
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17419-7
– volume: 45
  start-page: 5
  year: 2001
  ident: pone.0322620.ref017
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 37
  start-page: 293
  issue: 5
  year: 2016
  ident: pone.0322620.ref007
  article-title: Prevalence and predictive factors of sexual dysfunction in iranian women: univariate and multivariate logistic regression analyses
  publication-title: Korean J Fam Med
  doi: 10.4082/kjfm.2016.37.5.293
– volume: 32
  start-page: 2627
  year: 1998
  ident: pone.0322620.ref012
  article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
  publication-title: Atmosph Environ
  doi: 10.1016/S1352-2310(97)00447-0
– volume: 15
  issue: 12
  year: 2020
  ident: pone.0322620.ref024
  article-title: Application of machine learning in the diagnosis of gastric cancer based on noninvasive characteristics
  publication-title: PLoS One
– ident: pone.0322620.ref008
  doi: 10.1109/NCIM59001.2023.10212832
– ident: pone.0322620.ref011
– ident: pone.0322620.ref023
  doi: 10.1016/j.health.2022.100032
– volume: 12
  start-page: 2825
  issue: 1
  year: 2011
  ident: pone.0322620.ref013
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 92
  start-page: 141
  year: 2019
  ident: pone.0322620.ref001
  article-title: Advances in biomarker detection: alternative approaches for blood-based biomarker detection
  publication-title: Adv Clin Chem
  doi: 10.1016/bs.acc.2019.04.003
– volume: 16
  issue: 8
  year: 2021
  ident: pone.0322620.ref030
  article-title: Multi- class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0256500
SSID ssj0053866
Score 2.4875124
Snippet Recent advances in experimental methods have enabled researchers to collect data on thousands of analytes simultaneously. This has led to correlational studies...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0322620
SubjectTerms Algorithms
Alzheimer's disease
Biological markers
Biology and Life Sciences
Biomarkers
Biomarkers - analysis
Cancer
Computer and Information Sciences
Correlation
Datasets
Decision trees
Diagnosis
Disease
Evaluation
Experimental methods
Feature selection
Gastric cancer
Health aspects
Humans
Learning algorithms
Liver cancer
Logistic Models
Machine Learning
Medical diagnosis
Medical research
Medicine and Health Sciences
Medicine, Experimental
Neural networks
Proteins
Regression analysis
Research methodology
Sensitivity
Sensitivity and Specificity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQX-AFMb4WGGAQEvCQLokTx3ksiGkgDSRgaG-WHdtjUkmrptW0_547240aMYk98Nq7tsrv7uzfKfdByOuMVYblNk-VU3VaGu5SbUSTastVBQkR0xl2I5984cen5eez6mxn1RfWhIXxwAG4Q54Z4SqRCSQqIgN2W9jSNI63vDXar7AuQLhNpsIZDFHMeWyUY3V-GO0yXS46O83Ahznu9965iPy8_uFUnizni_46yvl35eTtTbdUV5dqPt-5lo7ukbuRT9JZeI49cst298lejNievo1jpd89ILMTXzdpaVwUcU7NCo86ih34WKSzor1figOWokBl6e_wDoeaUI130T8kp0cff3w4TuMChbQFmrNO64yb3NValdbWcBkyAyS1YCqHIHbKARdrasiHshY4DDeFqx3LDJycOncOeIpmj8ikA8j2CdWCY09cU-SmKS2kzWAXVShdAOFsbc0Skm7RlMswJ0P6l2U15BcBConoy4h-Qt4j5IMuTrn2H4DtZbS9_JftE_ICDSZDy-gQq3ImgATiJPkqIa-8Bk666LCU5lxt-l5--vrzBkrfv42U3kQltwDTtyq2L8Az4QStkebBSBPitR2J99G9tqj0kgHL8ql4A9_cutz14peDGH8Uy-M6u9gEHbi6gPsl5HHw0AHZEnJAwQX8rxj57gj6saS7-OUHjePkkbpAnKeDm9_Iuk_-h3WfkjsFLlvGRVH5AZmsVxv7DBjgWj_3wf4HSfhWsQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZG9wAviHFbYIBBSMBDulzt5AGhDm0aSCtoMLS3yI7tMqkkoWmF-Pec4zhhERPaa33aKOf6nfpcCHkZxKmKQx36wgjuJ4oZX6os96VmIoWEKJYBdiOfzNnxWfLxPD3fIvO-FwbLKnufaB21qkv8j3w_hlhkE5b8XfPTx61ReLvar9AQbrWCemtHjN0g2xFOxpqQ7YPD-efT3jeDdTPmGuhiHu47eU2butLTAHSb4d7vSwHKzvEfvPWkWdbtVVD034rKm5uqEb9_ieXyUrg6ukNuO5xJZ51i7JAtXd0lO86SW_rajZt-c4_MTmw9paZugcSCqhW6QIqd-Vi8s6KtXZYDEqQAcemP7m6Hqq5K76K9T86ODr--P_bdYgW_BPiz9nnAVGi4FInWHIJkrAC8RrEIwbiNMIDRcg55UlACtmEqMtzEgQKPKkNjAL_I-AGZVMCyXUJlxrBXLo9ClSca0mkWKBEJGYGwSs1jj_g9N4umm59R2Es0DnlHx4oCuV847nvkAFk-0OL0a_tBvVoUzpgKeEZm0izIELxmAWQ8kU5UbljJSiXDxCPPUGBF10o62HAxywAc4oT51CMvLAVOwKiwxGYhNm1bfPj07RpEX05HRK8ckalB9KVwbQ3wTjhZa0S5N6IEOy5Hx7uoXj1X2uKvxsM3e5W7-vj5cIw_imVzla43HQ2ENMCEHnnYaejA2QRyw4xl8NxspLsj1o9PqovvdgA5TiThEfJ5Oqj5taT76P8v8pjcinC9Mq6GCvfIZL3a6CeA-dbyqTPkPwp4VXI
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wICAkACJhMRO7OSxIKaB1IGAovEU2bE9JkpaNY0Q_PXcJU60wJDKa-_cyOe78-_k-yDkccRSzWITB9JKESSa20DpLA-U4TKFgIipCKuRZ8f8aJ68PUlPdsjzvhbm_Ps9E_ELJ9FwtaxMGIH2cQoB-i5PAXlPyO78-P30S_dwTAMgMVcd96-lo9unbdI_uOLJarGsL8KZf6dLXmqqlfz5Qy4W5-6iw6tk1u-iS0H5FjYbFZa__mjwuO02r5ErDpT6006L9siOqa6TPWf2tf_U9aZ-doNMZ23ypfHdtIlTX6_RX_pYxo-ZPmu_bifrwHH7gIf9791DkK-7lL6z-iaZH77-9OoocFMYghKw0iYQEdexFUomxgi4UZkGpEuZjMETWGkB0OUCgqqoBCDENbXCskiD-1WxtQB2FLtFJhVsa5_4KuNYWJfTWOeJgdibR1pSqSig1tII5pGgP51i1TXbKNoXNwFBSieKAiVUOAl55CUe4cCLrbLbH0C0hbO8Ar6R2TSLMkS6WQThETWJzi0vealVnHjkASpA0dWdDgZfTDNAktiOPvXIo5YD22VUmI9zKpu6Lt68-7wF08cPI6YnjskuQZVK6WogYE_YhmvEeTDiBKMvR-R9VNdeKnXBAKq18XwOK3sVvpj8cCDjn2KOXWWWTccD9x8ASI_c7jR-kGwCgWTGM_huNrKFkejHlOrsa9utHNuXCIpyDgez2ep07_zvgrvkMsXpzDhZKj4gk826MfcAMm7UfecpfgM-eWfd
  priority: 102
  providerName: Unpaywall
Title Machine learning driven biomarker selection for medical diagnosis
URI https://www.ncbi.nlm.nih.gov/pubmed/40498685
https://www.proquest.com/docview/3218001729
https://www.proquest.com/docview/3218153091
https://pubmed.ncbi.nlm.nih.gov/PMC12157214
https://doi.org/10.1371/journal.pone.0322620
https://doaj.org/article/60d8f58089774805852e4d9f6c6cdb14
http://dx.doi.org/10.1371/journal.pone.0322620
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGd4ALYnwtMEpASMAhVT5t54BQN60MpJZpUFROkRPbZVJJStMK9t_znuNGRBS0Sw7xS6L-_J79e_X7IOSFHyUyClTgCS2YF0uqvVzy1MsVFQk4RFHuYzbyeELPpvGHWTLbI9uerRbAeqdrh_2kpqvF4NePq7dg8G9M1wYWbB8aLKtSDXzQUBqCE78Pe1WKzRzGcXuuANZtTi-RtXggFdlkun-9pbNZmZr-7crdWy6qehct_Tu68uamXIqrn2Kx-GPrGt0hty3ndIeNkhyQPVXeJQfWqmv3lS09_foeGY5NbKVybTOJuStXuBy6mKWPgTwrtzaNc2A2XaC77vfmnMeVTcTeZX2fTEenn0_OPNtkwSuACq095lMZaJaLWCkGG2YkgciGkQjA0LXQwNdSBj6TXwDPoTLUTEe-hNU1D7QGLpNHD0ivBMgOiZtzinlzaRjINFbgWlNfilDkIZDSQrHIId4WzWzZ1NLIzIEaAx-kgSJD9DOLvkOOEfJWFithmxvVap5Zw8rgG1wn3OdIZLkP3k-oYplqWtBC5kHskKc4YVmTVtraczbkQBSx2nzikOdGAqthlBhuMxebus7ef_xyDaFPFx2hl1ZIVzD1hbApDvCbsMpWR_KoIwk2XXSGD1G9tqjUWQRMzLjrKTy5Vbndw8_aYXwphtCVqto0MrC9AT90yMNGQ1tkY_ATOeXwXd7R3Q703ZHy8pspRo7VSViIOA9aNb_W7D76PwSPya0QWy1jm6jgiPTWq416AvxvnffJDTZjcOUnAV5H7_pk__h0cn7RN_-o9I3Jw73p5Hz49Te0h10p
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeRgviHFb2WAGgYCHdEmcOskDQuUytWwdEmxT34wT22VSl5Sm1bQ_xW_knMQJi5jQXvZanybK58_nkpwLIS9d1lfM054jjQydQHHjJCqKnURz2YeAiCUuViOPD_nwOPgy6U_WyO-6FgbTKmudWCpqlaf4jnyXgS0qA5b4_fyXg1Oj8OtqPUKjosW-vjiHkK14N_oE-_vK9_c-H30cOnaqgJOC7V86ocuVZ8JEBlqHYCGYAs_NZ9IDZhtpwEGJQwgS3BQMO1e-CQ1zFaiTxDMGjHfC4Lq3yO2AgS6B8xNOmgAPdAfntjyPhd6uZUNvnme658LJ4ThV_JL5K6cENLagM5_lxVWO7r_5muurbC4vzuVsdskY7t0jd60XSwcV7TbIms7ukw2rJwr6xjazfvuADMZltqamdjzFlKoFKliKdf-YGrSgRTmKB_hBwYGmZ9WXI6qqHMDT4iE5vhGAH5FOBpBtEppEHCvxYt9TcaAhWOeukr5MfKBCqkPWJU6NpphX3TlE-YkuhKimgkIg-sKi3yUfEPJGFntrlz_ki6mwR1XAPSLTj9wIXePIhXjK14GKDU95qhIv6JId3DBRFao2GkIMInA9sX99v0telBLYXyPDBJ6pXBWFGH09uYbQ928toddWyOSw9am0RRPwTNi3qyW53ZIELZG2ljeRXjUqhfh7nuCfNeWuXn7eLONFMSkv0_mqkgGDCR5nlzyuGNogG0DkGfEI7hu1uNuCvr2Snf4s25tjv5PQR5x7Dc2vtbtP_v8gO2R9eDQ-EAejw_0tcsfHQc44hMrbJp3lYqWfgne5TJ6VR5qSHzetQ_4A1T6Lfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGkYAXxLitY7CAQMBD2iRO7eQBocKoVsYGYgz1zTix3U0qSWlaTftr_DrOSZywiAntZa_1aaJ8_nwuybkQ8tyjA0V97bvSSO6Gihk3UVHsJprJAQRENPGwGnn_gO0ehR8ng8ka-V3XwmBaZa0TS0Wt8hTfkfcp2KIyYIn7xqZFfNkZvZ3_cnGCFH5prcdpVBTZ02enEL4Vb8Y7sNcvgmD04dv7XddOGHBT8AOWLveY8g1PZKg1B2tBFXhxAZU-sNxIA85KzCFg8FIw8kwFhhvqKVAtiW8MGPKEwnWvkeuc0hjTCfmkCfZAjzBmS_Uo9_uWGb15numeB6eI4YTxc6awnBjQ2IXOfJYXFzm9_-Zu3lxlc3l2Kmezc4ZxdIfcth6tM6wouE7WdHaXrFudUTivbGPr1_fIcL_M3NSOHVUxddQCla2DPQAwTWjhFOVYHuCKA86087P6iuSoKh_wpLhPjq4E4AekkwFkG8RJIoZVeXHgqzjUELgzT8lAJgHQItWcdolboynmVacOUX6u4xDhVFAIRF9Y9LvkHULeyGKf7fKHfDEV9tgKuEdkBpEXoZsceRBbBTpUsWEpS1Xih12yjRsmqqLVRluIYQRuKPayH3TJs1ICe21kyNqpXBWFGH_-fgmhw68toZdWyOSw9am0BRTwTNjDqyW51ZIEjZG2ljeQXjUqhfh7tuCfNeUuXn7aLONFMUEv0_mqkgHjCd5nlzysGNogG0IUGrEI7hu1uNuCvr2SnRyXrc6x9wkPEOdeQ_NL7e7m_x9km9wA7SE-jQ_2HpFbAc50xnlU_hbpLBcr_RgczWXypDzRDvlx1SrkD7L4j8I
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7gFegPG1wICAkACJhMRO7OSxIKaB1IGAovEU2bE9JkpaNY0Q_PXcJU60wJDKa-_cyOe78-_k-yDkccRSzWITB9JKESSa20DpLA-U4TKFgIipCKuRZ8f8aJ68PUlPdsjzvhbm_Ps9E_ELJ9FwtaxMGIH2cQoB-i5PAXlPyO78-P30S_dwTAMgMVcd96-lo9unbdI_uOLJarGsL8KZf6dLXmqqlfz5Qy4W5-6iw6tk1u-iS0H5FjYbFZa__mjwuO02r5ErDpT6006L9siOqa6TPWf2tf_U9aZ-doNMZ23ypfHdtIlTX6_RX_pYxo-ZPmu_bifrwHH7gIf9791DkK-7lL6z-iaZH77-9OoocFMYghKw0iYQEdexFUomxgi4UZkGpEuZjMETWGkB0OUCgqqoBCDENbXCskiD-1WxtQB2FLtFJhVsa5_4KuNYWJfTWOeJgdibR1pSqSig1tII5pGgP51i1TXbKNoXNwFBSieKAiVUOAl55CUe4cCLrbLbH0C0hbO8Ar6R2TSLMkS6WQThETWJzi0vealVnHjkASpA0dWdDgZfTDNAktiOPvXIo5YD22VUmI9zKpu6Lt68-7wF08cPI6YnjskuQZVK6WogYE_YhmvEeTDiBKMvR-R9VNdeKnXBAKq18XwOK3sVvpj8cCDjn2KOXWWWTccD9x8ASI_c7jR-kGwCgWTGM_huNrKFkejHlOrsa9utHNuXCIpyDgez2ep07_zvgrvkMsXpzDhZKj4gk826MfcAMm7UfecpfgM-eWfd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+driven+biomarker+selection+for+medical+diagnosis&rft.jtitle=PloS+one&rft.au=Bavikadi%2C+Divyagna&rft.au=Agarwal%2C+Ayushi&rft.au=Ganta%2C+Shashank&rft.au=Chung%2C+Yunro&rft.date=2025-06-11&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0322620&rft_id=info:doi/10.1371%2Fjournal.pone.0322620&rft.externalDocID=A843504615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon