Comparative investigation of bagging enhanced machine learning for early detection of HCV infections using class imbalance technique with feature selection

Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy of several ensemble machine learning (ML) models fo...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0326488
Main Authors Tusher, Ekramul Haque, Ismail, Mohd Arfian, Akib, Abdullah, Gabralla, Lubna A., Ibrahim, Ashraf Osman, Som, Hafizan Mat, Remli, Muhammad Akmal
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 26.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0326488

Cover

Abstract Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy of several ensemble machine learning (ML) models for diagnosing HCV infection. The study utilizes a dataset comprising demographic information of 615 individuals suspected of having HCV infection. Additionally, the research employs oversampling and undersampling techniques to address class imbalances in the dataset and conducts feature reduction using the F-test in one-way analysis of variance. Ensemble ML methods, including Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Logistic Regression (LR), Random Forest (RF), Naïve Bayes (NB), and Decision Tree (DT), are used to predict HCV infection. The performance of these ensemble methods is evaluated using metrics such as accuracy, recall, precision, F1 score, G-mean, balanced accuracy, cross-validation (CV), area under the curve (AUC), standard deviation, and error rate. Compared with previous studies, the Bagging k-NN model demonstrated superior performance under oversampling conditions, achieving 98.37% accuracy, 98.23% CV score, 97.67% precision, 97.93% recall, 98.18% selectivity, 97.79% F1 score, 98.06% balanced accuracy, 98.05% G-mean, a 1.63% error rate, 0.98 AUC, and a standard deviation of 0.192. This study highlights the potential of ensemble ML approaches in improving the diagnosis of HCV. The findings provide a foundation for developing accurate predictive methods for HCV diagnosis.
AbstractList Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy of several ensemble machine learning (ML) models for diagnosing HCV infection. The study utilizes a dataset comprising demographic information of 615 individuals suspected of having HCV infection. Additionally, the research employs oversampling and undersampling techniques to address class imbalances in the dataset and conducts feature reduction using the F-test in one-way analysis of variance. Ensemble ML methods, including Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Logistic Regression (LR), Random Forest (RF), Naïve Bayes (NB), and Decision Tree (DT), are used to predict HCV infection. The performance of these ensemble methods is evaluated using metrics such as accuracy, recall, precision, F1 score, G-mean, balanced accuracy, cross-validation (CV), area under the curve (AUC), standard deviation, and error rate. Compared with previous studies, the Bagging k-NN model demonstrated superior performance under oversampling conditions, achieving 98.37% accuracy, 98.23% CV score, 97.67% precision, 97.93% recall, 98.18% selectivity, 97.79% F1 score, 98.06% balanced accuracy, 98.05% G-mean, a 1.63% error rate, 0.98 AUC, and a standard deviation of 0.192. This study highlights the potential of ensemble ML approaches in improving the diagnosis of HCV. The findings provide a foundation for developing accurate predictive methods for HCV diagnosis.
Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy of several ensemble machine learning (ML) models for diagnosing HCV infection. The study utilizes a dataset comprising demographic information of 615 individuals suspected of having HCV infection. Additionally, the research employs oversampling and undersampling techniques to address class imbalances in the dataset and conducts feature reduction using the F-test in one-way analysis of variance. Ensemble ML methods, including Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Logistic Regression (LR), Random Forest (RF), Naïve Bayes (NB), and Decision Tree (DT), are used to predict HCV infection. The performance of these ensemble methods is evaluated using metrics such as accuracy, recall, precision, F1 score, G-mean, balanced accuracy, cross-validation (CV), area under the curve (AUC), standard deviation, and error rate. Compared with previous studies, the Bagging k-NN model demonstrated superior performance under oversampling conditions, achieving 98.37% accuracy, 98.23% CV score, 97.67% precision, 97.93% recall, 98.18% selectivity, 97.79% F1 score, 98.06% balanced accuracy, 98.05% G-mean, a 1.63% error rate, 0.98 AUC, and a standard deviation of 0.192. This study highlights the potential of ensemble ML approaches in improving the diagnosis of HCV. The findings provide a foundation for developing accurate predictive methods for HCV diagnosis.Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy of several ensemble machine learning (ML) models for diagnosing HCV infection. The study utilizes a dataset comprising demographic information of 615 individuals suspected of having HCV infection. Additionally, the research employs oversampling and undersampling techniques to address class imbalances in the dataset and conducts feature reduction using the F-test in one-way analysis of variance. Ensemble ML methods, including Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Logistic Regression (LR), Random Forest (RF), Naïve Bayes (NB), and Decision Tree (DT), are used to predict HCV infection. The performance of these ensemble methods is evaluated using metrics such as accuracy, recall, precision, F1 score, G-mean, balanced accuracy, cross-validation (CV), area under the curve (AUC), standard deviation, and error rate. Compared with previous studies, the Bagging k-NN model demonstrated superior performance under oversampling conditions, achieving 98.37% accuracy, 98.23% CV score, 97.67% precision, 97.93% recall, 98.18% selectivity, 97.79% F1 score, 98.06% balanced accuracy, 98.05% G-mean, a 1.63% error rate, 0.98 AUC, and a standard deviation of 0.192. This study highlights the potential of ensemble ML approaches in improving the diagnosis of HCV. The findings provide a foundation for developing accurate predictive methods for HCV diagnosis.
Audience Academic
Author Akib, Abdullah
Gabralla, Lubna A.
Ismail, Mohd Arfian
Tusher, Ekramul Haque
Ibrahim, Ashraf Osman
Remli, Muhammad Akmal
Som, Hafizan Mat
AuthorAffiliation 1 Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang, Malaysia
2 Center of Excellence for Artificial Intelligence & Data Science, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Malaysia
University of Lagos Faculty of Engineering, NIGERIA
5 Department of Computing, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
8 Faculty of Data Science and Computing, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
4 Department of Computer Science, Applied College, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
6 Positive Computing Research Center, Emerging & Digital Technologies Institute, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
7 Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
3 Industrial Engineering, Lamar University, Beaumont, Texas, United States of America
AuthorAffiliation_xml – name: 6 Positive Computing Research Center, Emerging & Digital Technologies Institute, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
– name: University of Lagos Faculty of Engineering, NIGERIA
– name: 4 Department of Computer Science, Applied College, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
– name: 5 Department of Computing, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
– name: 1 Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang, Malaysia
– name: 3 Industrial Engineering, Lamar University, Beaumont, Texas, United States of America
– name: 7 Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
– name: 8 Faculty of Data Science and Computing, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
– name: 2 Center of Excellence for Artificial Intelligence & Data Science, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Malaysia
Author_xml – sequence: 1
  givenname: Ekramul Haque
  orcidid: 0009-0009-5583-3767
  surname: Tusher
  fullname: Tusher, Ekramul Haque
– sequence: 2
  givenname: Mohd Arfian
  orcidid: 0000-0001-8312-2289
  surname: Ismail
  fullname: Ismail, Mohd Arfian
– sequence: 3
  givenname: Abdullah
  orcidid: 0009-0004-6700-2593
  surname: Akib
  fullname: Akib, Abdullah
– sequence: 4
  givenname: Lubna A.
  surname: Gabralla
  fullname: Gabralla, Lubna A.
– sequence: 5
  givenname: Ashraf Osman
  surname: Ibrahim
  fullname: Ibrahim, Ashraf Osman
– sequence: 6
  givenname: Hafizan Mat
  surname: Som
  fullname: Som, Hafizan Mat
– sequence: 7
  givenname: Muhammad Akmal
  surname: Remli
  fullname: Remli, Muhammad Akmal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40570059$$D View this record in MEDLINE/PubMed
BookMark eNqNk89u1DAQxiNURP_AGyCwhITgsItjO9nkhKoV0EqVKkHVqzVxJokrx17spGWfhZfF22yrXdRDlUPs8W--zMwXHycH1llMkrcpnad8kX65caO3YOarGJ5TznJRFC-So7TkbJYzyg921ofJcQg3lGa8yPNXyaGg2SLuyqPk79L1K_Aw6Fsk2t5iGHQbd84S15AK2lbblqDtwCqsSQ-q0xaJQfB2c9I4T-LarEmNA6qHxLPldVRrpkAgY9iwykAIRPcVmI0aiXxn9e8RyZ0eOtIgDKNHEtBMea-Tlw2YgG-275Pk6vu3q-XZ7OLyx_ny9GKmciGGWaaUyBoGFHIlIKs40JTVRVoxxRcAXJQUAFmRplVsv8wqmgOvsAIsF4orfpK8n2RXxgW5HWuQnDGRsUVWFJE4n4jawY1ced2DX0sHWt4HnG8l-EErg7JKkUEjGKWCi0aVVSZoLRrIskUt8gaiVjZpjXYF6zsw5lEwpXLj7EMJcuOs3Dob875uqxyrHmuFdvBg9orZP7G6k627lSljNM0FjwqftgrexaGHQfY6KDTRDHTj1HDOC8pERD_8hz49li3VQuw82u3ih9VGVJ4WIsvTsmBlpOZPUPGpsdcqttjoGN9L-LyXEJkB_wwtjCHI818_n89eXu-zH3fYDsEMXXBmvP9F98F3u6N-nPHDrYmAmADlXQgem-dZ-A90GC6h
Cites_doi 10.1109/ISMSIT50672.2020.9254720
10.4258/hir.2019.25.3.173
10.1007/978-981-16-7610-9_54
10.1016/j.jhep.2011.11.008
10.1016/j.eswa.2009.04.062
10.1109/CSNT48778.2020.9115734
10.15575/join.v6i1.719
10.1016/j.jhep.2014.07.027
10.32604/cmc.2021.015436
10.1109/ICIEM54221.2022.9853036
10.1016/j.eswa.2013.09.022
10.1371/journal.pone.0208141
10.1109/ASONAM.2012.140
10.1002/jmv.24635
10.1016/j.tele.2017.01.007
10.1109/TCBB.2017.2690848
10.4321/S1130-01082004001200002
10.30699/ijmm.18.3.135
10.1016/j.compedu.2019.103676
10.1186/s12874-019-0681-4
10.1016/j.imed.2021.12.003
10.1007/978-981-16-2594-7_6
10.1063/5.0110216
10.1016/j.pharmthera.2017.10.009
10.1002/hep.27259
10.1016/j.imu.2019.100267
10.1007/s41403-021-00239-6
ContentType Journal Article
Copyright Copyright: © 2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Tusher et al 2025 Tusher et al
2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Tusher et al 2025 Tusher et al
– notice: 2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0326488
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
ProQuest Agricultural Science
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


Agricultural Science Database
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Comparative investigation of bagging enhanced machine learning for early detection of HCV infections
EISSN 1932-6203
ExternalDocumentID 3224527588
oai_doaj_org_article_b1e2af4200434fc9b540d4fa557d46fa
10.1371/journal.pone.0326488
PMC12201643
A845619829
40570059
10_1371_journal_pone_0326488
Genre Journal Article
Comparative Study
GeographicLocations Malaysia
GeographicLocations_xml – name: Malaysia
GrantInformation_xml – fundername: ;
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c644t-5cc45f2a0a6c4a5b3a012d81b2c37aa3490aae2811b38695b06a3bebae97c3c3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sat Sep 27 00:00:43 EDT 2025
Tue Oct 14 19:09:22 EDT 2025
Sun Oct 26 03:52:18 EDT 2025
Tue Sep 30 17:00:57 EDT 2025
Fri Sep 05 15:47:20 EDT 2025
Tue Oct 07 09:16:13 EDT 2025
Mon Oct 20 22:39:33 EDT 2025
Mon Oct 20 16:50:31 EDT 2025
Thu Oct 16 15:33:28 EDT 2025
Thu Oct 16 15:33:22 EDT 2025
Tue Jul 22 02:12:04 EDT 2025
Mon Jun 30 02:54:45 EDT 2025
Wed Oct 01 05:59:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-5cc45f2a0a6c4a5b3a012d81b2c37aa3490aae2811b38695b06a3bebae97c3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
ORCID 0009-0009-5583-3767
0000-0001-8312-2289
0009-0004-6700-2593
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0326488
PMID 40570059
PQID 3224527588
PQPubID 1436336
PageCount e0326488
ParticipantIDs plos_journals_3224527588
doaj_primary_oai_doaj_org_article_b1e2af4200434fc9b540d4fa557d46fa
unpaywall_primary_10_1371_journal_pone_0326488
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12201643
proquest_miscellaneous_3224638024
proquest_journals_3224527588
gale_infotracmisc_A845619829
gale_infotracacademiconefile_A845619829
gale_incontextgauss_ISR_A845619829
gale_incontextgauss_IOV_A845619829
gale_healthsolutions_A845619829
pubmed_primary_40570059
crossref_primary_10_1371_journal_pone_0326488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250626
PublicationDateYYYYMMDD 2025-06-26
PublicationDate_xml – month: 6
  year: 2025
  text: 20250626
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References NH Barakat (pone.0326488.ref031) 2019; 25
M Gheisari (pone.0326488.ref038) 2024; 12
MA Konerman (pone.0326488.ref018) 2019; 14
J Messina (pone.0326488.ref002) 2015; 61
A Akella (pone.0326488.ref030) 2020; 2020
pone.0326488.ref028
MB Butt (pone.0326488.ref029) 2021; 2021
pone.0326488.ref009
pone.0326488.ref003
pone.0326488.ref025
pone.0326488.ref005
F Morisco (pone.0326488.ref006) 2017; 89
K Neukam (pone.0326488.ref024) 2012; 56
P-C Chang (pone.0326488.ref014) 2010; 37
M Ghaderzadeh (pone.0326488.ref036) 2024; 18
N Tomasevic (pone.0326488.ref008) 2020; 143
JAM Sidey-Gibbons (pone.0326488.ref013) 2019; 19
pone.0326488.ref020
pone.0326488.ref001
M Nilashi (pone.0326488.ref016) 2017; 34
pone.0326488.ref023
R Safdari (pone.0326488.ref033) 2022; 2
S Bhingarkar (pone.0326488.ref032) 2022
RK Barman (pone.0326488.ref007) 2021; 6
A Bahtiar (pone.0326488.ref011) 2021; 1088
KF Lichtinghagen (pone.0326488.ref034) 2020
LI Fernández Salazar (pone.0326488.ref035) 2004; 96
SC Nandipati (pone.0326488.ref021) 2020; 4
EM El Houby (pone.0326488.ref022) 2013; 975
L Syafa’ah (pone.0326488.ref026) 2021; 6
S Hashem (pone.0326488.ref019) 2018; 15
T M. Ghazal (pone.0326488.ref027) 2021; 69
pone.0326488.ref010
E Gower (pone.0326488.ref017) 2014; 61
pone.0326488.ref012
U Spengler (pone.0326488.ref004) 2018; 183
M Seera (pone.0326488.ref015) 2014; 41
M Ghaderzadeh (pone.0326488.ref037) 2024; 18
References_xml – volume: 12
  year: 2024
  ident: pone.0326488.ref038
  article-title: Mobile apps for COVID-19 detection and diagnosis for future pandemic control: Multidimensional systematic review
  publication-title: JMIR mHealth and uHealth
– volume: 1088
  start-page: 012035
  issue: 1
  year: 2021
  ident: pone.0326488.ref011
  article-title: Data mining techniques with machine learning algorithm to predict patients of heart disease
  publication-title: IOP Conf Ser: Mater Sci Eng
– volume: 2021
  start-page: 8062410
  year: 2021
  ident: pone.0326488.ref029
  article-title: Diagnosing the stage of hepatitis C using machine learning
  publication-title: J Healthc Eng
– ident: pone.0326488.ref012
  doi: 10.1109/ISMSIT50672.2020.9254720
– volume: 25
  start-page: 173
  issue: 3
  year: 2019
  ident: pone.0326488.ref031
  article-title: Prediction and staging of hepatic fibrosis in children with hepatitis C virus: a machine learning approach
  publication-title: Healthc Inform Res
  doi: 10.4258/hir.2019.25.3.173
– start-page: 731
  volume-title: Intelligent data communication technologies and internet of things: proceedings of ICICI 2021
  year: 2022
  ident: pone.0326488.ref032
  article-title: A comparison of machine learning techniques for categorization of blood donors having chronic hepatitis c infection
  doi: 10.1007/978-981-16-7610-9_54
– volume: 56
  start-page: 788
  issue: 4
  year: 2012
  ident: pone.0326488.ref024
  article-title: Prediction of response to pegylated interferon plus ribavirin in HIV/hepatitis C virus (HCV)-coinfected patients using HCV genotype, IL28B variations, and HCV-RNA load
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2011.11.008
– ident: pone.0326488.ref003
– volume: 37
  start-page: 214
  issue: 1
  year: 2010
  ident: pone.0326488.ref014
  article-title: A CBR-based fuzzy decision tree approach for database classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.04.062
– ident: pone.0326488.ref001
– ident: pone.0326488.ref005
  doi: 10.1109/CSNT48778.2020.9115734
– volume: 6
  start-page: 73
  issue: 1
  year: 2021
  ident: pone.0326488.ref026
  article-title: Comparison of machine learning classification methods in hepatitis C virus
  publication-title: Join
  doi: 10.15575/join.v6i1.719
– volume: 61
  year: 2014
  ident: pone.0326488.ref017
  article-title: Global epidemiology and genotype distribution of the hepatitis C virus infection
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2014.07.027
– volume: 69
  start-page: 191
  issue: 1
  year: 2021
  ident: pone.0326488.ref027
  article-title: Hep-Pred: Hepatitis C staging prediction using fine Gaussian SVM
  publication-title: Comput Mater Continua
  doi: 10.32604/cmc.2021.015436
– ident: pone.0326488.ref009
  doi: 10.1109/ICIEM54221.2022.9853036
– volume: 41
  start-page: 2239
  issue: 5
  year: 2014
  ident: pone.0326488.ref015
  article-title: A hybrid intelligent system for medical data classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.022
– volume: 14
  issue: 1
  year: 2019
  ident: pone.0326488.ref018
  article-title: Machine learning models to predict disease progression among veterans with hepatitis C virus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0208141
– volume: 2020
  year: 2020
  ident: pone.0326488.ref030
  article-title: Applying machine learning to evaluate for fibrosis in chronic hepatitis c
  publication-title: MedRxiv
– ident: pone.0326488.ref023
  doi: 10.1109/ASONAM.2012.140
– volume: 89
  start-page: 291
  issue: 2
  year: 2017
  ident: pone.0326488.ref006
  article-title: Prevalence and risk factors of HCV infection in a metropolitan area in southern Italy: Tail of a cohort infected in past decades
  publication-title: J Med Virol
  doi: 10.1002/jmv.24635
– volume: 34
  start-page: 133
  issue: 4
  year: 2017
  ident: pone.0326488.ref016
  article-title: A knowledge-based system for breast cancer classification using fuzzy logic method
  publication-title: Telemat Inform
  doi: 10.1016/j.tele.2017.01.007
– volume: 15
  start-page: 861
  issue: 3
  year: 2018
  ident: pone.0326488.ref019
  article-title: Comparison of machine learning approaches for prediction of advanced liver fibrosis in chronic hepatitis C patients
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2690848
– volume: 975
  start-page: 8887
  year: 2013
  ident: pone.0326488.ref022
  article-title: Analysis of associative classification for prediction of hcv response to treatment
  publication-title: Int J Comput Appl
– volume: 96
  start-page: 818
  issue: 12
  year: 2004
  ident: pone.0326488.ref035
  article-title: Iron overload and genotype 3 are associated with liver steatosis in chronic hepatitis C
  publication-title: Rev Esp Enferm Dig
  doi: 10.4321/S1130-01082004001200002
– volume-title: HCV data
  year: 2020
  ident: pone.0326488.ref034
– volume: 18
  start-page: 135
  issue: 3
  year: 2024
  ident: pone.0326488.ref036
  article-title: Artificial intelligence in drug discovery and development against antimicrobial resistance: a narrative review
  publication-title: Iran J Med Microbiol
  doi: 10.30699/ijmm.18.3.135
– volume: 143
  start-page: 103676
  year: 2020
  ident: pone.0326488.ref008
  article-title: An overview and comparison of supervised data mining techniques for student exam performance prediction
  publication-title: Comput Educ
  doi: 10.1016/j.compedu.2019.103676
– volume: 4
  start-page: 89
  year: 2020
  ident: pone.0326488.ref021
  article-title: Hepatitis c virus (hcv) prediction by machine learning techniques
  publication-title: Appl Model Simul
– volume: 19
  start-page: 64
  issue: 1
  year: 2019
  ident: pone.0326488.ref013
  article-title: Machine learning in medicine: a practical introduction
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-019-0681-4
– volume: 2
  start-page: 193
  issue: 04
  year: 2022
  ident: pone.0326488.ref033
  article-title: Applying data mining techniques to classify patients with suspected hepatitis c virus infection
  publication-title: Intell Med
  doi: 10.1016/j.imed.2021.12.003
– ident: pone.0326488.ref028
  doi: 10.1007/978-981-16-2594-7_6
– ident: pone.0326488.ref010
  doi: 10.1063/5.0110216
– volume: 183
  start-page: 118
  year: 2018
  ident: pone.0326488.ref004
  article-title: Direct antiviral agents (DAAs) - A new age in the treatment of hepatitis C virus infection
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2017.10.009
– volume: 61
  issue: 1
  year: 2015
  ident: pone.0326488.ref002
  article-title: Global distribution and prevalence of hepatitis c virus genotypes
  publication-title: Hepatology
  doi: 10.1002/hep.27259
– ident: pone.0326488.ref025
– volume: 18
  start-page: 135
  issue: 3
  year: 2024
  ident: pone.0326488.ref037
  article-title: Artificial intelligence in drug discovery and development against antimicrobial resistance: a narrative review
  publication-title: Iran J Med Microbiol
  doi: 10.30699/ijmm.18.3.135
– ident: pone.0326488.ref020
  doi: 10.1016/j.imu.2019.100267
– volume: 6
  start-page: 755
  issue: 3
  year: 2021
  ident: pone.0326488.ref007
  article-title: Identification of critical host targets for HCV infection: A systems biology approach
  publication-title: Trans Indian Natl Acad Eng
  doi: 10.1007/s41403-021-00239-6
SSID ssj0053866
Score 2.482829
Snippet Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0326488
SubjectTerms Accuracy
Adult
Algorithms
Area Under Curve
Bagging
Bayes Theorem
Biology and life sciences
Care and treatment
Classification
Computer and Information Sciences
Control
Data mining
Data science
Datasets
Decision making
Decision Trees
Diagnosis
Disease
Early Diagnosis
Engineering and Technology
Ensemble learning
Feature selection
Female
Hepacivirus
Hepatitis C
Hepatitis C - diagnosis
Hepatitis C virus
Humans
Identification and classification
Infections
Learning algorithms
Liver cancer
Liver cirrhosis
Machine Learning
Male
Mean
Medical diagnosis
Medical research
Medicine and health sciences
Middle Aged
Oversampling
Physical Sciences
Recall
Research and Analysis Methods
Risk factors
Standard deviation
Support Vector Machine
Support vector machines
Variance analysis
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQXuCCKF9NWcAgJOCQbRJ_JDmWFdWCBEhQqt6iseNsV9omK7IrxG_hz-JxnLQRleiB63qyUuaNJ8_J8zMhr1SGS5xMhREwFnIAHWYlN2GklCxjZUFnuFH402e5-M4_nomzK0d9oSasswfuEneoYpNAxRFMxiudK0sxSl6BEGnJZeWoUZTl_WKq68F2FkvpN8qxND70uMw2TW1mEUNVVzZ6EDm__qErTzbrpr2Ocv6tnLy9qzfw6yes11ceS8f3yF3PJ-lRdx975Jap75M9P2Nb-sbbSr99QH7PL42-6erSXqOpaVNRBfjqeUlNfe40AfTCqSwN9cdKLKllt9SgHTItzdYJuNyFi_kp7RVddUtRR7-kGjk5XV0oFE5qQwenWIrvfWllnJ0obd0hPPa6h-Tk-P3JfBH6oxlCbQnUNhRac1ElEIHUHIRiYB90paXAiWYpAON5BGCSLLZwZzIXKpLAlFFg8lQzzR6RSW2x2Cc0NRZPgDLW2q4ES6mMACNTFYkkjUDwgIQ9TMWmM-Ao3Fe41C5cuhwXCGvhYQ3IO8RyiEX7bPeDLarCF1Xxr6IKyHOshKLbizo0geIoQ76ZZ0kekJcuAi00atToLGHXtsWHL6c3CPr2dRT02gdVja0pDX5fhL0ntOYaRU5HkbYR6NHwPtZtn5W2sJOQ2ywKTMq0r-Xrh18Mw_inqLurTbPrYmyHtkQuII-70h8yi1Qf9y4HJBtNilHqxyP16tw5mMdJgtZuLCCzYf7cCN2D_4HuE3InwVOcIxkmckom2x8789RSy6165rrIH1hke90
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wACDkICHdEnsOMkDQlu1qSBR0BjT3qKz43SVuqQsrRB_C_8sPtdJiZjQXuNzpPg-fHZ-9ztCXssUjzip9ANgzOcAyk8Lrv1ASlGE0iidYaHw54kYf-efzuPzLTJpa2EQVtnGRBuoi1rhHfm-eSOPI5Pdph8WP3zsGoV_V9sWGuBaKxTvLcXYLbIdITPWgGwfHk2-nrSx2Xi3EK6AjiXhvtPXcFFXehgwRHulvQ3K8vh30XqwmNfNdanov4jK26tqAb9-wnz-13Z1fI_cdXkmPVgbxg7Z0tV9suM8uaFvHd30uwfk92hDAE5nG9qNuqJ1SSXglfSU6urCYgXopUVfauraTUypyXqpRppkWuilBXbZiePRGW2RXlVDEV8_pQpzdTq7lAioVJp2DLIU74NpqS3NKG1scx4z7yE5PT46HY1917LBVyaxWvqxUjwuIwhAKA6xZGA2wMKkxpFiCQDjWQCgozQ0ZpCKLJaBACa1BJ0liin2iAwqo4tdQhPNgwKgCJUyJ8RCSB2DFokMjBEEEHOP-K2a8sWamCO3f-cSc6BZr3GOas2dWj1yiLrsZJFW2z6or6a589JchjqCkmPkYLxUmTT5bMFLiOOk4KIEj7xAS8jXNapdcMgPUsxDszTKPPLKSiC1RoXYnSmsmib_-OXsBkLfTnpCb5xQWRubUuDqJcw3IWVXT3KvJ2kChOoN76LdtqvS5BtXMjNbW75--GU3jC9FPF6l69VaxkRuk-B55PHa9LuVxSMA1jR7JO05RW_p-yPV7MIym4dRhJRvzCPDzn9upN0n__-Qp-ROhH2bA-FHYo8Mllcr_cwkk0v53EWIPz0MeYo
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVG9wAvwPhaoIBBSIBESmI7X4-lYipIGwi2aTxF147TVXRJRVoh-Cv8WXwTJ1tgSOW1vq7ka9_r4_jcY0KeyRiPOLF0PeDcFQDKjTOhXU_KMPOlmXSOhcL7B-H0SLw_CU62yKu2Fubi_T2P_NfWo6NlWeiRx5GPFV8h22FgkPeAbB8dfBx_aS6OmRsyj9vquH917e0-tUh_l4oHy0VZXYYz_6ZLXl0XS_jxHRaLC3vR3g2y346ioaB8Ha1XcqR-_iHwuOkwb5LrFpTScbOKdsiWLm6RHRv2FX1htalf3ia_Judq4XR-rtFRFrTMqQT8fj2jujitiQX0rKZqamrfpphRA5GpRk1lmulVzQKrO04nx7SlhRUVRTL-jCoE9nR-JpF9qTTt5GYpfjymua41SWlVv-Rj-t0hh3tvDydT177v4CqDwlZuoJQIcgYehEpAIDmY3TIzOJopHgFwkXgAmsW-WTNxmATSC4FLLUEnkeKK3yWDwvhrl9BICy8DyHylzHEyC6UOQIeR9AIWeRAIh7jttKfLRsUjra_yInP6aXycoutT63qHvMG10dmiBnf9g5mz1IZ0Kn3NIBeYZrjIVSIN-M1EDkEQZSLMwSGPcWWlTUFrl0nScYygNYlZ4pCntQXqcBRI9JnBuqrSdx-ONzD6_Kln9Nwa5aVZowpscYUZE-p79SyHPUuTTVSveRfjoPVKlZpIFsaLATpl2MbG5c1Pumb8UyTvFbpcNzYmzRs06JB7TSh1nsXzAhZAOyTuBVnP9f2WYn5ay6D7jKE-HHfIqIvHjWb3_v92eECuMXz22QtdFg7JYPVtrR8aLLqSj2wK-g1ICYwL
  priority: 102
  providerName: Unpaywall
Title Comparative investigation of bagging enhanced machine learning for early detection of HCV infections using class imbalance technique with feature selection
URI https://www.ncbi.nlm.nih.gov/pubmed/40570059
https://www.proquest.com/docview/3224527588
https://www.proquest.com/docview/3224638024
https://pubmed.ncbi.nlm.nih.gov/PMC12201643
https://doi.org/10.1371/journal.pone.0326488
https://doaj.org/article/b1e2af4200434fc9b540d4fa557d46fa
http://dx.doi.org/10.1371/journal.pone.0326488
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28QAviPG1QCkGIQEPqZLY-XpAqKtWCtLKNLZpe4rOjtNN6pLStIL9Lfyz-Jw0I6JIfclDfI6U-_LZvvsdIW9FhFucSNgOMGZzAGlHKVe2I0SQukILnWGh8NE4GJ3xrxf-xRZZ9WytGViu3dphP6mz-bT368ftJ23wH03XhtBdTerNilz1HIY5W9E22dVrVYzNHI54c6-grdvcXmLUYgeew-piuv99pbVYGUz_xnPvzKZFuS4s_Te78t4yn8HtT5hO_1q6hg_JgzrmpP1KSfbIlsofkb3aqkv6voae_vCY_B7cgYHT6zsIjiKnRUYF4PH0hKr8yuQN0BuTialo3XpiQnUETBVCJtNULUySl5k4GpzTVdZXXlLMtZ9QiXE7vb4RmFwpFW3QZCmeDdNMGchRWppGPXreE3I6PDwdjOy6fYMtdZC1sH0puZ954EAgOfiCgV4MUx0me5KFAIzHDoDyIlerRBTEvnACYEIJUHEomWRPyU6uZbFPaKi4kwKkrpR6t5gGQvmgglA4vhc64HOL2CsxJbMKpCMxN3Wh3txUPE5QrEktVoscoCwbWoTYNi-K-SSpLTYRrvIg4-hFGM9kLHRsm_IMfD9MeZCBRV6hJiRVvWrjKJJ-hDFpHHmxRd4YCoTZyDGPZwLLsky-fDvfgOj7SYvoXU2UFVqnJNS1E_qfEL6rRdlpUWpnIVvD-6i3K66UiTZUrrnoI1M6K11eP_y6GcaPYm5eroplRaO9uA72LPKsUv2Gs7gdwPpmi0Qto2ixvj2SX18ZlHPX8xD-jVmk19jPRtJ9vjGzXpD7HrZzdgLbCzpkZzFfqpc6xlyILtkOL0L9jAYuPoefu2T34HB8fNI1pzZd41b0u7Pxcf_yD15eha8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLorwaKNQgEHDINhs7jz0gVArVlj6QYKn2Fo0dZ1upTZZmV1V_C7-B_8iM81giKtRLr-txtPGMP884M98w9krFFOLEyvVACFcCaDdOpXE9pcK0r1DpggqFDw7D4Q_5ZRyMl9jvphaG0iobTLRAnRaa7sg38Yky8NG7jT9Mf7rUNYq-rjYtNCqz2DOXFxiyle93P6F-X_v-zufR9tCtuwq4Gs_-mRtoLYPMBw9CLSFQAhCjU_TefC0iACEHHoDx4z7-0zgcBMoLQSijwAwiLbTAx95it6VAKMHtE43b-A6hIwzr6jwR9TdrY-hNi9z0PEGpZHHn9LNNAtqjYHl6WpRX-bn_pmuuzPMpXF7A6elfZ-HOPXa3dmL5VmV1q2zJ5PfZag0TJX9bc1m_e8B-bS_YxfnJgtOjyHmRcQV03z3hJj-2iQj8zKZ2Gl73sphwdKm5IQ5mnpqZzRqzE4fbR7xJI8tLTsn7E64pEOAnZ4qyNbXhLT0tp8tmnhnLYcpL2_kH5z1ko5vQ3CO2nKMu1hiPjPRSgLSvNYafaahMACaMlIcW5kEgHeY2akqmFetHYj_9RRgtVWuckFqTWq0O-0i6bGWJs9v-UJxPkhoCEtU3PmSSYEnITA8UOsupzCAIolSGGThsgywhqQpgW-RJtmJycgexP3DYSytBvB05JQZNYF6Wye7Xo2sIff_WEXpTC2UF2pSGuhgD34n4wDqS6x1JRB_dGV4ju21WpUwW-xRnNrZ89fCLdpgeSsl-uSnmlQweC-g9OuxxZfrtylJ8QQXTDos7m6Kz9N2R_OTY0qb3fZ_45ITDeu3-uZZ2n_z_RTbYynB0sJ_s7x7uPWV3fGoQ7YWuH66z5dn53DxDr3Wmnlus4Cy5YWz6A1gFr_s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgEXRHk1UKhBIOCQNhs7rwNCpaVqKRQEpdpbNHac7UptsjS7qvpb-CX8O2acR4moUC-9rsfRxjMezzjffMPYCxVTihMr1wMhXAmg3TiTxvWUCrOhQqULKhT-vBdu_5AfR8Fogf1ua2EIVtn6ROuos1LTHfkaPlEGPka38VrewCK-bm69m_50qYMUfWlt22nUJrJrzk4xfave7myirl_6_taH_Y1tt-kw4GqMA2ZuoLUMch88CLWEQAlAf51hJOdrEQEImXgAxo-H-K_jMAmUF4JQRoFJIi20wMdeY9cjIRJCE0ajLtdDNxKGTaWeiIZrjWGsTsvCrHqCYGVx7yS0DQO6Y2EwPSqri2Lef6GbN-fFFM5O4ejor3Nx6w673QS0fL22wEW2YIq7bLFxGRV_3fBav7nHfm2cM43zyTm_R1nwMucK6O57zE1xaEEJ_NjCPA1v-lqMOYbX3BAfM8_MzCLI7MTtjQPeQsqKihOQf8w1JQV8cqwIuakN76hqOV0889xYPlNe2S5AOO8-278KzT1ggwJ1scR4ZKSXAWRDrTEVzUJlAjBhpDy0Ng8C6TC3VVM6rRlAUvsZMMLMqV7jlNSaNmp12HvSZSdL_N32h_JknDbuIFVD40MuyUUJmetEYeCcyRyCIMpkmIPDVsgS0roYtvNC6XpMAW8S-4nDnlsJ4vAoaDeMYV5V6c6Xg0sIff_WE3rVCOUl2pSGpjAD34m4wXqSyz1J9ES6N7xEdtuuSpWe71mc2dryxcPPumF6KAH_ClPOaxk8IjCSdNjD2vS7laVcg4qnHRb3NkVv6fsjxeTQUqgPfZ-45YTDVrv9cyntPvr_i6ywG-iV0k87e7uP2S2fekV7oeuHy2wwO5mbJxjAztRT6yo4S6_YNf0BoVW0Pg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVG9wAvwPhaoIBBSIBESmI7X4-lYipIGwi2aTxF147TVXRJRVoh-Cv8WXwTJ1tgSOW1vq7ka9_r4_jcY0KeyRiPOLF0PeDcFQDKjTOhXU_KMPOlmXSOhcL7B-H0SLw_CU62yKu2Fubi_T2P_NfWo6NlWeiRx5GPFV8h22FgkPeAbB8dfBx_aS6OmRsyj9vquH917e0-tUh_l4oHy0VZXYYz_6ZLXl0XS_jxHRaLC3vR3g2y346ioaB8Ha1XcqR-_iHwuOkwb5LrFpTScbOKdsiWLm6RHRv2FX1htalf3ia_Judq4XR-rtFRFrTMqQT8fj2jujitiQX0rKZqamrfpphRA5GpRk1lmulVzQKrO04nx7SlhRUVRTL-jCoE9nR-JpF9qTTt5GYpfjymua41SWlVv-Rj-t0hh3tvDydT177v4CqDwlZuoJQIcgYehEpAIDmY3TIzOJopHgFwkXgAmsW-WTNxmATSC4FLLUEnkeKK3yWDwvhrl9BICy8DyHylzHEyC6UOQIeR9AIWeRAIh7jttKfLRsUjra_yInP6aXycoutT63qHvMG10dmiBnf9g5mz1IZ0Kn3NIBeYZrjIVSIN-M1EDkEQZSLMwSGPcWWlTUFrl0nScYygNYlZ4pCntQXqcBRI9JnBuqrSdx-ONzD6_Kln9Nwa5aVZowpscYUZE-p79SyHPUuTTVSveRfjoPVKlZpIFsaLATpl2MbG5c1Pumb8UyTvFbpcNzYmzRs06JB7TSh1nsXzAhZAOyTuBVnP9f2WYn5ay6D7jKE-HHfIqIvHjWb3_v92eECuMXz22QtdFg7JYPVtrR8aLLqSj2wK-g1ICYwL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+investigation+of+bagging+enhanced+machine+learning+for+early+detection+of+HCV+infections+using+class+imbalance+technique+with+feature+selection&rft.jtitle=PloS+one&rft.au=Tusher%2C+Ekramul+Haque&rft.au=Ismail%2C+Mohd+Arfian&rft.au=Akib%2C+Abdullah&rft.au=Gabralla%2C+Lubna+A&rft.date=2025-06-26&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0326488&rft_id=info:doi/10.1371%2Fjournal.pone.0326488&rft.externalDocID=A845619829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon