Comparative investigation of bagging enhanced machine learning for early detection of HCV infections using class imbalance technique with feature selection
Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy of several ensemble machine learning (ML) models fo...
Saved in:
| Published in | PloS one Vol. 20; no. 6; p. e0326488 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
26.06.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0326488 |
Cover
| Abstract | Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy of several ensemble machine learning (ML) models for diagnosing HCV infection. The study utilizes a dataset comprising demographic information of 615 individuals suspected of having HCV infection. Additionally, the research employs oversampling and undersampling techniques to address class imbalances in the dataset and conducts feature reduction using the F-test in one-way analysis of variance. Ensemble ML methods, including Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Logistic Regression (LR), Random Forest (RF), Naïve Bayes (NB), and Decision Tree (DT), are used to predict HCV infection. The performance of these ensemble methods is evaluated using metrics such as accuracy, recall, precision, F1 score, G-mean, balanced accuracy, cross-validation (CV), area under the curve (AUC), standard deviation, and error rate. Compared with previous studies, the Bagging k-NN model demonstrated superior performance under oversampling conditions, achieving 98.37% accuracy, 98.23% CV score, 97.67% precision, 97.93% recall, 98.18% selectivity, 97.79% F1 score, 98.06% balanced accuracy, 98.05% G-mean, a 1.63% error rate, 0.98 AUC, and a standard deviation of 0.192. This study highlights the potential of ensemble ML approaches in improving the diagnosis of HCV. The findings provide a foundation for developing accurate predictive methods for HCV diagnosis. |
|---|---|
| AbstractList | Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy of several ensemble machine learning (ML) models for diagnosing HCV infection. The study utilizes a dataset comprising demographic information of 615 individuals suspected of having HCV infection. Additionally, the research employs oversampling and undersampling techniques to address class imbalances in the dataset and conducts feature reduction using the F-test in one-way analysis of variance. Ensemble ML methods, including Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Logistic Regression (LR), Random Forest (RF), Naïve Bayes (NB), and Decision Tree (DT), are used to predict HCV infection. The performance of these ensemble methods is evaluated using metrics such as accuracy, recall, precision, F1 score, G-mean, balanced accuracy, cross-validation (CV), area under the curve (AUC), standard deviation, and error rate. Compared with previous studies, the Bagging k-NN model demonstrated superior performance under oversampling conditions, achieving 98.37% accuracy, 98.23% CV score, 97.67% precision, 97.93% recall, 98.18% selectivity, 97.79% F1 score, 98.06% balanced accuracy, 98.05% G-mean, a 1.63% error rate, 0.98 AUC, and a standard deviation of 0.192. This study highlights the potential of ensemble ML approaches in improving the diagnosis of HCV. The findings provide a foundation for developing accurate predictive methods for HCV diagnosis. Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy of several ensemble machine learning (ML) models for diagnosing HCV infection. The study utilizes a dataset comprising demographic information of 615 individuals suspected of having HCV infection. Additionally, the research employs oversampling and undersampling techniques to address class imbalances in the dataset and conducts feature reduction using the F-test in one-way analysis of variance. Ensemble ML methods, including Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Logistic Regression (LR), Random Forest (RF), Naïve Bayes (NB), and Decision Tree (DT), are used to predict HCV infection. The performance of these ensemble methods is evaluated using metrics such as accuracy, recall, precision, F1 score, G-mean, balanced accuracy, cross-validation (CV), area under the curve (AUC), standard deviation, and error rate. Compared with previous studies, the Bagging k-NN model demonstrated superior performance under oversampling conditions, achieving 98.37% accuracy, 98.23% CV score, 97.67% precision, 97.93% recall, 98.18% selectivity, 97.79% F1 score, 98.06% balanced accuracy, 98.05% G-mean, a 1.63% error rate, 0.98 AUC, and a standard deviation of 0.192. This study highlights the potential of ensemble ML approaches in improving the diagnosis of HCV. The findings provide a foundation for developing accurate predictive methods for HCV diagnosis.Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy of several ensemble machine learning (ML) models for diagnosing HCV infection. The study utilizes a dataset comprising demographic information of 615 individuals suspected of having HCV infection. Additionally, the research employs oversampling and undersampling techniques to address class imbalances in the dataset and conducts feature reduction using the F-test in one-way analysis of variance. Ensemble ML methods, including Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Logistic Regression (LR), Random Forest (RF), Naïve Bayes (NB), and Decision Tree (DT), are used to predict HCV infection. The performance of these ensemble methods is evaluated using metrics such as accuracy, recall, precision, F1 score, G-mean, balanced accuracy, cross-validation (CV), area under the curve (AUC), standard deviation, and error rate. Compared with previous studies, the Bagging k-NN model demonstrated superior performance under oversampling conditions, achieving 98.37% accuracy, 98.23% CV score, 97.67% precision, 97.93% recall, 98.18% selectivity, 97.79% F1 score, 98.06% balanced accuracy, 98.05% G-mean, a 1.63% error rate, 0.98 AUC, and a standard deviation of 0.192. This study highlights the potential of ensemble ML approaches in improving the diagnosis of HCV. The findings provide a foundation for developing accurate predictive methods for HCV diagnosis. |
| Audience | Academic |
| Author | Akib, Abdullah Gabralla, Lubna A. Ismail, Mohd Arfian Tusher, Ekramul Haque Ibrahim, Ashraf Osman Remli, Muhammad Akmal Som, Hafizan Mat |
| AuthorAffiliation | 1 Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang, Malaysia 2 Center of Excellence for Artificial Intelligence & Data Science, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Malaysia University of Lagos Faculty of Engineering, NIGERIA 5 Department of Computing, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia 8 Faculty of Data Science and Computing, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia 4 Department of Computer Science, Applied College, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia 6 Positive Computing Research Center, Emerging & Digital Technologies Institute, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia 7 Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia 3 Industrial Engineering, Lamar University, Beaumont, Texas, United States of America |
| AuthorAffiliation_xml | – name: 6 Positive Computing Research Center, Emerging & Digital Technologies Institute, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia – name: University of Lagos Faculty of Engineering, NIGERIA – name: 4 Department of Computer Science, Applied College, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia – name: 5 Department of Computing, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia – name: 1 Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang, Malaysia – name: 3 Industrial Engineering, Lamar University, Beaumont, Texas, United States of America – name: 7 Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia – name: 8 Faculty of Data Science and Computing, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia – name: 2 Center of Excellence for Artificial Intelligence & Data Science, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Malaysia |
| Author_xml | – sequence: 1 givenname: Ekramul Haque orcidid: 0009-0009-5583-3767 surname: Tusher fullname: Tusher, Ekramul Haque – sequence: 2 givenname: Mohd Arfian orcidid: 0000-0001-8312-2289 surname: Ismail fullname: Ismail, Mohd Arfian – sequence: 3 givenname: Abdullah orcidid: 0009-0004-6700-2593 surname: Akib fullname: Akib, Abdullah – sequence: 4 givenname: Lubna A. surname: Gabralla fullname: Gabralla, Lubna A. – sequence: 5 givenname: Ashraf Osman surname: Ibrahim fullname: Ibrahim, Ashraf Osman – sequence: 6 givenname: Hafizan Mat surname: Som fullname: Som, Hafizan Mat – sequence: 7 givenname: Muhammad Akmal surname: Remli fullname: Remli, Muhammad Akmal |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40570059$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk89u1DAQxiNURP_AGyCwhITgsItjO9nkhKoV0EqVKkHVqzVxJokrx17spGWfhZfF22yrXdRDlUPs8W--zMwXHycH1llMkrcpnad8kX65caO3YOarGJ5TznJRFC-So7TkbJYzyg921ofJcQg3lGa8yPNXyaGg2SLuyqPk79L1K_Aw6Fsk2t5iGHQbd84S15AK2lbblqDtwCqsSQ-q0xaJQfB2c9I4T-LarEmNA6qHxLPldVRrpkAgY9iwykAIRPcVmI0aiXxn9e8RyZ0eOtIgDKNHEtBMea-Tlw2YgG-275Pk6vu3q-XZ7OLyx_ny9GKmciGGWaaUyBoGFHIlIKs40JTVRVoxxRcAXJQUAFmRplVsv8wqmgOvsAIsF4orfpK8n2RXxgW5HWuQnDGRsUVWFJE4n4jawY1ced2DX0sHWt4HnG8l-EErg7JKkUEjGKWCi0aVVSZoLRrIskUt8gaiVjZpjXYF6zsw5lEwpXLj7EMJcuOs3Dob875uqxyrHmuFdvBg9orZP7G6k627lSljNM0FjwqftgrexaGHQfY6KDTRDHTj1HDOC8pERD_8hz49li3VQuw82u3ih9VGVJ4WIsvTsmBlpOZPUPGpsdcqttjoGN9L-LyXEJkB_wwtjCHI818_n89eXu-zH3fYDsEMXXBmvP9F98F3u6N-nPHDrYmAmADlXQgem-dZ-A90GC6h |
| Cites_doi | 10.1109/ISMSIT50672.2020.9254720 10.4258/hir.2019.25.3.173 10.1007/978-981-16-7610-9_54 10.1016/j.jhep.2011.11.008 10.1016/j.eswa.2009.04.062 10.1109/CSNT48778.2020.9115734 10.15575/join.v6i1.719 10.1016/j.jhep.2014.07.027 10.32604/cmc.2021.015436 10.1109/ICIEM54221.2022.9853036 10.1016/j.eswa.2013.09.022 10.1371/journal.pone.0208141 10.1109/ASONAM.2012.140 10.1002/jmv.24635 10.1016/j.tele.2017.01.007 10.1109/TCBB.2017.2690848 10.4321/S1130-01082004001200002 10.30699/ijmm.18.3.135 10.1016/j.compedu.2019.103676 10.1186/s12874-019-0681-4 10.1016/j.imed.2021.12.003 10.1007/978-981-16-2594-7_6 10.1063/5.0110216 10.1016/j.pharmthera.2017.10.009 10.1002/hep.27259 10.1016/j.imu.2019.100267 10.1007/s41403-021-00239-6 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Tusher et al 2025 Tusher et al 2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Tusher et al 2025 Tusher et al – notice: 2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0326488 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Agricultural Science Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Agricultural Science Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Comparative investigation of bagging enhanced machine learning for early detection of HCV infections |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3224527588 oai_doaj_org_article_b1e2af4200434fc9b540d4fa557d46fa 10.1371/journal.pone.0326488 PMC12201643 A845619829 40570059 10_1371_journal_pone_0326488 |
| Genre | Journal Article Comparative Study |
| GeographicLocations | Malaysia |
| GeographicLocations_xml | – name: Malaysia |
| GrantInformation_xml | – fundername: ; |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c644t-5cc45f2a0a6c4a5b3a012d81b2c37aa3490aae2811b38695b06a3bebae97c3c3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sat Sep 27 00:00:43 EDT 2025 Tue Oct 14 19:09:22 EDT 2025 Sun Oct 26 03:52:18 EDT 2025 Tue Sep 30 17:00:57 EDT 2025 Fri Sep 05 15:47:20 EDT 2025 Tue Oct 07 09:16:13 EDT 2025 Mon Oct 20 22:39:33 EDT 2025 Mon Oct 20 16:50:31 EDT 2025 Thu Oct 16 15:33:28 EDT 2025 Thu Oct 16 15:33:22 EDT 2025 Tue Jul 22 02:12:04 EDT 2025 Mon Jun 30 02:54:45 EDT 2025 Wed Oct 01 05:59:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright: © 2025 Tusher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c644t-5cc45f2a0a6c4a5b3a012d81b2c37aa3490aae2811b38695b06a3bebae97c3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. |
| ORCID | 0009-0009-5583-3767 0000-0001-8312-2289 0009-0004-6700-2593 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0326488 |
| PMID | 40570059 |
| PQID | 3224527588 |
| PQPubID | 1436336 |
| PageCount | e0326488 |
| ParticipantIDs | plos_journals_3224527588 doaj_primary_oai_doaj_org_article_b1e2af4200434fc9b540d4fa557d46fa unpaywall_primary_10_1371_journal_pone_0326488 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12201643 proquest_miscellaneous_3224638024 proquest_journals_3224527588 gale_infotracmisc_A845619829 gale_infotracacademiconefile_A845619829 gale_incontextgauss_ISR_A845619829 gale_incontextgauss_IOV_A845619829 gale_healthsolutions_A845619829 pubmed_primary_40570059 crossref_primary_10_1371_journal_pone_0326488 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250626 |
| PublicationDateYYYYMMDD | 2025-06-26 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250626 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | NH Barakat (pone.0326488.ref031) 2019; 25 M Gheisari (pone.0326488.ref038) 2024; 12 MA Konerman (pone.0326488.ref018) 2019; 14 J Messina (pone.0326488.ref002) 2015; 61 A Akella (pone.0326488.ref030) 2020; 2020 pone.0326488.ref028 MB Butt (pone.0326488.ref029) 2021; 2021 pone.0326488.ref009 pone.0326488.ref003 pone.0326488.ref025 pone.0326488.ref005 F Morisco (pone.0326488.ref006) 2017; 89 K Neukam (pone.0326488.ref024) 2012; 56 P-C Chang (pone.0326488.ref014) 2010; 37 M Ghaderzadeh (pone.0326488.ref036) 2024; 18 N Tomasevic (pone.0326488.ref008) 2020; 143 JAM Sidey-Gibbons (pone.0326488.ref013) 2019; 19 pone.0326488.ref020 pone.0326488.ref001 M Nilashi (pone.0326488.ref016) 2017; 34 pone.0326488.ref023 R Safdari (pone.0326488.ref033) 2022; 2 S Bhingarkar (pone.0326488.ref032) 2022 RK Barman (pone.0326488.ref007) 2021; 6 A Bahtiar (pone.0326488.ref011) 2021; 1088 KF Lichtinghagen (pone.0326488.ref034) 2020 LI Fernández Salazar (pone.0326488.ref035) 2004; 96 SC Nandipati (pone.0326488.ref021) 2020; 4 EM El Houby (pone.0326488.ref022) 2013; 975 L Syafa’ah (pone.0326488.ref026) 2021; 6 S Hashem (pone.0326488.ref019) 2018; 15 T M. Ghazal (pone.0326488.ref027) 2021; 69 pone.0326488.ref010 E Gower (pone.0326488.ref017) 2014; 61 pone.0326488.ref012 U Spengler (pone.0326488.ref004) 2018; 183 M Seera (pone.0326488.ref015) 2014; 41 M Ghaderzadeh (pone.0326488.ref037) 2024; 18 |
| References_xml | – volume: 12 year: 2024 ident: pone.0326488.ref038 article-title: Mobile apps for COVID-19 detection and diagnosis for future pandemic control: Multidimensional systematic review publication-title: JMIR mHealth and uHealth – volume: 1088 start-page: 012035 issue: 1 year: 2021 ident: pone.0326488.ref011 article-title: Data mining techniques with machine learning algorithm to predict patients of heart disease publication-title: IOP Conf Ser: Mater Sci Eng – volume: 2021 start-page: 8062410 year: 2021 ident: pone.0326488.ref029 article-title: Diagnosing the stage of hepatitis C using machine learning publication-title: J Healthc Eng – ident: pone.0326488.ref012 doi: 10.1109/ISMSIT50672.2020.9254720 – volume: 25 start-page: 173 issue: 3 year: 2019 ident: pone.0326488.ref031 article-title: Prediction and staging of hepatic fibrosis in children with hepatitis C virus: a machine learning approach publication-title: Healthc Inform Res doi: 10.4258/hir.2019.25.3.173 – start-page: 731 volume-title: Intelligent data communication technologies and internet of things: proceedings of ICICI 2021 year: 2022 ident: pone.0326488.ref032 article-title: A comparison of machine learning techniques for categorization of blood donors having chronic hepatitis c infection doi: 10.1007/978-981-16-7610-9_54 – volume: 56 start-page: 788 issue: 4 year: 2012 ident: pone.0326488.ref024 article-title: Prediction of response to pegylated interferon plus ribavirin in HIV/hepatitis C virus (HCV)-coinfected patients using HCV genotype, IL28B variations, and HCV-RNA load publication-title: J Hepatol doi: 10.1016/j.jhep.2011.11.008 – ident: pone.0326488.ref003 – volume: 37 start-page: 214 issue: 1 year: 2010 ident: pone.0326488.ref014 article-title: A CBR-based fuzzy decision tree approach for database classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.04.062 – ident: pone.0326488.ref001 – ident: pone.0326488.ref005 doi: 10.1109/CSNT48778.2020.9115734 – volume: 6 start-page: 73 issue: 1 year: 2021 ident: pone.0326488.ref026 article-title: Comparison of machine learning classification methods in hepatitis C virus publication-title: Join doi: 10.15575/join.v6i1.719 – volume: 61 year: 2014 ident: pone.0326488.ref017 article-title: Global epidemiology and genotype distribution of the hepatitis C virus infection publication-title: J Hepatol doi: 10.1016/j.jhep.2014.07.027 – volume: 69 start-page: 191 issue: 1 year: 2021 ident: pone.0326488.ref027 article-title: Hep-Pred: Hepatitis C staging prediction using fine Gaussian SVM publication-title: Comput Mater Continua doi: 10.32604/cmc.2021.015436 – ident: pone.0326488.ref009 doi: 10.1109/ICIEM54221.2022.9853036 – volume: 41 start-page: 2239 issue: 5 year: 2014 ident: pone.0326488.ref015 article-title: A hybrid intelligent system for medical data classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.09.022 – volume: 14 issue: 1 year: 2019 ident: pone.0326488.ref018 article-title: Machine learning models to predict disease progression among veterans with hepatitis C virus publication-title: PLoS One doi: 10.1371/journal.pone.0208141 – volume: 2020 year: 2020 ident: pone.0326488.ref030 article-title: Applying machine learning to evaluate for fibrosis in chronic hepatitis c publication-title: MedRxiv – ident: pone.0326488.ref023 doi: 10.1109/ASONAM.2012.140 – volume: 89 start-page: 291 issue: 2 year: 2017 ident: pone.0326488.ref006 article-title: Prevalence and risk factors of HCV infection in a metropolitan area in southern Italy: Tail of a cohort infected in past decades publication-title: J Med Virol doi: 10.1002/jmv.24635 – volume: 34 start-page: 133 issue: 4 year: 2017 ident: pone.0326488.ref016 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telemat Inform doi: 10.1016/j.tele.2017.01.007 – volume: 15 start-page: 861 issue: 3 year: 2018 ident: pone.0326488.ref019 article-title: Comparison of machine learning approaches for prediction of advanced liver fibrosis in chronic hepatitis C patients publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2690848 – volume: 975 start-page: 8887 year: 2013 ident: pone.0326488.ref022 article-title: Analysis of associative classification for prediction of hcv response to treatment publication-title: Int J Comput Appl – volume: 96 start-page: 818 issue: 12 year: 2004 ident: pone.0326488.ref035 article-title: Iron overload and genotype 3 are associated with liver steatosis in chronic hepatitis C publication-title: Rev Esp Enferm Dig doi: 10.4321/S1130-01082004001200002 – volume-title: HCV data year: 2020 ident: pone.0326488.ref034 – volume: 18 start-page: 135 issue: 3 year: 2024 ident: pone.0326488.ref036 article-title: Artificial intelligence in drug discovery and development against antimicrobial resistance: a narrative review publication-title: Iran J Med Microbiol doi: 10.30699/ijmm.18.3.135 – volume: 143 start-page: 103676 year: 2020 ident: pone.0326488.ref008 article-title: An overview and comparison of supervised data mining techniques for student exam performance prediction publication-title: Comput Educ doi: 10.1016/j.compedu.2019.103676 – volume: 4 start-page: 89 year: 2020 ident: pone.0326488.ref021 article-title: Hepatitis c virus (hcv) prediction by machine learning techniques publication-title: Appl Model Simul – volume: 19 start-page: 64 issue: 1 year: 2019 ident: pone.0326488.ref013 article-title: Machine learning in medicine: a practical introduction publication-title: BMC Med Res Methodol doi: 10.1186/s12874-019-0681-4 – volume: 2 start-page: 193 issue: 04 year: 2022 ident: pone.0326488.ref033 article-title: Applying data mining techniques to classify patients with suspected hepatitis c virus infection publication-title: Intell Med doi: 10.1016/j.imed.2021.12.003 – ident: pone.0326488.ref028 doi: 10.1007/978-981-16-2594-7_6 – ident: pone.0326488.ref010 doi: 10.1063/5.0110216 – volume: 183 start-page: 118 year: 2018 ident: pone.0326488.ref004 article-title: Direct antiviral agents (DAAs) - A new age in the treatment of hepatitis C virus infection publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2017.10.009 – volume: 61 issue: 1 year: 2015 ident: pone.0326488.ref002 article-title: Global distribution and prevalence of hepatitis c virus genotypes publication-title: Hepatology doi: 10.1002/hep.27259 – ident: pone.0326488.ref025 – volume: 18 start-page: 135 issue: 3 year: 2024 ident: pone.0326488.ref037 article-title: Artificial intelligence in drug discovery and development against antimicrobial resistance: a narrative review publication-title: Iran J Med Microbiol doi: 10.30699/ijmm.18.3.135 – ident: pone.0326488.ref020 doi: 10.1016/j.imu.2019.100267 – volume: 6 start-page: 755 issue: 3 year: 2021 ident: pone.0326488.ref007 article-title: Identification of critical host targets for HCV infection: A systems biology approach publication-title: Trans Indian Natl Acad Eng doi: 10.1007/s41403-021-00239-6 |
| SSID | ssj0053866 |
| Score | 2.482829 |
| Snippet | Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0326488 |
| SubjectTerms | Accuracy Adult Algorithms Area Under Curve Bagging Bayes Theorem Biology and life sciences Care and treatment Classification Computer and Information Sciences Control Data mining Data science Datasets Decision making Decision Trees Diagnosis Disease Early Diagnosis Engineering and Technology Ensemble learning Feature selection Female Hepacivirus Hepatitis C Hepatitis C - diagnosis Hepatitis C virus Humans Identification and classification Infections Learning algorithms Liver cancer Liver cirrhosis Machine Learning Male Mean Medical diagnosis Medical research Medicine and health sciences Middle Aged Oversampling Physical Sciences Recall Research and Analysis Methods Risk factors Standard deviation Support Vector Machine Support vector machines Variance analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQXuCCKF9NWcAgJOCQbRJ_JDmWFdWCBEhQqt6iseNsV9omK7IrxG_hz-JxnLQRleiB63qyUuaNJ8_J8zMhr1SGS5xMhREwFnIAHWYlN2GklCxjZUFnuFH402e5-M4_nomzK0d9oSasswfuEneoYpNAxRFMxiudK0sxSl6BEGnJZeWoUZTl_WKq68F2FkvpN8qxND70uMw2TW1mEUNVVzZ6EDm__qErTzbrpr2Ocv6tnLy9qzfw6yes11ceS8f3yF3PJ-lRdx975Jap75M9P2Nb-sbbSr99QH7PL42-6erSXqOpaVNRBfjqeUlNfe40AfTCqSwN9cdKLKllt9SgHTItzdYJuNyFi_kp7RVddUtRR7-kGjk5XV0oFE5qQwenWIrvfWllnJ0obd0hPPa6h-Tk-P3JfBH6oxlCbQnUNhRac1ElEIHUHIRiYB90paXAiWYpAON5BGCSLLZwZzIXKpLAlFFg8lQzzR6RSW2x2Cc0NRZPgDLW2q4ES6mMACNTFYkkjUDwgIQ9TMWmM-Ao3Fe41C5cuhwXCGvhYQ3IO8RyiEX7bPeDLarCF1Xxr6IKyHOshKLbizo0geIoQ76ZZ0kekJcuAi00atToLGHXtsWHL6c3CPr2dRT02gdVja0pDX5fhL0ntOYaRU5HkbYR6NHwPtZtn5W2sJOQ2ywKTMq0r-Xrh18Mw_inqLurTbPrYmyHtkQuII-70h8yi1Qf9y4HJBtNilHqxyP16tw5mMdJgtZuLCCzYf7cCN2D_4HuE3InwVOcIxkmckom2x8789RSy6165rrIH1hke90 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wACDkICHdEnsOMkDQlu1qSBR0BjT3qKz43SVuqQsrRB_C_8sPtdJiZjQXuNzpPg-fHZ-9ztCXssUjzip9ANgzOcAyk8Lrv1ASlGE0iidYaHw54kYf-efzuPzLTJpa2EQVtnGRBuoi1rhHfm-eSOPI5Pdph8WP3zsGoV_V9sWGuBaKxTvLcXYLbIdITPWgGwfHk2-nrSx2Xi3EK6AjiXhvtPXcFFXehgwRHulvQ3K8vh30XqwmNfNdanov4jK26tqAb9-wnz-13Z1fI_cdXkmPVgbxg7Z0tV9suM8uaFvHd30uwfk92hDAE5nG9qNuqJ1SSXglfSU6urCYgXopUVfauraTUypyXqpRppkWuilBXbZiePRGW2RXlVDEV8_pQpzdTq7lAioVJp2DLIU74NpqS3NKG1scx4z7yE5PT46HY1917LBVyaxWvqxUjwuIwhAKA6xZGA2wMKkxpFiCQDjWQCgozQ0ZpCKLJaBACa1BJ0liin2iAwqo4tdQhPNgwKgCJUyJ8RCSB2DFokMjBEEEHOP-K2a8sWamCO3f-cSc6BZr3GOas2dWj1yiLrsZJFW2z6or6a589JchjqCkmPkYLxUmTT5bMFLiOOk4KIEj7xAS8jXNapdcMgPUsxDszTKPPLKSiC1RoXYnSmsmib_-OXsBkLfTnpCb5xQWRubUuDqJcw3IWVXT3KvJ2kChOoN76LdtqvS5BtXMjNbW75--GU3jC9FPF6l69VaxkRuk-B55PHa9LuVxSMA1jR7JO05RW_p-yPV7MIym4dRhJRvzCPDzn9upN0n__-Qp-ROhH2bA-FHYo8Mllcr_cwkk0v53EWIPz0MeYo priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVG9wAvwPhaoIBBSIBESmI7X4-lYipIGwi2aTxF147TVXRJRVoh-Cv8WXwTJ1tgSOW1vq7ka9_r4_jcY0KeyRiPOLF0PeDcFQDKjTOhXU_KMPOlmXSOhcL7B-H0SLw_CU62yKu2Fubi_T2P_NfWo6NlWeiRx5GPFV8h22FgkPeAbB8dfBx_aS6OmRsyj9vquH917e0-tUh_l4oHy0VZXYYz_6ZLXl0XS_jxHRaLC3vR3g2y346ioaB8Ha1XcqR-_iHwuOkwb5LrFpTScbOKdsiWLm6RHRv2FX1htalf3ia_Judq4XR-rtFRFrTMqQT8fj2jujitiQX0rKZqamrfpphRA5GpRk1lmulVzQKrO04nx7SlhRUVRTL-jCoE9nR-JpF9qTTt5GYpfjymua41SWlVv-Rj-t0hh3tvDydT177v4CqDwlZuoJQIcgYehEpAIDmY3TIzOJopHgFwkXgAmsW-WTNxmATSC4FLLUEnkeKK3yWDwvhrl9BICy8DyHylzHEyC6UOQIeR9AIWeRAIh7jttKfLRsUjra_yInP6aXycoutT63qHvMG10dmiBnf9g5mz1IZ0Kn3NIBeYZrjIVSIN-M1EDkEQZSLMwSGPcWWlTUFrl0nScYygNYlZ4pCntQXqcBRI9JnBuqrSdx-ONzD6_Kln9Nwa5aVZowpscYUZE-p79SyHPUuTTVSveRfjoPVKlZpIFsaLATpl2MbG5c1Pumb8UyTvFbpcNzYmzRs06JB7TSh1nsXzAhZAOyTuBVnP9f2WYn5ay6D7jKE-HHfIqIvHjWb3_v92eECuMXz22QtdFg7JYPVtrR8aLLqSj2wK-g1ICYwL priority: 102 providerName: Unpaywall |
| Title | Comparative investigation of bagging enhanced machine learning for early detection of HCV infections using class imbalance technique with feature selection |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40570059 https://www.proquest.com/docview/3224527588 https://www.proquest.com/docview/3224638024 https://pubmed.ncbi.nlm.nih.gov/PMC12201643 https://doi.org/10.1371/journal.pone.0326488 https://doaj.org/article/b1e2af4200434fc9b540d4fa557d46fa http://dx.doi.org/10.1371/journal.pone.0326488 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28QAviPG1QCkGIQEPqZLY-XpAqKtWCtLKNLZpe4rOjtNN6pLStIL9Lfyz-Jw0I6JIfclDfI6U-_LZvvsdIW9FhFucSNgOMGZzAGlHKVe2I0SQukILnWGh8NE4GJ3xrxf-xRZZ9WytGViu3dphP6mz-bT368ftJ23wH03XhtBdTerNilz1HIY5W9E22dVrVYzNHI54c6-grdvcXmLUYgeew-piuv99pbVYGUz_xnPvzKZFuS4s_Te78t4yn8HtT5hO_1q6hg_JgzrmpP1KSfbIlsofkb3aqkv6voae_vCY_B7cgYHT6zsIjiKnRUYF4PH0hKr8yuQN0BuTialo3XpiQnUETBVCJtNULUySl5k4GpzTVdZXXlLMtZ9QiXE7vb4RmFwpFW3QZCmeDdNMGchRWppGPXreE3I6PDwdjOy6fYMtdZC1sH0puZ954EAgOfiCgV4MUx0me5KFAIzHDoDyIlerRBTEvnACYEIJUHEomWRPyU6uZbFPaKi4kwKkrpR6t5gGQvmgglA4vhc64HOL2CsxJbMKpCMxN3Wh3txUPE5QrEktVoscoCwbWoTYNi-K-SSpLTYRrvIg4-hFGM9kLHRsm_IMfD9MeZCBRV6hJiRVvWrjKJJ-hDFpHHmxRd4YCoTZyDGPZwLLsky-fDvfgOj7SYvoXU2UFVqnJNS1E_qfEL6rRdlpUWpnIVvD-6i3K66UiTZUrrnoI1M6K11eP_y6GcaPYm5eroplRaO9uA72LPKsUv2Gs7gdwPpmi0Qto2ixvj2SX18ZlHPX8xD-jVmk19jPRtJ9vjGzXpD7HrZzdgLbCzpkZzFfqpc6xlyILtkOL0L9jAYuPoefu2T34HB8fNI1pzZd41b0u7Pxcf_yD15eha8 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLorwaKNQgEHDINhs7jz0gVArVlj6QYKn2Fo0dZ1upTZZmV1V_C7-B_8iM81giKtRLr-txtPGMP884M98w9krFFOLEyvVACFcCaDdOpXE9pcK0r1DpggqFDw7D4Q_5ZRyMl9jvphaG0iobTLRAnRaa7sg38Yky8NG7jT9Mf7rUNYq-rjYtNCqz2DOXFxiyle93P6F-X_v-zufR9tCtuwq4Gs_-mRtoLYPMBw9CLSFQAhCjU_TefC0iACEHHoDx4z7-0zgcBMoLQSijwAwiLbTAx95it6VAKMHtE43b-A6hIwzr6jwR9TdrY-hNi9z0PEGpZHHn9LNNAtqjYHl6WpRX-bn_pmuuzPMpXF7A6elfZ-HOPXa3dmL5VmV1q2zJ5PfZag0TJX9bc1m_e8B-bS_YxfnJgtOjyHmRcQV03z3hJj-2iQj8zKZ2Gl73sphwdKm5IQ5mnpqZzRqzE4fbR7xJI8tLTsn7E64pEOAnZ4qyNbXhLT0tp8tmnhnLYcpL2_kH5z1ko5vQ3CO2nKMu1hiPjPRSgLSvNYafaahMACaMlIcW5kEgHeY2akqmFetHYj_9RRgtVWuckFqTWq0O-0i6bGWJs9v-UJxPkhoCEtU3PmSSYEnITA8UOsupzCAIolSGGThsgywhqQpgW-RJtmJycgexP3DYSytBvB05JQZNYF6Wye7Xo2sIff_WEXpTC2UF2pSGuhgD34n4wDqS6x1JRB_dGV4ju21WpUwW-xRnNrZ89fCLdpgeSsl-uSnmlQweC-g9OuxxZfrtylJ8QQXTDos7m6Kz9N2R_OTY0qb3fZ_45ITDeu3-uZZ2n_z_RTbYynB0sJ_s7x7uPWV3fGoQ7YWuH66z5dn53DxDr3Wmnlus4Cy5YWz6A1gFr_s |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgEXRHk1UKhBIOCQNhs7rwNCpaVqKRQEpdpbNHac7UptsjS7qvpb-CX8O2acR4moUC-9rsfRxjMezzjffMPYCxVTihMr1wMhXAmg3TiTxvWUCrOhQqULKhT-vBdu_5AfR8Fogf1ua2EIVtn6ROuos1LTHfkaPlEGPka38VrewCK-bm69m_50qYMUfWlt22nUJrJrzk4xfave7myirl_6_taH_Y1tt-kw4GqMA2ZuoLUMch88CLWEQAlAf51hJOdrEQEImXgAxo-H-K_jMAmUF4JQRoFJIi20wMdeY9cjIRJCE0ajLtdDNxKGTaWeiIZrjWGsTsvCrHqCYGVx7yS0DQO6Y2EwPSqri2Lef6GbN-fFFM5O4ejor3Nx6w673QS0fL22wEW2YIq7bLFxGRV_3fBav7nHfm2cM43zyTm_R1nwMucK6O57zE1xaEEJ_NjCPA1v-lqMOYbX3BAfM8_MzCLI7MTtjQPeQsqKihOQf8w1JQV8cqwIuakN76hqOV0889xYPlNe2S5AOO8-278KzT1ggwJ1scR4ZKSXAWRDrTEVzUJlAjBhpDy0Ng8C6TC3VVM6rRlAUvsZMMLMqV7jlNSaNmp12HvSZSdL_N32h_JknDbuIFVD40MuyUUJmetEYeCcyRyCIMpkmIPDVsgS0roYtvNC6XpMAW8S-4nDnlsJ4vAoaDeMYV5V6c6Xg0sIff_WE3rVCOUl2pSGpjAD34m4wXqSyz1J9ES6N7xEdtuuSpWe71mc2dryxcPPumF6KAH_ClPOaxk8IjCSdNjD2vS7laVcg4qnHRb3NkVv6fsjxeTQUqgPfZ-45YTDVrv9cyntPvr_i6ywG-iV0k87e7uP2S2fekV7oeuHy2wwO5mbJxjAztRT6yo4S6_YNf0BoVW0Pg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVG9wAvwPhaoIBBSIBESmI7X4-lYipIGwi2aTxF147TVXRJRVoh-Cv8WXwTJ1tgSOW1vq7ka9_r4_jcY0KeyRiPOLF0PeDcFQDKjTOhXU_KMPOlmXSOhcL7B-H0SLw_CU62yKu2Fubi_T2P_NfWo6NlWeiRx5GPFV8h22FgkPeAbB8dfBx_aS6OmRsyj9vquH917e0-tUh_l4oHy0VZXYYz_6ZLXl0XS_jxHRaLC3vR3g2y346ioaB8Ha1XcqR-_iHwuOkwb5LrFpTScbOKdsiWLm6RHRv2FX1htalf3ia_Judq4XR-rtFRFrTMqQT8fj2jujitiQX0rKZqamrfpphRA5GpRk1lmulVzQKrO04nx7SlhRUVRTL-jCoE9nR-JpF9qTTt5GYpfjymua41SWlVv-Rj-t0hh3tvDydT177v4CqDwlZuoJQIcgYehEpAIDmY3TIzOJopHgFwkXgAmsW-WTNxmATSC4FLLUEnkeKK3yWDwvhrl9BICy8DyHylzHEyC6UOQIeR9AIWeRAIh7jttKfLRsUjra_yInP6aXycoutT63qHvMG10dmiBnf9g5mz1IZ0Kn3NIBeYZrjIVSIN-M1EDkEQZSLMwSGPcWWlTUFrl0nScYygNYlZ4pCntQXqcBRI9JnBuqrSdx-ONzD6_Kln9Nwa5aVZowpscYUZE-p79SyHPUuTTVSveRfjoPVKlZpIFsaLATpl2MbG5c1Pumb8UyTvFbpcNzYmzRs06JB7TSh1nsXzAhZAOyTuBVnP9f2WYn5ay6D7jKE-HHfIqIvHjWb3_v92eECuMXz22QtdFg7JYPVtrR8aLLqSj2wK-g1ICYwL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+investigation+of+bagging+enhanced+machine+learning+for+early+detection+of+HCV+infections+using+class+imbalance+technique+with+feature+selection&rft.jtitle=PloS+one&rft.au=Tusher%2C+Ekramul+Haque&rft.au=Ismail%2C+Mohd+Arfian&rft.au=Akib%2C+Abdullah&rft.au=Gabralla%2C+Lubna+A&rft.date=2025-06-26&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0326488&rft_id=info:doi/10.1371%2Fjournal.pone.0326488&rft.externalDocID=A845619829 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |