An integrated IKOA-CNN-BiGRU-Attention framework with SHAP explainability for high-precision debris flow hazard prediction in the Nujiang river basin, China

Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidir...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0326587
Main Authors Yang, Hao, Wang, Tianlong, Fomin, Nikita Igorevich, Xiao, Shuoting, Liu, Liang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 24.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0326587

Cover

Abstract Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10 −6 , mean absolute error of 1.51 × 10 −6 , and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction.
AbstractList Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10 −6 , mean absolute error of 1.51 × 10 −6 , and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction.
Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10−6, mean absolute error of 1.51 × 10−6, and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction.
Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 x 10.sup.-6, mean absolute error of 1.51 x 10.sup.-6, and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction.
Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10-6, mean absolute error of 1.51 × 10-6, and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction.
Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10-6, mean absolute error of 1.51 × 10-6, and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction.Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10-6, mean absolute error of 1.51 × 10-6, and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction.
Audience Academic
Author Fomin, Nikita Igorevich
Yang, Hao
Xiao, Shuoting
Wang, Tianlong
Liu, Liang
AuthorAffiliation 3 School of Civil and Environmental Engineering, Nanyang Technological University, SingaporeSingapore
Guizhou University, CHINA
1 Institute of Civil Engineering and Architecture, Ural Federal University, Yekaterinburg, Russia
2 Ocean College, Zhejiang University, Zhoushan, China
AuthorAffiliation_xml – name: 1 Institute of Civil Engineering and Architecture, Ural Federal University, Yekaterinburg, Russia
– name: Guizhou University, CHINA
– name: 2 Ocean College, Zhejiang University, Zhoushan, China
– name: 3 School of Civil and Environmental Engineering, Nanyang Technological University, SingaporeSingapore
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0009-0002-8771-5537
  surname: Yang
  fullname: Yang, Hao
– sequence: 2
  givenname: Tianlong
  orcidid: 0000-0002-0598-5481
  surname: Wang
  fullname: Wang, Tianlong
– sequence: 3
  givenname: Nikita Igorevich
  surname: Fomin
  fullname: Fomin, Nikita Igorevich
– sequence: 4
  givenname: Shuoting
  surname: Xiao
  fullname: Xiao, Shuoting
– sequence: 5
  givenname: Liang
  surname: Liu
  fullname: Liu, Liang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40554568$$D View this record in MEDLINE/PubMed
BookMark eNqNk99u0zAUxiM0xP7AGyCwhIRAIsWO48S5QqWCrWLa0Ma4tU4cJ3FJ7WIn68az8LC4azetaBdTLmwd_87nc87n7Ec7xhoVRS8JHhGak48zOzgD3WgRwiNMk4zx_Em0RwqaxFmC6c69_W607_0MY0Z5lj2LdlPMWMoyvhf9HRukTa8aB72q0PTb6TienJzEn_Xh2UU87ntlem0Nqh3M1dK6X2ip-xadH42_I3W16EAbKHWn-2tUW4da3bTxwimp_SqrUqXTHtWdXaIW_oCrUDistLzR1Ab1rUInw0yDaZDTl8qhErw2H9CkDcLPo6c1dF692KwH0cXXLz8mR_Hx6eF0Mj6OZZamfUyB51BkRSV5rnClICcSZAWUS8IITau8zEGFditOqeJhk0vKMpxghUtMU3oQvV7rLjrrxWawXtAkCfPKGSaBmK6JysJMLJyeg7sWFrS4CVjXCHC9lp0SrCwUzXGRs5ynqSRFRYBjlWIuacEVBC221hrMAq6X0HV3ggSLlbe3JYiVt2Ljbcj7tKlyKOeqksEZB91WMdsnRreisZeCJIRnBWdB4d1Gwdnfg_K9mGsvVdeBUXZYN1wkvGBJQN_8hz48lg3VQOhcm9qGi-VKVIx5yhJcpGSlNXqACl-l5lqGFmsd4lsJ77cSAtOrq76BwXsxPT97PHv6c5t9e49tFXR96203rF6j3wZf3R_13Yxv_5sApGtAOuu9U_XjLPwHSn8rYw
Cites_doi 10.1007/s12145-024-01300-y
10.1007/s10064-015-0784-z
10.1016/j.rineng.2024.102123
10.11628/ksppe.2025.28.1.35
10.1016/S1001-6279(08)60013-X
10.1016/j.ijheatmasstransfer.2020.119573
10.1016/j.enggeo.2020.105979
10.5194/isprs-archives-XLVIII-M-3-2023-161-2023
10.1016/j.geomorph.2020.107125
10.1007/s12665-023-11073-0
10.3390/app132413111
10.1007/s11069-013-0575-4
10.1007/s11135-006-9018-6
10.4316/AECE.2017.02010
10.1130/G33106.1
10.1016/j.measurement.2020.108277
10.1007/s11069-012-0539-0
10.1016/j.asr.2024.05.007
10.1016/j.gsf.2024.101800
10.1016/j.cageo.2023.105364
10.5194/nhess-23-3261-2023
10.1007/s11069-013-0557-6
10.1002/2017RG000557
10.1016/j.geomorph.2015.01.007
10.3390/w16091285
10.5194/nhess-24-1035-2024
10.1007/s10064-024-03581-5
10.1007/s00500-021-05874-3
10.1038/s41467-022-29415-0
10.1016/j.oceaneng.2022.113408
10.1016/j.knosys.2023.110454
10.5194/isprs-archives-XLVIII-3-2024-377-2024
10.1007/s11600-019-00342-x
10.2166/hydro.2023.299
10.3390/su151411228
10.1016/j.advengsoft.2016.01.008
10.5194/nhess-24-465-2024
10.1016/j.eswa.2023.119527
10.1016/j.enggeo.2021.106051
10.1016/j.polymertesting.2022.107873
10.1002/esp.3973
10.1029/2020GL089062
10.1016/j.asej.2021.10.021
10.3390/geosciences14050130
10.1080/21642583.2019.1708830
ContentType Journal Article
Copyright Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Yang et al 2025 Yang et al
2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Yang et al 2025 Yang et al
– notice: 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0326587
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
ProQuest Agricultural Science
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Central Biological Science Database (via ProQuest)
Engineering Database (Proquest)
Nursing & Allied Health Premium
ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Agricultural Science Database



MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate IKOA-CNN-BiGRU-Attention framework for debris flow prediction
EISSN 1932-6203
ExternalDocumentID 3223867501
oai_doaj_org_article_5b9e3709757844c19d1a80e408c398ea
10.1371/journal.pone.0326587
PMC12186985
A845209412
40554568
10_1371_journal_pone_0326587
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 202406320358
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c644t-3a87a969dc87e0dea71cacda38c15134d7b7ae568d833e85687c356020e0b0343
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sat Sep 27 00:00:42 EDT 2025
Fri Oct 03 12:46:24 EDT 2025
Sun Oct 26 03:36:29 EDT 2025
Tue Sep 30 17:01:30 EDT 2025
Fri Sep 05 15:48:54 EDT 2025
Tue Oct 07 07:53:45 EDT 2025
Mon Oct 20 22:40:40 EDT 2025
Mon Oct 20 16:56:03 EDT 2025
Thu Oct 16 15:34:40 EDT 2025
Thu Oct 16 15:34:43 EDT 2025
Tue Jul 08 02:13:32 EDT 2025
Fri Jun 27 02:12:37 EDT 2025
Wed Oct 01 05:55:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-3a87a969dc87e0dea71cacda38c15134d7b7ae568d833e85687c356020e0b0343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0009-0002-8771-5537
0000-0002-0598-5481
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0326587
PMID 40554568
PQID 3223867501
PQPubID 1436336
PageCount e0326587
ParticipantIDs plos_journals_3223867501
doaj_primary_oai_doaj_org_article_5b9e3709757844c19d1a80e408c398ea
unpaywall_primary_10_1371_journal_pone_0326587
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12186985
proquest_miscellaneous_3223928952
proquest_journals_3223867501
gale_infotracmisc_A845209412
gale_infotracacademiconefile_A845209412
gale_incontextgauss_ISR_A845209412
gale_incontextgauss_IOV_A845209412
gale_healthsolutions_A845209412
pubmed_primary_40554568
crossref_primary_10_1371_journal_pone_0326587
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250624
PublicationDateYYYYMMDD 2025-06-24
PublicationDate_xml – month: 6
  year: 2025
  text: 20250624
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References HTT Tran (pone.0326587.ref055) 2024; 14
M Sepehri (pone.0326587.ref020) 2019; 67
S Panchal (pone.0326587.ref047) 2022; 13
B Bai (pone.0326587.ref039) 2023; 268
M Heiser (pone.0326587.ref042) 2015; 232
S Mirjalili (pone.0326587.ref028) 2016; 95
A Dahal (pone.0326587.ref017) 2023; 176
M Shi (pone.0326587.ref048) 2015; 75
M Li (pone.0326587.ref012) 2023; 15
LS Ho (pone.0326587.ref014) 2024; 19
SA Hasanah (pone.0326587.ref016) 2023; 13
D She (pone.0326587.ref031) 2021; 167
K Deng (pone.0326587.ref037) 2022; 13
C Ma (pone.0326587.ref041) 2013; 67
(pone.0326587.ref015) 2023
PN Suganthan (pone.0326587.ref026) 2005
F Brardinoni (pone.0326587.ref050) 2012; 40
J Xue (pone.0326587.ref029) 2020; 8
M Hosseinpour-Zarnaq (pone.0326587.ref030) 2023; 82
GJ Kidron (pone.0326587.ref034) 2016; 41
L Li (pone.0326587.ref044) 2023; 18
T Singh (pone.0326587.ref022) 2023; 117
A Mirboluki (pone.0326587.ref027) 2024; 17
A Vaswani (pone.0326587.ref032) 2017
W Zhang (pone.0326587.ref040) 2012; 66
W Gong (pone.0326587.ref001) 2021; 285
BF DI (pone.0326587.ref045) 2008; 23
SM Lundberg (pone.0326587.ref018) 2017
M Onaopemipo Akintola (pone.0326587.ref008) 2024
P Agrawal (pone.0326587.ref024) 2021; 25
M Bertrand (pone.0326587.ref049) 2013; 67
G Dharmarathne (pone.0326587.ref052) 2024; 22
N Wang (pone.0326587.ref011) 2024; 15
pone.0326587.ref013
T Wang (pone.0326587.ref054) 2023; 26
T Wang (pone.0326587.ref002) 2025
JW Kim (pone.0326587.ref003) 2025; 28
S Dixit (pone.0326587.ref004) 2024; 24
D K. C. (pone.0326587.ref006) 2024; 16
AI Patton (pone.0326587.ref007) 2023; 23
J Barman (pone.0326587.ref009) 2024; 74
(pone.0326587.ref046) 2024; 17
M Eppes (pone.0326587.ref036) 2017; 55
D-H Lee (pone.0326587.ref033) 2021; 281
M Abdel-Basset (pone.0326587.ref023) 2023; 268
K Chaudhari (pone.0326587.ref021) 2023; 219
D Bolliger (pone.0326587.ref005) 2024; 24
E Tanyildizi (pone.0326587.ref025) 2017; 17
T Wang (pone.0326587.ref053) 2024; 83
MC Eppes (pone.0326587.ref035) 2020; 47
RM O’brien (pone.0326587.ref051) 2007; 41
U Mohseni (pone.0326587.ref010) 2025; 6
B Bai (pone.0326587.ref038) 2020; 153
Y Zhao (pone.0326587.ref043) 2020; 359
C Okolie (pone.0326587.ref019) 2023
References_xml – volume: 17
  start-page: 2587
  issue: 3
  year: 2024
  ident: pone.0326587.ref027
  article-title: Groundwater level estimation using improved deep learning and soft computing methods
  publication-title: Earth Sci Inform
  doi: 10.1007/s12145-024-01300-y
– volume: 75
  start-page: 909
  issue: 3
  year: 2015
  ident: pone.0326587.ref048
  article-title: Assessing debris flow susceptibility in Heshigten Banner, Inner Mongolia, China, using principal component analysis and an improved fuzzy C-means algorithm
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0784-z
– volume: 22
  start-page: 102123
  year: 2024
  ident: pone.0326587.ref052
  article-title: Adapting cities to the surge: A comprehensive review of climate-induced urban flooding
  publication-title: Results in Eng
  doi: 10.1016/j.rineng.2024.102123
– volume: 28
  start-page: 35
  issue: 1
  year: 2025
  ident: pone.0326587.ref003
  article-title: Simulating the extent of landslide damage using LAHARZ: a case study for yecheon-gun, gyeongsangbuk-do
  publication-title: J People Plants Environ
  doi: 10.11628/ksppe.2025.28.1.35
– volume: 23
  start-page: 138
  issue: 2
  year: 2008
  ident: pone.0326587.ref045
  article-title: GIS-based risk analysis of debris flow: an application in Sichuan, southwest China
  publication-title: Int J Sediment Res
  doi: 10.1016/S1001-6279(08)60013-X
– volume: 153
  start-page: 119573
  year: 2020
  ident: pone.0326587.ref038
  article-title: Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils
  publication-title: Int J Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2020.119573
– volume: 281
  start-page: 105979
  year: 2021
  ident: pone.0326587.ref033
  article-title: An artificial neural network model to predict debris-flow volumes caused by extreme rainfall in the central region of South Korea
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2020.105979
– start-page: 161
  year: 2023
  ident: pone.0326587.ref019
  article-title: The explainability of gradient-boosted decision trees for Digital Elevation Model (DEM) error prediction
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
  doi: 10.5194/isprs-archives-XLVIII-M-3-2023-161-2023
– volume: 359
  start-page: 107125
  year: 2020
  ident: pone.0326587.ref043
  article-title: AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107125
– volume-title: A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems
  year: 2017
  ident: pone.0326587.ref018
– volume: 82
  issue: 16
  year: 2023
  ident: pone.0326587.ref030
  article-title: A CNN model for predicting soil properties using VIS–NIR spectral data
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-023-11073-0
– volume: 17
  issue: 1
  year: 2024
  ident: pone.0326587.ref046
  article-title: Modeling multiphase debris floods down straight and meandering channels
  publication-title: JAFM
– volume: 13
  start-page: 13111
  issue: 24
  year: 2023
  ident: pone.0326587.ref016
  article-title: A deep learning review of ResNet architecture for lung disease identification in CXR image
  publication-title: Appl Sci
  doi: 10.3390/app132413111
– volume: 6
  start-page: 309
  year: 2025
  ident: pone.0326587.ref010
  article-title: Multi-criteria analysis-based mapping of the cyclone-induced pluvial flooding in coastal areas of India
  publication-title: DYSONA - Appl Sci
– year: 2005
  ident: pone.0326587.ref026
  article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization
  publication-title: CEC
– ident: pone.0326587.ref013
– volume: 67
  start-page: 497
  issue: 2
  year: 2013
  ident: pone.0326587.ref049
  article-title: Debris-flow susceptibility of upland catchments
  publication-title: Nat Hazards
  doi: 10.1007/s11069-013-0575-4
– volume: 41
  start-page: 673
  issue: 5
  year: 2007
  ident: pone.0326587.ref051
  article-title: A caution regarding rules of thumb for variance inflation factors
  publication-title: Qual Quant
  doi: 10.1007/s11135-006-9018-6
– volume: 19
  issue: 3
  year: 2024
  ident: pone.0326587.ref014
  article-title: Evaluation and estimation of compressive strength of concrete masonry prism using gradient boosting algorithm
  publication-title: PLoS One
– volume: 17
  start-page: 71
  issue: 2
  year: 2017
  ident: pone.0326587.ref025
  article-title: Golden sine algorithm: a novel math-inspired algorithm
  publication-title: Adv Electr Comp Eng
  doi: 10.4316/AECE.2017.02010
– volume: 40
  start-page: 455
  issue: 5
  year: 2012
  ident: pone.0326587.ref050
  article-title: Lithologic and glacially conditioned controls on regional debris-flow sediment dynamics
  publication-title: Geology
  doi: 10.1130/G33106.1
– volume: 167
  start-page: 108277
  year: 2021
  ident: pone.0326587.ref031
  article-title: A BiGRU method for remaining useful life prediction of machinery
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108277
– volume: 66
  start-page: 1073
  issue: 2
  year: 2012
  ident: pone.0326587.ref040
  article-title: Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0539-0
– volume: 74
  start-page: 1197
  issue: 3
  year: 2024
  ident: pone.0326587.ref009
  article-title: Assessing classification system for landslide susceptibility using frequency ratio, analytical hierarchical process and geospatial technology mapping in Aizawl district, NE India
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2024.05.007
– volume: 15
  start-page: 101800
  issue: 4
  year: 2024
  ident: pone.0326587.ref011
  article-title: On the use of explainable AI for susceptibility modeling: Examining the spatial pattern of SHAP values
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2024.101800
– volume: 176
  start-page: 105364
  year: 2023
  ident: pone.0326587.ref017
  article-title: Explainable artificial intelligence in geoscience: A glimpse into the future of landslide susceptibility modeling
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2023.105364
– volume: 23
  start-page: 3261
  issue: 10
  year: 2023
  ident: pone.0326587.ref007
  article-title: Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-23-3261-2023
– volume: 67
  start-page: 261
  issue: 2
  year: 2013
  ident: pone.0326587.ref041
  article-title: Comparison of debris-flow volume and activity under different formation conditions
  publication-title: Nat Hazards
  doi: 10.1007/s11069-013-0557-6
– volume-title: Advances in neural information processing systems 30 (NIPS 2017)
  year: 2017
  ident: pone.0326587.ref032
  article-title: Attention Is All You Need.
– volume: 55
  start-page: 470
  issue: 2
  year: 2017
  ident: pone.0326587.ref036
  article-title: Mechanical weathering and rock erosion by climate‐dependent subcritical cracking
  publication-title: Rev Geophysics
  doi: 10.1002/2017RG000557
– volume: 232
  start-page: 239
  year: 2015
  ident: pone.0326587.ref042
  article-title: Process type identification in torrential catchments in the eastern Alps
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.01.007
– year: 2025
  ident: pone.0326587.ref002
  article-title: A novel method for predicting debris flow hazard: a multi-strategy fusion approach based on the light gradient boosting machine framework
  publication-title: Stoch Environ Res Risk Assess
– volume: 16
  start-page: 1285
  issue: 9
  year: 2024
  ident: pone.0326587.ref006
  article-title: A case study and numerical modeling of post-wildfire debris flows in Montecito, California
  publication-title: Water
  doi: 10.3390/w16091285
– year: 2023
  ident: pone.0326587.ref015
  article-title: DGS-SCSC: enhancing sand cat swarm optimization with dynamic pinhole imaging and golden sine algorithm for improved numerical optimization performance
  publication-title: Sci Rep
– volume: 24
  start-page: 1035
  issue: 3
  year: 2024
  ident: pone.0326587.ref005
  article-title: Comparison of debris flow observations, including fine-sediment grain size and composition and runout model results, at Illgraben, Swiss Alps
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-24-1035-2024
– volume: 83
  issue: 3
  year: 2024
  ident: pone.0326587.ref053
  article-title: Study and verification on an improved comprehensive prediction model of landslide displacement
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-024-03581-5
– volume: 25
  start-page: 9505
  issue: 14
  year: 2021
  ident: pone.0326587.ref024
  article-title: Chaotic gaining sharing knowledge-based optimization algorithm: an improved metaheuristic algorithm for feature selection
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-05874-3
– volume: 13
  start-page: 1781
  issue: 1
  year: 2022
  ident: pone.0326587.ref037
  article-title: A global temperature control of silicate weathering intensity
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-29415-0
– volume: 268
  start-page: 113408
  year: 2023
  ident: pone.0326587.ref039
  article-title: The constitutive behavior and dissociation effect of hydrate-bearing sediment within a granular thermodynamic framework
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.113408
– volume: 268
  start-page: 110454
  year: 2023
  ident: pone.0326587.ref023
  article-title: Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion
  publication-title: Knowledge-Based Sys
  doi: 10.1016/j.knosys.2023.110454
– start-page: 377
  year: 2024
  ident: pone.0326587.ref008
  article-title: Enhancing disaster response and resilience through near-time GIS for flood monitoring and analysis in Niger River Basin, Nigeria
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
  doi: 10.5194/isprs-archives-XLVIII-3-2024-377-2024
– volume: 67
  start-page: 1435
  issue: 5
  year: 2019
  ident: pone.0326587.ref020
  article-title: Assessment of flood hazard mapping in urban areas using entropy weighting method: a case study in Hamadan city, Iran
  publication-title: Acta Geophys
  doi: 10.1007/s11600-019-00342-x
– volume: 18
  issue: 2
  year: 2023
  ident: pone.0326587.ref044
  article-title: Risk assessment of debris flow disaster based on the cloud model-Probability fusion method
  publication-title: PLoS One
– volume: 26
  start-page: 237
  issue: 1
  year: 2023
  ident: pone.0326587.ref054
  article-title: Study on wavelet multi-scale analysis and prediction of landslide groundwater
  publication-title: J Hydroinformatics
  doi: 10.2166/hydro.2023.299
– volume: 15
  start-page: 11228
  issue: 14
  year: 2023
  ident: pone.0326587.ref012
  article-title: Geological hazard susceptibility analysis based on RF, SVM, and NB models, using the puge section of the Zemu river valley as an example
  publication-title: Sustainability
  doi: 10.3390/su151411228
– volume: 95
  start-page: 51
  year: 2016
  ident: pone.0326587.ref028
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 24
  start-page: 465
  issue: 2
  year: 2024
  ident: pone.0326587.ref004
  article-title: Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-24-465-2024
– volume: 219
  start-page: 119527
  year: 2023
  ident: pone.0326587.ref021
  article-title: Neural network systems with an integrated coefficient of variation-based feature selection for stock price and trend prediction
  publication-title: Expert Sys Appl
  doi: 10.1016/j.eswa.2023.119527
– volume: 285
  start-page: 106051
  year: 2021
  ident: pone.0326587.ref001
  article-title: Geohazards and human settlements: Lessons learned from multiple relocation events in Badong, China – Engineering geologist’s perspective
  publication-title: Eng Geology
  doi: 10.1016/j.enggeo.2021.106051
– volume: 117
  start-page: 107873
  year: 2023
  ident: pone.0326587.ref022
  article-title: Optimization on tribological properties of natural fiber reinforced brake friction composite materials: Effect of objective and subjective weighting methods
  publication-title: Polymer Testing
  doi: 10.1016/j.polymertesting.2022.107873
– volume: 41
  start-page: 2078
  issue: 14
  year: 2016
  ident: pone.0326587.ref034
  article-title: Wind as a cooling agent: substrate temperatures are responsible for variable lithobiont‐induced weathering patterns on west‐ and east‐facing limestone bedrock of the Negev
  publication-title: Earth Surf Processes Landf
  doi: 10.1002/esp.3973
– volume: 47
  issue: 24
  year: 2020
  ident: pone.0326587.ref035
  article-title: Warmer, wetter climates accelerate mechanical weathering in field data, independent of stress‐loading
  publication-title: Geophysical Res Letters
  doi: 10.1029/2020GL089062
– volume: 13
  start-page: 101626
  issue: 3
  year: 2022
  ident: pone.0326587.ref047
  article-title: Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India
  publication-title: Ain Shams Engineering Journal
  doi: 10.1016/j.asej.2021.10.021
– volume: 14
  start-page: 130
  issue: 5
  year: 2024
  ident: pone.0326587.ref055
  article-title: Novel learning of bathymetry from landsat 9 imagery using machine learning, feature extraction and meta-heuristic optimization in a shallow Turbid Lagoon
  publication-title: Geosci
  doi: 10.3390/geosciences14050130
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: pone.0326587.ref029
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Sys Sci Control Eng
  doi: 10.1080/21642583.2019.1708830
SSID ssj0053866
Score 2.482637
Snippet Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0326587
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
China
Computer and Information Sciences
Debris flow
Deep Learning
Detritus
Earth Sciences
Environmental Monitoring - methods
Epistemology
Errors
Game theory
Geological hazards
Gullies
Machine learning
Mathematical optimization
Mountain regions
Mountainous areas
Neural networks
Neural Networks, Computer
Optimization algorithms
Optimization techniques
Physical Sciences
Predictions
Rainfall
Research and Analysis Methods
Risk assessment
Risk reduction
River basins
Rivers
Rivers - chemistry
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXMoF0fKoocCCkACJTdf22l4f3YqSgkhRS1Bv1r7SBkWOlYdK-S38WGZsx4pFJXrglmQmtjwzO_ttMvMNIa8Dbo0fKMt8wzkT8IZpEzumIyei1Ncicdic_GUYD0bi03l0vjHqC2vCanrg2nD7kU5dmPAUedeFMH5qfSW5E1yaMJWugkZcpuvDVJ2DYRXHcdMoFyb-fuOXfjkrXJ8DYomwhG5jI6r4-tus3Cuns8VNkPPvysmtVVGq6ys1nW5sS0f3yb0GT9Ksfo5tcscVO2S7WbEL-rahlX73gPzOCtqSQ1h6_PkkY4fDITuYfDwdsWy5rAsf6XhdrkXxN1p6Nsi-UveznFZtVlhJe00B6FLkOWblvBnRQ63D1gE6ns6u6KX6BXFHQWgnVdsE3JcC0KTD1Q-Ixgs6x2IQChvopHhPqwneD8no6MO3wwFrZjMwAwhqyUIlE5XGqTUycdw6lfhGGatCaQBDhMImOlEuiqWVYegkvEhMCOgq4I5rHorwEekV4I1dQkWgY40MpfFYi9Q4pSVPlJVag4vjsfAIWzsqL2sKjrz6Hy6Bo0tt5RwdmzeO9cgBerPVRQLt6gMIq7wJq_xfYeWRFxgLed2N2qaBPJMCC4eEH3jkVaWBJBoFVulcqNVikR-ffL-F0tlpR-lNozSeQVSBHevOCHgmJOfqaO51NCEVmI54FyN3bZVFDtkaVgKAQh--uY7mm8UvWzFeFCvvCjdb1TopnMojuPrjOvhbywLYRwAuPSI7y6Jj-q6kmFxWHOZ-NQtNRh7ptyvoVt598j-8-5TcDXCOM49ZIPZIbzlfuWcALpf6eZVH_gC6qXe5
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9RAFJ7g8qAvRryxijoaEzVxYNpO2-mDMQsBQeNCQAhvzdwW1mzaupcg_hZ_rOf0Jo3E8NbtnG3TOZf5pj3nO4S89rk1nq8s8wznTMAPpk3kmA6dCBNPi9hhcfLXYbR7LD6fhqdLZNjUwmBaZRMTy0Btc4PvyDfA8AIJ6JZ7H4sfDLtG4dfVpoWGqlsr2A8lxdgtsuwjM1aPLG9uDw8Om9gM3h1FdQFdEHsbtb7Wizxz6xyQTIipdVcWqJLHv43WvWKSz66Dov9mVN5eZIW6vFCTyZXlauceuVvjTDqoDGOFLLnsPlmpPXlG39Z00-8ekN-DjLakEZbufdkfsK3hkG2OPx0es8F8XiVE0lGTxkXx3S092h0cUPezmJTlV5hhe0kBAFPkP2bFtG7dQ63DkgI6muQX9Fz9AnukMGjHZTkF3JcCAKXDxXew0jM6xSQRCgvrOHtPy87eD8nxzva3rV1W92xgBpDVnAVKxiqJEmtk7Lh1KvaMMlYF0gC2CISNdaxcGEkrg8BJOIhNAKjL545rHojgEelloI1VQoWvI43MpdFIi8Q4pSWPlZVaSxNEI9EnrFFUWlTUHGn5fS6GLU01yykqNq0V2yebqM1WFom1yxP59Cyt_TQNdeKCmCdI8y-E8RLrKcmd4HDPRDrVJy_QFtKqSrUND-lACkwoEp7fJ69KCSTXyDB750wtZrN0b__kBkJHhx2hN7XQKAergnmsKibgmZC0qyO51pGEEGE6w6touc2szNK_zgT_bKz5-uGX7TBeFDPyMpcvKpkEdushXP1xZfztzMImAIG57BPZcYvO1HdHsvF5yW3ulT3SZNgn660H3Ui7T_7_IE_JHR87N_OI-WKN9ObThXsGcHKun9cx4g_eZ3aU
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIA0Fyd2EucxmxgdaN200Wk8RbbjboUqjdpGY_tb-GM550sLDGm8tfU5kc939s_13e8QeuPRVLueTImrKSUcvhClA0OUb7gfuYqHxiYn7w2DwYh_PvFPVtBmkwtz9f6ehe6HWqP9fJaZPgWs4YvwFloNfEDePbQ6Gh7E36qLY48EHmV1dty_unZ2n5Kkv12Ke_l0trgOZ_4dLnm7yHJ5cS6n0yt70c49tNeMogpB-dEvlqqvL_8geLzpMO-juzUoxXFlRWtoxWQP0Frt9gv8ruamfv8Q_Yoz3DJMpHj3y35MtodDsjX5dDgi8XJZRU_icRPzhe0fvfhoEB9g8zOflrlaNhz3AgNaxpYsmeTzus4PTo3NP8Dj6ewcn8lLMF4MjemkzL2A92JAq3hYfAeTPsVzG1GCYReeZJu4LAP-CI12Pn7dHpC6wAPRAMOWhEkRyiiIUi1CQ1MjQ1dLnUomNAARxtNQhdL4gUgFY0bAh1AzgGgeNVRRxtlj1MtAY-sIc08FytKcBmPFI22kEjSUqVBKaBaMuYNIM_FJXvF4JOVlXgjnn0rLiVV-UivfQVvWOlpZy8Jd_gCzltROnfgqMiykka0JwLl2o9SVghpO4Z2RMNJBL61tJVVKa7uWJLHgNvqIu56DXpcSlokjs6E-p7JYLJLd_eMbCB0ddoTe1kLjGVgp6LFKr4AxWYavjuRGRxLWE91pXree0GhlkcCSzwScK6kLPRvvuL75VdtsH2rD9zIzKyqZCI72Pjz9SeVMrWbhxGBRvHCQ6LhZR_XdlmxyVhKhu2VBNeE7qN965I1m9-n_dniG7ni28DMNiMc3UG85L8xzQKNL9aJehH4DBbCJJw
  priority: 102
  providerName: Unpaywall
Title An integrated IKOA-CNN-BiGRU-Attention framework with SHAP explainability for high-precision debris flow hazard prediction in the Nujiang river basin, China
URI https://www.ncbi.nlm.nih.gov/pubmed/40554568
https://www.proquest.com/docview/3223867501
https://www.proquest.com/docview/3223928952
https://pubmed.ncbi.nlm.nih.gov/PMC12186985
https://doi.org/10.1371/journal.pone.0326587
https://doaj.org/article/5b9e3709757844c19d1a80e408c398ea
http://dx.doi.org/10.1371/journal.pone.0326587
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ : Directory of Open Access Journals [open access]
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central : All journals [free access]
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ2eYAXxLitMIpBSICEKydxYucBoaxat4HWTRudxlPkOO5WVKVZL9rGb-HHck6SRkQMtJeojU8S5dz8OT4XQt66PDWOq1PmGM6ZgD8sMYFliW-FHzqJkBaTkw_6wd5AfDnzz1bIcqO9YuDs1qUd9pMaTMed68ubz2Dwn4quDdJZXtTJJ5ntcMAjPvjw_JJhayncgq36bKySdZi-QuzvcCDqrQYw-CCocur-dbPGnFWU9q8d-Fo-nsxuQ6d_B1neW2S5vrnS4_EfM1jvIXlQQU8albqyQVZs9ohsVMY9o--rCtQfHpNfUUbrOhIp3f96GLFuv8-2R7vHAxbN52WMJB0uI7sofs6lJ3vREbXX-bjIyMKg2xsKmJhiSWSWT6tuPjS1mGVAh-PJFb3QP0FFKQymoyLDAp5LAZPS_uIHKO45nWLcCIW5dpR9pEWz7ydk0Nv51t1jVRsHZgBszZmnldRhEKZGSctTq6VjtEm1pwzADU-kMpHa-oFKledZBT-k8QCIudzyhHvCe0rWMpDGJqHCTYIEi5kGw0SExupEcalTlSTKeMFQtAhbCirOy2odcbFlJ2GVU3I5RsHGlWBbZBulWdNire3ixGR6HlemG_tJaD3JQ6z8L4RxwtTRilvB4ZmhsrpFXqEuxGXiau0x4kgJjDESjtsibwoKrLeRYUDPuV7MZvH-4ekdiE6OG0TvKqLhBLQK-FgmUcA7YR2vBuVWgxK8hmkMb6LmLrkyi8GxgyUAfnTgyqU23z78uh7Gm2KQXmYni5ImhAW8D3d_Vip_zVlYFyBWVy2iGmbRYH1zJBtdFOXOnaJtmvJbpFNb0J2k-_z_L_KC3HexmTMPmCu2yNp8urAvAWHOkzZZlWcSjqrr4LG32ybr2zv9o-N28c2mXXgQODfoH0XffwORaYRM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXRHk1UOiCQIDUbdf22l4fEEoLJaFtivpAuZl9JQ2KbJOHSvkt_AZ-I7N-UYsK9dJbkpms5ZnZmVn7mxmEXrhUK8cVmjiKUsLgC5EqMET6hvmRI1lobHHyfi_onLBPfb-_gH5XtTAWVln5xNxR61TZZ-SbYHgeh-yWOu-y78ROjbJvV6sRGoVZ7JrzMziyTd9234N-X7ruzofj7Q4ppwoQBbF_RjzBQxEFkVY8NFQbETpKKC08riD6eUyHMhTGD7jmnmc4fAiVB3mBSw2V1GMerHsD3WQe-BLYP2G_PuCB7wiCsjzPC53N0ho2sjQxGxTyJN8C9y6Ev3xKQB0LFrNxOr0s0f0Xr7k0TzJxfibG4wvBcOcOul1msbhdmN0yWjDJXbRc-okpfl02s35zD_1qJ7huSaFxd_egTbZ7PbI1-nh4QtqzWQG3xIMKJIbtk2F81Gl_xuZHNs6Luyx-9xxDeo1td2WSTcrBQFgbW7CAB-P0DJ-Kn2DtGIh6lBdrwHUxpLe4N_8Ge2CIJxaCgiFsj5J1nM8Nv49OrkV3D9BiAtpYQZi5MpC2L2owkCxSRkhOQ6G5lFx5wYC1EKkUFWdF4484f_sXwoGpkHJsFRuXim2hLavNmte27c5_SCfDuPQCsS8j44U0skMEGFNOpB3BqWEUrhlxI1pozdpCXNTA1s4nbnNm4UrMcVvoec5hW3ckFhs0FPPpNO4efLkC09Fhg-lVyTRIwapAjkU9BtyTbQnW4FxtcIIDUg3yirXcSirT-O9WhX9W1nw5-VlNtotavF9i0nnBE7k88mH1h4Xx15KFI4ZN-3kL8ca2aIi-SUlGp3nndCefwMb9Ftqod9CVtPvo_zeyhpY6x_t78V63t_sY3XLtjGgaEJetosXZZG6eQOI6k09zb4HR1-t2T38AcV-sUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gJuqLEW-sooxGoyYOTDvTdvpgzAIiK7oQEMNbnU5nYc2mrXsJ4m_xl_jrPKc3aSSGF952d85O0zn39jvnEPLM5YlxXJ0wx3DOJHxhsfEtiz0rvdCJZWCxOPlT3986kB8OvcM58ruuhUFYZW0TC0OdZAafka-C4AkF0S13VgcVLGJ3Y_Nt_p3hBCl801qP0yhFZNuenkD6NnnT2wBeP3fdzXef17dYNWGAGYgDpkxoFejQDxOjAssTqwPHaJNooQx4QiGTIA609XyVKCGsgg-BERAjuNzymAspYN8r5GogRIhwwuCwSfbAjvh-VaonAme1koyVPEvtCoeYyUMQ3xlXWEwMaPzCfD7KJucFvf9iN6_P0lyfnujR6Ixj3LxFblYRLe2WIrhA5mx6myxUNmNCX1aNrV_dIb-6KW3aUyS0t73TZev9Plsbvt87YN3ptIRe0kENGKP4lJjub3V3qf2Rj4pCL8TynlIItSl2Wmb5uBoSRBOLxQt0MMpO6LH-CZJPYTEZFoUbcF0KoS7tz76BPhzRMcJRKLjwYfqaFjPE75KDS-HdPTKfAjcWCZVu7MfYI9UfxDI0VseKBzpRcayM8AeyQ1jNqCgvm4BExZvAAJKn8pQjZGxUMbZD1pCbDS228C5-yMZHUWURIi8OrQh4iAMFpDROmDhacSs5XDNUVnfIMspCVNbDNoYo6iqJ0CXpuB3ytKDANh4pKsSRnk0mUW_nywWI9vdaRC8qokEGUgXnWNZmwD1he7AW5VKLEoyRaS0vouTWpzKJ_qot_LOW5vOXnzTLuCli_1KbzUqa0FWhB7vfL4W_OVlINzAFUB2iWmrROvr2Sjo8LrqoO8U0NuV1yEqjQRfi7oP_38gyuQaGKfrY628_JDdcHBfNfebKJTI_Hc_sI4hhp_HjwlhQ8vWyrdMf1BKwlg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIA0Fyd2EucxmxgdaN200Wk8RbbjboUqjdpGY_tb-GM550sLDGm8tfU5kc939s_13e8QeuPRVLueTImrKSUcvhClA0OUb7gfuYqHxiYn7w2DwYh_PvFPVtBmkwtz9f6ehe6HWqP9fJaZPgWs4YvwFloNfEDePbQ6Gh7E36qLY48EHmV1dty_unZ2n5Kkv12Ke_l0trgOZ_4dLnm7yHJ5cS6n0yt70c49tNeMogpB-dEvlqqvL_8geLzpMO-juzUoxXFlRWtoxWQP0Frt9gv8ruamfv8Q_Yoz3DJMpHj3y35MtodDsjX5dDgi8XJZRU_icRPzhe0fvfhoEB9g8zOflrlaNhz3AgNaxpYsmeTzus4PTo3NP8Dj6ewcn8lLMF4MjemkzL2A92JAq3hYfAeTPsVzG1GCYReeZJu4LAP-CI12Pn7dHpC6wAPRAMOWhEkRyiiIUi1CQ1MjQ1dLnUomNAARxtNQhdL4gUgFY0bAh1AzgGgeNVRRxtlj1MtAY-sIc08FytKcBmPFI22kEjSUqVBKaBaMuYNIM_FJXvF4JOVlXgjnn0rLiVV-UivfQVvWOlpZy8Jd_gCzltROnfgqMiykka0JwLl2o9SVghpO4Z2RMNJBL61tJVVKa7uWJLHgNvqIu56DXpcSlokjs6E-p7JYLJLd_eMbCB0ddoTe1kLjGVgp6LFKr4AxWYavjuRGRxLWE91pXree0GhlkcCSzwScK6kLPRvvuL75VdtsH2rD9zIzKyqZCI72Pjz9SeVMrWbhxGBRvHCQ6LhZR_XdlmxyVhKhu2VBNeE7qN965I1m9-n_dniG7ni28DMNiMc3UG85L8xzQKNL9aJehH4DBbCJJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+IKOA-CNN-BiGRU-Attention+framework+with+SHAP+explainability+for+high-precision+debris+flow+hazard+prediction+in+the+Nujiang+river+basin%2C+China&rft.jtitle=PloS+one&rft.au=Yang%2C+Hao&rft.au=Wang%2C+Tianlong&rft.au=Fomin%2C+Nikita+Igorevich&rft.au=Xiao%2C+Shuoting&rft.date=2025-06-24&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0326587&rft_id=info:doi/10.1371%2Fjournal.pone.0326587&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon