An integrated IKOA-CNN-BiGRU-Attention framework with SHAP explainability for high-precision debris flow hazard prediction in the Nujiang river basin, China
Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidir...
        Saved in:
      
    
          | Published in | PloS one Vol. 20; no. 6; p. e0326587 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        24.06.2025
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0326587 | 
Cover
| Abstract | Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10 −6 , mean absolute error of 1.51 × 10 −6 , and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction. | 
    
|---|---|
| AbstractList | Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10 −6 , mean absolute error of 1.51 × 10 −6 , and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction. Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10−6, mean absolute error of 1.51 × 10−6, and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction. Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 x 10.sup.-6, mean absolute error of 1.51 x 10.sup.-6, and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction. Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10-6, mean absolute error of 1.51 × 10-6, and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction. Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10-6, mean absolute error of 1.51 × 10-6, and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction.Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering mechanisms. This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. Model explainability is enhanced using SHapley Additive exPlanations (SHAP), which quantify the influence of key factors. The IKOA-CNN-BiGRU-Attention framework consistently outperforms 13 benchmark models, achieving a root mean square error of 2.33 × 10-6, mean absolute error of 1.51 × 10-6, and mean absolute percentage error of 0.006%. The model maintains high stability across 50 repeated experiments, strong resilience to 20% input noise, and robust generalizability under five-fold cross-validation. Interpretability analysis identifies potential source energy and maximum 24-hour rainfall as primary determinants and uncovers a dual-threshold physical mechanism underlying debris flow initiation. These findings provide a quantitative basis for adaptive early warning and targeted risk mitigation, and establish a transferable framework for explainable geohazard prediction.  | 
    
| Audience | Academic | 
    
| Author | Fomin, Nikita Igorevich Yang, Hao Xiao, Shuoting Wang, Tianlong Liu, Liang  | 
    
| AuthorAffiliation | 3 School of Civil and Environmental Engineering, Nanyang Technological University, SingaporeSingapore Guizhou University, CHINA 1 Institute of Civil Engineering and Architecture, Ural Federal University, Yekaterinburg, Russia 2 Ocean College, Zhejiang University, Zhoushan, China  | 
    
| AuthorAffiliation_xml | – name: 1 Institute of Civil Engineering and Architecture, Ural Federal University, Yekaterinburg, Russia – name: Guizhou University, CHINA – name: 2 Ocean College, Zhejiang University, Zhoushan, China – name: 3 School of Civil and Environmental Engineering, Nanyang Technological University, SingaporeSingapore  | 
    
| Author_xml | – sequence: 1 givenname: Hao orcidid: 0009-0002-8771-5537 surname: Yang fullname: Yang, Hao – sequence: 2 givenname: Tianlong orcidid: 0000-0002-0598-5481 surname: Wang fullname: Wang, Tianlong – sequence: 3 givenname: Nikita Igorevich surname: Fomin fullname: Fomin, Nikita Igorevich – sequence: 4 givenname: Shuoting surname: Xiao fullname: Xiao, Shuoting – sequence: 5 givenname: Liang surname: Liu fullname: Liu, Liang  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40554568$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNk99u0zAUxiM0xP7AGyCwhIRAIsWO48S5QqWCrWLa0Ma4tU4cJ3FJ7WIn68az8LC4azetaBdTLmwd_87nc87n7Ec7xhoVRS8JHhGak48zOzgD3WgRwiNMk4zx_Em0RwqaxFmC6c69_W607_0MY0Z5lj2LdlPMWMoyvhf9HRukTa8aB72q0PTb6TienJzEn_Xh2UU87ntlem0Nqh3M1dK6X2ip-xadH42_I3W16EAbKHWn-2tUW4da3bTxwimp_SqrUqXTHtWdXaIW_oCrUDistLzR1Ab1rUInw0yDaZDTl8qhErw2H9CkDcLPo6c1dF692KwH0cXXLz8mR_Hx6eF0Mj6OZZamfUyB51BkRSV5rnClICcSZAWUS8IITau8zEGFditOqeJhk0vKMpxghUtMU3oQvV7rLjrrxWawXtAkCfPKGSaBmK6JysJMLJyeg7sWFrS4CVjXCHC9lp0SrCwUzXGRs5ynqSRFRYBjlWIuacEVBC221hrMAq6X0HV3ggSLlbe3JYiVt2Ljbcj7tKlyKOeqksEZB91WMdsnRreisZeCJIRnBWdB4d1Gwdnfg_K9mGsvVdeBUXZYN1wkvGBJQN_8hz48lg3VQOhcm9qGi-VKVIx5yhJcpGSlNXqACl-l5lqGFmsd4lsJ77cSAtOrq76BwXsxPT97PHv6c5t9e49tFXR96203rF6j3wZf3R_13Yxv_5sApGtAOuu9U_XjLPwHSn8rYw | 
    
| Cites_doi | 10.1007/s12145-024-01300-y 10.1007/s10064-015-0784-z 10.1016/j.rineng.2024.102123 10.11628/ksppe.2025.28.1.35 10.1016/S1001-6279(08)60013-X 10.1016/j.ijheatmasstransfer.2020.119573 10.1016/j.enggeo.2020.105979 10.5194/isprs-archives-XLVIII-M-3-2023-161-2023 10.1016/j.geomorph.2020.107125 10.1007/s12665-023-11073-0 10.3390/app132413111 10.1007/s11069-013-0575-4 10.1007/s11135-006-9018-6 10.4316/AECE.2017.02010 10.1130/G33106.1 10.1016/j.measurement.2020.108277 10.1007/s11069-012-0539-0 10.1016/j.asr.2024.05.007 10.1016/j.gsf.2024.101800 10.1016/j.cageo.2023.105364 10.5194/nhess-23-3261-2023 10.1007/s11069-013-0557-6 10.1002/2017RG000557 10.1016/j.geomorph.2015.01.007 10.3390/w16091285 10.5194/nhess-24-1035-2024 10.1007/s10064-024-03581-5 10.1007/s00500-021-05874-3 10.1038/s41467-022-29415-0 10.1016/j.oceaneng.2022.113408 10.1016/j.knosys.2023.110454 10.5194/isprs-archives-XLVIII-3-2024-377-2024 10.1007/s11600-019-00342-x 10.2166/hydro.2023.299 10.3390/su151411228 10.1016/j.advengsoft.2016.01.008 10.5194/nhess-24-465-2024 10.1016/j.eswa.2023.119527 10.1016/j.enggeo.2021.106051 10.1016/j.polymertesting.2022.107873 10.1002/esp.3973 10.1029/2020GL089062 10.1016/j.asej.2021.10.021 10.3390/geosciences14050130 10.1080/21642583.2019.1708830  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Yang et al 2025 Yang et al 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Yang et al 2025 Yang et al – notice: 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pone.0326587 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Agricultural Science Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Central Biological Science Database (via ProQuest) Engineering Database (Proquest) Nursing & Allied Health Premium ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef Agricultural Science Database MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| DocumentTitleAlternate | IKOA-CNN-BiGRU-Attention framework for debris flow prediction | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 3223867501 oai_doaj_org_article_5b9e3709757844c19d1a80e408c398ea 10.1371/journal.pone.0326587 PMC12186985 A845209412 40554568 10_1371_journal_pone_0326587  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GrantInformation_xml | – fundername: ; grantid: 202406320358  | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c644t-3a87a969dc87e0dea71cacda38c15134d7b7ae568d833e85687c356020e0b0343 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Sat Sep 27 00:00:42 EDT 2025 Fri Oct 03 12:46:24 EDT 2025 Sun Oct 26 03:36:29 EDT 2025 Tue Sep 30 17:01:30 EDT 2025 Fri Sep 05 15:48:54 EDT 2025 Tue Oct 07 07:53:45 EDT 2025 Mon Oct 20 22:40:40 EDT 2025 Mon Oct 20 16:56:03 EDT 2025 Thu Oct 16 15:34:40 EDT 2025 Thu Oct 16 15:34:43 EDT 2025 Tue Jul 08 02:13:32 EDT 2025 Fri Jun 27 02:12:37 EDT 2025 Wed Oct 01 05:55:28 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| License | Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c644t-3a87a969dc87e0dea71cacda38c15134d7b7ae568d833e85687c356020e0b0343 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist.  | 
    
| ORCID | 0009-0002-8771-5537 0000-0002-0598-5481  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0326587 | 
    
| PMID | 40554568 | 
    
| PQID | 3223867501 | 
    
| PQPubID | 1436336 | 
    
| PageCount | e0326587 | 
    
| ParticipantIDs | plos_journals_3223867501 doaj_primary_oai_doaj_org_article_5b9e3709757844c19d1a80e408c398ea unpaywall_primary_10_1371_journal_pone_0326587 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12186985 proquest_miscellaneous_3223928952 proquest_journals_3223867501 gale_infotracmisc_A845209412 gale_infotracacademiconefile_A845209412 gale_incontextgauss_ISR_A845209412 gale_incontextgauss_IOV_A845209412 gale_healthsolutions_A845209412 pubmed_primary_40554568 crossref_primary_10_1371_journal_pone_0326587  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250624 | 
    
| PublicationDateYYYYMMDD | 2025-06-24 | 
    
| PublicationDate_xml | – month: 6 year: 2025 text: 20250624 day: 24  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2025 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | HTT Tran (pone.0326587.ref055) 2024; 14 M Sepehri (pone.0326587.ref020) 2019; 67 S Panchal (pone.0326587.ref047) 2022; 13 B Bai (pone.0326587.ref039) 2023; 268 M Heiser (pone.0326587.ref042) 2015; 232 S Mirjalili (pone.0326587.ref028) 2016; 95 A Dahal (pone.0326587.ref017) 2023; 176 M Shi (pone.0326587.ref048) 2015; 75 M Li (pone.0326587.ref012) 2023; 15 LS Ho (pone.0326587.ref014) 2024; 19 SA Hasanah (pone.0326587.ref016) 2023; 13 D She (pone.0326587.ref031) 2021; 167 K Deng (pone.0326587.ref037) 2022; 13 C Ma (pone.0326587.ref041) 2013; 67 (pone.0326587.ref015) 2023 PN Suganthan (pone.0326587.ref026) 2005 F Brardinoni (pone.0326587.ref050) 2012; 40 J Xue (pone.0326587.ref029) 2020; 8 M Hosseinpour-Zarnaq (pone.0326587.ref030) 2023; 82 GJ Kidron (pone.0326587.ref034) 2016; 41 L Li (pone.0326587.ref044) 2023; 18 T Singh (pone.0326587.ref022) 2023; 117 A Mirboluki (pone.0326587.ref027) 2024; 17 A Vaswani (pone.0326587.ref032) 2017 W Zhang (pone.0326587.ref040) 2012; 66 W Gong (pone.0326587.ref001) 2021; 285 BF DI (pone.0326587.ref045) 2008; 23 SM Lundberg (pone.0326587.ref018) 2017 M Onaopemipo Akintola (pone.0326587.ref008) 2024 P Agrawal (pone.0326587.ref024) 2021; 25 M Bertrand (pone.0326587.ref049) 2013; 67 G Dharmarathne (pone.0326587.ref052) 2024; 22 N Wang (pone.0326587.ref011) 2024; 15 pone.0326587.ref013 T Wang (pone.0326587.ref054) 2023; 26 T Wang (pone.0326587.ref002) 2025 JW Kim (pone.0326587.ref003) 2025; 28 S Dixit (pone.0326587.ref004) 2024; 24 D K. C. (pone.0326587.ref006) 2024; 16 AI Patton (pone.0326587.ref007) 2023; 23 J Barman (pone.0326587.ref009) 2024; 74 (pone.0326587.ref046) 2024; 17 M Eppes (pone.0326587.ref036) 2017; 55 D-H Lee (pone.0326587.ref033) 2021; 281 M Abdel-Basset (pone.0326587.ref023) 2023; 268 K Chaudhari (pone.0326587.ref021) 2023; 219 D Bolliger (pone.0326587.ref005) 2024; 24 E Tanyildizi (pone.0326587.ref025) 2017; 17 T Wang (pone.0326587.ref053) 2024; 83 MC Eppes (pone.0326587.ref035) 2020; 47 RM O’brien (pone.0326587.ref051) 2007; 41 U Mohseni (pone.0326587.ref010) 2025; 6 B Bai (pone.0326587.ref038) 2020; 153 Y Zhao (pone.0326587.ref043) 2020; 359 C Okolie (pone.0326587.ref019) 2023  | 
    
| References_xml | – volume: 17 start-page: 2587 issue: 3 year: 2024 ident: pone.0326587.ref027 article-title: Groundwater level estimation using improved deep learning and soft computing methods publication-title: Earth Sci Inform doi: 10.1007/s12145-024-01300-y – volume: 75 start-page: 909 issue: 3 year: 2015 ident: pone.0326587.ref048 article-title: Assessing debris flow susceptibility in Heshigten Banner, Inner Mongolia, China, using principal component analysis and an improved fuzzy C-means algorithm publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-015-0784-z – volume: 22 start-page: 102123 year: 2024 ident: pone.0326587.ref052 article-title: Adapting cities to the surge: A comprehensive review of climate-induced urban flooding publication-title: Results in Eng doi: 10.1016/j.rineng.2024.102123 – volume: 28 start-page: 35 issue: 1 year: 2025 ident: pone.0326587.ref003 article-title: Simulating the extent of landslide damage using LAHARZ: a case study for yecheon-gun, gyeongsangbuk-do publication-title: J People Plants Environ doi: 10.11628/ksppe.2025.28.1.35 – volume: 23 start-page: 138 issue: 2 year: 2008 ident: pone.0326587.ref045 article-title: GIS-based risk analysis of debris flow: an application in Sichuan, southwest China publication-title: Int J Sediment Res doi: 10.1016/S1001-6279(08)60013-X – volume: 153 start-page: 119573 year: 2020 ident: pone.0326587.ref038 article-title: Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils publication-title: Int J Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2020.119573 – volume: 281 start-page: 105979 year: 2021 ident: pone.0326587.ref033 article-title: An artificial neural network model to predict debris-flow volumes caused by extreme rainfall in the central region of South Korea publication-title: Eng Geol doi: 10.1016/j.enggeo.2020.105979 – start-page: 161 year: 2023 ident: pone.0326587.ref019 article-title: The explainability of gradient-boosted decision trees for Digital Elevation Model (DEM) error prediction publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci doi: 10.5194/isprs-archives-XLVIII-M-3-2023-161-2023 – volume: 359 start-page: 107125 year: 2020 ident: pone.0326587.ref043 article-title: AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2020.107125 – volume-title: A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems year: 2017 ident: pone.0326587.ref018 – volume: 82 issue: 16 year: 2023 ident: pone.0326587.ref030 article-title: A CNN model for predicting soil properties using VIS–NIR spectral data publication-title: Environ Earth Sci doi: 10.1007/s12665-023-11073-0 – volume: 17 issue: 1 year: 2024 ident: pone.0326587.ref046 article-title: Modeling multiphase debris floods down straight and meandering channels publication-title: JAFM – volume: 13 start-page: 13111 issue: 24 year: 2023 ident: pone.0326587.ref016 article-title: A deep learning review of ResNet architecture for lung disease identification in CXR image publication-title: Appl Sci doi: 10.3390/app132413111 – volume: 6 start-page: 309 year: 2025 ident: pone.0326587.ref010 article-title: Multi-criteria analysis-based mapping of the cyclone-induced pluvial flooding in coastal areas of India publication-title: DYSONA - Appl Sci – year: 2005 ident: pone.0326587.ref026 article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization publication-title: CEC – ident: pone.0326587.ref013 – volume: 67 start-page: 497 issue: 2 year: 2013 ident: pone.0326587.ref049 article-title: Debris-flow susceptibility of upland catchments publication-title: Nat Hazards doi: 10.1007/s11069-013-0575-4 – volume: 41 start-page: 673 issue: 5 year: 2007 ident: pone.0326587.ref051 article-title: A caution regarding rules of thumb for variance inflation factors publication-title: Qual Quant doi: 10.1007/s11135-006-9018-6 – volume: 19 issue: 3 year: 2024 ident: pone.0326587.ref014 article-title: Evaluation and estimation of compressive strength of concrete masonry prism using gradient boosting algorithm publication-title: PLoS One – volume: 17 start-page: 71 issue: 2 year: 2017 ident: pone.0326587.ref025 article-title: Golden sine algorithm: a novel math-inspired algorithm publication-title: Adv Electr Comp Eng doi: 10.4316/AECE.2017.02010 – volume: 40 start-page: 455 issue: 5 year: 2012 ident: pone.0326587.ref050 article-title: Lithologic and glacially conditioned controls on regional debris-flow sediment dynamics publication-title: Geology doi: 10.1130/G33106.1 – volume: 167 start-page: 108277 year: 2021 ident: pone.0326587.ref031 article-title: A BiGRU method for remaining useful life prediction of machinery publication-title: Measurement doi: 10.1016/j.measurement.2020.108277 – volume: 66 start-page: 1073 issue: 2 year: 2012 ident: pone.0326587.ref040 article-title: Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods publication-title: Nat Hazards doi: 10.1007/s11069-012-0539-0 – volume: 74 start-page: 1197 issue: 3 year: 2024 ident: pone.0326587.ref009 article-title: Assessing classification system for landslide susceptibility using frequency ratio, analytical hierarchical process and geospatial technology mapping in Aizawl district, NE India publication-title: Adv Space Res doi: 10.1016/j.asr.2024.05.007 – volume: 15 start-page: 101800 issue: 4 year: 2024 ident: pone.0326587.ref011 article-title: On the use of explainable AI for susceptibility modeling: Examining the spatial pattern of SHAP values publication-title: Geosci Front doi: 10.1016/j.gsf.2024.101800 – volume: 176 start-page: 105364 year: 2023 ident: pone.0326587.ref017 article-title: Explainable artificial intelligence in geoscience: A glimpse into the future of landslide susceptibility modeling publication-title: Comput Geosci doi: 10.1016/j.cageo.2023.105364 – volume: 23 start-page: 3261 issue: 10 year: 2023 ident: pone.0326587.ref007 article-title: Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-23-3261-2023 – volume: 67 start-page: 261 issue: 2 year: 2013 ident: pone.0326587.ref041 article-title: Comparison of debris-flow volume and activity under different formation conditions publication-title: Nat Hazards doi: 10.1007/s11069-013-0557-6 – volume-title: Advances in neural information processing systems 30 (NIPS 2017) year: 2017 ident: pone.0326587.ref032 article-title: Attention Is All You Need. – volume: 55 start-page: 470 issue: 2 year: 2017 ident: pone.0326587.ref036 article-title: Mechanical weathering and rock erosion by climate‐dependent subcritical cracking publication-title: Rev Geophysics doi: 10.1002/2017RG000557 – volume: 232 start-page: 239 year: 2015 ident: pone.0326587.ref042 article-title: Process type identification in torrential catchments in the eastern Alps publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.01.007 – year: 2025 ident: pone.0326587.ref002 article-title: A novel method for predicting debris flow hazard: a multi-strategy fusion approach based on the light gradient boosting machine framework publication-title: Stoch Environ Res Risk Assess – volume: 16 start-page: 1285 issue: 9 year: 2024 ident: pone.0326587.ref006 article-title: A case study and numerical modeling of post-wildfire debris flows in Montecito, California publication-title: Water doi: 10.3390/w16091285 – year: 2023 ident: pone.0326587.ref015 article-title: DGS-SCSC: enhancing sand cat swarm optimization with dynamic pinhole imaging and golden sine algorithm for improved numerical optimization performance publication-title: Sci Rep – volume: 24 start-page: 1035 issue: 3 year: 2024 ident: pone.0326587.ref005 article-title: Comparison of debris flow observations, including fine-sediment grain size and composition and runout model results, at Illgraben, Swiss Alps publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-24-1035-2024 – volume: 83 issue: 3 year: 2024 ident: pone.0326587.ref053 article-title: Study and verification on an improved comprehensive prediction model of landslide displacement publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-024-03581-5 – volume: 25 start-page: 9505 issue: 14 year: 2021 ident: pone.0326587.ref024 article-title: Chaotic gaining sharing knowledge-based optimization algorithm: an improved metaheuristic algorithm for feature selection publication-title: Soft Comput doi: 10.1007/s00500-021-05874-3 – volume: 13 start-page: 1781 issue: 1 year: 2022 ident: pone.0326587.ref037 article-title: A global temperature control of silicate weathering intensity publication-title: Nat Commun doi: 10.1038/s41467-022-29415-0 – volume: 268 start-page: 113408 year: 2023 ident: pone.0326587.ref039 article-title: The constitutive behavior and dissociation effect of hydrate-bearing sediment within a granular thermodynamic framework publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.113408 – volume: 268 start-page: 110454 year: 2023 ident: pone.0326587.ref023 article-title: Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion publication-title: Knowledge-Based Sys doi: 10.1016/j.knosys.2023.110454 – start-page: 377 year: 2024 ident: pone.0326587.ref008 article-title: Enhancing disaster response and resilience through near-time GIS for flood monitoring and analysis in Niger River Basin, Nigeria publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci doi: 10.5194/isprs-archives-XLVIII-3-2024-377-2024 – volume: 67 start-page: 1435 issue: 5 year: 2019 ident: pone.0326587.ref020 article-title: Assessment of flood hazard mapping in urban areas using entropy weighting method: a case study in Hamadan city, Iran publication-title: Acta Geophys doi: 10.1007/s11600-019-00342-x – volume: 18 issue: 2 year: 2023 ident: pone.0326587.ref044 article-title: Risk assessment of debris flow disaster based on the cloud model-Probability fusion method publication-title: PLoS One – volume: 26 start-page: 237 issue: 1 year: 2023 ident: pone.0326587.ref054 article-title: Study on wavelet multi-scale analysis and prediction of landslide groundwater publication-title: J Hydroinformatics doi: 10.2166/hydro.2023.299 – volume: 15 start-page: 11228 issue: 14 year: 2023 ident: pone.0326587.ref012 article-title: Geological hazard susceptibility analysis based on RF, SVM, and NB models, using the puge section of the Zemu river valley as an example publication-title: Sustainability doi: 10.3390/su151411228 – volume: 95 start-page: 51 year: 2016 ident: pone.0326587.ref028 article-title: The whale optimization algorithm publication-title: Adv Eng Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 24 start-page: 465 issue: 2 year: 2024 ident: pone.0326587.ref004 article-title: Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-24-465-2024 – volume: 219 start-page: 119527 year: 2023 ident: pone.0326587.ref021 article-title: Neural network systems with an integrated coefficient of variation-based feature selection for stock price and trend prediction publication-title: Expert Sys Appl doi: 10.1016/j.eswa.2023.119527 – volume: 285 start-page: 106051 year: 2021 ident: pone.0326587.ref001 article-title: Geohazards and human settlements: Lessons learned from multiple relocation events in Badong, China – Engineering geologist’s perspective publication-title: Eng Geology doi: 10.1016/j.enggeo.2021.106051 – volume: 117 start-page: 107873 year: 2023 ident: pone.0326587.ref022 article-title: Optimization on tribological properties of natural fiber reinforced brake friction composite materials: Effect of objective and subjective weighting methods publication-title: Polymer Testing doi: 10.1016/j.polymertesting.2022.107873 – volume: 41 start-page: 2078 issue: 14 year: 2016 ident: pone.0326587.ref034 article-title: Wind as a cooling agent: substrate temperatures are responsible for variable lithobiont‐induced weathering patterns on west‐ and east‐facing limestone bedrock of the Negev publication-title: Earth Surf Processes Landf doi: 10.1002/esp.3973 – volume: 47 issue: 24 year: 2020 ident: pone.0326587.ref035 article-title: Warmer, wetter climates accelerate mechanical weathering in field data, independent of stress‐loading publication-title: Geophysical Res Letters doi: 10.1029/2020GL089062 – volume: 13 start-page: 101626 issue: 3 year: 2022 ident: pone.0326587.ref047 article-title: Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India publication-title: Ain Shams Engineering Journal doi: 10.1016/j.asej.2021.10.021 – volume: 14 start-page: 130 issue: 5 year: 2024 ident: pone.0326587.ref055 article-title: Novel learning of bathymetry from landsat 9 imagery using machine learning, feature extraction and meta-heuristic optimization in a shallow Turbid Lagoon publication-title: Geosci doi: 10.3390/geosciences14050130 – volume: 8 start-page: 22 issue: 1 year: 2020 ident: pone.0326587.ref029 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Sys Sci Control Eng doi: 10.1080/21642583.2019.1708830  | 
    
| SSID | ssj0053866 | 
    
| Score | 2.482637 | 
    
| Snippet | Debris flows represent a persistent challenge for disaster prediction in mountainous regions due to their highly nonlinear and multivariate triggering... | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | e0326587 | 
    
| SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks China Computer and Information Sciences Debris flow Deep Learning Detritus Earth Sciences Environmental Monitoring - methods Epistemology Errors Game theory Geological hazards Gullies Machine learning Mathematical optimization Mountain regions Mountainous areas Neural networks Neural Networks, Computer Optimization algorithms Optimization techniques Physical Sciences Predictions Rainfall Research and Analysis Methods Risk assessment Risk reduction River basins Rivers Rivers - chemistry Velocity  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXMoF0fKoocCCkACJTdf22l4f3YqSgkhRS1Bv1r7SBkWOlYdK-S38WGZsx4pFJXrglmQmtjwzO_ttMvMNIa8Dbo0fKMt8wzkT8IZpEzumIyei1Ncicdic_GUYD0bi03l0vjHqC2vCanrg2nD7kU5dmPAUedeFMH5qfSW5E1yaMJWugkZcpuvDVJ2DYRXHcdMoFyb-fuOXfjkrXJ8DYomwhG5jI6r4-tus3Cuns8VNkPPvysmtVVGq6ys1nW5sS0f3yb0GT9Ksfo5tcscVO2S7WbEL-rahlX73gPzOCtqSQ1h6_PkkY4fDITuYfDwdsWy5rAsf6XhdrkXxN1p6Nsi-UveznFZtVlhJe00B6FLkOWblvBnRQ63D1gE6ns6u6KX6BXFHQWgnVdsE3JcC0KTD1Q-Ixgs6x2IQChvopHhPqwneD8no6MO3wwFrZjMwAwhqyUIlE5XGqTUycdw6lfhGGatCaQBDhMImOlEuiqWVYegkvEhMCOgq4I5rHorwEekV4I1dQkWgY40MpfFYi9Q4pSVPlJVag4vjsfAIWzsqL2sKjrz6Hy6Bo0tt5RwdmzeO9cgBerPVRQLt6gMIq7wJq_xfYeWRFxgLed2N2qaBPJMCC4eEH3jkVaWBJBoFVulcqNVikR-ffL-F0tlpR-lNozSeQVSBHevOCHgmJOfqaO51NCEVmI54FyN3bZVFDtkaVgKAQh--uY7mm8UvWzFeFCvvCjdb1TopnMojuPrjOvhbywLYRwAuPSI7y6Jj-q6kmFxWHOZ-NQtNRh7ptyvoVt598j-8-5TcDXCOM49ZIPZIbzlfuWcALpf6eZVH_gC6qXe5 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9RAFJ7g8qAvRryxijoaEzVxYNpO2-mDMQsBQeNCQAhvzdwW1mzaupcg_hZ_rOf0Jo3E8NbtnG3TOZf5pj3nO4S89rk1nq8s8wznTMAPpk3kmA6dCBNPi9hhcfLXYbR7LD6fhqdLZNjUwmBaZRMTy0Btc4PvyDfA8AIJ6JZ7H4sfDLtG4dfVpoWGqlsr2A8lxdgtsuwjM1aPLG9uDw8Om9gM3h1FdQFdEHsbtb7Wizxz6xyQTIipdVcWqJLHv43WvWKSz66Dov9mVN5eZIW6vFCTyZXlauceuVvjTDqoDGOFLLnsPlmpPXlG39Z00-8ekN-DjLakEZbufdkfsK3hkG2OPx0es8F8XiVE0lGTxkXx3S092h0cUPezmJTlV5hhe0kBAFPkP2bFtG7dQ63DkgI6muQX9Fz9AnukMGjHZTkF3JcCAKXDxXew0jM6xSQRCgvrOHtPy87eD8nxzva3rV1W92xgBpDVnAVKxiqJEmtk7Lh1KvaMMlYF0gC2CISNdaxcGEkrg8BJOIhNAKjL545rHojgEelloI1VQoWvI43MpdFIi8Q4pSWPlZVaSxNEI9EnrFFUWlTUHGn5fS6GLU01yykqNq0V2yebqM1WFom1yxP59Cyt_TQNdeKCmCdI8y-E8RLrKcmd4HDPRDrVJy_QFtKqSrUND-lACkwoEp7fJ69KCSTXyDB750wtZrN0b__kBkJHhx2hN7XQKAergnmsKibgmZC0qyO51pGEEGE6w6touc2szNK_zgT_bKz5-uGX7TBeFDPyMpcvKpkEdushXP1xZfztzMImAIG57BPZcYvO1HdHsvF5yW3ulT3SZNgn660H3Ui7T_7_IE_JHR87N_OI-WKN9ObThXsGcHKun9cx4g_eZ3aU priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIA0Fyd2EucxmxgdaN200Wk8RbbjboUqjdpGY_tb-GM550sLDGm8tfU5kc939s_13e8QeuPRVLueTImrKSUcvhClA0OUb7gfuYqHxiYn7w2DwYh_PvFPVtBmkwtz9f6ehe6HWqP9fJaZPgWs4YvwFloNfEDePbQ6Gh7E36qLY48EHmV1dty_unZ2n5Kkv12Ke_l0trgOZ_4dLnm7yHJ5cS6n0yt70c49tNeMogpB-dEvlqqvL_8geLzpMO-juzUoxXFlRWtoxWQP0Frt9gv8ruamfv8Q_Yoz3DJMpHj3y35MtodDsjX5dDgi8XJZRU_icRPzhe0fvfhoEB9g8zOflrlaNhz3AgNaxpYsmeTzus4PTo3NP8Dj6ewcn8lLMF4MjemkzL2A92JAq3hYfAeTPsVzG1GCYReeZJu4LAP-CI12Pn7dHpC6wAPRAMOWhEkRyiiIUi1CQ1MjQ1dLnUomNAARxtNQhdL4gUgFY0bAh1AzgGgeNVRRxtlj1MtAY-sIc08FytKcBmPFI22kEjSUqVBKaBaMuYNIM_FJXvF4JOVlXgjnn0rLiVV-UivfQVvWOlpZy8Jd_gCzltROnfgqMiykka0JwLl2o9SVghpO4Z2RMNJBL61tJVVKa7uWJLHgNvqIu56DXpcSlokjs6E-p7JYLJLd_eMbCB0ddoTe1kLjGVgp6LFKr4AxWYavjuRGRxLWE91pXree0GhlkcCSzwScK6kLPRvvuL75VdtsH2rD9zIzKyqZCI72Pjz9SeVMrWbhxGBRvHCQ6LhZR_XdlmxyVhKhu2VBNeE7qN965I1m9-n_dniG7ni28DMNiMc3UG85L8xzQKNL9aJehH4DBbCJJw priority: 102 providerName: Unpaywall  | 
    
| Title | An integrated IKOA-CNN-BiGRU-Attention framework with SHAP explainability for high-precision debris flow hazard prediction in the Nujiang river basin, China | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40554568 https://www.proquest.com/docview/3223867501 https://www.proquest.com/docview/3223928952 https://pubmed.ncbi.nlm.nih.gov/PMC12186985 https://doi.org/10.1371/journal.pone.0326587 https://doaj.org/article/5b9e3709757844c19d1a80e408c398ea http://dx.doi.org/10.1371/journal.pone.0326587  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central : All journals [free access] customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ2eYAXxLitMIpBSICEKydxYucBoaxat4HWTRudxlPkOO5WVKVZL9rGb-HHck6SRkQMtJeojU8S5dz8OT4XQt66PDWOq1PmGM6ZgD8sMYFliW-FHzqJkBaTkw_6wd5AfDnzz1bIcqO9YuDs1qUd9pMaTMed68ubz2Dwn4quDdJZXtTJJ5ntcMAjPvjw_JJhayncgq36bKySdZi-QuzvcCDqrQYw-CCocur-dbPGnFWU9q8d-Fo-nsxuQ6d_B1neW2S5vrnS4_EfM1jvIXlQQU8albqyQVZs9ohsVMY9o--rCtQfHpNfUUbrOhIp3f96GLFuv8-2R7vHAxbN52WMJB0uI7sofs6lJ3vREbXX-bjIyMKg2xsKmJhiSWSWT6tuPjS1mGVAh-PJFb3QP0FFKQymoyLDAp5LAZPS_uIHKO45nWLcCIW5dpR9pEWz7ydk0Nv51t1jVRsHZgBszZmnldRhEKZGSctTq6VjtEm1pwzADU-kMpHa-oFKledZBT-k8QCIudzyhHvCe0rWMpDGJqHCTYIEi5kGw0SExupEcalTlSTKeMFQtAhbCirOy2odcbFlJ2GVU3I5RsHGlWBbZBulWdNire3ixGR6HlemG_tJaD3JQ6z8L4RxwtTRilvB4ZmhsrpFXqEuxGXiau0x4kgJjDESjtsibwoKrLeRYUDPuV7MZvH-4ekdiE6OG0TvKqLhBLQK-FgmUcA7YR2vBuVWgxK8hmkMb6LmLrkyi8GxgyUAfnTgyqU23z78uh7Gm2KQXmYni5ImhAW8D3d_Vip_zVlYFyBWVy2iGmbRYH1zJBtdFOXOnaJtmvJbpFNb0J2k-_z_L_KC3HexmTMPmCu2yNp8urAvAWHOkzZZlWcSjqrr4LG32ybr2zv9o-N28c2mXXgQODfoH0XffwORaYRM | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXRHk1UOiCQIDUbdf22l4fEEoLJaFtivpAuZl9JQ2KbJOHSvkt_AZ-I7N-UYsK9dJbkpms5ZnZmVn7mxmEXrhUK8cVmjiKUsLgC5EqMET6hvmRI1lobHHyfi_onLBPfb-_gH5XtTAWVln5xNxR61TZZ-SbYHgeh-yWOu-y78ROjbJvV6sRGoVZ7JrzMziyTd9234N-X7ruzofj7Q4ppwoQBbF_RjzBQxEFkVY8NFQbETpKKC08riD6eUyHMhTGD7jmnmc4fAiVB3mBSw2V1GMerHsD3WQe-BLYP2G_PuCB7wiCsjzPC53N0ho2sjQxGxTyJN8C9y6Ev3xKQB0LFrNxOr0s0f0Xr7k0TzJxfibG4wvBcOcOul1msbhdmN0yWjDJXbRc-okpfl02s35zD_1qJ7huSaFxd_egTbZ7PbI1-nh4QtqzWQG3xIMKJIbtk2F81Gl_xuZHNs6Luyx-9xxDeo1td2WSTcrBQFgbW7CAB-P0DJ-Kn2DtGIh6lBdrwHUxpLe4N_8Ge2CIJxaCgiFsj5J1nM8Nv49OrkV3D9BiAtpYQZi5MpC2L2owkCxSRkhOQ6G5lFx5wYC1EKkUFWdF4484f_sXwoGpkHJsFRuXim2hLavNmte27c5_SCfDuPQCsS8j44U0skMEGFNOpB3BqWEUrhlxI1pozdpCXNTA1s4nbnNm4UrMcVvoec5hW3ckFhs0FPPpNO4efLkC09Fhg-lVyTRIwapAjkU9BtyTbQnW4FxtcIIDUg3yirXcSirT-O9WhX9W1nw5-VlNtotavF9i0nnBE7k88mH1h4Xx15KFI4ZN-3kL8ca2aIi-SUlGp3nndCefwMb9Ftqod9CVtPvo_zeyhpY6x_t78V63t_sY3XLtjGgaEJetosXZZG6eQOI6k09zb4HR1-t2T38AcV-sUw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gJuqLEW-sooxGoyYOTDvTdvpgzAIiK7oQEMNbnU5nYc2mrXsJ4m_xl_jrPKc3aSSGF952d85O0zn39jvnEPLM5YlxXJ0wx3DOJHxhsfEtiz0rvdCJZWCxOPlT3986kB8OvcM58ruuhUFYZW0TC0OdZAafka-C4AkF0S13VgcVLGJ3Y_Nt_p3hBCl801qP0yhFZNuenkD6NnnT2wBeP3fdzXef17dYNWGAGYgDpkxoFejQDxOjAssTqwPHaJNooQx4QiGTIA609XyVKCGsgg-BERAjuNzymAspYN8r5GogRIhwwuCwSfbAjvh-VaonAme1koyVPEvtCoeYyUMQ3xlXWEwMaPzCfD7KJucFvf9iN6_P0lyfnujR6Ixj3LxFblYRLe2WIrhA5mx6myxUNmNCX1aNrV_dIb-6KW3aUyS0t73TZev9Plsbvt87YN3ptIRe0kENGKP4lJjub3V3qf2Rj4pCL8TynlIItSl2Wmb5uBoSRBOLxQt0MMpO6LH-CZJPYTEZFoUbcF0KoS7tz76BPhzRMcJRKLjwYfqaFjPE75KDS-HdPTKfAjcWCZVu7MfYI9UfxDI0VseKBzpRcayM8AeyQ1jNqCgvm4BExZvAAJKn8pQjZGxUMbZD1pCbDS228C5-yMZHUWURIi8OrQh4iAMFpDROmDhacSs5XDNUVnfIMspCVNbDNoYo6iqJ0CXpuB3ytKDANh4pKsSRnk0mUW_nywWI9vdaRC8qokEGUgXnWNZmwD1he7AW5VKLEoyRaS0vouTWpzKJ_qot_LOW5vOXnzTLuCli_1KbzUqa0FWhB7vfL4W_OVlINzAFUB2iWmrROvr2Sjo8LrqoO8U0NuV1yEqjQRfi7oP_38gyuQaGKfrY628_JDdcHBfNfebKJTI_Hc_sI4hhp_HjwlhQ8vWyrdMf1BKwlg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIA0Fyd2EucxmxgdaN200Wk8RbbjboUqjdpGY_tb-GM550sLDGm8tfU5kc939s_13e8QeuPRVLueTImrKSUcvhClA0OUb7gfuYqHxiYn7w2DwYh_PvFPVtBmkwtz9f6ehe6HWqP9fJaZPgWs4YvwFloNfEDePbQ6Gh7E36qLY48EHmV1dty_unZ2n5Kkv12Ke_l0trgOZ_4dLnm7yHJ5cS6n0yt70c49tNeMogpB-dEvlqqvL_8geLzpMO-juzUoxXFlRWtoxWQP0Frt9gv8ruamfv8Q_Yoz3DJMpHj3y35MtodDsjX5dDgi8XJZRU_icRPzhe0fvfhoEB9g8zOflrlaNhz3AgNaxpYsmeTzus4PTo3NP8Dj6ewcn8lLMF4MjemkzL2A92JAq3hYfAeTPsVzG1GCYReeZJu4LAP-CI12Pn7dHpC6wAPRAMOWhEkRyiiIUi1CQ1MjQ1dLnUomNAARxtNQhdL4gUgFY0bAh1AzgGgeNVRRxtlj1MtAY-sIc08FytKcBmPFI22kEjSUqVBKaBaMuYNIM_FJXvF4JOVlXgjnn0rLiVV-UivfQVvWOlpZy8Jd_gCzltROnfgqMiykka0JwLl2o9SVghpO4Z2RMNJBL61tJVVKa7uWJLHgNvqIu56DXpcSlokjs6E-p7JYLJLd_eMbCB0ddoTe1kLjGVgp6LFKr4AxWYavjuRGRxLWE91pXree0GhlkcCSzwScK6kLPRvvuL75VdtsH2rD9zIzKyqZCI72Pjz9SeVMrWbhxGBRvHCQ6LhZR_XdlmxyVhKhu2VBNeE7qN965I1m9-n_dniG7ni28DMNiMc3UG85L8xzQKNL9aJehH4DBbCJJw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+IKOA-CNN-BiGRU-Attention+framework+with+SHAP+explainability+for+high-precision+debris+flow+hazard+prediction+in+the+Nujiang+river+basin%2C+China&rft.jtitle=PloS+one&rft.au=Yang%2C+Hao&rft.au=Wang%2C+Tianlong&rft.au=Fomin%2C+Nikita+Igorevich&rft.au=Xiao%2C+Shuoting&rft.date=2025-06-24&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0326587&rft_id=info:doi/10.1371%2Fjournal.pone.0326587&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |