Pavement crack identification method based on IOtsu-Dd algorithm
Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images of road cracks for automatic recognition has become a topic of concern for many researchers. Based on this, to raise the accuracy and efficien...
Saved in:
| Published in | PloS one Vol. 20; no. 5; p. e0322662 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
14.05.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0322662 |
Cover
| Abstract | Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images of road cracks for automatic recognition has become a topic of concern for many researchers. Based on this, to raise the accuracy and efficiency of crack recognition, a road crack recognition method based on unmanned aerial vehicle images and improved Otsu method is developed. Firstly, certain processing techniques are applied to the images captured by the unmanned aerial vehicle, such as grayscale and equalization, to reduce computational complexity and facilitate subsequent identification of image cracks. Subsequently, to improve recognition accuracy, the image is segmented and the Otsu method is introduced and improved. Finally, a pavement crack recognition model is constructed using damage density, achieving the extraction and recognition of pavement crack features from images. The experiment findings show that the raised recognition model has an average accuracy of 98.2%, a recall rate of 0.75, and an F1 score of 0.85 in crack recognition of unmanned aerial vehicle captured images. This denotes that the raised recognition model has strong effectiveness and high recognition accuracy, and the method can effectively recognize road cracks based on unmanned aerial vehicle images. |
|---|---|
| AbstractList | Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images of road cracks for automatic recognition has become a topic of concern for many researchers. Based on this, to raise the accuracy and efficiency of crack recognition, a road crack recognition method based on unmanned aerial vehicle images and improved Otsu method is developed. Firstly, certain processing techniques are applied to the images captured by the unmanned aerial vehicle, such as grayscale and equalization, to reduce computational complexity and facilitate subsequent identification of image cracks. Subsequently, to improve recognition accuracy, the image is segmented and the Otsu method is introduced and improved. Finally, a pavement crack recognition model is constructed using damage density, achieving the extraction and recognition of pavement crack features from images. The experiment findings show that the raised recognition model has an average accuracy of 98.2%, a recall rate of 0.75, and an F1 score of 0.85 in crack recognition of unmanned aerial vehicle captured images. This denotes that the raised recognition model has strong effectiveness and high recognition accuracy, and the method can effectively recognize road cracks based on unmanned aerial vehicle images. Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images of road cracks for automatic recognition has become a topic of concern for many researchers. Based on this, to raise the accuracy and efficiency of crack recognition, a road crack recognition method based on unmanned aerial vehicle images and improved Otsu method is developed. Firstly, certain processing techniques are applied to the images captured by the unmanned aerial vehicle, such as grayscale and equalization, to reduce computational complexity and facilitate subsequent identification of image cracks. Subsequently, to improve recognition accuracy, the image is segmented and the Otsu method is introduced and improved. Finally, a pavement crack recognition model is constructed using damage density, achieving the extraction and recognition of pavement crack features from images. The experiment findings show that the raised recognition model has an average accuracy of 98.2%, a recall rate of 0.75, and an F1 score of 0.85 in crack recognition of unmanned aerial vehicle captured images. This denotes that the raised recognition model has strong effectiveness and high recognition accuracy, and the method can effectively recognize road cracks based on unmanned aerial vehicle images.Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images of road cracks for automatic recognition has become a topic of concern for many researchers. Based on this, to raise the accuracy and efficiency of crack recognition, a road crack recognition method based on unmanned aerial vehicle images and improved Otsu method is developed. Firstly, certain processing techniques are applied to the images captured by the unmanned aerial vehicle, such as grayscale and equalization, to reduce computational complexity and facilitate subsequent identification of image cracks. Subsequently, to improve recognition accuracy, the image is segmented and the Otsu method is introduced and improved. Finally, a pavement crack recognition model is constructed using damage density, achieving the extraction and recognition of pavement crack features from images. The experiment findings show that the raised recognition model has an average accuracy of 98.2%, a recall rate of 0.75, and an F1 score of 0.85 in crack recognition of unmanned aerial vehicle captured images. This denotes that the raised recognition model has strong effectiveness and high recognition accuracy, and the method can effectively recognize road cracks based on unmanned aerial vehicle images. |
| Audience | Academic |
| Author | Yang, Yang Wang, Lin Xiong, Qinghua |
| AuthorAffiliation | 2 Hebei Expressway Hangang Expressway Co., Ltd., Cangzhou, China 1 School of Road and Bridge Engineering, Guangxi Transport Vocational and Technical College, Nanning, China Beijing Institute of Technology, CHINA |
| AuthorAffiliation_xml | – name: 2 Hebei Expressway Hangang Expressway Co., Ltd., Cangzhou, China – name: Beijing Institute of Technology, CHINA – name: 1 School of Road and Bridge Engineering, Guangxi Transport Vocational and Technical College, Nanning, China |
| Author_xml | – sequence: 1 givenname: Yang orcidid: 0009-0006-9524-8536 surname: Yang fullname: Yang, Yang – sequence: 2 givenname: Lin surname: Wang fullname: Wang, Lin – sequence: 3 givenname: Qinghua surname: Xiong fullname: Xiong, Qinghua |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40367074$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1v0zAUhiM0xLbCP0AQCQnBRYu_k1zBNL4qTSqCiVvrxHZaFyfu4mSwf49Ds6lBu5h8Yfv4Oa_Pee3T5KjxjUmS5xgtMM3wu63v2wbcYhfDC0QJEYI8Sk5wQclcEESPDtbHyWkIW4Q4zYV4khwzREWGMnaSfPgG16Y2TZeqFtSv1Oq4tpVV0FnfpLXpNl6nJQSj07hfrrrQzz_qFNzat7bb1E-TxxW4YJ6N8yy5_Pzp8vzr_GL1ZXl-djFXgrFujoEYUuYEkwoIw6A1AyiYxqrMMSO4FMgwzRHwHIxmSGADgosqLxjLOKez5OVedud8kGPvQVKCGOFFkaNILPeE9rCVu9bW0N5ID1b-C_h2LaHtrHJGKqIxL4AzQTCrCl5iQSsQrIQCQAgVtfheq292cPMbnLsTxEgO9t-WIAf75Wh_zHs_VtmXtdEqetmCmxQzPWnsRq79tcQEZVmGaVR4Myq0_qo3oZO1Dco4B43x_b5hSjKcDeir_9D7bRmpNcTObVP5eLEaROVZTouMFywqzpLFPVQc2tRWxRYrG-OThLeThMh05k-3hj4Eufzx_eHs6ueUfX3Abgy4bhO864ffGKbgi0Or7zy-_doRYHtAtT6E1lQPe8K_aXsKqQ |
| Cites_doi | 10.1007/s11042-022-14041-1 10.1080/10298436.2020.1836561 10.32604/cmes.2020.09122 10.1080/10298436.2018.1485917 10.1007/s12518-021-00371-6 10.1080/10298436.2020.1714047 10.1007/s11042-021-10860-w 10.1016/j.geits.2023.100092 10.1016/j.geits.2023.100125 10.1609/aaai.v36i1.19986 10.48084/etasr.4450 10.1007/s00500-019-04339-y 10.1007/s10489-023-04969-8 10.1007/s42947-021-00006-4 10.47852/bonviewAIA3202833 10.1109/TITS.2022.3160524 10.3390/eng5040182 10.1007/s00521-023-08450-y 10.1080/14680629.2020.1714699 10.1111/2041-210X.13860 10.11591/eei.v12i6.5345 10.1504/IJCSE.2020.107266 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Yang et al 2025 Yang et al 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Yang et al 2025 Yang et al – notice: 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0322662 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Pavement crack identification method |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3204259980 oai_doaj_org_article_c2d159a546214f95b163fa64ba9aa66c 10.1371/journal.pone.0322662 PMC12077713 A839759404 40367074 10_1371_journal_pone_0322662 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – grantid: Guike AB24010221 – grantid: KY-H-2024-001 – grantid: Guijiaobian [2021] No.148-59 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c644t-1a2e2b8212fa241add4aa94d1cb81421b60e4d50a58aed4061ea656f89447553 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Thu Aug 21 23:50:40 EDT 2025 Tue Oct 14 14:34:44 EDT 2025 Sun Oct 26 03:51:52 EDT 2025 Tue Sep 30 17:03:21 EDT 2025 Fri Sep 05 16:47:06 EDT 2025 Tue Oct 07 08:04:36 EDT 2025 Mon Oct 20 22:41:20 EDT 2025 Mon Oct 20 16:53:33 EDT 2025 Thu Oct 16 15:35:12 EDT 2025 Thu Oct 16 15:35:16 EDT 2025 Tue May 27 02:16:33 EDT 2025 Mon Jul 21 06:00:39 EDT 2025 Wed Oct 01 06:30:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c644t-1a2e2b8212fa241add4aa94d1cb81421b60e4d50a58aed4061ea656f89447553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0009-0006-9524-8536 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0322662 |
| PMID | 40367074 |
| PQID | 3204259980 |
| PQPubID | 1436336 |
| PageCount | e0322662 |
| ParticipantIDs | plos_journals_3204259980 doaj_primary_oai_doaj_org_article_c2d159a546214f95b163fa64ba9aa66c unpaywall_primary_10_1371_journal_pone_0322662 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12077713 proquest_miscellaneous_3204327173 proquest_journals_3204259980 gale_infotracmisc_A839759404 gale_infotracacademiconefile_A839759404 gale_incontextgauss_ISR_A839759404 gale_incontextgauss_IOV_A839759404 gale_healthsolutions_A839759404 pubmed_primary_40367074 crossref_primary_10_1371_journal_pone_0322662 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250514 |
| PublicationDateYYYYMMDD | 2025-05-14 |
| PublicationDate_xml | – month: 5 year: 2025 text: 20250514 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | RC dos Santos (pone.0322662.ref011) 2021; 13 MH Lui (pone.0322662.ref033) 2024; 5 L Xiong (pone.0322662.ref003) 2020; 24 J Ha (pone.0322662.ref019) 2022; 78 B Li (pone.0322662.ref020) 2020; 21 L Chen (pone.0322662.ref008) 2023; 53 P Yang (pone.0322662.ref007) 2020; 22 SD Nguyen (pone.0322662.ref022) 2023; 16 M Hasanvand (pone.0322662.ref028) 2023; 1 DJN Young (pone.0322662.ref004) 2022; 13 AK Bhandari (pone.0322662.ref010) 2020; 7 YS Malik (pone.0322662.ref031) 2022; 30 C Chu (pone.0322662.ref021) 2022; 9 C Huang (pone.0322662.ref009) 2021; 60 TS Tran (pone.0322662.ref015) 2022; 23 N Safaei (pone.0322662.ref024) 2022; 15 Y Du (pone.0322662.ref017) 2021; 22 G Ning (pone.0322662.ref001) 2023; 82 D Ma (pone.0322662.ref014) 2020; 123 S Jana (pone.0322662.ref025) 2022; 13 A Ashraf (pone.0322662.ref029) 2023; 12 Q Yang (pone.0322662.ref013) 2021; 22 Y Huang (pone.0322662.ref023) 2022; 36 F Qi (pone.0322662.ref032) 2021; 53 ME Sahin (pone.0322662.ref034) 2023; 35 J Liu (pone.0322662.ref030) 2020; 35 Y Hou (pone.0322662.ref012) 2022; 23 L Fan (pone.0322662.ref018) 2023; 10 J Ruan (pone.0322662.ref005) 2023; 2 B Li (pone.0322662.ref016) 2023; 38 IH Abbas (pone.0322662.ref026) 2021; 11 ATH Al-Rahlawee (pone.0322662.ref002) 2021; 80 X Liu (pone.0322662.ref006) 2023; 2 Y Wu (pone.0322662.ref027) 2021; 40 |
| References_xml | – volume: 9 start-page: 135 issue: 2 year: 2022 ident: pone.0322662.ref021 article-title: A review on pavement distress and structural defects detection and quantification technologies using imaging approaches – volume: 82 start-page: 15007 issue: 10 year: 2023 ident: pone.0322662.ref001 article-title: Two-dimensional Otsu multi-threshold image segmentation based on hybrid whale optimization algorithm publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-14041-1 – volume: 23 start-page: 2019 issue: 6 year: 2022 ident: pone.0322662.ref015 article-title: A two-step sequential automated crack detection and severity classification process for asphalt pavements publication-title: Int J Pavement Eng doi: 10.1080/10298436.2020.1836561 – volume: 123 start-page: 1267 issue: 3 year: 2020 ident: pone.0322662.ref014 article-title: Intelligent detection model based on a fully convolutional neural network for pavement cracks publication-title: CMES doi: 10.32604/cmes.2020.09122 – volume: 78 start-page: 17721 issue: 16 year: 2022 ident: pone.0322662.ref019 article-title: Assessing severity of road cracks using deep learning-based segmentation and detection publication-title: Transp J Sci – volume: 21 start-page: 457 issue: 4 year: 2020 ident: pone.0322662.ref020 article-title: Automatic classification of pavement crack using deep convolutional neural network publication-title: Int J Pavement Eng doi: 10.1080/10298436.2018.1485917 – volume: 10 start-page: 1593 issue: 7 year: 2023 ident: pone.0322662.ref018 article-title: Pavement cracks coupled with shadows: a new shadow-crack dataset and a shadow-removal-oriented crack detection approach publication-title: J Adv Sci – volume: 13 start-page: 499 issue: 4 year: 2021 ident: pone.0322662.ref011 article-title: The use of Otsu algorithm and multi-temporal airborne LiDAR data to detect building changes in urban space publication-title: Appl Geomat doi: 10.1007/s12518-021-00371-6 – volume: 7 start-page: 200 issue: 1 year: 2020 ident: pone.0322662.ref010 article-title: A local contrast fusion based 3D Otsu algorithm for multilevel image segmentation publication-title: JAS – volume: 22 start-page: 1659 issue: 13 year: 2021 ident: pone.0322662.ref017 article-title: Pavement distress detection and classification based on YOLO network publication-title: Int J Pavement Eng doi: 10.1080/10298436.2020.1714047 – volume: 80 start-page: 28217 issue: 18 year: 2021 ident: pone.0322662.ref002 article-title: Multilevel thresholding of images with improved Otsu thresholding by black widow optimization algorithm publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-10860-w – volume: 40 start-page: 1495 issue: 1 year: 2021 ident: pone.0322662.ref027 article-title: Asphalt pavement crack detection based on multi-scale full convolutional network publication-title: JIFS – volume: 2 start-page: 100092 issue: 3 year: 2023 ident: pone.0322662.ref005 article-title: A review of occluded objects detection in real complex scenarios for autonomous driving publication-title: Green Energy Intell Transp doi: 10.1016/j.geits.2023.100092 – volume: 2 start-page: 100125 issue: 5 year: 2023 ident: pone.0322662.ref006 article-title: Deep transfer learning for intelligent vehicle perception: a survey publication-title: Green Energy Intell Transp doi: 10.1016/j.geits.2023.100125 – volume: 36 start-page: 1026 issue: 1 year: 2022 ident: pone.0322662.ref023 article-title: UFPMP-Det: toward accurate and efficient object detection on drone imagery publication-title: AAAI doi: 10.1609/aaai.v36i1.19986 – volume: 11 start-page: 7702 issue: 5 year: 2021 ident: pone.0322662.ref026 article-title: Automated pavement distress detection using image processing techniques publication-title: Eng Technol Appl Sci doi: 10.48084/etasr.4450 – volume: 13 start-page: 1209 issue: 1 year: 2022 ident: pone.0322662.ref025 article-title: Transfer learning based deep convolutional neural network model for pavement crack detection from images publication-title: Int J Nonlinear Anal Appl – volume: 24 start-page: 7253 issue: 10 year: 2020 ident: pone.0322662.ref003 article-title: The extraction algorithm of color disease spot image based on Otsu and watershed publication-title: Soft Comput doi: 10.1007/s00500-019-04339-y – volume: 53 start-page: 26949 issue: 22 year: 2023 ident: pone.0322662.ref008 article-title: Adaptive fractional-order genetic-particle swarm optimization Otsu algorithm for image segmentation publication-title: Appl Intell doi: 10.1007/s10489-023-04969-8 – volume: 38 start-page: 2279 issue: 16 year: 2023 ident: pone.0322662.ref016 article-title: A grid‐based classification and box‐based detection fusion model for asphalt pavement crack publication-title: CACAIE – volume: 30 start-page: 1169 issue: 6 year: 2022 ident: pone.0322662.ref031 article-title: Applying an adaptive Otsu-based initialization algorithm to optimize active contour models for skin lesion segmentation publication-title: J X-Ray Sci Technol – volume: 15 start-page: 159 issue: 1 year: 2022 ident: pone.0322662.ref024 article-title: An automatic image processing algorithm based on crack pixel density for pavement crack detection and classification publication-title: Int J Pavement Res Technol doi: 10.1007/s42947-021-00006-4 – volume: 1 start-page: 170 issue: 3 year: 2023 ident: pone.0322662.ref028 article-title: Machine learning methodology for identifying vehicles using image processing publication-title: AIA doi: 10.47852/bonviewAIA3202833 – volume: 23 start-page: 22156 issue: 11 year: 2022 ident: pone.0322662.ref012 article-title: A deep learning method for pavement crack identification based on limited field images publication-title: IEEE Trans Intell Transport Syst doi: 10.1109/TITS.2022.3160524 – volume: 53 start-page: 2261 issue: 3 year: 2021 ident: pone.0322662.ref032 article-title: Related study based on Otsu watershed algorithm and new squeeze-and-excitation networks for segmentation and level classification of tea buds publication-title: NPL – volume: 5 start-page: 3488 issue: 4 year: 2024 ident: pone.0322662.ref033 article-title: An adaptive YOLO11 framework for the localisation, tracking, and imaging of small aerial targets using a pan–tilt–zoom camera network publication-title: Eng doi: 10.3390/eng5040182 – volume: 35 start-page: 13597 issue: 18 year: 2023 ident: pone.0322662.ref034 article-title: Detection and classification of COVID-19 by using Faster R-CNN and Mask R-CNN on CT images publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08450-y – volume: 22 start-page: 1783 issue: 8 year: 2021 ident: pone.0322662.ref013 article-title: Identification of asphalt pavement transverse cracking based on vehicle vibration signal analysis publication-title: Road Mater Pavement Des doi: 10.1080/14680629.2020.1714699 – volume: 13 start-page: 1447 issue: 7 year: 2022 ident: pone.0322662.ref004 article-title: Optimizing aerial imagery collection and processing parameters for drone‐based individual tree mapping in structurally complex conifer forests publication-title: Meth Ecol Evol doi: 10.1111/2041-210X.13860 – volume: 35 start-page: 1291 issue: 11 year: 2020 ident: pone.0322662.ref030 article-title: Automated pavement crack detection and segmentation based on two‐step convolutional neural network publication-title: CACAIE – volume: 12 start-page: 3601 issue: 6 year: 2023 ident: pone.0322662.ref029 article-title: Machine learning-based pavement crack detection, classification, and characterization: a review publication-title: Bulletin EEI doi: 10.11591/eei.v12i6.5345 – volume: 22 start-page: 146 issue: 1 year: 2020 ident: pone.0322662.ref007 article-title: An improved Otsu threshold segmentation algorithm publication-title: IJCSE doi: 10.1504/IJCSE.2020.107266 – volume: 60 start-page: 183 issue: 1 year: 2021 ident: pone.0322662.ref009 article-title: An Otsu image segmentation based on fruitfly optimization algorithm publication-title: AEJ – volume: 16 start-page: 943 issue: 4 year: 2023 ident: pone.0322662.ref022 article-title: Deep learning-based crack detection: a survey publication-title: IJPRT |
| SSID | ssj0053866 |
| Score | 2.479775 |
| Snippet | Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0322662 |
| SubjectTerms | Accuracy Algorithms Automatic vehicle identification systems Computer and Information Sciences Cracking Cracks Deep learning Drone aircraft Efficiency Engineering and Technology Highway construction Highway maintenance Identification methods Image processing Image Processing, Computer-Assisted - methods Methods Optimization algorithms Pattern Recognition, Automated - methods Pavements Physical Sciences Repair & maintenance Research and Analysis Methods Roads & highways Unmanned Aerial Devices Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCaHk00EJASMAhW8dxnORGeVQtEhRBQb1FY8dpVyzJapMI8e-ZSbxRIyrRA8ddz3qVb55Wxt8w9hyM1hkWyoGOMhXIGKIApEgCw6MyLQoacUwXhT9-Ukff5Iez-OzSqC_qCRvogQfg9o0oMONCLJUIZZnFGguIEpTUkAEoZSj68jTbHKaGGIxerJS7KBcl4b7Ty3xVV3bO0YaVEpNE1PP1j1F5tlrWzVUl59-dkze7agW_f8FyeSktHd5ht1096R8Mz7HFbthqm205j238l45W-tVd9voz9NzgrW_WYH74i8I1CvW68YdR0j5ltcLHz8cnbdMF7wofluf1etFe_LzHTg_fn749Ctz8hMBgldMGIQgrdIrJqQRM1BjJJEAmi9DoNJQi1IpbWcQc4hRsQZndApZ3ZZoRC2Ac3WezCgHbYT69nS5Ta6PMhtKWEkzGdahxYx3JohQeCzZY5quBJSPvX5UleLoYgMgJ-9xh77E3BPgoSxzX_Reo-dxpPv-X5j32hNSVDxdGR0_ND7DmS-JMcumxZ70E8VxU1EhzDl3T5Mcn368h9PXLROiFEyprVLwBd3kBn4n4syaSuxNJ9FYzWd4h49qg0uSRoLCJh16Ov9wY3NXLT8dl2pSa4ypbd4NMJKidwmMPBvsckZWcGPoS_N90YrkT6Kcr1eKipxkPBU-SJMRN56ORX0u7D_-Hdh-xW4JGLRNRrtxls3bd2T2s_1r9uHf1P1nLV3s priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9AAXRHk1UMAgJODg1F6vXwcELbRqkUirUqrerNmH04pgh9gR4t8zY68NFhXqMd7xRv5mZnfsnfmGsZegpEwxUHZlkEauCCFwQfDYVV6QJ1pTi2MqFP48jQ6-ik_n4fkam3a1MJRW2a2JzUKtS0XfyLcDTuaFLwfeu8UPl7pG0elq10IDbGsF_bahGLvB1jkxY43Y-u7e9PikW5vRu6PIFtAFsb9t9TVZlIWZeGjbUcQHG1TD49-v1qPFvKyuCkX_zai8uSoW8OsnzOd_bVf7d9htG2c6O61hbLA1U9xlG9aTK-e1pZt-c4-9P4aGM7x21BLUN-dS2wSiRmdO22Laod1OO_j78KiuVu5H7cB8hvjUF9_vs9P9vdMPB67tq-AqjH5q1wduuEwQoRxwA8cVTgCkQvtKJr7gvow8I3ToQZiA0bTjG8CwL09SYgcMgwdsVCBgm8yhU-s8MSZIjS9MLkClnvQlTiwDoXM-Zm6HZbZo2TOy5ggtxreOFoiMsM8s9mO2S4D3ssR93Vwol7PMulKmuMYYDEIRcV_kaSgxpMwhEhJSgChSY_aM1JW1haS9B2c7GAvGYSo8MWYvGgnivygowWYGq6rKDo_OriH05WQg9MoK5SUqXoEtasBnIl6tgeTWQBK9WA2GN8m4OlSq7I-9452dwV09_Lwfpkkpaa4w5aqVCTilWYzZw9Y-e2SFR8x9Mf5vMrDcAfTDkeLyoqEf97kXx7GPk056I7-Wdh_9_0Ees1ucmisTNa7YYqN6uTJPMOKr5VPrxr8BSJtVbg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq7QEuQHk1tEBASIBEQuI4rxvLo2qR-hC0qJyiseO0q26zq00iBL-emcQbNVCk5Zh47MjjmfEXeeYzYy9ASZkiUHZkkEaOCCFwQPDYUV5QJHlOVxxTofD-QbR7Ij6fhqdr7M2yFubq-X0Q-2-NRt35rNSuh9YXUcBdj0JE3iO2fnJwNP7eHRxzJ-JeYKrj_tV1sPu0JP19KB7Np7PqOpz5d7rkjaacw88fMJ1e2Yt2brP95Sy6FJQLt6mlq379QfC46jTvsFsGlNrjzoo22Jou77IN4_aV_cpwU7--x94dQUswXttqAerCnuQm26hdYLu7j9qmrTG38XnvsK4a52Nuw_RstpjU55f32fHOp-MPu465hMFRCJVqxweuuUxwhysAd3sMhwIgFbmvZOIL7svI0yIPPQgT0DnBAw2IEYskJSrBMHjARiVOapPZdMRdJFoHqfaFLgSo1JO-xIFlIPKCW8xZrk0276g2sva8LcZflE4RGeknM_qx2HtawF6WiLLbF6jYzPhdpniOgA1CEXFfFGkoEX8WEAkJKUAUKYs9peXPuqrT3t2zMQLHOEyFJyz2vJUgsoySsnHOoKmqbO_w2wpCX78MhF4aoWKGhqTAVEDgnIiEayC5PZBEl1eD5k0y1qVWqizgFHvxz9nDnksDvr75Wd9Mg1KGXalnTScTcMrJsNjDzt57zQqPaP5i_G4y8ISB6oct5eS85Sr3uRfHsY-Dur3TrLS6j_63wxa7yeluZmLWFdtsVC8a_RgBYy2fmDjxG12rZ9k priority: 102 providerName: Unpaywall |
| Title | Pavement crack identification method based on IOtsu-Dd algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40367074 https://www.proquest.com/docview/3204259980 https://www.proquest.com/docview/3204327173 https://pubmed.ncbi.nlm.nih.gov/PMC12077713 https://doi.org/10.1371/journal.pone.0322662 https://doaj.org/article/c2d159a546214f95b163fa64ba9aa66c http://dx.doi.org/10.1371/journal.pone.0322662 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (WRLC) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wigBIQEPqWLH-XpA0I2VDWldNTZUnqJz4nQVJSlNKth_z12SRkQUqS-REl9c5ec737k-_46xVxApFWCgbCo7cE3pgG2CFJ4ZWXbixzGVOKaDwmcj9-RKfp44kx22rtlaA5hvXNpRPamr5bz_--fNezT4d2XVBo-vX-ovslT3LdRQlyblXfRVARVzOJPNvgJad7l7SVGL6QrLrg_T_a-XlrMqOf2bmbuzmGf5prD03-zK26t0ATe_YD7_y3UN77G7dcxpDCol2WM7Or3P9mqrzo03NfX02wfswxhK_vDCiJYQfTdmcZ1MVI6fUZWbNsjzxQben54X-cr8GBswn2bLWXH94yG7HB5fHp2YdY0FM8JIqDA5CC2Ujw4sAXTmONtJgEDGPFI-l4Ir19IydixwfNAxeX8NGAImfkBMgY79iHVSBGyfGbSDnfha24HmUicSosBSXGHHypZxIrrMXGMZLiomjbDcTvNwBVIBERL2YY19lx0S4I0s8WCXD7LlNKzNKoxEjPEYONIVXCaBozC8TMCVCgIA14267DkNV1gdKm2sORxgXOg5gbRkl70sJYgLI6Vkmyms8jw8Pf-6hdCXi5bQ61ooyXDgI6gPOOA3EcdWS_KgJYkWHbWa90m51qjkoS1oasWFsYVvrhVuc_OLppk6pQS6VGerSsYWlHLRZY8r_WyQlRax-Hn4u35Lc1vQt1vS2XVJRc6F5Xkex077jZJvNbpPtoH9KbsjqNwykeXKA9Ypliv9DGPAQvXYLW_i4dU_4nQdfuqx3cPj0fiiV_6r0ivNHp9djcaDb38AeUZfdg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5VAuiPJqoFCDQMDBqb1evw4ICqVK6AtBinJbza7XaUVwQuyo6o_iPzLjF1hUqJcek51s5G-_eax3doax56CVijFQtpUXB7bwwbNB8NDWjpdGSUItjumi8OFRMDgRn8b-eIX9au7CUFplYxNLQ53MNL0j3_Y40Qs3B87b-U-bukbR6WrTQqOixb65OMctW_5muIvr-4LzvY-jDwO77ipga_T9he0CN1xFaLJTQPeF-i0AYpG4WkWu4K4KHCMS3wE_ApOQvzOAQU8axVQbj5pEoMW_ITw0Jag-4bjd36HpCIL6dp4Xuts1GfrzWWb6DipOEPCO9yubBLSuYHU-neWXxbn_pmuuLbM5XJzDdPqXL9y7zW7VQay1U7Funa2Y7A5br81Ebr2qa1m_vsvefYayIHlh6QXo79ZZUmcnlYSwqv7VFrnSxMLPw-MiX9q7iQXTCYJfnP64x0bXAe99tpohYBvMoiPxNDLGi40rTCpAx45yFU6sPJGkvMfsBks5r0pzyPJ8LsQtTQWEJOxljX2PvSfAW1kqrF1-MVtMZK2nUvMEAzzwRcBdkca-wng1hUAoiAGCQPfYFi2XrG6ptuZB7mCgGfqxcESPPSslqLhGRtk7E1jmuRwef7uC0NcvHaGXtVA6w4XXUN-YwGeiol0dyc2OJJoI3RneIHI1qOTyjzLhLxvCXT78tB2mSSkjLzOzZSXjccrh6LEHFT9bZIVDZQFD_N-ow9wO9N2R7Oy0rG3ucicMQxcn7bckv9LqPvz_g2yxtcHo8EAeDI_2H7GbnLo4Uw1esclWi8XSPMbQslBPSoW2mLxmA_Ibzf2Kfw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIgEvaOO2ssECAgEPaRPHuT0gGJRqZbBNMFDfLNtxuomSlCbVtJ_Gv-OcxAlETGgve2x96iqfP59zHJ8LIU-FkjIGR9mWXhzYzBeeLRgNbeV4aZQk2OIYE4U_HQR7X9mHqT9dI7-aXBgMq2x0YqWok1zhO_KhR5FecDhwhqkJizgajV8vftrYQQpvWpt2GjVF9vX5GRzfileTEaz1M0rH74_f7dmmw4CtwA8obVdQTWUE6jsVYMpgrzMhYpa4SkYuo64MHM0S3xF-JHSCtk8LcIDSKMY6edgwArT_tdDzYowmDKftWQ_USBCYTD0vdIeGGINFnumBA5soCGjHElYNA1qz0FvM8-Iin_ff0M0bq2whzs_EfP6XXRyvk1vGobV2awZukDWd3SYbRmUU1gtT1_rlHfLmSFTFyUtLLYX6bp0mJlKpIodV97K20KwmFnyeHJbFyh4llpjPAPzy5MddcnwV8N4jvQwA2yQWXo-nkdZerF2mUyZU7EhXwsTSY0lK-8RusOSLukwHr-7qQjje1EBwxJ4b7PvkLQLeymKR7eqLfDnjZs9yRRNw9oTPAuqyNPYl-K6pCJgUsRBBoPpkB5eL1xmrrargu-B0hn7MHNYnTyoJLLSRIWVnYlUUfHL47RJCXz53hJ4boTSHhVfCZE_AM2EBr47kdkcS1IXqDG8iuRpUCv5nY8EvG8JdPPy4HcZJMTov0_mqlvEoxnP0yf2any2yzMESgSH8b9Rhbgf67kh2elLVOXepE4ahC5MOWpJfanUf_P9Bdsh1UB384-Rgf4vcpNjQGcvxsm3SK5cr_RC8zFI-qvazRfgV64_flhmOwg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq7QEuQHk1tEBASIBEQuI4rxvLo2qR-hC0qJyiseO0q26zq00iBL-emcQbNVCk5Zh47MjjmfEXeeYzYy9ASZkiUHZkkEaOCCFwQPDYUV5QJHlOVxxTofD-QbR7Ij6fhqdr7M2yFubq-X0Q-2-NRt35rNSuh9YXUcBdj0JE3iO2fnJwNP7eHRxzJ-JeYKrj_tV1sPu0JP19KB7Np7PqOpz5d7rkjaacw88fMJ1e2Yt2brP95Sy6FJQLt6mlq379QfC46jTvsFsGlNrjzoo22Jou77IN4_aV_cpwU7--x94dQUswXttqAerCnuQm26hdYLu7j9qmrTG38XnvsK4a52Nuw_RstpjU55f32fHOp-MPu465hMFRCJVqxweuuUxwhysAd3sMhwIgFbmvZOIL7svI0yIPPQgT0DnBAw2IEYskJSrBMHjARiVOapPZdMRdJFoHqfaFLgSo1JO-xIFlIPKCW8xZrk0276g2sva8LcZflE4RGeknM_qx2HtawF6WiLLbF6jYzPhdpniOgA1CEXFfFGkoEX8WEAkJKUAUKYs9peXPuqrT3t2zMQLHOEyFJyz2vJUgsoySsnHOoKmqbO_w2wpCX78MhF4aoWKGhqTAVEDgnIiEayC5PZBEl1eD5k0y1qVWqizgFHvxz9nDnksDvr75Wd9Mg1KGXalnTScTcMrJsNjDzt57zQqPaP5i_G4y8ISB6oct5eS85Sr3uRfHsY-Dur3TrLS6j_63wxa7yeluZmLWFdtsVC8a_RgBYy2fmDjxG12rZ9k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pavement+crack+identification+method+based+on+IOtsu-Dd+algorithm&rft.jtitle=PloS+one&rft.au=Yang%2C+Yang&rft.au=Wang%2C+Lin&rft.au=Xiong%2C+Qinghua&rft.date=2025-05-14&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=5&rft.spage=e0322662&rft_id=info:doi/10.1371%2Fjournal.pone.0322662&rft.externalDBID=IOV&rft.externalDocID=A839759404 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |