Pavement crack identification method based on IOtsu-Dd algorithm

Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images of road cracks for automatic recognition has become a topic of concern for many researchers. Based on this, to raise the accuracy and efficien...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 5; p. e0322662
Main Authors Yang, Yang, Wang, Lin, Xiong, Qinghua
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.05.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0322662

Cover

Abstract Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images of road cracks for automatic recognition has become a topic of concern for many researchers. Based on this, to raise the accuracy and efficiency of crack recognition, a road crack recognition method based on unmanned aerial vehicle images and improved Otsu method is developed. Firstly, certain processing techniques are applied to the images captured by the unmanned aerial vehicle, such as grayscale and equalization, to reduce computational complexity and facilitate subsequent identification of image cracks. Subsequently, to improve recognition accuracy, the image is segmented and the Otsu method is introduced and improved. Finally, a pavement crack recognition model is constructed using damage density, achieving the extraction and recognition of pavement crack features from images. The experiment findings show that the raised recognition model has an average accuracy of 98.2%, a recall rate of 0.75, and an F1 score of 0.85 in crack recognition of unmanned aerial vehicle captured images. This denotes that the raised recognition model has strong effectiveness and high recognition accuracy, and the method can effectively recognize road cracks based on unmanned aerial vehicle images.
AbstractList Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images of road cracks for automatic recognition has become a topic of concern for many researchers. Based on this, to raise the accuracy and efficiency of crack recognition, a road crack recognition method based on unmanned aerial vehicle images and improved Otsu method is developed. Firstly, certain processing techniques are applied to the images captured by the unmanned aerial vehicle, such as grayscale and equalization, to reduce computational complexity and facilitate subsequent identification of image cracks. Subsequently, to improve recognition accuracy, the image is segmented and the Otsu method is introduced and improved. Finally, a pavement crack recognition model is constructed using damage density, achieving the extraction and recognition of pavement crack features from images. The experiment findings show that the raised recognition model has an average accuracy of 98.2%, a recall rate of 0.75, and an F1 score of 0.85 in crack recognition of unmanned aerial vehicle captured images. This denotes that the raised recognition model has strong effectiveness and high recognition accuracy, and the method can effectively recognize road cracks based on unmanned aerial vehicle images.
Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images of road cracks for automatic recognition has become a topic of concern for many researchers. Based on this, to raise the accuracy and efficiency of crack recognition, a road crack recognition method based on unmanned aerial vehicle images and improved Otsu method is developed. Firstly, certain processing techniques are applied to the images captured by the unmanned aerial vehicle, such as grayscale and equalization, to reduce computational complexity and facilitate subsequent identification of image cracks. Subsequently, to improve recognition accuracy, the image is segmented and the Otsu method is introduced and improved. Finally, a pavement crack recognition model is constructed using damage density, achieving the extraction and recognition of pavement crack features from images. The experiment findings show that the raised recognition model has an average accuracy of 98.2%, a recall rate of 0.75, and an F1 score of 0.85 in crack recognition of unmanned aerial vehicle captured images. This denotes that the raised recognition model has strong effectiveness and high recognition accuracy, and the method can effectively recognize road cracks based on unmanned aerial vehicle images.Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images of road cracks for automatic recognition has become a topic of concern for many researchers. Based on this, to raise the accuracy and efficiency of crack recognition, a road crack recognition method based on unmanned aerial vehicle images and improved Otsu method is developed. Firstly, certain processing techniques are applied to the images captured by the unmanned aerial vehicle, such as grayscale and equalization, to reduce computational complexity and facilitate subsequent identification of image cracks. Subsequently, to improve recognition accuracy, the image is segmented and the Otsu method is introduced and improved. Finally, a pavement crack recognition model is constructed using damage density, achieving the extraction and recognition of pavement crack features from images. The experiment findings show that the raised recognition model has an average accuracy of 98.2%, a recall rate of 0.75, and an F1 score of 0.85 in crack recognition of unmanned aerial vehicle captured images. This denotes that the raised recognition model has strong effectiveness and high recognition accuracy, and the method can effectively recognize road cracks based on unmanned aerial vehicle images.
Audience Academic
Author Yang, Yang
Wang, Lin
Xiong, Qinghua
AuthorAffiliation 2 Hebei Expressway Hangang Expressway Co., Ltd., Cangzhou, China
1 School of Road and Bridge Engineering, Guangxi Transport Vocational and Technical College, Nanning, China
Beijing Institute of Technology, CHINA
AuthorAffiliation_xml – name: 2 Hebei Expressway Hangang Expressway Co., Ltd., Cangzhou, China
– name: Beijing Institute of Technology, CHINA
– name: 1 School of Road and Bridge Engineering, Guangxi Transport Vocational and Technical College, Nanning, China
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0009-0006-9524-8536
  surname: Yang
  fullname: Yang, Yang
– sequence: 2
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
– sequence: 3
  givenname: Qinghua
  surname: Xiong
  fullname: Xiong, Qinghua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40367074$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhiM0xLbCP0AQCQnBRYu_k1zBNL4qTSqCiVvrxHZaFyfu4mSwf49Ds6lBu5h8Yfv4Oa_Pee3T5KjxjUmS5xgtMM3wu63v2wbcYhfDC0QJEYI8Sk5wQclcEESPDtbHyWkIW4Q4zYV4khwzREWGMnaSfPgG16Y2TZeqFtSv1Oq4tpVV0FnfpLXpNl6nJQSj07hfrrrQzz_qFNzat7bb1E-TxxW4YJ6N8yy5_Pzp8vzr_GL1ZXl-djFXgrFujoEYUuYEkwoIw6A1AyiYxqrMMSO4FMgwzRHwHIxmSGADgosqLxjLOKez5OVedud8kGPvQVKCGOFFkaNILPeE9rCVu9bW0N5ID1b-C_h2LaHtrHJGKqIxL4AzQTCrCl5iQSsQrIQCQAgVtfheq292cPMbnLsTxEgO9t-WIAf75Wh_zHs_VtmXtdEqetmCmxQzPWnsRq79tcQEZVmGaVR4Myq0_qo3oZO1Dco4B43x_b5hSjKcDeir_9D7bRmpNcTObVP5eLEaROVZTouMFywqzpLFPVQc2tRWxRYrG-OThLeThMh05k-3hj4Eufzx_eHs6ueUfX3Abgy4bhO864ffGKbgi0Or7zy-_doRYHtAtT6E1lQPe8K_aXsKqQ
Cites_doi 10.1007/s11042-022-14041-1
10.1080/10298436.2020.1836561
10.32604/cmes.2020.09122
10.1080/10298436.2018.1485917
10.1007/s12518-021-00371-6
10.1080/10298436.2020.1714047
10.1007/s11042-021-10860-w
10.1016/j.geits.2023.100092
10.1016/j.geits.2023.100125
10.1609/aaai.v36i1.19986
10.48084/etasr.4450
10.1007/s00500-019-04339-y
10.1007/s10489-023-04969-8
10.1007/s42947-021-00006-4
10.47852/bonviewAIA3202833
10.1109/TITS.2022.3160524
10.3390/eng5040182
10.1007/s00521-023-08450-y
10.1080/14680629.2020.1714699
10.1111/2041-210X.13860
10.11591/eei.v12i6.5345
10.1504/IJCSE.2020.107266
ContentType Journal Article
Copyright Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Yang et al 2025 Yang et al
2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Yang et al 2025 Yang et al
– notice: 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0322662
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Agricultural Science Database
CrossRef


MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Pavement crack identification method
EISSN 1932-6203
ExternalDocumentID 3204259980
oai_doaj_org_article_c2d159a546214f95b163fa64ba9aa66c
10.1371/journal.pone.0322662
PMC12077713
A839759404
40367074
10_1371_journal_pone_0322662
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – grantid: Guike AB24010221
– grantid: KY-H-2024-001
– grantid: Guijiaobian [2021] No.148-59
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c644t-1a2e2b8212fa241add4aa94d1cb81421b60e4d50a58aed4061ea656f89447553
IEDL.DBID M48
ISSN 1932-6203
IngestDate Thu Aug 21 23:50:40 EDT 2025
Tue Oct 14 14:34:44 EDT 2025
Sun Oct 26 03:51:52 EDT 2025
Tue Sep 30 17:03:21 EDT 2025
Fri Sep 05 16:47:06 EDT 2025
Tue Oct 07 08:04:36 EDT 2025
Mon Oct 20 22:41:20 EDT 2025
Mon Oct 20 16:53:33 EDT 2025
Thu Oct 16 15:35:12 EDT 2025
Thu Oct 16 15:35:16 EDT 2025
Tue May 27 02:16:33 EDT 2025
Mon Jul 21 06:00:39 EDT 2025
Wed Oct 01 06:30:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-1a2e2b8212fa241add4aa94d1cb81421b60e4d50a58aed4061ea656f89447553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0009-0006-9524-8536
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0322662
PMID 40367074
PQID 3204259980
PQPubID 1436336
PageCount e0322662
ParticipantIDs plos_journals_3204259980
doaj_primary_oai_doaj_org_article_c2d159a546214f95b163fa64ba9aa66c
unpaywall_primary_10_1371_journal_pone_0322662
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12077713
proquest_miscellaneous_3204327173
proquest_journals_3204259980
gale_infotracmisc_A839759404
gale_infotracacademiconefile_A839759404
gale_incontextgauss_ISR_A839759404
gale_incontextgauss_IOV_A839759404
gale_healthsolutions_A839759404
pubmed_primary_40367074
crossref_primary_10_1371_journal_pone_0322662
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250514
PublicationDateYYYYMMDD 2025-05-14
PublicationDate_xml – month: 5
  year: 2025
  text: 20250514
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References RC dos Santos (pone.0322662.ref011) 2021; 13
MH Lui (pone.0322662.ref033) 2024; 5
L Xiong (pone.0322662.ref003) 2020; 24
J Ha (pone.0322662.ref019) 2022; 78
B Li (pone.0322662.ref020) 2020; 21
L Chen (pone.0322662.ref008) 2023; 53
P Yang (pone.0322662.ref007) 2020; 22
SD Nguyen (pone.0322662.ref022) 2023; 16
M Hasanvand (pone.0322662.ref028) 2023; 1
DJN Young (pone.0322662.ref004) 2022; 13
AK Bhandari (pone.0322662.ref010) 2020; 7
YS Malik (pone.0322662.ref031) 2022; 30
C Chu (pone.0322662.ref021) 2022; 9
C Huang (pone.0322662.ref009) 2021; 60
TS Tran (pone.0322662.ref015) 2022; 23
N Safaei (pone.0322662.ref024) 2022; 15
Y Du (pone.0322662.ref017) 2021; 22
G Ning (pone.0322662.ref001) 2023; 82
D Ma (pone.0322662.ref014) 2020; 123
S Jana (pone.0322662.ref025) 2022; 13
A Ashraf (pone.0322662.ref029) 2023; 12
Q Yang (pone.0322662.ref013) 2021; 22
Y Huang (pone.0322662.ref023) 2022; 36
F Qi (pone.0322662.ref032) 2021; 53
ME Sahin (pone.0322662.ref034) 2023; 35
J Liu (pone.0322662.ref030) 2020; 35
Y Hou (pone.0322662.ref012) 2022; 23
L Fan (pone.0322662.ref018) 2023; 10
J Ruan (pone.0322662.ref005) 2023; 2
B Li (pone.0322662.ref016) 2023; 38
IH Abbas (pone.0322662.ref026) 2021; 11
ATH Al-Rahlawee (pone.0322662.ref002) 2021; 80
X Liu (pone.0322662.ref006) 2023; 2
Y Wu (pone.0322662.ref027) 2021; 40
References_xml – volume: 9
  start-page: 135
  issue: 2
  year: 2022
  ident: pone.0322662.ref021
  article-title: A review on pavement distress and structural defects detection and quantification technologies using imaging approaches
– volume: 82
  start-page: 15007
  issue: 10
  year: 2023
  ident: pone.0322662.ref001
  article-title: Two-dimensional Otsu multi-threshold image segmentation based on hybrid whale optimization algorithm
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-14041-1
– volume: 23
  start-page: 2019
  issue: 6
  year: 2022
  ident: pone.0322662.ref015
  article-title: A two-step sequential automated crack detection and severity classification process for asphalt pavements
  publication-title: Int J Pavement Eng
  doi: 10.1080/10298436.2020.1836561
– volume: 123
  start-page: 1267
  issue: 3
  year: 2020
  ident: pone.0322662.ref014
  article-title: Intelligent detection model based on a fully convolutional neural network for pavement cracks
  publication-title: CMES
  doi: 10.32604/cmes.2020.09122
– volume: 78
  start-page: 17721
  issue: 16
  year: 2022
  ident: pone.0322662.ref019
  article-title: Assessing severity of road cracks using deep learning-based segmentation and detection
  publication-title: Transp J Sci
– volume: 21
  start-page: 457
  issue: 4
  year: 2020
  ident: pone.0322662.ref020
  article-title: Automatic classification of pavement crack using deep convolutional neural network
  publication-title: Int J Pavement Eng
  doi: 10.1080/10298436.2018.1485917
– volume: 10
  start-page: 1593
  issue: 7
  year: 2023
  ident: pone.0322662.ref018
  article-title: Pavement cracks coupled with shadows: a new shadow-crack dataset and a shadow-removal-oriented crack detection approach
  publication-title: J Adv Sci
– volume: 13
  start-page: 499
  issue: 4
  year: 2021
  ident: pone.0322662.ref011
  article-title: The use of Otsu algorithm and multi-temporal airborne LiDAR data to detect building changes in urban space
  publication-title: Appl Geomat
  doi: 10.1007/s12518-021-00371-6
– volume: 7
  start-page: 200
  issue: 1
  year: 2020
  ident: pone.0322662.ref010
  article-title: A local contrast fusion based 3D Otsu algorithm for multilevel image segmentation
  publication-title: JAS
– volume: 22
  start-page: 1659
  issue: 13
  year: 2021
  ident: pone.0322662.ref017
  article-title: Pavement distress detection and classification based on YOLO network
  publication-title: Int J Pavement Eng
  doi: 10.1080/10298436.2020.1714047
– volume: 80
  start-page: 28217
  issue: 18
  year: 2021
  ident: pone.0322662.ref002
  article-title: Multilevel thresholding of images with improved Otsu thresholding by black widow optimization algorithm
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-10860-w
– volume: 40
  start-page: 1495
  issue: 1
  year: 2021
  ident: pone.0322662.ref027
  article-title: Asphalt pavement crack detection based on multi-scale full convolutional network
  publication-title: JIFS
– volume: 2
  start-page: 100092
  issue: 3
  year: 2023
  ident: pone.0322662.ref005
  article-title: A review of occluded objects detection in real complex scenarios for autonomous driving
  publication-title: Green Energy Intell Transp
  doi: 10.1016/j.geits.2023.100092
– volume: 2
  start-page: 100125
  issue: 5
  year: 2023
  ident: pone.0322662.ref006
  article-title: Deep transfer learning for intelligent vehicle perception: a survey
  publication-title: Green Energy Intell Transp
  doi: 10.1016/j.geits.2023.100125
– volume: 36
  start-page: 1026
  issue: 1
  year: 2022
  ident: pone.0322662.ref023
  article-title: UFPMP-Det: toward accurate and efficient object detection on drone imagery
  publication-title: AAAI
  doi: 10.1609/aaai.v36i1.19986
– volume: 11
  start-page: 7702
  issue: 5
  year: 2021
  ident: pone.0322662.ref026
  article-title: Automated pavement distress detection using image processing techniques
  publication-title: Eng Technol Appl Sci
  doi: 10.48084/etasr.4450
– volume: 13
  start-page: 1209
  issue: 1
  year: 2022
  ident: pone.0322662.ref025
  article-title: Transfer learning based deep convolutional neural network model for pavement crack detection from images
  publication-title: Int J Nonlinear Anal Appl
– volume: 24
  start-page: 7253
  issue: 10
  year: 2020
  ident: pone.0322662.ref003
  article-title: The extraction algorithm of color disease spot image based on Otsu and watershed
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04339-y
– volume: 53
  start-page: 26949
  issue: 22
  year: 2023
  ident: pone.0322662.ref008
  article-title: Adaptive fractional-order genetic-particle swarm optimization Otsu algorithm for image segmentation
  publication-title: Appl Intell
  doi: 10.1007/s10489-023-04969-8
– volume: 38
  start-page: 2279
  issue: 16
  year: 2023
  ident: pone.0322662.ref016
  article-title: A grid‐based classification and box‐based detection fusion model for asphalt pavement crack
  publication-title: CACAIE
– volume: 30
  start-page: 1169
  issue: 6
  year: 2022
  ident: pone.0322662.ref031
  article-title: Applying an adaptive Otsu-based initialization algorithm to optimize active contour models for skin lesion segmentation
  publication-title: J X-Ray Sci Technol
– volume: 15
  start-page: 159
  issue: 1
  year: 2022
  ident: pone.0322662.ref024
  article-title: An automatic image processing algorithm based on crack pixel density for pavement crack detection and classification
  publication-title: Int J Pavement Res Technol
  doi: 10.1007/s42947-021-00006-4
– volume: 1
  start-page: 170
  issue: 3
  year: 2023
  ident: pone.0322662.ref028
  article-title: Machine learning methodology for identifying vehicles using image processing
  publication-title: AIA
  doi: 10.47852/bonviewAIA3202833
– volume: 23
  start-page: 22156
  issue: 11
  year: 2022
  ident: pone.0322662.ref012
  article-title: A deep learning method for pavement crack identification based on limited field images
  publication-title: IEEE Trans Intell Transport Syst
  doi: 10.1109/TITS.2022.3160524
– volume: 53
  start-page: 2261
  issue: 3
  year: 2021
  ident: pone.0322662.ref032
  article-title: Related study based on Otsu watershed algorithm and new squeeze-and-excitation networks for segmentation and level classification of tea buds
  publication-title: NPL
– volume: 5
  start-page: 3488
  issue: 4
  year: 2024
  ident: pone.0322662.ref033
  article-title: An adaptive YOLO11 framework for the localisation, tracking, and imaging of small aerial targets using a pan–tilt–zoom camera network
  publication-title: Eng
  doi: 10.3390/eng5040182
– volume: 35
  start-page: 13597
  issue: 18
  year: 2023
  ident: pone.0322662.ref034
  article-title: Detection and classification of COVID-19 by using Faster R-CNN and Mask R-CNN on CT images
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08450-y
– volume: 22
  start-page: 1783
  issue: 8
  year: 2021
  ident: pone.0322662.ref013
  article-title: Identification of asphalt pavement transverse cracking based on vehicle vibration signal analysis
  publication-title: Road Mater Pavement Des
  doi: 10.1080/14680629.2020.1714699
– volume: 13
  start-page: 1447
  issue: 7
  year: 2022
  ident: pone.0322662.ref004
  article-title: Optimizing aerial imagery collection and processing parameters for drone‐based individual tree mapping in structurally complex conifer forests
  publication-title: Meth Ecol Evol
  doi: 10.1111/2041-210X.13860
– volume: 35
  start-page: 1291
  issue: 11
  year: 2020
  ident: pone.0322662.ref030
  article-title: Automated pavement crack detection and segmentation based on two‐step convolutional neural network
  publication-title: CACAIE
– volume: 12
  start-page: 3601
  issue: 6
  year: 2023
  ident: pone.0322662.ref029
  article-title: Machine learning-based pavement crack detection, classification, and characterization: a review
  publication-title: Bulletin EEI
  doi: 10.11591/eei.v12i6.5345
– volume: 22
  start-page: 146
  issue: 1
  year: 2020
  ident: pone.0322662.ref007
  article-title: An improved Otsu threshold segmentation algorithm
  publication-title: IJCSE
  doi: 10.1504/IJCSE.2020.107266
– volume: 60
  start-page: 183
  issue: 1
  year: 2021
  ident: pone.0322662.ref009
  article-title: An Otsu image segmentation based on fruitfly optimization algorithm
  publication-title: AEJ
– volume: 16
  start-page: 943
  issue: 4
  year: 2023
  ident: pone.0322662.ref022
  article-title: Deep learning-based crack detection: a survey
  publication-title: IJPRT
SSID ssj0053866
Score 2.479775
Snippet Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0322662
SubjectTerms Accuracy
Algorithms
Automatic vehicle identification systems
Computer and Information Sciences
Cracking
Cracks
Deep learning
Drone aircraft
Efficiency
Engineering and Technology
Highway construction
Highway maintenance
Identification methods
Image processing
Image Processing, Computer-Assisted - methods
Methods
Optimization algorithms
Pattern Recognition, Automated - methods
Pavements
Physical Sciences
Repair & maintenance
Research and Analysis Methods
Roads & highways
Unmanned Aerial Devices
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCaHk00EJASMAhW8dxnORGeVQtEhRBQb1FY8dpVyzJapMI8e-ZSbxRIyrRA8ddz3qVb55Wxt8w9hyM1hkWyoGOMhXIGKIApEgCw6MyLQoacUwXhT9-Ukff5Iez-OzSqC_qCRvogQfg9o0oMONCLJUIZZnFGguIEpTUkAEoZSj68jTbHKaGGIxerJS7KBcl4b7Ty3xVV3bO0YaVEpNE1PP1j1F5tlrWzVUl59-dkze7agW_f8FyeSktHd5ht1096R8Mz7HFbthqm205j238l45W-tVd9voz9NzgrW_WYH74i8I1CvW68YdR0j5ltcLHz8cnbdMF7wofluf1etFe_LzHTg_fn749Ctz8hMBgldMGIQgrdIrJqQRM1BjJJEAmi9DoNJQi1IpbWcQc4hRsQZndApZ3ZZoRC2Ac3WezCgHbYT69nS5Ta6PMhtKWEkzGdahxYx3JohQeCzZY5quBJSPvX5UleLoYgMgJ-9xh77E3BPgoSxzX_Reo-dxpPv-X5j32hNSVDxdGR0_ND7DmS-JMcumxZ70E8VxU1EhzDl3T5Mcn368h9PXLROiFEyprVLwBd3kBn4n4syaSuxNJ9FYzWd4h49qg0uSRoLCJh16Ov9wY3NXLT8dl2pSa4ypbd4NMJKidwmMPBvsckZWcGPoS_N90YrkT6Kcr1eKipxkPBU-SJMRN56ORX0u7D_-Hdh-xW4JGLRNRrtxls3bd2T2s_1r9uHf1P1nLV3s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9AAXRHk1UMAgJODg1F6vXwcELbRqkUirUqrerNmH04pgh9gR4t8zY68NFhXqMd7xRv5mZnfsnfmGsZegpEwxUHZlkEauCCFwQfDYVV6QJ1pTi2MqFP48jQ6-ik_n4fkam3a1MJRW2a2JzUKtS0XfyLcDTuaFLwfeu8UPl7pG0elq10IDbGsF_bahGLvB1jkxY43Y-u7e9PikW5vRu6PIFtAFsb9t9TVZlIWZeGjbUcQHG1TD49-v1qPFvKyuCkX_zai8uSoW8OsnzOd_bVf7d9htG2c6O61hbLA1U9xlG9aTK-e1pZt-c4-9P4aGM7x21BLUN-dS2wSiRmdO22Laod1OO_j78KiuVu5H7cB8hvjUF9_vs9P9vdMPB67tq-AqjH5q1wduuEwQoRxwA8cVTgCkQvtKJr7gvow8I3ToQZiA0bTjG8CwL09SYgcMgwdsVCBgm8yhU-s8MSZIjS9MLkClnvQlTiwDoXM-Zm6HZbZo2TOy5ggtxreOFoiMsM8s9mO2S4D3ssR93Vwol7PMulKmuMYYDEIRcV_kaSgxpMwhEhJSgChSY_aM1JW1haS9B2c7GAvGYSo8MWYvGgnivygowWYGq6rKDo_OriH05WQg9MoK5SUqXoEtasBnIl6tgeTWQBK9WA2GN8m4OlSq7I-9452dwV09_Lwfpkkpaa4w5aqVCTilWYzZw9Y-e2SFR8x9Mf5vMrDcAfTDkeLyoqEf97kXx7GPk056I7-Wdh_9_0Ees1ucmisTNa7YYqN6uTJPMOKr5VPrxr8BSJtVbg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq7QEuQHk1tEBASIBEQuI4rxvLo2qR-hC0qJyiseO0q26zq00iBL-emcQbNVCk5Zh47MjjmfEXeeYzYy9ASZkiUHZkkEaOCCFwQPDYUV5QJHlOVxxTofD-QbR7Ij6fhqdr7M2yFubq-X0Q-2-NRt35rNSuh9YXUcBdj0JE3iO2fnJwNP7eHRxzJ-JeYKrj_tV1sPu0JP19KB7Np7PqOpz5d7rkjaacw88fMJ1e2Yt2brP95Sy6FJQLt6mlq379QfC46jTvsFsGlNrjzoo22Jou77IN4_aV_cpwU7--x94dQUswXttqAerCnuQm26hdYLu7j9qmrTG38XnvsK4a52Nuw_RstpjU55f32fHOp-MPu465hMFRCJVqxweuuUxwhysAd3sMhwIgFbmvZOIL7svI0yIPPQgT0DnBAw2IEYskJSrBMHjARiVOapPZdMRdJFoHqfaFLgSo1JO-xIFlIPKCW8xZrk0276g2sva8LcZflE4RGeknM_qx2HtawF6WiLLbF6jYzPhdpniOgA1CEXFfFGkoEX8WEAkJKUAUKYs9peXPuqrT3t2zMQLHOEyFJyz2vJUgsoySsnHOoKmqbO_w2wpCX78MhF4aoWKGhqTAVEDgnIiEayC5PZBEl1eD5k0y1qVWqizgFHvxz9nDnksDvr75Wd9Mg1KGXalnTScTcMrJsNjDzt57zQqPaP5i_G4y8ISB6oct5eS85Sr3uRfHsY-Dur3TrLS6j_63wxa7yeluZmLWFdtsVC8a_RgBYy2fmDjxG12rZ9k
  priority: 102
  providerName: Unpaywall
Title Pavement crack identification method based on IOtsu-Dd algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/40367074
https://www.proquest.com/docview/3204259980
https://www.proquest.com/docview/3204327173
https://pubmed.ncbi.nlm.nih.gov/PMC12077713
https://doi.org/10.1371/journal.pone.0322662
https://doaj.org/article/c2d159a546214f95b163fa64ba9aa66c
http://dx.doi.org/10.1371/journal.pone.0322662
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (WRLC)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wigBIQEPqWLH-XpA0I2VDWldNTZUnqJz4nQVJSlNKth_z12SRkQUqS-REl9c5ec737k-_46xVxApFWCgbCo7cE3pgG2CFJ4ZWXbixzGVOKaDwmcj9-RKfp44kx22rtlaA5hvXNpRPamr5bz_--fNezT4d2XVBo-vX-ovslT3LdRQlyblXfRVARVzOJPNvgJad7l7SVGL6QrLrg_T_a-XlrMqOf2bmbuzmGf5prD03-zK26t0ATe_YD7_y3UN77G7dcxpDCol2WM7Or3P9mqrzo03NfX02wfswxhK_vDCiJYQfTdmcZ1MVI6fUZWbNsjzxQben54X-cr8GBswn2bLWXH94yG7HB5fHp2YdY0FM8JIqDA5CC2Ujw4sAXTmONtJgEDGPFI-l4Ir19IydixwfNAxeX8NGAImfkBMgY79iHVSBGyfGbSDnfha24HmUicSosBSXGHHypZxIrrMXGMZLiomjbDcTvNwBVIBERL2YY19lx0S4I0s8WCXD7LlNKzNKoxEjPEYONIVXCaBozC8TMCVCgIA14267DkNV1gdKm2sORxgXOg5gbRkl70sJYgLI6Vkmyms8jw8Pf-6hdCXi5bQ61ooyXDgI6gPOOA3EcdWS_KgJYkWHbWa90m51qjkoS1oasWFsYVvrhVuc_OLppk6pQS6VGerSsYWlHLRZY8r_WyQlRax-Hn4u35Lc1vQt1vS2XVJRc6F5Xkex077jZJvNbpPtoH9KbsjqNwykeXKA9Ypliv9DGPAQvXYLW_i4dU_4nQdfuqx3cPj0fiiV_6r0ivNHp9djcaDb38AeUZfdg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5VAuiPJqoFCDQMDBqb1evw4ICqVK6AtBinJbza7XaUVwQuyo6o_iPzLjF1hUqJcek51s5G-_eax3doax56CVijFQtpUXB7bwwbNB8NDWjpdGSUItjumi8OFRMDgRn8b-eIX9au7CUFplYxNLQ53MNL0j3_Y40Qs3B87b-U-bukbR6WrTQqOixb65OMctW_5muIvr-4LzvY-jDwO77ipga_T9he0CN1xFaLJTQPeF-i0AYpG4WkWu4K4KHCMS3wE_ApOQvzOAQU8axVQbj5pEoMW_ITw0Jag-4bjd36HpCIL6dp4Xuts1GfrzWWb6DipOEPCO9yubBLSuYHU-neWXxbn_pmuuLbM5XJzDdPqXL9y7zW7VQay1U7Funa2Y7A5br81Ebr2qa1m_vsvefYayIHlh6QXo79ZZUmcnlYSwqv7VFrnSxMLPw-MiX9q7iQXTCYJfnP64x0bXAe99tpohYBvMoiPxNDLGi40rTCpAx45yFU6sPJGkvMfsBks5r0pzyPJ8LsQtTQWEJOxljX2PvSfAW1kqrF1-MVtMZK2nUvMEAzzwRcBdkca-wng1hUAoiAGCQPfYFi2XrG6ptuZB7mCgGfqxcESPPSslqLhGRtk7E1jmuRwef7uC0NcvHaGXtVA6w4XXUN-YwGeiol0dyc2OJJoI3RneIHI1qOTyjzLhLxvCXT78tB2mSSkjLzOzZSXjccrh6LEHFT9bZIVDZQFD_N-ow9wO9N2R7Oy0rG3ucicMQxcn7bckv9LqPvz_g2yxtcHo8EAeDI_2H7GbnLo4Uw1esclWi8XSPMbQslBPSoW2mLxmA_Ibzf2Kfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIgEvaOO2ssECAgEPaRPHuT0gGJRqZbBNMFDfLNtxuomSlCbVtJ_Gv-OcxAlETGgve2x96iqfP59zHJ8LIU-FkjIGR9mWXhzYzBeeLRgNbeV4aZQk2OIYE4U_HQR7X9mHqT9dI7-aXBgMq2x0YqWok1zhO_KhR5FecDhwhqkJizgajV8vftrYQQpvWpt2GjVF9vX5GRzfileTEaz1M0rH74_f7dmmw4CtwA8obVdQTWUE6jsVYMpgrzMhYpa4SkYuo64MHM0S3xF-JHSCtk8LcIDSKMY6edgwArT_tdDzYowmDKftWQ_USBCYTD0vdIeGGINFnumBA5soCGjHElYNA1qz0FvM8-Iin_ff0M0bq2whzs_EfP6XXRyvk1vGobV2awZukDWd3SYbRmUU1gtT1_rlHfLmSFTFyUtLLYX6bp0mJlKpIodV97K20KwmFnyeHJbFyh4llpjPAPzy5MddcnwV8N4jvQwA2yQWXo-nkdZerF2mUyZU7EhXwsTSY0lK-8RusOSLukwHr-7qQjje1EBwxJ4b7PvkLQLeymKR7eqLfDnjZs9yRRNw9oTPAuqyNPYl-K6pCJgUsRBBoPpkB5eL1xmrrargu-B0hn7MHNYnTyoJLLSRIWVnYlUUfHL47RJCXz53hJ4boTSHhVfCZE_AM2EBr47kdkcS1IXqDG8iuRpUCv5nY8EvG8JdPPy4HcZJMTov0_mqlvEoxnP0yf2any2yzMESgSH8b9Rhbgf67kh2elLVOXepE4ahC5MOWpJfanUf_P9Bdsh1UB384-Rgf4vcpNjQGcvxsm3SK5cr_RC8zFI-qvazRfgV64_flhmOwg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq7QEuQHk1tEBASIBEQuI4rxvLo2qR-hC0qJyiseO0q26zq00iBL-emcQbNVCk5Zh47MjjmfEXeeYzYy9ASZkiUHZkkEaOCCFwQPDYUV5QJHlOVxxTofD-QbR7Ij6fhqdr7M2yFubq-X0Q-2-NRt35rNSuh9YXUcBdj0JE3iO2fnJwNP7eHRxzJ-JeYKrj_tV1sPu0JP19KB7Np7PqOpz5d7rkjaacw88fMJ1e2Yt2brP95Sy6FJQLt6mlq379QfC46jTvsFsGlNrjzoo22Jou77IN4_aV_cpwU7--x94dQUswXttqAerCnuQm26hdYLu7j9qmrTG38XnvsK4a52Nuw_RstpjU55f32fHOp-MPu465hMFRCJVqxweuuUxwhysAd3sMhwIgFbmvZOIL7svI0yIPPQgT0DnBAw2IEYskJSrBMHjARiVOapPZdMRdJFoHqfaFLgSo1JO-xIFlIPKCW8xZrk0276g2sva8LcZflE4RGeknM_qx2HtawF6WiLLbF6jYzPhdpniOgA1CEXFfFGkoEX8WEAkJKUAUKYs9peXPuqrT3t2zMQLHOEyFJyz2vJUgsoySsnHOoKmqbO_w2wpCX78MhF4aoWKGhqTAVEDgnIiEayC5PZBEl1eD5k0y1qVWqizgFHvxz9nDnksDvr75Wd9Mg1KGXalnTScTcMrJsNjDzt57zQqPaP5i_G4y8ISB6oct5eS85Sr3uRfHsY-Dur3TrLS6j_63wxa7yeluZmLWFdtsVC8a_RgBYy2fmDjxG12rZ9k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pavement+crack+identification+method+based+on+IOtsu-Dd+algorithm&rft.jtitle=PloS+one&rft.au=Yang%2C+Yang&rft.au=Wang%2C+Lin&rft.au=Xiong%2C+Qinghua&rft.date=2025-05-14&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=5&rft.spage=e0322662&rft_id=info:doi/10.1371%2Fjournal.pone.0322662&rft.externalDBID=IOV&rft.externalDocID=A839759404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon