Nuclei segmentation and classification from histopathology images using federated learning for end-edge platform

Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry boundaries, and overlapping nuclei. Manual segmentation is time-consuming and labor-intensive, highlighting the need for efficient and scala...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 7; p. e0322749
Main Authors Chowdhury, Anjir Ahmed, Mahmud, S M Hasan, Uddin, Md Palash, Kadry, Seifedine, Kim, Jung-Yeon, Nam, Yunyoung
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 10.07.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0322749

Cover

Abstract Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry boundaries, and overlapping nuclei. Manual segmentation is time-consuming and labor-intensive, highlighting the need for efficient and scalable automated solutions. This study proposes a deep learning framework that combines segmentation and classification to enhance nuclei evaluation in histopathology images. The framework follows a two-stage approach: first, a SegNet model segments the nuclei regions, and then a DenseNet121 model classifies the segmented instances. Hyperparameter optimization using the Hyperband method enhances the performance of both models. To protect data privacy, the framework employs a FedAvg-based federated learning scheme, enabling decentralized training without exposing sensitive data. For efficient deployment on edge devices, full integer quantization is applied to reduce computational overhead while maintaining accuracy. Experimental results show that the SegNet model achieves 91.4% Mean Pixel Accuracy (MPA), 63% Mean Intersection over Union (MIoU), and 90.6% Frequency-Weighted IoU (FWIoU). The DenseNet121 classifier achieves 83% accuracy and a 67% Matthews Correlation Coefficient (MCC), surpassing state-of-the-art models. Post-quantization, both models exhibit performance gains of 1.3% and 1.0%, respectively. The proposed framework demonstrates high accuracy and efficiency, highlighting its potential for real-world clinical deployment in cancer diagnosis.
AbstractList Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry boundaries, and overlapping nuclei. Manual segmentation is time-consuming and labor-intensive, highlighting the need for efficient and scalable automated solutions. This study proposes a deep learning framework that combines segmentation and classification to enhance nuclei evaluation in histopathology images. The framework follows a two-stage approach: first, a SegNet model segments the nuclei regions, and then a DenseNet121 model classifies the segmented instances. Hyperparameter optimization using the Hyperband method enhances the performance of both models. To protect data privacy, the framework employs a FedAvg-based federated learning scheme, enabling decentralized training without exposing sensitive data. For efficient deployment on edge devices, full integer quantization is applied to reduce computational overhead while maintaining accuracy. Experimental results show that the SegNet model achieves 91.4% Mean Pixel Accuracy (MPA), 63% Mean Intersection over Union (MIoU), and 90.6% Frequency-Weighted IoU (FWIoU). The DenseNet121 classifier achieves 83% accuracy and a 67% Matthews Correlation Coefficient (MCC), surpassing state-of-the-art models. Post-quantization, both models exhibit performance gains of 1.3% and 1.0%, respectively. The proposed framework demonstrates high accuracy and efficiency, highlighting its potential for real-world clinical deployment in cancer diagnosis.
Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry boundaries, and overlapping nuclei. Manual segmentation is time-consuming and labor-intensive, highlighting the need for efficient and scalable automated solutions. This study proposes a deep learning framework that combines segmentation and classification to enhance nuclei evaluation in histopathology images. The framework follows a two-stage approach: first, a SegNet model segments the nuclei regions, and then a DenseNet121 model classifies the segmented instances. Hyperparameter optimization using the Hyperband method enhances the performance of both models. To protect data privacy, the framework employs a FedAvg-based federated learning scheme, enabling decentralized training without exposing sensitive data. For efficient deployment on edge devices, full integer quantization is applied to reduce computational overhead while maintaining accuracy. Experimental results show that the SegNet model achieves 91.4% Mean Pixel Accuracy (MPA), 63% Mean Intersection over Union (MIoU), and 90.6% Frequency-Weighted IoU (FWIoU). The DenseNet121 classifier achieves 83% accuracy and a 67% Matthews Correlation Coefficient (MCC), surpassing state-of-the-art models. Post-quantization, both models exhibit performance gains of 1.3% and 1.0%, respectively. The proposed framework demonstrates high accuracy and efficiency, highlighting its potential for real-world clinical deployment in cancer diagnosis.Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry boundaries, and overlapping nuclei. Manual segmentation is time-consuming and labor-intensive, highlighting the need for efficient and scalable automated solutions. This study proposes a deep learning framework that combines segmentation and classification to enhance nuclei evaluation in histopathology images. The framework follows a two-stage approach: first, a SegNet model segments the nuclei regions, and then a DenseNet121 model classifies the segmented instances. Hyperparameter optimization using the Hyperband method enhances the performance of both models. To protect data privacy, the framework employs a FedAvg-based federated learning scheme, enabling decentralized training without exposing sensitive data. For efficient deployment on edge devices, full integer quantization is applied to reduce computational overhead while maintaining accuracy. Experimental results show that the SegNet model achieves 91.4% Mean Pixel Accuracy (MPA), 63% Mean Intersection over Union (MIoU), and 90.6% Frequency-Weighted IoU (FWIoU). The DenseNet121 classifier achieves 83% accuracy and a 67% Matthews Correlation Coefficient (MCC), surpassing state-of-the-art models. Post-quantization, both models exhibit performance gains of 1.3% and 1.0%, respectively. The proposed framework demonstrates high accuracy and efficiency, highlighting its potential for real-world clinical deployment in cancer diagnosis.
Audience Academic
Author Uddin, Md Palash
Kadry, Seifedine
Nam, Yunyoung
Chowdhury, Anjir Ahmed
Mahmud, S M Hasan
Kim, Jung-Yeon
AuthorAffiliation 1 Department of Computer Science, University of Houston, Houston, Texas, United States of America
5 School of Information Technology, Deakin University, Geelong, Victoria, Australia
4 Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
2 Department of Software Engineering, Daffodil International University, Daffodil Smart City (DSC), Birulia, Savar, Bangladesh
7 Department of ICT Convergence, Soonchunhyang University, Asan, Korea
6 Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
Graphic Era Deemed to be University, INDIA
3 Centre for Advanced Machine Learning and Applications (CAMLAs), Dhaka, Bangladesh
AuthorAffiliation_xml – name: Graphic Era Deemed to be University, INDIA
– name: 2 Department of Software Engineering, Daffodil International University, Daffodil Smart City (DSC), Birulia, Savar, Bangladesh
– name: 4 Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
– name: 1 Department of Computer Science, University of Houston, Houston, Texas, United States of America
– name: 7 Department of ICT Convergence, Soonchunhyang University, Asan, Korea
– name: 5 School of Information Technology, Deakin University, Geelong, Victoria, Australia
– name: 6 Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
– name: 3 Centre for Advanced Machine Learning and Applications (CAMLAs), Dhaka, Bangladesh
Author_xml – sequence: 1
  givenname: Anjir Ahmed
  surname: Chowdhury
  fullname: Chowdhury, Anjir Ahmed
– sequence: 2
  givenname: S M Hasan
  surname: Mahmud
  fullname: Mahmud, S M Hasan
– sequence: 3
  givenname: Md Palash
  surname: Uddin
  fullname: Uddin, Md Palash
– sequence: 4
  givenname: Seifedine
  orcidid: 0000-0002-8596-0814
  surname: Kadry
  fullname: Kadry, Seifedine
– sequence: 5
  givenname: Jung-Yeon
  orcidid: 0000-0001-7487-5748
  surname: Kim
  fullname: Kim, Jung-Yeon
– sequence: 6
  givenname: Yunyoung
  surname: Nam
  fullname: Nam, Yunyoung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40638627$$D View this record in MEDLINE/PubMed
BookMark eNqNk1tv1DAQhSNURC_wDxBEQkLwsIvjOE7yhKqKy0oVlbi9WrP2JOuVYwc7Afrv8TZptYv6UPkh1sk3x54zyWlyZJ3FJHmekWWWl9m7rRu9BbPso7wkOaUlqx8lJ1md0wWnJD_a2x8npyFsCSnyivMnyTEjPO5oeZL0X0ZpUKcB2w7tAIN2NgWrUmkgBN1oOUmNd1260WFwPQwbZ1x7neoOWgzpGLRt0wYVehhQpQbB2xvJ-RStWqBqMe0NDFHoniaPGzABn83Ps-THxw_fLz4vLq8-rS7OLxeSMzYsMp5JUhAoZa1yTsq1VBQoRcqizjIFeRF7lgyaogEqkVWS5IqjInFRyPKz5OXk2xsXxBxWEDGnOqOcV3UkVhOhHGxF72M7_lo40OJGcL4V4Acd4xF1qWhVV0oxRMYJrnNKaL2Gusp5iWsSvYrJa7Q9XP8BY-4MMyJ287q9gtjNS8zzinXv51uO6w6VjCPwYA4uc_jG6o1o3W-RUcpYUZXR4c3s4N2vEcMgOh0kGgMW3Tg1TDPGaxrRV_-h98cyUy3EzrVtXDxY7kzFecVKWvAq31HLe6i4FHZaxhYbHfWDgrcHBZEZ8O_QwhiCWH37-nD26uch-3qP3SCYYROcGXdfbTgEX-xHfZfx7b8QATYB0rsQPDYPG-E_QjEenA
Cites_doi 10.1007/978-3-030-23937-4_2
10.1016/j.ijmedinf.2018.01.007
10.1016/j.media.2018.12.003
10.1109/TIP.2018.2795742
10.1109/ACCESS.2022.3141092
10.1109/TMI.2021.3085712
10.1038/ncomms5006
10.1109/ISBI56570.2024.10635755
10.1109/RBME.2009.2034865
10.1038/s41597-020-0528-1
10.1016/j.media.2019.101563
10.1109/CVPR.2015.7298965
10.1561/2200000083
10.1056/NEJMp1500523
10.3389/fbioe.2019.00053
10.1109/TBME.2015.2496264
10.1016/j.media.2024.103143
10.1109/TPAMI.2016.2644615
10.1016/j.neunet.2022.02.020
10.1001/jama.2015.1405
10.23919/APSIPA.2018.8659795
10.1109/TMI.2016.2606380
10.1007/978-3-319-46723-8_49
10.1109/ISBI.2019.8759574
10.1109/TBME.2010.2060338
10.1117/1.JMI.4.2.021101
10.3390/diagnostics12081812
10.3390/app112311423
ContentType Journal Article
Copyright Copyright: © 2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Chowdhury et al 2025 Chowdhury et al
2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Chowdhury et al 2025 Chowdhury et al
– notice: 2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0322749
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database (ProQuest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
ProQuest Agricultural Science
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (ProQuest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database (ProQuest)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (ProQuest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Agricultural Science Database
MEDLINE

CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Nuclei segmentation and classification from histopathology images using federated learning for end-edge
EISSN 1932-6203
ExternalDocumentID 3229126689
oai_doaj_org_article_97d2898dd4ee460eb32029ba98367eb0
10.1371/journal.pone.0322749
PMC12244587
A847256839
40638627
10_1371_journal_pone_0322749
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c644t-161c050a7c9d3607bcd2a22e241c041da35032c4af5fa2ce48c03d6ed0d0d2a13
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Oct 19 01:31:22 EDT 2025
Fri Oct 03 12:39:50 EDT 2025
Sun Oct 26 03:30:37 EDT 2025
Tue Sep 30 17:00:31 EDT 2025
Fri Sep 05 15:42:19 EDT 2025
Tue Oct 07 07:49:05 EDT 2025
Mon Oct 20 22:41:09 EDT 2025
Mon Oct 20 16:49:50 EDT 2025
Thu Oct 16 15:37:36 EDT 2025
Thu Oct 16 15:37:39 EDT 2025
Tue Aug 05 02:10:50 EDT 2025
Mon Jul 21 06:04:54 EDT 2025
Wed Oct 01 05:46:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Copyright: © 2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-161c050a7c9d3607bcd2a22e241c041da35032c4af5fa2ce48c03d6ed0d0d2a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-7487-5748
0000-0002-8596-0814
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0322749
PMID 40638627
PQID 3229126689
PQPubID 1436336
PageCount e0322749
ParticipantIDs plos_journals_3229126689
doaj_primary_oai_doaj_org_article_97d2898dd4ee460eb32029ba98367eb0
unpaywall_primary_10_1371_journal_pone_0322749
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12244587
proquest_miscellaneous_3229214692
proquest_journals_3229126689
gale_infotracmisc_A847256839
gale_infotracacademiconefile_A847256839
gale_incontextgauss_ISR_A847256839
gale_incontextgauss_IOV_A847256839
gale_healthsolutions_A847256839
pubmed_primary_40638627
crossref_primary_10_1371_journal_pone_0322749
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250710
PublicationDateYYYYMMDD 2025-07-10
PublicationDate_xml – month: 7
  year: 2025
  text: 20250710
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References TU Islam (pone.0322749.ref048) 2022
pone.0322749.ref051
B Stenkvist (pone.0322749.ref001) 1978; 38
TS Brisimi (pone.0322749.ref045) 2018; 112
pone.0322749.ref050
T Ilyas (pone.0322749.ref055) 2022; 151
pone.0322749.ref015
JG Elmore (pone.0322749.ref002) 2015; 313
K Jamieson (pone.0322749.ref039) 2016
S Chen (pone.0322749.ref017) 2020
K He (pone.0322749.ref035) 2016
C Mahanty (pone.0322749.ref009) 2021; 11
H Chen (pone.0322749.ref020) 2016
FS Collins (pone.0322749.ref010) 2015; 372
QD Vu (pone.0322749.ref056) 2019; 7
HJWL Aerts (pone.0322749.ref012) 2014; 5
M Saeed (pone.0322749.ref014) 2022; 10
M Saha (pone.0322749.ref054) 2018; 27
O Ronneberger (pone.0322749.ref022) 2015
V Badrinarayanan (pone.0322749.ref032) 2017; 39
H Oda (pone.0322749.ref024) 2018
L Hou (pone.0322749.ref005) 2020; 7
Y Xie (pone.0322749.ref007) 2015
pone.0322749.ref028
pone.0322749.ref029
FA Spanhol (pone.0322749.ref003) 2016; 63
Y Zhang (pone.0322749.ref008) 2017
pone.0322749.ref030
Y Song (pone.0322749.ref018) 2017; 36
T O’Malley (pone.0322749.ref049) 2019
LAD Cooper (pone.0322749.ref011) 2010; 57
P Kairouz (pone.0322749.ref043) 2021; 14
C Szegedy (pone.0322749.ref037) 2015
J Gamper (pone.0322749.ref026) 2019
pone.0322749.ref033
pone.0322749.ref034
G Huang (pone.0322749.ref036) 2017
HR Roth (pone.0322749.ref031) 2018; 36
H Hwang (pone.0322749.ref021) 2018
pone.0322749.ref040
pone.0322749.ref041
F Hörst (pone.0322749.ref027) 2024; 94
S Graham (pone.0322749.ref052) 2019; 58
AO Vuola (pone.0322749.ref016) 2019
M Joshi (pone.0322749.ref046) 2022
MN Gurcan (pone.0322749.ref004) 2009; 2
L Li (pone.0322749.ref038) 2017; 18
pone.0322749.ref047
pone.0322749.ref044
C Tommasino (pone.0322749.ref057) 2024
SEA Raza (pone.0322749.ref023) 2019; 52
Y Zhou (pone.0322749.ref025) 2019
pone.0322749.ref006
A Altameem (pone.0322749.ref013) 2022; 12
J Li (pone.0322749.ref042) 2021; 18
R Verma (pone.0322749.ref053) 2021; 40
Koohbanani Alemi (pone.0322749.ref019) 2019
References_xml – start-page: 11
  volume-title: European congress on digital pathology
  year: 2019
  ident: pone.0322749.ref026
  article-title: Pannuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification
  doi: 10.1007/978-3-030-23937-4_2
– volume: 36
  start-page: 63
  issue: 2
  year: 2018
  ident: pone.0322749.ref031
  article-title: Deep learning and its application to medical image segmentation
  publication-title: Med Imaging Technol
– volume: 112
  start-page: 59
  year: 2018
  ident: pone.0322749.ref045
  article-title: Federated learning of predictive models from federated Electronic Health Records
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2018.01.007
– volume: 52
  start-page: 160
  year: 2019
  ident: pone.0322749.ref023
  article-title: Micro-Net: A unified model for segmentation of various objects in microscopy images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.12.003
– ident: pone.0322749.ref050
– volume: 27
  start-page: 2189
  issue: 5
  year: 2018
  ident: pone.0322749.ref054
  article-title: Her2Net: A deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2795742
– start-page: 2487
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2016
  ident: pone.0322749.ref020
  article-title: DCAN: deep contour-aware networks for accurate gland segmentation
– volume: 10
  start-page: 5681
  year: 2022
  ident: pone.0322749.ref014
  article-title: The prognosis of allergy-based diseases using pythagorean fuzzy hypersoft mapping structures and recommending medication
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3141092
– volume: 40
  start-page: 3413
  issue: 12
  year: 2021
  ident: pone.0322749.ref053
  article-title: MoNuSAC2020: A multi-organ nuclei segmentation and classification challenge
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3085712
– ident: pone.0322749.ref041
– volume: 5
  start-page: 4006
  year: 2014
  ident: pone.0322749.ref012
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– start-page: 1
  volume-title: 2024 IEEE International symposium on biomedical imaging (ISBI).
  year: 2024
  ident: pone.0322749.ref057
  article-title: HoVer-unet: Accelerating hovernet with unet-based multi-class nuclei segmentation via knowledge distillation
  doi: 10.1109/ISBI56570.2024.10635755
– start-page: 228
  volume-title: International conference on medical image computing and computer-assisted intervention
  year: 2018
  ident: pone.0322749.ref024
  article-title: BESNet: boundary-enhanced segmentation of cells in histopathological images
– volume: 2
  start-page: 147
  year: 2009
  ident: pone.0322749.ref004
  article-title: Histopathological image analysis: a review
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2009.2034865
– volume: 7
  start-page: 185
  issue: 1
  year: 2020
  ident: pone.0322749.ref005
  article-title: Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types
  publication-title: Sci Data
  doi: 10.1038/s41597-020-0528-1
– volume: 58
  start-page: 101563
  year: 2019
  ident: pone.0322749.ref052
  article-title: Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101563
– start-page: 408
  volume-title: International conference on medical image computing and computer-assisted intervention
  year: 2017
  ident: pone.0322749.ref008
  article-title: Deep adversarial networks for biomedical image segmentation utilizing unannotated images
– ident: pone.0322749.ref015
– ident: pone.0322749.ref028
  doi: 10.1109/CVPR.2015.7298965
– start-page: 1
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2015
  ident: pone.0322749.ref037
– volume: 14
  start-page: 1
  year: 2021
  ident: pone.0322749.ref043
  article-title: Advances and open problems in federated learning
  publication-title: FNT Mach Learn
  doi: 10.1561/2200000083
– ident: pone.0322749.ref029
– start-page: 622
  volume-title: Nuclear instance segmentation using a proposal-free spatially aware deep learning framework. In: International conference on medical image computing and computer-assisted intervention
  year: 2019
  ident: pone.0322749.ref019
– start-page: 4700
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2017
  ident: pone.0322749.ref036
  article-title: Densely connected convolutional networks
– start-page: 240
  volume-title: Artificial intelligence and statistics
  year: 2016
  ident: pone.0322749.ref039
  article-title: Non-stochastic best arm identification and hyperparameter optimization
– volume: 38
  start-page: 4688
  issue: 12
  year: 1978
  ident: pone.0322749.ref001
  article-title: Computerized nuclear morphometry as an objective method for characterizing human cancer cell populations
  publication-title: Cancer Res
– volume: 372
  start-page: 793
  issue: 9
  year: 2015
  ident: pone.0322749.ref010
  article-title: A new initiative on precision medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1500523
– start-page: 770
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2016
  ident: pone.0322749.ref035
  article-title: Deep residual learning for image recognition
– volume: 7
  start-page: 53
  year: 2019
  ident: pone.0322749.ref056
  article-title: Methods for segmentation and classification of digital microscopy tissue images
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2019.00053
– volume: 63
  start-page: 1455
  issue: 7
  year: 2016
  ident: pone.0322749.ref003
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2496264
– start-page: 234
  volume-title: International Conference on Medical image computing and computer-assisted intervention
  year: 2015
  ident: pone.0322749.ref022
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 94
  start-page: 103143
  year: 2024
  ident: pone.0322749.ref027
  article-title: CellViT: Vision transformers for precise cell segmentation and classification
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2024.103143
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: pone.0322749.ref032
  article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2644615
– volume: 151
  start-page: 1
  year: 2022
  ident: pone.0322749.ref055
  article-title: TSFD-Net: Tissue specific feature distillation network for nuclei segmentation and classification
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2022.02.020
– volume: 313
  start-page: 1122
  issue: 11
  year: 2015
  ident: pone.0322749.ref002
  article-title: Diagnostic concordance among pathologists interpreting breast biopsy specimens
  publication-title: JAMA
  doi: 10.1001/jama.2015.1405
– start-page: 358
  volume-title: International conference on medical image computing and computer-assisted intervention
  year: 2015
  ident: pone.0322749.ref007
– start-page: 689
  volume-title: 2018 Asia-Pacific signal and information processing association annual summit and conference (APSIPA ASC)
  year: 2018
  ident: pone.0322749.ref021
  article-title: Skipped-hierarchical feature pyramid networks for nuclei instance segmentation
  doi: 10.23919/APSIPA.2018.8659795
– ident: pone.0322749.ref047
– start-page: 0281
  volume-title: Privacy-preserving federated learning model for healthcare data2022 IEEE 12th annual computing and communication workshop and conference (CCWC)
  year: 2022
  ident: pone.0322749.ref048
– volume: 36
  start-page: 288
  issue: 1
  year: 2017
  ident: pone.0322749.ref018
  article-title: Accurate cervical cell segmentation from overlapping clumps in pap smear images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2606380
– ident: pone.0322749.ref033
  doi: 10.1007/978-3-319-46723-8_49
– start-page: 682
  volume-title: International conference on information processing in medical imaging
  year: 2019
  ident: pone.0322749.ref025
– ident: pone.0322749.ref034
– start-page: 208
  volume-title: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019)
  year: 2019
  ident: pone.0322749.ref016
  article-title: Mask-RCNN and U-net ensembled for nuclei segmentation
  doi: 10.1109/ISBI.2019.8759574
– start-page: 279
  volume-title: International conference on medical image computing and computer-assisted intervention
  year: 2020
  ident: pone.0322749.ref017
  article-title: Boundary-assisted region proposal networks for nucleus segmentation
– ident: pone.0322749.ref030
– volume: 18
  start-page: 6765
  issue: 1
  year: 2017
  ident: pone.0322749.ref038
  article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization
  publication-title: J Mach Learn Res
– volume: 57
  start-page: 2617
  issue: 10
  year: 2010
  ident: pone.0322749.ref011
  article-title: An integrative approach for in silico glioma research
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2060338
– ident: pone.0322749.ref051
– ident: pone.0322749.ref006
  doi: 10.1117/1.JMI.4.2.021101
– volume: 12
  start-page: 1812
  issue: 8
  year: 2022
  ident: pone.0322749.ref013
  article-title: Breast cancer detection in mammography images using deep convolutional neural networks and fuzzy ensemble modeling techniques
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics12081812
– volume: 11
  start-page: 11423
  issue: 23
  year: 2021
  ident: pone.0322749.ref009
  article-title: COVID-19 patient detection based on fusion of transfer learning and fuzzy ensemble models using CXR images
  publication-title: Appl Sci
  doi: 10.3390/app112311423
– year: 2022
  ident: pone.0322749.ref046
  article-title: Federated learning for healthcare domain-pipeline, applications and challenges
  publication-title: ACM Trans Comput Healthc
– ident: pone.0322749.ref040
– ident: pone.0322749.ref044
– volume: 18
  issue: 3
  year: 2021
  ident: pone.0322749.ref042
  article-title: A federated learning based privacy-preserving smart healthcare system
  publication-title: IEEE Trans Ind Inform
– volume-title: Keras Tuner
  year: 2019
  ident: pone.0322749.ref049
SSID ssj0053866
Score 2.4840758
Snippet Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0322749
SubjectTerms Accuracy
Algorithms
Automation
Biology and Life Sciences
Biopsy
Cancer
Cell Nucleus - pathology
Classification
Collaboration
Computer and Information Sciences
Correlation coefficient
Correlation coefficients
Datasets
Deep Learning
Diagnosis
Efficiency
Engineering and Technology
Federated Learning
Health aspects
Histology
Histopathology
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Localization
Machine learning
Medical imaging
Medicine and Health Sciences
Methods
Neoplasms - diagnostic imaging
Neoplasms - pathology
Neural networks
Nuclei
Optimization
Physical Sciences
Privacy
Research and Analysis Methods
Segmentation
Semantics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByydRLHiY8FURUkigQU9WY5trNdaZtEza4Q_56Z2BttRCV6QHuzJytlXp6JZ74h5LU0leBlXcS5KV3MeWHj0iU8ljkzApxhXg9gz19OxckZ_3yen--M-sKaMA8P7Bl3KAsLOUFpLXeOCwa5H6TrstKyzEThqiFbZ6XcJlPeB4MVCxEa5bIiOQxymXdt4-YMdLhA7Mydg2jA6x-98qxbtf11IefflZO3N02nf__Sq9XOsXR8j9wN8SQ98u-xR2655j7ZCxbb07cBVvrdA9KdInTxkvZucRkajhqqG0sNBtBYMeSXsOGEDjDEOK14-OpOl5fgdnqKRfILWiP-BISoloaRE7DUXlHX2Bg_ztFupdcYCj8kZ8cff3w4icO8hRjEwtcxBH-G5UwXRtpMsKIyNtVp6uCQN4wnVmc58M5wXee1To3jpWGZFc4y-KU6yR6RWQMc3ie01FYmaS1qayu8mdMVovgYBNdCiFMZkXjLfNV5WA013K0VkI54zikUlgrCish7lNBIi6DYwwKoigqqov6lKhF5gfJVvsN0NG11BCc0RH4QKkbk1UCBwBgNVt4s9Kbv1aevP29A9P3bhOhNIKpb0BSjQ7cDvBMCbk0oDyaUYN5msr2P2rjlSq-AIcBaIUp8cquh12-_HLfxT7GarnHtxtPgQHeZRuSxV-iRsxxjWJEWESknqj5h_XSnWV4MuOR4SQvChkfno1XcSLpP_od0n5I7Kc5mRtBTdkBm66uNewYB47p6PviGPxiOag8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXRHk1UMAgJOCQrZM4TnJAqEWtChILKhT1Fjm2s6y0TcJmV4h_z4zjhEZUqMrNniTKvDyxZ74h5GWmCsHTMvFjlRqf80T7qQm4n8VMCXCGcWnBnj_NxMkZ_3gen2-RWV8Lg2mVvU-0jlrXCvfI90HxsgBWkzR71_z0sWsUnq72LTSka62g31qIsRtkO0RkrAnZPjyafTntfTNYtxCugC5Kgn0nr2lTV2bK4BUJYmpeWqAsjv_grSfNsm6vCkX_zai8uaka-fuXXC4vLVfHd8htF2fSg04xdsiWqe6SHWfJLX3t4Kbf3CPNDCGNF7Q18wtXiFRRWWmqMLDGTKJuCAtRqIUnxi7GdjeeLi7AHbUUk-fntERcCghdNXWtKGCoXlFTaR837WizlGsMke-Ts-Ojb-9PfNeHwQdx8bUPQaFiMZOJynQkWFIoHcowNLD4K8YDLaMYeKe4LONShsrwVLFIC6MZXKEMogdkUgGHdwlNpQYplqLUusATO1kguo9C0C2EPs084vfMz5sObiO3Z24J_KZ0nMtRWLkTlkcOUUIDLYJl24F6Nc-d7eVZouG3MtWaG8MFMwX2jM8KmaWRSEzBPPIM5Zt3laeDyecHsHJDRAghpEdeWAoEzKgwI2cuN22bf_j8_RpEX09HRK8cUVmDpijpqiDgmxCIa0S5N6IEs1ej6V3Uxp4rbf7XQODOXkOvnn4-TONDMcuuMvWmo8FG71nokYedQg-c5RjbijDxSDpS9RHrxzPV4ofFK8fDWxA23DodrOJa0n30_w95TG6F2I0ZYU7ZHpmsVxvzBELEdfHU2f0f3WpoRg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZG9wAvwPi1wACDkACJFNdxnOSxIKaBtIKAovEUObZTKrokWlIh-Ou5S9xogSEV9c0-V_Ld-fIlvvuOkCeJzqSI88gPdWx9ISLjx3Yi_CRkWkIwDPOW7Pl4Jo_m4t1JeLJDXmxqYc7f3wfR5KXT6LgqCztm4H2RSC6RXRkC8h6R3fnsw_Rrd3HMfclZ4Krj_rV08PRpSfr7UDyqVmV9Ec78O13y8rqo1M8farU69yw6vEaON7voUlC-j9dNNta__iB43Hab18lVB0rptPOiPbJjixtkzx37mj5z3NTPb5JqhvzHS1rbxamrWiqoKgzViMIx7agbwqoV2nIZY8vj9tM9XZ5C7KopZtovaI4kFoBzDXV9K2CoPKO2MD5-4aPVSjWIp2-R-eGbz6-PfNe0wQfbisYHBKlZyFSkExNIFmXacMW5BaSgmZgYFYSwPy1UHuaKaytizQIjrWHw42oS3CajArSwT2isTDLhucyNyfB6T2VIBaSRoQt5UhOP-BtjplXHzZG2F3QRvNN0mktRoalTqEdeocV7WWTWbgfAEqk7qGkSGXgHjY0R1grJbIYN5pNMJXEgI5sxjzxEf0m7MtU-PqRTeMwDfAS86ZHHrQSyaxSYvrNQ67pO377_soXQp48DoadOKC_B87RyJROwJ2TtGkgeDCQhRujB9D5690YrdQoKAdVKGePKjcdfPP2on8Y_xZS8wpbrTga7wifcI3e6A9JrViAQljzySDw4OgPVD2eK5beW3BxvesHYsHTcn7KtrHv3fxfcI1c4NnNGllR2QEbN2dreB4TZZA9cYPkNhLN6tw
  priority: 102
  providerName: Unpaywall
Title Nuclei segmentation and classification from histopathology images using federated learning for end-edge platform
URI https://www.ncbi.nlm.nih.gov/pubmed/40638627
https://www.proquest.com/docview/3229126689
https://www.proquest.com/docview/3229214692
https://pubmed.ncbi.nlm.nih.gov/PMC12244587
https://doi.org/10.1371/journal.pone.0322749
https://doaj.org/article/97d2898dd4ee460eb32029ba98367eb0
http://dx.doi.org/10.1371/journal.pone.0322749
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLa2ToK9IMZtgVEMQgIeUiWp4yQPCHXTxkBamQZF3VPk2E6p1CWhaQX795yTONEiOmmKlAf7OGrPxT6-fR8hbyOZcBamge3LUNuMBcoOtcvsyHckh87QTyuw57MxP52wr1N_ukUazlajwHLj1A75pCbLxeDv7-tPEPAfK9aGwG0aDYo80wMHPDRg0TbZgbEqQjKHM9buK0B0c24u0N3WcpfcYziOcySauTFWVZD-bcfdKxZ5uSkr_f9w5f11VojrP2KxuDFynTwkD0zKSUe1j-yRLZ09InsmqEv63iBPf3hMijGiG89pqWdX5k5SRkWmqMQcGw8V1UV4J4VWSMVIaFwtzNP5FfRMJcVz9DOaIkQFZLGKGlYKKMqXVGfKxvU7WizECrPlJ2Rycvzj6NQ2lAw2WI6tbMgPpeM7IpCRGnInSKTyhOdpyAOkw1wlhj6oUTKR-qnwpGahdIaKa-XA4wl3-JT0MlD2PqGhUJHrpTxVKsHNO5Eg0I9E_C1EQY0sYjfKj4saeSOutt8CmLHUmovRbrGxm0UO0UKtLOJmVwX5chabMIyjQMEMM1SKac24oxOkj48SEYVDHujEscgrtG9cX0Jtoz8ewSAOySFkkxZ5U0kgdkaGh3NmYl2W8ZdvP-8g9P2iI_TOCKU5eIoU5kIE_CfE5OpIHnQkoQeQnep99MZGK2UMCgHVch5iy8ZDN1e_bqvxo3jgLtP5upZBzvfIs8iz2qFbzTbhYZGw4-od1XdrsvmvCroc93HB2NB00EbFnaz7_NZf8YLsesjJjGCnzgHprZZr_RISxVXSJ9vBNIB3eOTi--Rzn-wcHo_PL_rV0ku_6hugbDI-H13-A6OPbjs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRMujgUINAgGHbLOJ8_ABVeVR7dJ2kaCt9hYc21lW2iZhs6uqf4rfyEziBCIq1EuVmz1xlJnxeGzPfEPISy6TgEVpaPsy0jZjobIjPWA29x0ZgDH00wrs-XgcDE_Z54k_WSO_mlwYDKtsbGJlqFUu8Yx8FxSPD2A1ifhe8dPGqlF4u9qU0KjV4lBfXsCWrXw3-gjyfeW6B59OPgxtU1XAho-zpQ0ujnR8R4SSKy9wwkQqV7iuhqVMOmyghOc7niuZSP1UuFKzSDqeCrRy4HHFwINxb5HbzANbAvMnnLQbPLAdQWDS87xwsGu0oV_kme7DmLAB5J3lr6oS0K4FvWKel1c5uv_Ga66vskJcXoj5_K_F8OAeuWu8WLpfq90GWdPZJtkwdqKkbwyY9dv7pBgjYPKMlnp6btKcMioyRSW67RinVDdhmgutwI-xRnJ11k9n52DsSoqh-VOaIuoFOMaKmkIX0JQvqM6UjUeCtJiLJTrgD8jpjcjjIellwOEtQiOhQEfSIFUqwftAkSB2kERILwRW5RaxG-bHRQ3mEVc3eiFsgmrOxSis2AjLIu9RQi0tQnFXDfliGpuZHfNQwaY1UoppzQJHJ1iRnieCR14Q6sSxyA7KN67zWluDEu-DXwD-JjioFnlRUSAcR4bxPlOxKst49OXsGkTfvnaIXhuiNAdNkcLkWMA_IcxXh3K7QwlGRXa6t1AbG66U8Z_pB282Gnp19_O2GwfFGL5M56uaBsvIc9cij2qFbjnL0HMO3NAiUUfVO6zv9mSzHxUaOl4Ng7Dh1X47K64l3cf__5Edsj48OT6Kj0bjwyfkjot1nxFQ1dkmveVipZ-CM7pMnlUWgJLvN21yfgOoKZ6b
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkWAviPG1wGAGgYCHtGnifPgBocGoVgYFAUN9C47tdJW6JDStpv1r_HXcJU4gYkJ7mfJmX6zk7nw-23e_I-Qpl0nAojS0fRlpm7FQ2ZEeMpv7jgzAGPppBfb8cRIcHLH3U3-6QX41uTAYVtnYxMpQq1ziGfkAFI8PYTWJ-CA1YRGf90evi582VpDCm9amnEatIof67BS2b-Wr8T7I-pnrjt59e3tgmwoDNnwIW9ng7kjHd0QoufICJ0ykcoXraljWpMOGSni-47mSidRPhSs1i6TjqUArBx5XDD0Y9wq5Gnoex3DCcNpu9sCOBIFJ1fPC4cBoRr_IM92HMWEzyDtLYVUxoF0XesUiL89zev-N3by-zgpxdioWi78WxtFNcsN4tHSvVsEtsqGzW2TL2IySvjDA1i9vk2KC4MlzWurZiUl5yqjIFJXowmPMUt2EKS-0AkLGesnVuT-dn4DhKymG6c9oiggY4CQraopeQFO-pDpTNh4P0mIhVuiM3yFHlyKPu6SXAYe3CY2EAn1Jg1SpBO8GRYI4QhLhvRBklVvEbpgfFzWwR1zd7oWwIao5F6OwYiMsi7xBCbW0CMtdNeTLWWxmecxDBRvYSCmmNQscnWB1ep4IHnlBqBPHIrso37jOcW2NS7wHPgL4nuCsWuRJRYHQHBkq-UysyzIef_p-AaKvXzpEzw1RmoOmSGHyLeCfEPKrQ7nToQQDIzvd26iNDVfK-M9UhDcbDT2_-3HbjYNiPF-m83VNgyXluWuRe7VCt5xl6EUHbmiRqKPqHdZ3e7L5cYWMjtfEIGx4td_OigtJ9_7_f2SXXANjE38YTw4fkE0XS0AjtqqzQ3qr5Vo_BL90lTyqDAAlPy7b4vwGQ2ei3g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZG9wAvwPi1wACDkACJFNdxnOSxIKaBtIKAovEUObZTKrokWlIh-Ou5S9xogSEV9c0-V_Ld-fIlvvuOkCeJzqSI88gPdWx9ISLjx3Yi_CRkWkIwDPOW7Pl4Jo_m4t1JeLJDXmxqYc7f3wfR5KXT6LgqCztm4H2RSC6RXRkC8h6R3fnsw_Rrd3HMfclZ4Krj_rV08PRpSfr7UDyqVmV9Ec78O13y8rqo1M8farU69yw6vEaON7voUlC-j9dNNta__iB43Hab18lVB0rptPOiPbJjixtkzx37mj5z3NTPb5JqhvzHS1rbxamrWiqoKgzViMIx7agbwqoV2nIZY8vj9tM9XZ5C7KopZtovaI4kFoBzDXV9K2CoPKO2MD5-4aPVSjWIp2-R-eGbz6-PfNe0wQfbisYHBKlZyFSkExNIFmXacMW5BaSgmZgYFYSwPy1UHuaKaytizQIjrWHw42oS3CajArSwT2isTDLhucyNyfB6T2VIBaSRoQt5UhOP-BtjplXHzZG2F3QRvNN0mktRoalTqEdeocV7WWTWbgfAEqk7qGkSGXgHjY0R1grJbIYN5pNMJXEgI5sxjzxEf0m7MtU-PqRTeMwDfAS86ZHHrQSyaxSYvrNQ67pO377_soXQp48DoadOKC_B87RyJROwJ2TtGkgeDCQhRujB9D5690YrdQoKAdVKGePKjcdfPP2on8Y_xZS8wpbrTga7wifcI3e6A9JrViAQljzySDw4OgPVD2eK5beW3BxvesHYsHTcn7KtrHv3fxfcI1c4NnNGllR2QEbN2dreB4TZZA9cYPkNhLN6tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclei+segmentation+and+classification+from+histopathology+images+using+federated+learning+for+end-edge+platform&rft.jtitle=PloS+one&rft.au=Chowdhury%2C+Anjir+Ahmed&rft.au=Mahmud%2C+S+M+Hasan&rft.au=Uddin%2C+Md+Palash&rft.au=Kadry%2C+Seifedine&rft.date=2025-07-10&rft.eissn=1932-6203&rft.volume=20&rft.issue=7&rft.spage=e0322749&rft_id=info:doi/10.1371%2Fjournal.pone.0322749&rft_id=info%3Apmid%2F40638627&rft.externalDocID=40638627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon