Nuclei segmentation and classification from histopathology images using federated learning for end-edge platform
Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry boundaries, and overlapping nuclei. Manual segmentation is time-consuming and labor-intensive, highlighting the need for efficient and scala...
Saved in:
| Published in | PloS one Vol. 20; no. 7; p. e0322749 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
10.07.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0322749 |
Cover
| Abstract | Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry boundaries, and overlapping nuclei. Manual segmentation is time-consuming and labor-intensive, highlighting the need for efficient and scalable automated solutions. This study proposes a deep learning framework that combines segmentation and classification to enhance nuclei evaluation in histopathology images. The framework follows a two-stage approach: first, a SegNet model segments the nuclei regions, and then a DenseNet121 model classifies the segmented instances. Hyperparameter optimization using the Hyperband method enhances the performance of both models. To protect data privacy, the framework employs a FedAvg-based federated learning scheme, enabling decentralized training without exposing sensitive data. For efficient deployment on edge devices, full integer quantization is applied to reduce computational overhead while maintaining accuracy. Experimental results show that the SegNet model achieves 91.4% Mean Pixel Accuracy (MPA), 63% Mean Intersection over Union (MIoU), and 90.6% Frequency-Weighted IoU (FWIoU). The DenseNet121 classifier achieves 83% accuracy and a 67% Matthews Correlation Coefficient (MCC), surpassing state-of-the-art models. Post-quantization, both models exhibit performance gains of 1.3% and 1.0%, respectively. The proposed framework demonstrates high accuracy and efficiency, highlighting its potential for real-world clinical deployment in cancer diagnosis. |
|---|---|
| AbstractList | Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry boundaries, and overlapping nuclei. Manual segmentation is time-consuming and labor-intensive, highlighting the need for efficient and scalable automated solutions. This study proposes a deep learning framework that combines segmentation and classification to enhance nuclei evaluation in histopathology images. The framework follows a two-stage approach: first, a SegNet model segments the nuclei regions, and then a DenseNet121 model classifies the segmented instances. Hyperparameter optimization using the Hyperband method enhances the performance of both models. To protect data privacy, the framework employs a FedAvg-based federated learning scheme, enabling decentralized training without exposing sensitive data. For efficient deployment on edge devices, full integer quantization is applied to reduce computational overhead while maintaining accuracy. Experimental results show that the SegNet model achieves 91.4% Mean Pixel Accuracy (MPA), 63% Mean Intersection over Union (MIoU), and 90.6% Frequency-Weighted IoU (FWIoU). The DenseNet121 classifier achieves 83% accuracy and a 67% Matthews Correlation Coefficient (MCC), surpassing state-of-the-art models. Post-quantization, both models exhibit performance gains of 1.3% and 1.0%, respectively. The proposed framework demonstrates high accuracy and efficiency, highlighting its potential for real-world clinical deployment in cancer diagnosis. Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry boundaries, and overlapping nuclei. Manual segmentation is time-consuming and labor-intensive, highlighting the need for efficient and scalable automated solutions. This study proposes a deep learning framework that combines segmentation and classification to enhance nuclei evaluation in histopathology images. The framework follows a two-stage approach: first, a SegNet model segments the nuclei regions, and then a DenseNet121 model classifies the segmented instances. Hyperparameter optimization using the Hyperband method enhances the performance of both models. To protect data privacy, the framework employs a FedAvg-based federated learning scheme, enabling decentralized training without exposing sensitive data. For efficient deployment on edge devices, full integer quantization is applied to reduce computational overhead while maintaining accuracy. Experimental results show that the SegNet model achieves 91.4% Mean Pixel Accuracy (MPA), 63% Mean Intersection over Union (MIoU), and 90.6% Frequency-Weighted IoU (FWIoU). The DenseNet121 classifier achieves 83% accuracy and a 67% Matthews Correlation Coefficient (MCC), surpassing state-of-the-art models. Post-quantization, both models exhibit performance gains of 1.3% and 1.0%, respectively. The proposed framework demonstrates high accuracy and efficiency, highlighting its potential for real-world clinical deployment in cancer diagnosis.Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry boundaries, and overlapping nuclei. Manual segmentation is time-consuming and labor-intensive, highlighting the need for efficient and scalable automated solutions. This study proposes a deep learning framework that combines segmentation and classification to enhance nuclei evaluation in histopathology images. The framework follows a two-stage approach: first, a SegNet model segments the nuclei regions, and then a DenseNet121 model classifies the segmented instances. Hyperparameter optimization using the Hyperband method enhances the performance of both models. To protect data privacy, the framework employs a FedAvg-based federated learning scheme, enabling decentralized training without exposing sensitive data. For efficient deployment on edge devices, full integer quantization is applied to reduce computational overhead while maintaining accuracy. Experimental results show that the SegNet model achieves 91.4% Mean Pixel Accuracy (MPA), 63% Mean Intersection over Union (MIoU), and 90.6% Frequency-Weighted IoU (FWIoU). The DenseNet121 classifier achieves 83% accuracy and a 67% Matthews Correlation Coefficient (MCC), surpassing state-of-the-art models. Post-quantization, both models exhibit performance gains of 1.3% and 1.0%, respectively. The proposed framework demonstrates high accuracy and efficiency, highlighting its potential for real-world clinical deployment in cancer diagnosis. |
| Audience | Academic |
| Author | Uddin, Md Palash Kadry, Seifedine Nam, Yunyoung Chowdhury, Anjir Ahmed Mahmud, S M Hasan Kim, Jung-Yeon |
| AuthorAffiliation | 1 Department of Computer Science, University of Houston, Houston, Texas, United States of America 5 School of Information Technology, Deakin University, Geelong, Victoria, Australia 4 Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh 2 Department of Software Engineering, Daffodil International University, Daffodil Smart City (DSC), Birulia, Savar, Bangladesh 7 Department of ICT Convergence, Soonchunhyang University, Asan, Korea 6 Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon Graphic Era Deemed to be University, INDIA 3 Centre for Advanced Machine Learning and Applications (CAMLAs), Dhaka, Bangladesh |
| AuthorAffiliation_xml | – name: Graphic Era Deemed to be University, INDIA – name: 2 Department of Software Engineering, Daffodil International University, Daffodil Smart City (DSC), Birulia, Savar, Bangladesh – name: 4 Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh – name: 1 Department of Computer Science, University of Houston, Houston, Texas, United States of America – name: 7 Department of ICT Convergence, Soonchunhyang University, Asan, Korea – name: 5 School of Information Technology, Deakin University, Geelong, Victoria, Australia – name: 6 Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon – name: 3 Centre for Advanced Machine Learning and Applications (CAMLAs), Dhaka, Bangladesh |
| Author_xml | – sequence: 1 givenname: Anjir Ahmed surname: Chowdhury fullname: Chowdhury, Anjir Ahmed – sequence: 2 givenname: S M Hasan surname: Mahmud fullname: Mahmud, S M Hasan – sequence: 3 givenname: Md Palash surname: Uddin fullname: Uddin, Md Palash – sequence: 4 givenname: Seifedine orcidid: 0000-0002-8596-0814 surname: Kadry fullname: Kadry, Seifedine – sequence: 5 givenname: Jung-Yeon orcidid: 0000-0001-7487-5748 surname: Kim fullname: Kim, Jung-Yeon – sequence: 6 givenname: Yunyoung surname: Nam fullname: Nam, Yunyoung |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40638627$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk1tv1DAQhSNURC_wDxBEQkLwsIvjOE7yhKqKy0oVlbi9WrP2JOuVYwc7Afrv8TZptYv6UPkh1sk3x54zyWlyZJ3FJHmekWWWl9m7rRu9BbPso7wkOaUlqx8lJ1md0wWnJD_a2x8npyFsCSnyivMnyTEjPO5oeZL0X0ZpUKcB2w7tAIN2NgWrUmkgBN1oOUmNd1260WFwPQwbZ1x7neoOWgzpGLRt0wYVehhQpQbB2xvJ-RStWqBqMe0NDFHoniaPGzABn83Ps-THxw_fLz4vLq8-rS7OLxeSMzYsMp5JUhAoZa1yTsq1VBQoRcqizjIFeRF7lgyaogEqkVWS5IqjInFRyPKz5OXk2xsXxBxWEDGnOqOcV3UkVhOhHGxF72M7_lo40OJGcL4V4Acd4xF1qWhVV0oxRMYJrnNKaL2Gusp5iWsSvYrJa7Q9XP8BY-4MMyJ287q9gtjNS8zzinXv51uO6w6VjCPwYA4uc_jG6o1o3W-RUcpYUZXR4c3s4N2vEcMgOh0kGgMW3Tg1TDPGaxrRV_-h98cyUy3EzrVtXDxY7kzFecVKWvAq31HLe6i4FHZaxhYbHfWDgrcHBZEZ8O_QwhiCWH37-nD26uch-3qP3SCYYROcGXdfbTgEX-xHfZfx7b8QATYB0rsQPDYPG-E_QjEenA |
| Cites_doi | 10.1007/978-3-030-23937-4_2 10.1016/j.ijmedinf.2018.01.007 10.1016/j.media.2018.12.003 10.1109/TIP.2018.2795742 10.1109/ACCESS.2022.3141092 10.1109/TMI.2021.3085712 10.1038/ncomms5006 10.1109/ISBI56570.2024.10635755 10.1109/RBME.2009.2034865 10.1038/s41597-020-0528-1 10.1016/j.media.2019.101563 10.1109/CVPR.2015.7298965 10.1561/2200000083 10.1056/NEJMp1500523 10.3389/fbioe.2019.00053 10.1109/TBME.2015.2496264 10.1016/j.media.2024.103143 10.1109/TPAMI.2016.2644615 10.1016/j.neunet.2022.02.020 10.1001/jama.2015.1405 10.23919/APSIPA.2018.8659795 10.1109/TMI.2016.2606380 10.1007/978-3-319-46723-8_49 10.1109/ISBI.2019.8759574 10.1109/TBME.2010.2060338 10.1117/1.JMI.4.2.021101 10.3390/diagnostics12081812 10.3390/app112311423 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Chowdhury et al 2025 Chowdhury et al 2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Chowdhury et al 2025 Chowdhury et al – notice: 2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0322749 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database (ProQuest) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Agricultural Science Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (ProQuest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database (ProQuest) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database (ProQuest) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Nuclei segmentation and classification from histopathology images using federated learning for end-edge |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3229126689 oai_doaj_org_article_97d2898dd4ee460eb32029ba98367eb0 10.1371/journal.pone.0322749 PMC12244587 A847256839 40638627 10_1371_journal_pone_0322749 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c644t-161c050a7c9d3607bcd2a22e241c041da35032c4af5fa2ce48c03d6ed0d0d2a13 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Oct 19 01:31:22 EDT 2025 Fri Oct 03 12:39:50 EDT 2025 Sun Oct 26 03:30:37 EDT 2025 Tue Sep 30 17:00:31 EDT 2025 Fri Sep 05 15:42:19 EDT 2025 Tue Oct 07 07:49:05 EDT 2025 Mon Oct 20 22:41:09 EDT 2025 Mon Oct 20 16:49:50 EDT 2025 Thu Oct 16 15:37:36 EDT 2025 Thu Oct 16 15:37:39 EDT 2025 Tue Aug 05 02:10:50 EDT 2025 Mon Jul 21 06:04:54 EDT 2025 Wed Oct 01 05:46:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Copyright: © 2025 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c644t-161c050a7c9d3607bcd2a22e241c041da35032c4af5fa2ce48c03d6ed0d0d2a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0001-7487-5748 0000-0002-8596-0814 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0322749 |
| PMID | 40638627 |
| PQID | 3229126689 |
| PQPubID | 1436336 |
| PageCount | e0322749 |
| ParticipantIDs | plos_journals_3229126689 doaj_primary_oai_doaj_org_article_97d2898dd4ee460eb32029ba98367eb0 unpaywall_primary_10_1371_journal_pone_0322749 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12244587 proquest_miscellaneous_3229214692 proquest_journals_3229126689 gale_infotracmisc_A847256839 gale_infotracacademiconefile_A847256839 gale_incontextgauss_ISR_A847256839 gale_incontextgauss_IOV_A847256839 gale_healthsolutions_A847256839 pubmed_primary_40638627 crossref_primary_10_1371_journal_pone_0322749 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250710 |
| PublicationDateYYYYMMDD | 2025-07-10 |
| PublicationDate_xml | – month: 7 year: 2025 text: 20250710 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | TU Islam (pone.0322749.ref048) 2022 pone.0322749.ref051 B Stenkvist (pone.0322749.ref001) 1978; 38 TS Brisimi (pone.0322749.ref045) 2018; 112 pone.0322749.ref050 T Ilyas (pone.0322749.ref055) 2022; 151 pone.0322749.ref015 JG Elmore (pone.0322749.ref002) 2015; 313 K Jamieson (pone.0322749.ref039) 2016 S Chen (pone.0322749.ref017) 2020 K He (pone.0322749.ref035) 2016 C Mahanty (pone.0322749.ref009) 2021; 11 H Chen (pone.0322749.ref020) 2016 FS Collins (pone.0322749.ref010) 2015; 372 QD Vu (pone.0322749.ref056) 2019; 7 HJWL Aerts (pone.0322749.ref012) 2014; 5 M Saeed (pone.0322749.ref014) 2022; 10 M Saha (pone.0322749.ref054) 2018; 27 O Ronneberger (pone.0322749.ref022) 2015 V Badrinarayanan (pone.0322749.ref032) 2017; 39 H Oda (pone.0322749.ref024) 2018 L Hou (pone.0322749.ref005) 2020; 7 Y Xie (pone.0322749.ref007) 2015 pone.0322749.ref028 pone.0322749.ref029 FA Spanhol (pone.0322749.ref003) 2016; 63 Y Zhang (pone.0322749.ref008) 2017 pone.0322749.ref030 Y Song (pone.0322749.ref018) 2017; 36 T O’Malley (pone.0322749.ref049) 2019 LAD Cooper (pone.0322749.ref011) 2010; 57 P Kairouz (pone.0322749.ref043) 2021; 14 C Szegedy (pone.0322749.ref037) 2015 J Gamper (pone.0322749.ref026) 2019 pone.0322749.ref033 pone.0322749.ref034 G Huang (pone.0322749.ref036) 2017 HR Roth (pone.0322749.ref031) 2018; 36 H Hwang (pone.0322749.ref021) 2018 pone.0322749.ref040 pone.0322749.ref041 F Hörst (pone.0322749.ref027) 2024; 94 S Graham (pone.0322749.ref052) 2019; 58 AO Vuola (pone.0322749.ref016) 2019 M Joshi (pone.0322749.ref046) 2022 MN Gurcan (pone.0322749.ref004) 2009; 2 L Li (pone.0322749.ref038) 2017; 18 pone.0322749.ref047 pone.0322749.ref044 C Tommasino (pone.0322749.ref057) 2024 SEA Raza (pone.0322749.ref023) 2019; 52 Y Zhou (pone.0322749.ref025) 2019 pone.0322749.ref006 A Altameem (pone.0322749.ref013) 2022; 12 J Li (pone.0322749.ref042) 2021; 18 R Verma (pone.0322749.ref053) 2021; 40 Koohbanani Alemi (pone.0322749.ref019) 2019 |
| References_xml | – start-page: 11 volume-title: European congress on digital pathology year: 2019 ident: pone.0322749.ref026 article-title: Pannuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification doi: 10.1007/978-3-030-23937-4_2 – volume: 36 start-page: 63 issue: 2 year: 2018 ident: pone.0322749.ref031 article-title: Deep learning and its application to medical image segmentation publication-title: Med Imaging Technol – volume: 112 start-page: 59 year: 2018 ident: pone.0322749.ref045 article-title: Federated learning of predictive models from federated Electronic Health Records publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2018.01.007 – volume: 52 start-page: 160 year: 2019 ident: pone.0322749.ref023 article-title: Micro-Net: A unified model for segmentation of various objects in microscopy images publication-title: Med Image Anal doi: 10.1016/j.media.2018.12.003 – ident: pone.0322749.ref050 – volume: 27 start-page: 2189 issue: 5 year: 2018 ident: pone.0322749.ref054 article-title: Her2Net: A deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2795742 – start-page: 2487 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2016 ident: pone.0322749.ref020 article-title: DCAN: deep contour-aware networks for accurate gland segmentation – volume: 10 start-page: 5681 year: 2022 ident: pone.0322749.ref014 article-title: The prognosis of allergy-based diseases using pythagorean fuzzy hypersoft mapping structures and recommending medication publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3141092 – volume: 40 start-page: 3413 issue: 12 year: 2021 ident: pone.0322749.ref053 article-title: MoNuSAC2020: A multi-organ nuclei segmentation and classification challenge publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3085712 – ident: pone.0322749.ref041 – volume: 5 start-page: 4006 year: 2014 ident: pone.0322749.ref012 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun doi: 10.1038/ncomms5006 – start-page: 1 volume-title: 2024 IEEE International symposium on biomedical imaging (ISBI). year: 2024 ident: pone.0322749.ref057 article-title: HoVer-unet: Accelerating hovernet with unet-based multi-class nuclei segmentation via knowledge distillation doi: 10.1109/ISBI56570.2024.10635755 – start-page: 228 volume-title: International conference on medical image computing and computer-assisted intervention year: 2018 ident: pone.0322749.ref024 article-title: BESNet: boundary-enhanced segmentation of cells in histopathological images – volume: 2 start-page: 147 year: 2009 ident: pone.0322749.ref004 article-title: Histopathological image analysis: a review publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2009.2034865 – volume: 7 start-page: 185 issue: 1 year: 2020 ident: pone.0322749.ref005 article-title: Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types publication-title: Sci Data doi: 10.1038/s41597-020-0528-1 – volume: 58 start-page: 101563 year: 2019 ident: pone.0322749.ref052 article-title: Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images publication-title: Med Image Anal doi: 10.1016/j.media.2019.101563 – start-page: 408 volume-title: International conference on medical image computing and computer-assisted intervention year: 2017 ident: pone.0322749.ref008 article-title: Deep adversarial networks for biomedical image segmentation utilizing unannotated images – ident: pone.0322749.ref015 – ident: pone.0322749.ref028 doi: 10.1109/CVPR.2015.7298965 – start-page: 1 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2015 ident: pone.0322749.ref037 – volume: 14 start-page: 1 year: 2021 ident: pone.0322749.ref043 article-title: Advances and open problems in federated learning publication-title: FNT Mach Learn doi: 10.1561/2200000083 – ident: pone.0322749.ref029 – start-page: 622 volume-title: Nuclear instance segmentation using a proposal-free spatially aware deep learning framework. In: International conference on medical image computing and computer-assisted intervention year: 2019 ident: pone.0322749.ref019 – start-page: 4700 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2017 ident: pone.0322749.ref036 article-title: Densely connected convolutional networks – start-page: 240 volume-title: Artificial intelligence and statistics year: 2016 ident: pone.0322749.ref039 article-title: Non-stochastic best arm identification and hyperparameter optimization – volume: 38 start-page: 4688 issue: 12 year: 1978 ident: pone.0322749.ref001 article-title: Computerized nuclear morphometry as an objective method for characterizing human cancer cell populations publication-title: Cancer Res – volume: 372 start-page: 793 issue: 9 year: 2015 ident: pone.0322749.ref010 article-title: A new initiative on precision medicine publication-title: N Engl J Med doi: 10.1056/NEJMp1500523 – start-page: 770 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2016 ident: pone.0322749.ref035 article-title: Deep residual learning for image recognition – volume: 7 start-page: 53 year: 2019 ident: pone.0322749.ref056 article-title: Methods for segmentation and classification of digital microscopy tissue images publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2019.00053 – volume: 63 start-page: 1455 issue: 7 year: 2016 ident: pone.0322749.ref003 article-title: A dataset for breast cancer histopathological image classification publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2496264 – start-page: 234 volume-title: International Conference on Medical image computing and computer-assisted intervention year: 2015 ident: pone.0322749.ref022 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 94 start-page: 103143 year: 2024 ident: pone.0322749.ref027 article-title: CellViT: Vision transformers for precise cell segmentation and classification publication-title: Med Image Anal doi: 10.1016/j.media.2024.103143 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: pone.0322749.ref032 article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2644615 – volume: 151 start-page: 1 year: 2022 ident: pone.0322749.ref055 article-title: TSFD-Net: Tissue specific feature distillation network for nuclei segmentation and classification publication-title: Neural Netw doi: 10.1016/j.neunet.2022.02.020 – volume: 313 start-page: 1122 issue: 11 year: 2015 ident: pone.0322749.ref002 article-title: Diagnostic concordance among pathologists interpreting breast biopsy specimens publication-title: JAMA doi: 10.1001/jama.2015.1405 – start-page: 358 volume-title: International conference on medical image computing and computer-assisted intervention year: 2015 ident: pone.0322749.ref007 – start-page: 689 volume-title: 2018 Asia-Pacific signal and information processing association annual summit and conference (APSIPA ASC) year: 2018 ident: pone.0322749.ref021 article-title: Skipped-hierarchical feature pyramid networks for nuclei instance segmentation doi: 10.23919/APSIPA.2018.8659795 – ident: pone.0322749.ref047 – start-page: 0281 volume-title: Privacy-preserving federated learning model for healthcare data2022 IEEE 12th annual computing and communication workshop and conference (CCWC) year: 2022 ident: pone.0322749.ref048 – volume: 36 start-page: 288 issue: 1 year: 2017 ident: pone.0322749.ref018 article-title: Accurate cervical cell segmentation from overlapping clumps in pap smear images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2606380 – ident: pone.0322749.ref033 doi: 10.1007/978-3-319-46723-8_49 – start-page: 682 volume-title: International conference on information processing in medical imaging year: 2019 ident: pone.0322749.ref025 – ident: pone.0322749.ref034 – start-page: 208 volume-title: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019) year: 2019 ident: pone.0322749.ref016 article-title: Mask-RCNN and U-net ensembled for nuclei segmentation doi: 10.1109/ISBI.2019.8759574 – start-page: 279 volume-title: International conference on medical image computing and computer-assisted intervention year: 2020 ident: pone.0322749.ref017 article-title: Boundary-assisted region proposal networks for nucleus segmentation – ident: pone.0322749.ref030 – volume: 18 start-page: 6765 issue: 1 year: 2017 ident: pone.0322749.ref038 article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization publication-title: J Mach Learn Res – volume: 57 start-page: 2617 issue: 10 year: 2010 ident: pone.0322749.ref011 article-title: An integrative approach for in silico glioma research publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2060338 – ident: pone.0322749.ref051 – ident: pone.0322749.ref006 doi: 10.1117/1.JMI.4.2.021101 – volume: 12 start-page: 1812 issue: 8 year: 2022 ident: pone.0322749.ref013 article-title: Breast cancer detection in mammography images using deep convolutional neural networks and fuzzy ensemble modeling techniques publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics12081812 – volume: 11 start-page: 11423 issue: 23 year: 2021 ident: pone.0322749.ref009 article-title: COVID-19 patient detection based on fusion of transfer learning and fuzzy ensemble models using CXR images publication-title: Appl Sci doi: 10.3390/app112311423 – year: 2022 ident: pone.0322749.ref046 article-title: Federated learning for healthcare domain-pipeline, applications and challenges publication-title: ACM Trans Comput Healthc – ident: pone.0322749.ref040 – ident: pone.0322749.ref044 – volume: 18 issue: 3 year: 2021 ident: pone.0322749.ref042 article-title: A federated learning based privacy-preserving smart healthcare system publication-title: IEEE Trans Ind Inform – volume-title: Keras Tuner year: 2019 ident: pone.0322749.ref049 |
| SSID | ssj0053866 |
| Score | 2.4840758 |
| Snippet | Accurate nuclei segmentation and classification in histology images are critical for cancer detection but remain challenging due to color inconsistency, blurry... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0322749 |
| SubjectTerms | Accuracy Algorithms Automation Biology and Life Sciences Biopsy Cancer Cell Nucleus - pathology Classification Collaboration Computer and Information Sciences Correlation coefficient Correlation coefficients Datasets Deep Learning Diagnosis Efficiency Engineering and Technology Federated Learning Health aspects Histology Histopathology Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Localization Machine learning Medical imaging Medicine and Health Sciences Methods Neoplasms - diagnostic imaging Neoplasms - pathology Neural networks Nuclei Optimization Physical Sciences Privacy Research and Analysis Methods Segmentation Semantics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByydRLHiY8FURUkigQU9WY5trNdaZtEza4Q_56Z2BttRCV6QHuzJytlXp6JZ74h5LU0leBlXcS5KV3MeWHj0iU8ljkzApxhXg9gz19OxckZ_3yen--M-sKaMA8P7Bl3KAsLOUFpLXeOCwa5H6TrstKyzEThqiFbZ6XcJlPeB4MVCxEa5bIiOQxymXdt4-YMdLhA7Mydg2jA6x-98qxbtf11IefflZO3N02nf__Sq9XOsXR8j9wN8SQ98u-xR2655j7ZCxbb07cBVvrdA9KdInTxkvZucRkajhqqG0sNBtBYMeSXsOGEDjDEOK14-OpOl5fgdnqKRfILWiP-BISoloaRE7DUXlHX2Bg_ztFupdcYCj8kZ8cff3w4icO8hRjEwtcxBH-G5UwXRtpMsKIyNtVp6uCQN4wnVmc58M5wXee1To3jpWGZFc4y-KU6yR6RWQMc3ie01FYmaS1qayu8mdMVovgYBNdCiFMZkXjLfNV5WA013K0VkI54zikUlgrCish7lNBIi6DYwwKoigqqov6lKhF5gfJVvsN0NG11BCc0RH4QKkbk1UCBwBgNVt4s9Kbv1aevP29A9P3bhOhNIKpb0BSjQ7cDvBMCbk0oDyaUYN5msr2P2rjlSq-AIcBaIUp8cquh12-_HLfxT7GarnHtxtPgQHeZRuSxV-iRsxxjWJEWESknqj5h_XSnWV4MuOR4SQvChkfno1XcSLpP_od0n5I7Kc5mRtBTdkBm66uNewYB47p6PviGPxiOag8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXRHk1UMAgJOCQrZM4TnJAqEWtChILKhT1Fjm2s6y0TcJmV4h_z4zjhEZUqMrNniTKvDyxZ74h5GWmCsHTMvFjlRqf80T7qQm4n8VMCXCGcWnBnj_NxMkZ_3gen2-RWV8Lg2mVvU-0jlrXCvfI90HxsgBWkzR71_z0sWsUnq72LTSka62g31qIsRtkO0RkrAnZPjyafTntfTNYtxCugC5Kgn0nr2lTV2bK4BUJYmpeWqAsjv_grSfNsm6vCkX_zai8uaka-fuXXC4vLVfHd8htF2fSg04xdsiWqe6SHWfJLX3t4Kbf3CPNDCGNF7Q18wtXiFRRWWmqMLDGTKJuCAtRqIUnxi7GdjeeLi7AHbUUk-fntERcCghdNXWtKGCoXlFTaR837WizlGsMke-Ts-Ojb-9PfNeHwQdx8bUPQaFiMZOJynQkWFIoHcowNLD4K8YDLaMYeKe4LONShsrwVLFIC6MZXKEMogdkUgGHdwlNpQYplqLUusATO1kguo9C0C2EPs084vfMz5sObiO3Z24J_KZ0nMtRWLkTlkcOUUIDLYJl24F6Nc-d7eVZouG3MtWaG8MFMwX2jM8KmaWRSEzBPPIM5Zt3laeDyecHsHJDRAghpEdeWAoEzKgwI2cuN22bf_j8_RpEX09HRK8cUVmDpijpqiDgmxCIa0S5N6IEs1ej6V3Uxp4rbf7XQODOXkOvnn4-TONDMcuuMvWmo8FG71nokYedQg-c5RjbijDxSDpS9RHrxzPV4ofFK8fDWxA23DodrOJa0n30_w95TG6F2I0ZYU7ZHpmsVxvzBELEdfHU2f0f3WpoRg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZG9wAvwPi1wACDkACJFNdxnOSxIKaBtIKAovEUObZTKrokWlIh-Ou5S9xogSEV9c0-V_Ld-fIlvvuOkCeJzqSI88gPdWx9ISLjx3Yi_CRkWkIwDPOW7Pl4Jo_m4t1JeLJDXmxqYc7f3wfR5KXT6LgqCztm4H2RSC6RXRkC8h6R3fnsw_Rrd3HMfclZ4Krj_rV08PRpSfr7UDyqVmV9Ec78O13y8rqo1M8farU69yw6vEaON7voUlC-j9dNNta__iB43Hab18lVB0rptPOiPbJjixtkzx37mj5z3NTPb5JqhvzHS1rbxamrWiqoKgzViMIx7agbwqoV2nIZY8vj9tM9XZ5C7KopZtovaI4kFoBzDXV9K2CoPKO2MD5-4aPVSjWIp2-R-eGbz6-PfNe0wQfbisYHBKlZyFSkExNIFmXacMW5BaSgmZgYFYSwPy1UHuaKaytizQIjrWHw42oS3CajArSwT2isTDLhucyNyfB6T2VIBaSRoQt5UhOP-BtjplXHzZG2F3QRvNN0mktRoalTqEdeocV7WWTWbgfAEqk7qGkSGXgHjY0R1grJbIYN5pNMJXEgI5sxjzxEf0m7MtU-PqRTeMwDfAS86ZHHrQSyaxSYvrNQ67pO377_soXQp48DoadOKC_B87RyJROwJ2TtGkgeDCQhRujB9D5690YrdQoKAdVKGePKjcdfPP2on8Y_xZS8wpbrTga7wifcI3e6A9JrViAQljzySDw4OgPVD2eK5beW3BxvesHYsHTcn7KtrHv3fxfcI1c4NnNGllR2QEbN2dreB4TZZA9cYPkNhLN6tw priority: 102 providerName: Unpaywall |
| Title | Nuclei segmentation and classification from histopathology images using federated learning for end-edge platform |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40638627 https://www.proquest.com/docview/3229126689 https://www.proquest.com/docview/3229214692 https://pubmed.ncbi.nlm.nih.gov/PMC12244587 https://doi.org/10.1371/journal.pone.0322749 https://doaj.org/article/97d2898dd4ee460eb32029ba98367eb0 http://dx.doi.org/10.1371/journal.pone.0322749 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCOhost) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLa2ToK9IMZtgVEMQgIeUiWp4yQPCHXTxkBamQZF3VPk2E6p1CWhaQX795yTONEiOmmKlAf7OGrPxT6-fR8hbyOZcBamge3LUNuMBcoOtcvsyHckh87QTyuw57MxP52wr1N_ukUazlajwHLj1A75pCbLxeDv7-tPEPAfK9aGwG0aDYo80wMHPDRg0TbZgbEqQjKHM9buK0B0c24u0N3WcpfcYziOcySauTFWVZD-bcfdKxZ5uSkr_f9w5f11VojrP2KxuDFynTwkD0zKSUe1j-yRLZ09InsmqEv63iBPf3hMijGiG89pqWdX5k5SRkWmqMQcGw8V1UV4J4VWSMVIaFwtzNP5FfRMJcVz9DOaIkQFZLGKGlYKKMqXVGfKxvU7WizECrPlJ2Rycvzj6NQ2lAw2WI6tbMgPpeM7IpCRGnInSKTyhOdpyAOkw1wlhj6oUTKR-qnwpGahdIaKa-XA4wl3-JT0MlD2PqGhUJHrpTxVKsHNO5Eg0I9E_C1EQY0sYjfKj4saeSOutt8CmLHUmovRbrGxm0UO0UKtLOJmVwX5chabMIyjQMEMM1SKac24oxOkj48SEYVDHujEscgrtG9cX0Jtoz8ewSAOySFkkxZ5U0kgdkaGh3NmYl2W8ZdvP-8g9P2iI_TOCKU5eIoU5kIE_CfE5OpIHnQkoQeQnep99MZGK2UMCgHVch5iy8ZDN1e_bqvxo3jgLtP5upZBzvfIs8iz2qFbzTbhYZGw4-od1XdrsvmvCroc93HB2NB00EbFnaz7_NZf8YLsesjJjGCnzgHprZZr_RISxVXSJ9vBNIB3eOTi--Rzn-wcHo_PL_rV0ku_6hugbDI-H13-A6OPbjs |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRMujgUINAgGHbLOJ8_ABVeVR7dJ2kaCt9hYc21lW2iZhs6uqf4rfyEziBCIq1EuVmz1xlJnxeGzPfEPISy6TgEVpaPsy0jZjobIjPWA29x0ZgDH00wrs-XgcDE_Z54k_WSO_mlwYDKtsbGJlqFUu8Yx8FxSPD2A1ifhe8dPGqlF4u9qU0KjV4lBfXsCWrXw3-gjyfeW6B59OPgxtU1XAho-zpQ0ujnR8R4SSKy9wwkQqV7iuhqVMOmyghOc7niuZSP1UuFKzSDqeCrRy4HHFwINxb5HbzANbAvMnnLQbPLAdQWDS87xwsGu0oV_kme7DmLAB5J3lr6oS0K4FvWKel1c5uv_Ga66vskJcXoj5_K_F8OAeuWu8WLpfq90GWdPZJtkwdqKkbwyY9dv7pBgjYPKMlnp6btKcMioyRSW67RinVDdhmgutwI-xRnJ11k9n52DsSoqh-VOaIuoFOMaKmkIX0JQvqM6UjUeCtJiLJTrgD8jpjcjjIellwOEtQiOhQEfSIFUqwftAkSB2kERILwRW5RaxG-bHRQ3mEVc3eiFsgmrOxSis2AjLIu9RQi0tQnFXDfliGpuZHfNQwaY1UoppzQJHJ1iRnieCR14Q6sSxyA7KN67zWluDEu-DXwD-JjioFnlRUSAcR4bxPlOxKst49OXsGkTfvnaIXhuiNAdNkcLkWMA_IcxXh3K7QwlGRXa6t1AbG66U8Z_pB282Gnp19_O2GwfFGL5M56uaBsvIc9cij2qFbjnL0HMO3NAiUUfVO6zv9mSzHxUaOl4Ng7Dh1X47K64l3cf__5Edsj48OT6Kj0bjwyfkjot1nxFQ1dkmveVipZ-CM7pMnlUWgJLvN21yfgOoKZ6b |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkWAviPG1wGAGgYCHtGnifPgBocGoVgYFAUN9C47tdJW6JDStpv1r_HXcJU4gYkJ7mfJmX6zk7nw-23e_I-Qpl0nAojS0fRlpm7FQ2ZEeMpv7jgzAGPppBfb8cRIcHLH3U3-6QX41uTAYVtnYxMpQq1ziGfkAFI8PYTWJ-CA1YRGf90evi582VpDCm9amnEatIof67BS2b-Wr8T7I-pnrjt59e3tgmwoDNnwIW9ng7kjHd0QoufICJ0ykcoXraljWpMOGSni-47mSidRPhSs1i6TjqUArBx5XDD0Y9wq5Gnoex3DCcNpu9sCOBIFJ1fPC4cBoRr_IM92HMWEzyDtLYVUxoF0XesUiL89zev-N3by-zgpxdioWi78WxtFNcsN4tHSvVsEtsqGzW2TL2IySvjDA1i9vk2KC4MlzWurZiUl5yqjIFJXowmPMUt2EKS-0AkLGesnVuT-dn4DhKymG6c9oiggY4CQraopeQFO-pDpTNh4P0mIhVuiM3yFHlyKPu6SXAYe3CY2EAn1Jg1SpBO8GRYI4QhLhvRBklVvEbpgfFzWwR1zd7oWwIao5F6OwYiMsi7xBCbW0CMtdNeTLWWxmecxDBRvYSCmmNQscnWB1ep4IHnlBqBPHIrso37jOcW2NS7wHPgL4nuCsWuRJRYHQHBkq-UysyzIef_p-AaKvXzpEzw1RmoOmSGHyLeCfEPKrQ7nToQQDIzvd26iNDVfK-M9UhDcbDT2_-3HbjYNiPF-m83VNgyXluWuRe7VCt5xl6EUHbmiRqKPqHdZ3e7L5cYWMjtfEIGx4td_OigtJ9_7_f2SXXANjE38YTw4fkE0XS0AjtqqzQ3qr5Vo_BL90lTyqDAAlPy7b4vwGQ2ei3g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZG9wAvwPi1wACDkACJFNdxnOSxIKaBtIKAovEUObZTKrokWlIh-Ou5S9xogSEV9c0-V_Ld-fIlvvuOkCeJzqSI88gPdWx9ISLjx3Yi_CRkWkIwDPOW7Pl4Jo_m4t1JeLJDXmxqYc7f3wfR5KXT6LgqCztm4H2RSC6RXRkC8h6R3fnsw_Rrd3HMfclZ4Krj_rV08PRpSfr7UDyqVmV9Ec78O13y8rqo1M8farU69yw6vEaON7voUlC-j9dNNta__iB43Hab18lVB0rptPOiPbJjixtkzx37mj5z3NTPb5JqhvzHS1rbxamrWiqoKgzViMIx7agbwqoV2nIZY8vj9tM9XZ5C7KopZtovaI4kFoBzDXV9K2CoPKO2MD5-4aPVSjWIp2-R-eGbz6-PfNe0wQfbisYHBKlZyFSkExNIFmXacMW5BaSgmZgYFYSwPy1UHuaKaytizQIjrWHw42oS3CajArSwT2isTDLhucyNyfB6T2VIBaSRoQt5UhOP-BtjplXHzZG2F3QRvNN0mktRoalTqEdeocV7WWTWbgfAEqk7qGkSGXgHjY0R1grJbIYN5pNMJXEgI5sxjzxEf0m7MtU-PqRTeMwDfAS86ZHHrQSyaxSYvrNQ67pO377_soXQp48DoadOKC_B87RyJROwJ2TtGkgeDCQhRujB9D5690YrdQoKAdVKGePKjcdfPP2on8Y_xZS8wpbrTga7wifcI3e6A9JrViAQljzySDw4OgPVD2eK5beW3BxvesHYsHTcn7KtrHv3fxfcI1c4NnNGllR2QEbN2dreB4TZZA9cYPkNhLN6tw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclei+segmentation+and+classification+from+histopathology+images+using+federated+learning+for+end-edge+platform&rft.jtitle=PloS+one&rft.au=Chowdhury%2C+Anjir+Ahmed&rft.au=Mahmud%2C+S+M+Hasan&rft.au=Uddin%2C+Md+Palash&rft.au=Kadry%2C+Seifedine&rft.date=2025-07-10&rft.eissn=1932-6203&rft.volume=20&rft.issue=7&rft.spage=e0322749&rft_id=info:doi/10.1371%2Fjournal.pone.0322749&rft_id=info%3Apmid%2F40638627&rft.externalDocID=40638627 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |