Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach
Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach John R.B. Perry 1 , Mark I. McCarthy 2 , 3 , Andrew T. Hattersley 1 , Eleftheria Zeggini 2 , the Wellcome Trust Case Control Consortium , Michael N. Weedon 1 and Timothy M. Frayling 1 1 Genetics of C...
        Saved in:
      
    
          | Published in | Diabetes (New York, N.Y.) Vol. 58; no. 6; pp. 1463 - 1467 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Alexandria, VA
          American Diabetes Association
    
        01.06.2009
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0012-1797 1939-327X 1939-327X  | 
| DOI | 10.2337/db08-1378 | 
Cover
| Abstract | Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach
John R.B. Perry 1 ,
Mark I. McCarthy 2 , 3 ,
Andrew T. Hattersley 1 ,
Eleftheria Zeggini 2 ,
the Wellcome Trust Case Control Consortium ,
Michael N. Weedon 1 and
Timothy M. Frayling 1
1 Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter,
U.K.;
2 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K.;
3 Oxford Centre for Diabetes, Endocrinology and Medicine, University of Oxford, Churchill Hospital, Oxford, U.K.
Corresponding author: Michael Weedon, michael.weedon{at}pms.ac.uk .
Abstract
OBJECTIVE Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved
in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways
associated with type 2 diabetes. This approach could allow us to identify additional risk loci.
RESEARCH DESIGN AND METHODS We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes
study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional
evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation
of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment
Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and
BioCarta databases.
RESULTS After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with
type 2 diabetes (top P adj = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas.
CONCLUSIONS Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based
approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature
of the underlying disease physiology.
Footnotes
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore
be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Received October 7, 2008.
Accepted February 18, 2009.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work
is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
© 2009 by the American Diabetes Association. | 
    
|---|---|
| AbstractList | Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci.
We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases.
After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top P(adj) = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas.
Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology. Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach John R.B. Perry 1 , Mark I. McCarthy 2 , 3 , Andrew T. Hattersley 1 , Eleftheria Zeggini 2 , the Wellcome Trust Case Control Consortium , Michael N. Weedon 1 and Timothy M. Frayling 1 1 Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter, U.K.; 2 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K.; 3 Oxford Centre for Diabetes, Endocrinology and Medicine, University of Oxford, Churchill Hospital, Oxford, U.K. Corresponding author: Michael Weedon, michael.weedon{at}pms.ac.uk . Abstract OBJECTIVE Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci. RESEARCH DESIGN AND METHODS We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases. RESULTS After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top P adj = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas. CONCLUSIONS Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology. Footnotes The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received October 7, 2008. Accepted February 18, 2009. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. © 2009 by the American Diabetes Association. OBJECTIVE--Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci. RESEARCH DESIGN AND METHODS--We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases. RESULTS---After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top [P.sub.adj] = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas. CONCLUSIONS--Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology. OBJECTIVERecent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci.RESEARCH DESIGN AND METHODSWe used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases.RESULTSAfter correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top P(adj) = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas.CONCLUSIONSCommon variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology. Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci. We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases. After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top P(adj) = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas. Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology.  | 
    
| Audience | Professional | 
    
| Author | Michael N. Weedon Mark I. McCarthy Timothy M. Frayling John R.B. Perry Andrew T. Hattersley Eleftheria Zeggini the Wellcome Trust Case Control Consortium  | 
    
| Author_xml | – sequence: 1 givenname: John R.B. surname: Perry fullname: Perry, John R.B. organization: Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter, U.K – sequence: 2 givenname: Mark I. surname: McCarthy fullname: McCarthy, Mark I. organization: Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K.;, Oxford Centre for Diabetes, Endocrinology and Medicine, University of Oxford, Churchill Hospital, Oxford, U.K – sequence: 3 givenname: Andrew T. surname: Hattersley fullname: Hattersley, Andrew T. organization: Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter, U.K – sequence: 4 givenname: Eleftheria surname: Zeggini fullname: Zeggini, Eleftheria organization: Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K – sequence: 5 givenname: Michael N. surname: Weedon fullname: Weedon, Michael N. organization: Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter, U.K – sequence: 6 givenname: Timothy M. surname: Frayling fullname: Frayling, Timothy M. organization: Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter, U.K  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21501092$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19252133$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNp9k29v0zAQxiM0xLrBC74AiphAApTNf5I4eYPUdVAmVRoviuCddXUuqafUDnFC6bfHpRGlUzWdoljO7zlfnjufBSfGGgyCl5RcMs7FVbEgWUS5yJ4EI5rzPOJM_DgJRoRQFlGRi9PgzLl7Qkjq41lwSnOWMMr5KChuTYdtayvotKnC-abBkIU3GhbYoQunaOwKo--6wHDsnFXac9aEN9BB-M1tJRBea1vbSiuow6_QLdewia7BYRGOm6a1oJbPg6cl1A5fDO_zYP7503zyJZrdTW8n41mk0ph3UQpxzooc40UGyOOM0YIih1hgSTEBAJLQGHMi_KOKLI9FtkgLSDKCZZnk_Dx4v0vbmwY2a6hr2bR6Be1GUiK3TsmtU3LrlIc_7uCmX6ywUGi6FvYCC1oefjF6KSv7S7I0Y6mIfYK3Q4LW_uzRdXKlncK6BoO2dzIVLMuFEB58_QC8t31rvBGS0TQWRDDioYsdVEGNUpvS-kPVNqMcM0LThAuy_cPoCFWhQV-hn4lS--0D_vII76PAlVZHBe8OBJ7p8HdXQe-czKazx4oZWGXrGiuUvrOTu0P-1f-O73szDKMH3gwAOD9MZQtGafePYzQhlORsX6RqrXMtlo-2-eoBq3T3d4a9E7o-qviwUyx1tVzrFmUx3Ib9IslkKmmccv4HutAWag | 
    
| CODEN | DIAEAZ | 
    
| CitedBy_id | crossref_primary_10_1002_gepi_20632 crossref_primary_10_1371_journal_pcbi_1009908 crossref_primary_10_1016_j_tem_2024_05_006 crossref_primary_10_1371_journal_pgen_1001058 crossref_primary_10_3233_JAD_220120 crossref_primary_10_1002_dmrr_1046 crossref_primary_10_1242_dev_090993 crossref_primary_10_1371_journal_pone_0022760 crossref_primary_10_1093_nar_gkt111 crossref_primary_10_1016_j_tig_2012_03_004 crossref_primary_10_1186_1471_2164_12_166 crossref_primary_10_1016_j_ajhg_2012_08_002 crossref_primary_10_1038_nrendo_2009_215 crossref_primary_10_1038_nrurol_2011_113 crossref_primary_10_1038_s41598_017_12873_8 crossref_primary_10_1038_nrg2884 crossref_primary_10_1017_S1461145710001446 crossref_primary_10_1007_s00125_016_3967_7 crossref_primary_10_1371_journal_pone_0072653 crossref_primary_10_1016_j_jstrokecerebrovasdis_2015_04_036 crossref_primary_10_1038_nutd_2012_1 crossref_primary_10_3389_fendo_2021_653179 crossref_primary_10_1080_19382014_2023_2165368 crossref_primary_10_1074_jbc_M116_764910 crossref_primary_10_1371_journal_pone_0020133 crossref_primary_10_1161_CIRCGENETICS_111_960393 crossref_primary_10_2337_dc10_0349 crossref_primary_10_1093_aje_kws123 crossref_primary_10_1016_j_ajhg_2010_02_020 crossref_primary_10_18821_1560_9510_2018_22_4_193_198 crossref_primary_10_1186_1479_7364_4_1_21 crossref_primary_10_1016_j_bbr_2020_113101 crossref_primary_10_1016_j_molmet_2018_01_010 crossref_primary_10_4051_ibc_2011_3_2_0006 crossref_primary_10_1371_journal_pone_0053522 crossref_primary_10_1007_s00592_009_0129_0 crossref_primary_10_1161_CIRCGENETICS_114_000676 crossref_primary_10_1007_s00439_013_1377_1 crossref_primary_10_1093_humrep_dex024 crossref_primary_10_1002_gepi_21625 crossref_primary_10_1016_j_jmva_2023_105175 crossref_primary_10_1371_journal_pgen_1003770 crossref_primary_10_1111_cpr_12759 crossref_primary_10_2217_pgs_12_170 crossref_primary_10_1016_j_ajhg_2010_06_009 crossref_primary_10_1111_j_1471_4159_2011_07547_x crossref_primary_10_1093_schbul_sbw035 crossref_primary_10_2139_ssrn_3383800 crossref_primary_10_1097_MIB_0000000000000329 crossref_primary_10_1371_journal_pone_0134923 crossref_primary_10_1016_j_crphar_2021_100016 crossref_primary_10_1038_s41419_018_0489_x crossref_primary_10_1007_s00125_023_05889_5 crossref_primary_10_1016_j_ygeno_2011_04_006 crossref_primary_10_1186_1479_7364_7_16 crossref_primary_10_1371_journal_pgen_1000932 crossref_primary_10_1101_pdb_top065581 crossref_primary_10_1186_1471_2164_12_92 crossref_primary_10_1371_journal_pone_0193515 crossref_primary_10_1111_1753_0407_12025 crossref_primary_10_1007_s00439_009_0676_z crossref_primary_10_1111_j_1469_1809_2010_00630_x crossref_primary_10_1186_1472_6947_13_S1_S3 crossref_primary_10_1093_nsr_nwaa177 crossref_primary_10_2337_db11_0728 crossref_primary_10_1016_j_cmet_2011_04_013 crossref_primary_10_1096_fj_13_244046 crossref_primary_10_1016_j_ajhg_2009_11_017 crossref_primary_10_2337_db09_0766 crossref_primary_10_1016_j_molmet_2020_101086 crossref_primary_10_1186_s12859_016_1403_0 crossref_primary_10_1371_journal_pone_0057763 crossref_primary_10_1007_s11892_013_0408_6  | 
    
| Cites_doi | 10.1038/nature05616 10.2337/diabetes.54.10.2844 10.1126/science.1142364 10.1634/stemcells.22-5-849 10.1038/ng1180 10.1038/ng2043 10.1126/science.1142358 10.1038/ng.120 10.1086/522374 10.1126/science.289.5481.950 10.1073/pnas.0506580102 10.1038/nature05911 10.1038/75556 10.1093/nar/28.1.27 10.1126/science.1142382  | 
    
| ClassificationCodes | 8000212 541714 8733 541715 8731  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2009 INIST-CNRS COPYRIGHT 2009 American Diabetes Association Copyright American Diabetes Association Jun 2009 2009 by the American Diabetes Association. 2009  | 
    
| Copyright_xml | – notice: 2009 INIST-CNRS – notice: COPYRIGHT 2009 American Diabetes Association – notice: Copyright American Diabetes Association Jun 2009 – notice: 2009 by the American Diabetes Association. 2009  | 
    
| CorporateAuthor | the Wellcome Trust Case Control Consortium Wellcome Trust Case Control Consortium  | 
    
| CorporateAuthor_xml | – name: the Wellcome Trust Case Control Consortium – name: Wellcome Trust Case Control Consortium  | 
    
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8GL 3V. 7RV 7X7 7XB 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. KB0 LK8 M0R M0S M1P M2O M2P M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.2337/db08-1378 | 
    
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: High School ProQuest Central (Corporate) Nursing & Allied Health Database (Proquest) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection eLibrary Proquest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection Consumer Health Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Consumer Health Database ProQuest Health & Medical Collection Medical Database Research Library (Proquest) Science Database Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: Proquest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Statistics  | 
    
| EISSN | 1939-327X | 
    
| EndPage | 1467 | 
    
| ExternalDocumentID | 10.2337/db08-1378 PMC2682674 1828978661 A201653709 19252133 21501092 10_2337_db08_1378 diabetes_58_6_1463  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GeographicLocations | United States--US Finland  | 
    
| GeographicLocations_xml | – name: Finland – name: United States--US  | 
    
| GrantInformation_xml | – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 076113  | 
    
| GroupedDBID | - 08R 0R 1AW 29F 2WC 3V. 4.4 53G 55 5GY 5RE 5RS 5VS 7RV 7X7 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAQQT AAWTL AAYEP AAYJJ ABFLS ABOCM ABPTK ABUWG ACDCL ACGOD ACPRK ADACO ADBBV ADBIT AENEX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBAFP BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EX3 F5P FRP FYUFA GICCO GJ GNUQQ GUQSH GX1 H13 HCIFZ HZ H~9 IAG IAO IEA IHR INH INR IOF IPO K-O K9- KM KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5 M7P MBDVC O0- O5R O5S O9- OB3 OBH OK1 OVD P2P PADUT PCD PEA PQEST PQQKQ PQUKI PRINS PROAC PSQYO Q2X RHF RHI RPM S0X SJFOW SJN SV3 TDI WH7 WOQ WOW X7M XZ ZA5 ZY1 --- .55 .GJ .XZ 08P 0R~ 18M 354 6PF AAFWJ AAKAS AAYXX ACGFO ADGHP ADZCM AEGXH AERZD AIAGR AIZAD BTFSW CCPQU CITATION EMOBN HMCUK HZ~ ITC K2M M5~ N4W NAPCQ OHH PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO TEORI TR2 UKHRP VVN W8F YFH YHG YOC ~KM 1CY 8F7 AFFNX AI. ALIPV IQODW J5H MVM VH1 XOL YQJ ZGI ZXP CGR CUY CVF ECM EIF NPM AAYOK PMFND 7XB 8FK K9. PKEHL Q9U 7X8 5PM ADTOC AFLOD UNPAY  | 
    
| ID | FETCH-LOGICAL-c643t-6a492d9e4b8ae34821d1e3a47ef1e5aaa0514e907e90cd89478b6da580eff593 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0012-1797 1939-327X  | 
    
| IngestDate | Sun Oct 26 02:38:50 EDT 2025 Tue Sep 30 16:59:32 EDT 2025 Fri Sep 05 09:05:57 EDT 2025 Fri Oct 03 11:12:00 EDT 2025 Mon Oct 20 22:43:58 EDT 2025 Thu Jun 12 23:57:54 EDT 2025 Mon Oct 20 16:55:09 EDT 2025 Thu Oct 16 15:34:35 EDT 2025 Tue Jun 10 19:56:16 EDT 2025 Mon Jul 21 05:55:41 EDT 2025 Mon Jul 21 09:12:06 EDT 2025 Wed Oct 01 03:44:43 EDT 2025 Thu Apr 24 23:13:18 EDT 2025 Fri Jan 15 19:45:56 EST 2021  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | Endocrinopathy Type 2 diabetes Metabolic diseases Association Genome  | 
    
| Language | English | 
    
| License | CC BY 4.0 Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c643t-6a492d9e4b8ae34821d1e3a47ef1e5aaa0514e907e90cd89478b6da580eff593 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://diabetesjournals.org/diabetes/article-pdf/58/6/1463/393854/zdb00609001463.pdf | 
    
| PMID | 19252133 | 
    
| PQID | 216470720 | 
    
| PQPubID | 34443 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | gale_incontextgauss_8GL_A201653709 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2682674 proquest_journals_216470720 unpaywall_primary_10_2337_db08_1378 proquest_miscellaneous_67289777 crossref_citationtrail_10_2337_db08_1378 gale_infotracmisc_A201653709 highwire_diabetes_diabetes_58_6_1463 pubmed_primary_19252133 crossref_primary_10_2337_db08_1378 gale_incontextcollege_GICCO_A201653709 pascalfrancis_primary_21501092 gale_infotracgeneralonefile_A201653709 gale_infotracacademiconefile_A201653709  | 
    
| ProviderPackageCode | RHF RHI CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-06-01 | 
    
| PublicationDateYYYYMMDD | 2009-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Alexandria, VA | 
    
| PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: New York  | 
    
| PublicationTitle | Diabetes (New York, N.Y.) | 
    
| PublicationTitleAlternate | Diabetes | 
    
| PublicationYear | 2009 | 
    
| Publisher | American Diabetes Association | 
    
| Publisher_xml | – name: American Diabetes Association | 
    
| References | Ashburner (2022031208320947000_B8) 2000; 25 Scott (2022031208320947000_B3) 2007; 316 Kanehisa (2022031208320947000_B9) 2000; 28 Zeggini (2022031208320947000_B6) 2008; 40 Mootha (2022031208320947000_B12) 2003; 34 Sladek (2022031208320947000_B4) 2007; 445 Ross (2022031208320947000_B15) 2000; 289 Subramanian (2022031208320947000_B11) 2005; 102 Prokopenko (2022031208320947000_B2) 2007; 316 (2022031208320947000_B1) 2007; 447 Steinthorsdottir (2022031208320947000_B5) 2007; 39 Zeggini (2022031208320947000_B7) 2007; 316 Etheridge (2022031208320947000_B13) 2004; 22 Wang (2022031208320947000_B10) 2007; 81 Papadopoulou (2022031208320947000_B14) 2005; 54 19720820 - Diabetes. 2009 Sep;58(9):e9; author reply e10  | 
    
| References_xml | – volume: 445 start-page: 881 year: 2007 ident: 2022031208320947000_B4 article-title: A genome-wide association study identifies novel risk loci for type 2 diabetes publication-title: Nature doi: 10.1038/nature05616 – volume: 54 start-page: 2844 year: 2005 ident: 2022031208320947000_B14 article-title: Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function publication-title: Diabetes doi: 10.2337/diabetes.54.10.2844 – volume: 316 start-page: 1336 year: 2007 ident: 2022031208320947000_B7 article-title: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes publication-title: Science doi: 10.1126/science.1142364 – volume: 22 start-page: 849 year: 2004 ident: 2022031208320947000_B13 article-title: Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells publication-title: Stem Cells doi: 10.1634/stemcells.22-5-849 – volume: 34 start-page: 267 year: 2003 ident: 2022031208320947000_B12 article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes publication-title: Nat Genet doi: 10.1038/ng1180 – volume: 39 start-page: 770 year: 2007 ident: 2022031208320947000_B5 article-title: A variant in CDKAL1 influences insulin response and risk of type 2 diabetes publication-title: Nat Genet doi: 10.1038/ng2043 – volume: 316 start-page: 1331 year: 2007 ident: 2022031208320947000_B2 article-title: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels publication-title: Science doi: 10.1126/science.1142358 – volume: 40 start-page: 638 year: 2008 ident: 2022031208320947000_B6 article-title: Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes publication-title: Nat Genet doi: 10.1038/ng.120 – volume: 81 start-page: 1278 year: 2007 ident: 2022031208320947000_B10 article-title: Pathway-based approaches for analysis of genomewide association studies publication-title: Am J Hum Genet doi: 10.1086/522374 – volume: 289 start-page: 950 year: 2000 ident: 2022031208320947000_B15 article-title: Inhibition of adipogenesis by Wnt signaling publication-title: Science doi: 10.1126/science.289.5481.950 – volume: 102 start-page: 15545 year: 2005 ident: 2022031208320947000_B11 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506580102 – volume: 447 start-page: 661 year: 2007 ident: 2022031208320947000_B1 article-title: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls publication-title: Nature doi: 10.1038/nature05911 – volume: 25 start-page: 25 year: 2000 ident: 2022031208320947000_B8 article-title: Gene ontology: tool for the unification of biology: the Gene Ontology Consortium publication-title: Nat Genet doi: 10.1038/75556 – volume: 28 start-page: 27 year: 2000 ident: 2022031208320947000_B9 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acid Res doi: 10.1093/nar/28.1.27 – volume: 316 start-page: 1341 year: 2007 ident: 2022031208320947000_B3 article-title: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants publication-title: Science doi: 10.1126/science.1142382 – reference: 19720820 - Diabetes. 2009 Sep;58(9):e9; author reply e10  | 
    
| SSID | ssj0006060 | 
    
| Score | 2.279225 | 
    
| Snippet | Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach
John R.B. Perry 1 ,
Mark I. McCarthy 2 , 3 ,
Andrew T.... Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a... OBJECTIVE--Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a... OBJECTIVERecent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a...  | 
    
| SourceID | unpaywall pubmedcentral proquest gale pubmed pascalfrancis crossref highwire  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1463 | 
    
| SubjectTerms | Algorithms Biological and medical sciences Biology - methods Case-Control Studies Chromosome Mapping Consortia Diabetes Diabetes Mellitus, Type 2 - genetics Diabetes research Diabetes. Impaired glucose tolerance Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Gene loci Genetic aspects Genetic research Genetic Variation Genetics Genome-Wide Association Study Genomes Humans Medical sciences Models, Genetic Odds Ratio Ontology Polymorphism, Single Nucleotide Reference Values Research design Statistical analysis Statistics Type 2 diabetes  | 
    
| SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3db9MwEMCt0UmwFwTjK2wMC6bBS7TE-XDygFA39iFEx4SG2Jvl2E6ZVJKytJr233NXO1kjCg-VKvnUJr6zfWeff0fIroFJ0cgk9jliLhGQ5RdBrPysVLCYmzwsM7zvPDpLT7_Hny-TyzUyau_CYFplOycuJmpdK9wj32cIvgo4Cz5Of_tYNAoPV9sKGtJVVtAfFoSxe2SdIRhrQNYPjs7Ov3VTM3jr9k5KyJDLyS1qiEUR39cFck4jLLe2tEC103TLDsbUSdlA75W27MUqv_Tv9MoH82oqb2_kZLK0dh0_Ig-d00mH1koekzVTbZL7I3esvkk20OW0xOYnRC82Ca9rRG9UY4qBKmXUZc409MRU9S_j_7jShi7pln6SM0kXCQhUUlvhEvVPz8HFvJG3_gEsl5oOHcL8Kbk4Pro4PPVdLQZfgc8y81MZ50znJi4yaRCIE-rQRDLmpgxNIqVEjrqBSBs-Smd5zLMi1TLJAlOWSR49I4OqrswLQou0KHSQFLKUEbLtc57INFW50azk4Ix65H3b_0I5TjmWy5gIiFdQVQJVJVBVHnnTiU4tnGOV0B4qUSDsosJsGmV3ZAS83uFXMWR4oSviQQ6_1hccy3nTiOzkS0_onRMqa3gqJd0tBng3BGn1JPd6kmOLEV8luN0ThPGtes27rfWJdj_-7kuSiRTDt8gjOz3L7DoEfDo8_mQe2WpNVbh5qhHdqPLI664VHwBT7ypTzxuRcojJQTEeeW7N-q6rcwbOXwR_zXsG3wkgurzfUl39XCDMWQphLer6bTc0_q3Bl_998i2yYU_4cGdsmwxm13PzChzFWbHjhv8fhTRmhw priority: 102 providerName: ProQuest  | 
    
| Title | Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach | 
    
| URI | http://diabetes.diabetesjournals.org/content/58/6/1463.abstract https://www.ncbi.nlm.nih.gov/pubmed/19252133 https://www.proquest.com/docview/216470720 https://www.proquest.com/docview/67289777 https://pubmed.ncbi.nlm.nih.gov/PMC2682674 https://diabetesjournals.org/diabetes/article-pdf/58/6/1463/393854/zdb00609001463.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 58 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: KQ8 dateStart: 19980101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: DIK dateStart: 19520101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Geneva Foundation for Medical Education and Research Open Access Journals customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central (PMC) customDbUrl: eissn: 1939-327X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: RPM dateStart: 20080701 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1939-327X dateEnd: 20130731 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1939-327X dateEnd: 20130731 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1939-327X dateEnd: 20130731 omitProxy: true ssIdentifier: ssj0006060 issn: 1939-327X databaseCode: 8C1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe2VgJe-P4IG8WCafCSJY0Tfzx2ZR9CrFRoE92T5SROmShptbZM21_PXZN0DRSJBx4aVfUvaXy-s-_s88-E7FjoFK2JQlcgzSUSZLmxHyauzBIYzK1qZxL3O5_0-PFZ-HEQDTbIWbUXpppxLCU5XSzmVz96pTTdSZp5kfS4B3bOPKaYjELvJkUV8hV6_RwixDTbJE0egYveIM2zXr9zXvTKAVJyimK1WbksEIOCcShgTHjwDIiqGJ66tjJOVb11RSGMGZRmCkLMitMv1rmnf2ZZ3p3nE3N9ZUajlSHs8AH5WVW-yFz5vjefxXvJzW-8kP9dOg_J_dLppZ3izkdkw-aPyZ2Tcln_CUkX85KXY2T7yIcUY2Ma0DJZZ0qPbD7-Yd2vF6mlK-pEP5iZoYucB2pocagmqhztg1d7Za7dfRihU9opWdOfktPDg9PusVse_-Am4CbNXG5CFaTKhrE0Fjl42mnbMhMKm7VtZIxB6nYLwT18klSqUMiYpyaSvs2ySLFnpJGPc_uC0JjHcepHsckMQzp9JSLDeaJsGmQC_F-HvK_aWiclNTqe0DHSECKhWmhUC41q4ZA3S-ik4ANZB9pFhdHIr5FjAk9STAJpqF73s-4EuIeMCV_B0-rAoZlPp1oefaqB3pWgbAxvlZhy4wTUDbm7asjdGnJYMJevA27XgNClJLXinUrTdaVdt18iqTlGjMwhrZoVLAUCbiSuuAYO2arMQlcqC4U8FL4IfIe8XpbiC2C2X27H86nmIpAQlwiHPC9M6FbUKgB_k8Ffi5pxLQHIll4vyS--LVjTAw6RNLb126UZ_r0FX_4TaovcKxYXcVJumzRml3P7CnzUWdwim2Ig4Cq77RZp7h_0-l9aZS_0CzrGj9w | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRWp7QVBepqVdQSlcrDrrx9oHhEL6SGlSOATR22rtXYdKwQ51oij_iR_JTNZ2YhG49RAp0o6S9c54XjvzDSFHGpSilr5nc4S5RIAsO3a8xA7TBIy5jlppiP3O_eug-837fOPfbJDfVS8MllVWOnGhqFWeYI78hCHwlcOZ83H8y8ahUXi5Wk3QMFJxpecziNiKD5enwN63jJ2fDTpduxwqYCdgfCd2IL2IqUh7cSg1Iru0VEu70uM6bWlfSomA4BpCRvgkKow8HsaBkn7o6DT1EXoJFP4Dz2Uc1UDYWRaUQChgGl5aDEE_ucExYq7LT1SMIKouznJbsX6VDaiAibEuUxbAmtTM1Fjn9P5du7k9zcZyPpOj0YphPH9EHpYeLW0bEXxMNnS2S7b65Z39LtlBf9bAQT8hapGBvMsR1yMbUoyCKaNlWU5BL3SW_9T291ul6Yrg0FM5kXRR3UAlNeMzUbjoV_BfZ3JufwJbrGi7xEd_Sgb3wZNnZDPLM_2C0DiIY-X4sUyli8D5EfdlECSRVizl4Ola5H11_iIpQdBxFsdIQDCErBLIKoGsssjrmnRskD_WER0jEwUiaWRYqpOYdI-Ax-t8EW2G3WIudyL4tSbhUE6LQoQXvQbRu5IozWFXiSxbJODZEKWrQXncoBwajPJ1hPsNQlAeSWP5qJI-USX7l1_8UAQYG7oWOWhIZn0g4DDi3SqzyF4lqqJUgoWoX1mLHNaruAGs68t0Pi1EwCHgB8ZY5LkR6-VRRww8Sxf-mjcEviZAXPTmSnb7Y4GPzgKImZHXb-pX498cfPnfnR-S7e6g3xO9y-urPbJjrhIxBbdPNid3U_0KPNJJfLBQBJSIe1Y8fwDKdpyI | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRSq9ICgv09KuoBQuVuz1Y-0DQqEhbemDHoqa22rtXYdKwQ51oij_jJ_HTNZ2YxG49RAp0o6S9c54XjvzDSH7GpSiloFvc4S5RIAsO3H81I6yFIy5jt0swn7n84vw-Lv_dRAM1sjvuhcGyyprnbhQ1KpIMUfeYQh85XDmdLKqKuKy1_80_mXjACm8aK2naRgJOdXzGURv5ceTHrD6HWP9L1eHx3Y1YMBOwRBP7FD6MVOx9pNIakR5cZWrPelznbk6kFIiOLiG8BE-qYpin0dJqGQQOTrLAoRhAuX_gHtejMWEfNCEeg6EBab5xWUIAMoNphHzPN5RCQKqejjXbckS1vagBinGGk1ZApsyM19jlQP8dx3nw2k-lvOZHI2WjGT_MXlUebe0a8TxCVnT-RbZOK_u77fIJvq2Bhr6KVGLbORtgRgf-ZBiREwZrUp0Snqk8-Kntq9vlKZLQkR7ciLpotKBSmpGaaKg0UvwZWdybn8Gu6xot8JKf0au7oMnz8l6XuT6JaFJmCTKCRKZSQ9B9GMeyDBMY61YxsHrtciH-vxFWgGi41yOkYDACFklkFUCWWWRNw3p2KCArCI6QCYKRNXIUUBTk_oR8HiH30SXYeeYx50Yfq1NOJTTshTR0VmL6H1FlBWwq1RW7RLwbIjY1aI8aFEODV75KsKdFiEokrS1vF9Ln6gT_3dfgkiEGCd6FtltSWZzIOA84j0rs8h2LaqiUoilaF5fi-w1q7gBrPHLdTEtRcgh-AfGWOSFEeu7o44ZeJke_DVvCXxDgBjp7ZX85scCK52FED8jr982r8a_OfjqvzvfIxugcsTZycXpNtk0t4qYjdsh65PbqX4Nzukk2V3oAUrEPeudP9YCoPc | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwEvfH-EjWHBNHjJksaJHT-WwTYhNvawiu7JcmKnTJS0Wlqm7a_nrk66BorEAw-VovqXD5_v7Dv7_DMh2xY6RauT2BdIc4kEWX4WxrmfFjkM5lZ2ixT3Ox8d88N-_GmQDNZIv9kL08w41pKs5ov5zZ9BLU1_YoogSQMegJ2zgEmWJnFwbVCFQoleP4cI0RS3yDpPwEXvkPX-8UnvzPXKEVJyCrfaLH0WiYFjHIoYEwE8A6IqhqeuLY1TTW_dUAhjBqWuQIiFO_1ilXv6Z5blnVk50VeXejRaGsL275OfTeVd5sr33dk0282vf-OF_O_SeUDu1U4v7bk7H5I1Wz4it4_qZf3HxMznJS_GyPZRDinGxjSidbJORQ9sOf5h_a_nxtIldaIf9FTTec4D1dQdqokqR0_Aq73UV_57GKEN7dWs6U_I6f7H071Dvz7-wc_BTZr6XMcyMtLGWaotcvB0TdcyHQtbdG2itUbqdgvBPfxyk8pYpBk3OklDWxSJZE9JpxyX9jmhGc8yEyaZLjRDOn0pEs15Lq2JCgH-r0feNW2t8poaHU_oGCkIkVAtFKqFQrXwyOsFdOL4QFaBdlBhFPJrlJjAk7tJIAXV2_uiehHuIWMilPC0NnCoZ1Wl0oPPLdDbGlSM4atyXW-cgLohd1cLudNCDh1z-SrgZgsIXUreKt5uNF012nVzkaSKY8TIPLLVsoKFQMCNxBXXyCMbjVmoRmWhkMciFFHokVeLUvwAzPYr7XhWKS6iFOIS4ZFnzoRuRC0j8DcZvFq0jGsBQLb0dkl5_m3Omh5xiKSxrd8szPDvLfjin1Ab5K5bXMRJuU3SmV7M7EvwUafZVt3j_AIpnIyO | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interrogating+Type+2+Diabetes+Genome-Wide+Association+Data+Using+a+Biological+Pathway-Based+Approach&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=PERRY%2C+John+R.+B&rft.au=MCCARTHY%2C+Mark+I&rft.au=HATTERSLEY%2C+Andrew+T&rft.au=ZEGGINI%2C+Eleftheria&rft.date=2009-06-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.volume=58&rft.issue=6&rft.spage=1463&rft.epage=1467&rft_id=info:doi/10.2337%2Fdb08-1378&rft.externalDBID=n%2Fa&rft.externalDocID=21501092 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |