Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach

Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach John R.B. Perry 1 , Mark I. McCarthy 2 , 3 , Andrew T. Hattersley 1 , Eleftheria Zeggini 2 , the Wellcome Trust Case Control Consortium , Michael N. Weedon 1 and Timothy M. Frayling 1 1 Genetics of C...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 58; no. 6; pp. 1463 - 1467
Main Authors Perry, John R.B., McCarthy, Mark I., Hattersley, Andrew T., Zeggini, Eleftheria, Weedon, Michael N., Frayling, Timothy M.
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.06.2009
Subjects
Online AccessGet full text
ISSN0012-1797
1939-327X
1939-327X
DOI10.2337/db08-1378

Cover

Abstract Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach John R.B. Perry 1 , Mark I. McCarthy 2 , 3 , Andrew T. Hattersley 1 , Eleftheria Zeggini 2 , the Wellcome Trust Case Control Consortium , Michael N. Weedon 1 and Timothy M. Frayling 1 1 Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter, U.K.; 2 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K.; 3 Oxford Centre for Diabetes, Endocrinology and Medicine, University of Oxford, Churchill Hospital, Oxford, U.K. Corresponding author: Michael Weedon, michael.weedon{at}pms.ac.uk . Abstract OBJECTIVE Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci. RESEARCH DESIGN AND METHODS We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases. RESULTS After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top P adj = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas. CONCLUSIONS Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology. Footnotes The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received October 7, 2008. Accepted February 18, 2009. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. © 2009 by the American Diabetes Association.
AbstractList Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci. We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases. After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top P(adj) = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas. Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology.
Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach John R.B. Perry 1 , Mark I. McCarthy 2 , 3 , Andrew T. Hattersley 1 , Eleftheria Zeggini 2 , the Wellcome Trust Case Control Consortium , Michael N. Weedon 1 and Timothy M. Frayling 1 1 Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter, U.K.; 2 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K.; 3 Oxford Centre for Diabetes, Endocrinology and Medicine, University of Oxford, Churchill Hospital, Oxford, U.K. Corresponding author: Michael Weedon, michael.weedon{at}pms.ac.uk . Abstract OBJECTIVE Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci. RESEARCH DESIGN AND METHODS We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases. RESULTS After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top P adj = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas. CONCLUSIONS Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology. Footnotes The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received October 7, 2008. Accepted February 18, 2009. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. © 2009 by the American Diabetes Association.
OBJECTIVE--Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci. RESEARCH DESIGN AND METHODS--We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases. RESULTS---After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top [P.sub.adj] = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas. CONCLUSIONS--Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology.
OBJECTIVERecent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci.RESEARCH DESIGN AND METHODSWe used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases.RESULTSAfter correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top P(adj) = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas.CONCLUSIONSCommon variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology.
Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci. We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases. After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top P(adj) = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas. Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology.
Audience Professional
Author Michael N. Weedon
Mark I. McCarthy
Timothy M. Frayling
John R.B. Perry
Andrew T. Hattersley
Eleftheria Zeggini
the Wellcome Trust Case Control Consortium
Author_xml – sequence: 1
  givenname: John R.B.
  surname: Perry
  fullname: Perry, John R.B.
  organization: Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter, U.K
– sequence: 2
  givenname: Mark I.
  surname: McCarthy
  fullname: McCarthy, Mark I.
  organization: Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K.;, Oxford Centre for Diabetes, Endocrinology and Medicine, University of Oxford, Churchill Hospital, Oxford, U.K
– sequence: 3
  givenname: Andrew T.
  surname: Hattersley
  fullname: Hattersley, Andrew T.
  organization: Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter, U.K
– sequence: 4
  givenname: Eleftheria
  surname: Zeggini
  fullname: Zeggini, Eleftheria
  organization: Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
– sequence: 5
  givenname: Michael N.
  surname: Weedon
  fullname: Weedon, Michael N.
  organization: Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter, U.K
– sequence: 6
  givenname: Timothy M.
  surname: Frayling
  fullname: Frayling, Timothy M.
  organization: Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter, U.K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21501092$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19252133$$D View this record in MEDLINE/PubMed
BookMark eNp9k29v0zAQxiM0xLrBC74AiphAApTNf5I4eYPUdVAmVRoviuCddXUuqafUDnFC6bfHpRGlUzWdoljO7zlfnjufBSfGGgyCl5RcMs7FVbEgWUS5yJ4EI5rzPOJM_DgJRoRQFlGRi9PgzLl7Qkjq41lwSnOWMMr5KChuTYdtayvotKnC-abBkIU3GhbYoQunaOwKo--6wHDsnFXac9aEN9BB-M1tJRBea1vbSiuow6_QLdewia7BYRGOm6a1oJbPg6cl1A5fDO_zYP7503zyJZrdTW8n41mk0ph3UQpxzooc40UGyOOM0YIih1hgSTEBAJLQGHMi_KOKLI9FtkgLSDKCZZnk_Dx4v0vbmwY2a6hr2bR6Be1GUiK3TsmtU3LrlIc_7uCmX6ywUGi6FvYCC1oefjF6KSv7S7I0Y6mIfYK3Q4LW_uzRdXKlncK6BoO2dzIVLMuFEB58_QC8t31rvBGS0TQWRDDioYsdVEGNUpvS-kPVNqMcM0LThAuy_cPoCFWhQV-hn4lS--0D_vII76PAlVZHBe8OBJ7p8HdXQe-czKazx4oZWGXrGiuUvrOTu0P-1f-O73szDKMH3gwAOD9MZQtGafePYzQhlORsX6RqrXMtlo-2-eoBq3T3d4a9E7o-qviwUyx1tVzrFmUx3Ib9IslkKmmccv4HutAWag
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1002_gepi_20632
crossref_primary_10_1371_journal_pcbi_1009908
crossref_primary_10_1016_j_tem_2024_05_006
crossref_primary_10_1371_journal_pgen_1001058
crossref_primary_10_3233_JAD_220120
crossref_primary_10_1002_dmrr_1046
crossref_primary_10_1242_dev_090993
crossref_primary_10_1371_journal_pone_0022760
crossref_primary_10_1093_nar_gkt111
crossref_primary_10_1016_j_tig_2012_03_004
crossref_primary_10_1186_1471_2164_12_166
crossref_primary_10_1016_j_ajhg_2012_08_002
crossref_primary_10_1038_nrendo_2009_215
crossref_primary_10_1038_nrurol_2011_113
crossref_primary_10_1038_s41598_017_12873_8
crossref_primary_10_1038_nrg2884
crossref_primary_10_1017_S1461145710001446
crossref_primary_10_1007_s00125_016_3967_7
crossref_primary_10_1371_journal_pone_0072653
crossref_primary_10_1016_j_jstrokecerebrovasdis_2015_04_036
crossref_primary_10_1038_nutd_2012_1
crossref_primary_10_3389_fendo_2021_653179
crossref_primary_10_1080_19382014_2023_2165368
crossref_primary_10_1074_jbc_M116_764910
crossref_primary_10_1371_journal_pone_0020133
crossref_primary_10_1161_CIRCGENETICS_111_960393
crossref_primary_10_2337_dc10_0349
crossref_primary_10_1093_aje_kws123
crossref_primary_10_1016_j_ajhg_2010_02_020
crossref_primary_10_18821_1560_9510_2018_22_4_193_198
crossref_primary_10_1186_1479_7364_4_1_21
crossref_primary_10_1016_j_bbr_2020_113101
crossref_primary_10_1016_j_molmet_2018_01_010
crossref_primary_10_4051_ibc_2011_3_2_0006
crossref_primary_10_1371_journal_pone_0053522
crossref_primary_10_1007_s00592_009_0129_0
crossref_primary_10_1161_CIRCGENETICS_114_000676
crossref_primary_10_1007_s00439_013_1377_1
crossref_primary_10_1093_humrep_dex024
crossref_primary_10_1002_gepi_21625
crossref_primary_10_1016_j_jmva_2023_105175
crossref_primary_10_1371_journal_pgen_1003770
crossref_primary_10_1111_cpr_12759
crossref_primary_10_2217_pgs_12_170
crossref_primary_10_1016_j_ajhg_2010_06_009
crossref_primary_10_1111_j_1471_4159_2011_07547_x
crossref_primary_10_1093_schbul_sbw035
crossref_primary_10_2139_ssrn_3383800
crossref_primary_10_1097_MIB_0000000000000329
crossref_primary_10_1371_journal_pone_0134923
crossref_primary_10_1016_j_crphar_2021_100016
crossref_primary_10_1038_s41419_018_0489_x
crossref_primary_10_1007_s00125_023_05889_5
crossref_primary_10_1016_j_ygeno_2011_04_006
crossref_primary_10_1186_1479_7364_7_16
crossref_primary_10_1371_journal_pgen_1000932
crossref_primary_10_1101_pdb_top065581
crossref_primary_10_1186_1471_2164_12_92
crossref_primary_10_1371_journal_pone_0193515
crossref_primary_10_1111_1753_0407_12025
crossref_primary_10_1007_s00439_009_0676_z
crossref_primary_10_1111_j_1469_1809_2010_00630_x
crossref_primary_10_1186_1472_6947_13_S1_S3
crossref_primary_10_1093_nsr_nwaa177
crossref_primary_10_2337_db11_0728
crossref_primary_10_1016_j_cmet_2011_04_013
crossref_primary_10_1096_fj_13_244046
crossref_primary_10_1016_j_ajhg_2009_11_017
crossref_primary_10_2337_db09_0766
crossref_primary_10_1016_j_molmet_2020_101086
crossref_primary_10_1186_s12859_016_1403_0
crossref_primary_10_1371_journal_pone_0057763
crossref_primary_10_1007_s11892_013_0408_6
Cites_doi 10.1038/nature05616
10.2337/diabetes.54.10.2844
10.1126/science.1142364
10.1634/stemcells.22-5-849
10.1038/ng1180
10.1038/ng2043
10.1126/science.1142358
10.1038/ng.120
10.1086/522374
10.1126/science.289.5481.950
10.1073/pnas.0506580102
10.1038/nature05911
10.1038/75556
10.1093/nar/28.1.27
10.1126/science.1142382
ClassificationCodes 8000212
541714
8733
541715
8731
ContentType Journal Article
Copyright 2009 INIST-CNRS
COPYRIGHT 2009 American Diabetes Association
Copyright American Diabetes Association Jun 2009
2009 by the American Diabetes Association. 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: COPYRIGHT 2009 American Diabetes Association
– notice: Copyright American Diabetes Association Jun 2009
– notice: 2009 by the American Diabetes Association. 2009
CorporateAuthor the Wellcome Trust Case Control Consortium
Wellcome Trust Case Control Consortium
CorporateAuthor_xml – name: the Wellcome Trust Case Control Consortium
– name: Wellcome Trust Case Control Consortium
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8GL
3V.
7RV
7X7
7XB
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M1P
M2O
M2P
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
5PM
ADTOC
UNPAY
DOI 10.2337/db08-1378
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: High School
ProQuest Central (Corporate)
Nursing & Allied Health Database (Proquest)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
eLibrary
Proquest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Consumer Health Database
ProQuest Health & Medical Collection
Medical Database
Research Library (Proquest)
Science Database
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 1939-327X
EndPage 1467
ExternalDocumentID 10.2337/db08-1378
PMC2682674
1828978661
A201653709
19252133
21501092
10_2337_db08_1378
diabetes_58_6_1463
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
Finland
GeographicLocations_xml – name: Finland
– name: United States--US
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 076113
GroupedDBID -
08R
0R
1AW
29F
2WC
3V.
4.4
53G
55
5GY
5RE
5RS
5VS
7RV
7X7
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAQQT
AAWTL
AAYEP
AAYJJ
ABFLS
ABOCM
ABPTK
ABUWG
ACDCL
ACGOD
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBAFP
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EX3
F5P
FRP
FYUFA
GICCO
GJ
GNUQQ
GUQSH
GX1
H13
HCIFZ
HZ
H~9
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
K-O
K9-
KM
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5
M7P
MBDVC
O0-
O5R
O5S
O9-
OB3
OBH
OK1
OVD
P2P
PADUT
PCD
PEA
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
RHF
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
WH7
WOQ
WOW
X7M
XZ
ZA5
ZY1
---
.55
.GJ
.XZ
08P
0R~
18M
354
6PF
AAFWJ
AAKAS
AAYXX
ACGFO
ADGHP
ADZCM
AEGXH
AERZD
AIAGR
AIZAD
BTFSW
CCPQU
CITATION
EMOBN
HMCUK
HZ~
ITC
K2M
M5~
N4W
NAPCQ
OHH
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
TEORI
TR2
UKHRP
VVN
W8F
YFH
YHG
YOC
~KM
1CY
8F7
AFFNX
AI.
ALIPV
IQODW
J5H
MVM
VH1
XOL
YQJ
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
AAYOK
PMFND
7XB
8FK
K9.
PKEHL
Q9U
7X8
5PM
ADTOC
AFLOD
UNPAY
ID FETCH-LOGICAL-c643t-6a492d9e4b8ae34821d1e3a47ef1e5aaa0514e907e90cd89478b6da580eff593
IEDL.DBID UNPAY
ISSN 0012-1797
1939-327X
IngestDate Sun Oct 26 02:38:50 EDT 2025
Tue Sep 30 16:59:32 EDT 2025
Fri Sep 05 09:05:57 EDT 2025
Fri Oct 03 11:12:00 EDT 2025
Mon Oct 20 22:43:58 EDT 2025
Thu Jun 12 23:57:54 EDT 2025
Mon Oct 20 16:55:09 EDT 2025
Thu Oct 16 15:34:35 EDT 2025
Tue Jun 10 19:56:16 EDT 2025
Mon Jul 21 05:55:41 EDT 2025
Mon Jul 21 09:12:06 EDT 2025
Wed Oct 01 03:44:43 EDT 2025
Thu Apr 24 23:13:18 EDT 2025
Fri Jan 15 19:45:56 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Endocrinopathy
Type 2 diabetes
Metabolic diseases
Association
Genome
Language English
License CC BY 4.0
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c643t-6a492d9e4b8ae34821d1e3a47ef1e5aaa0514e907e90cd89478b6da580eff593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://diabetesjournals.org/diabetes/article-pdf/58/6/1463/393854/zdb00609001463.pdf
PMID 19252133
PQID 216470720
PQPubID 34443
PageCount 5
ParticipantIDs gale_incontextgauss_8GL_A201653709
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2682674
proquest_journals_216470720
unpaywall_primary_10_2337_db08_1378
proquest_miscellaneous_67289777
crossref_citationtrail_10_2337_db08_1378
gale_infotracmisc_A201653709
highwire_diabetes_diabetes_58_6_1463
pubmed_primary_19252133
crossref_primary_10_2337_db08_1378
gale_incontextcollege_GICCO_A201653709
pascalfrancis_primary_21501092
gale_infotracgeneralonefile_A201653709
gale_infotracacademiconefile_A201653709
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2009
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References Ashburner (2022031208320947000_B8) 2000; 25
Scott (2022031208320947000_B3) 2007; 316
Kanehisa (2022031208320947000_B9) 2000; 28
Zeggini (2022031208320947000_B6) 2008; 40
Mootha (2022031208320947000_B12) 2003; 34
Sladek (2022031208320947000_B4) 2007; 445
Ross (2022031208320947000_B15) 2000; 289
Subramanian (2022031208320947000_B11) 2005; 102
Prokopenko (2022031208320947000_B2) 2007; 316
(2022031208320947000_B1) 2007; 447
Steinthorsdottir (2022031208320947000_B5) 2007; 39
Zeggini (2022031208320947000_B7) 2007; 316
Etheridge (2022031208320947000_B13) 2004; 22
Wang (2022031208320947000_B10) 2007; 81
Papadopoulou (2022031208320947000_B14) 2005; 54
19720820 - Diabetes. 2009 Sep;58(9):e9; author reply e10
References_xml – volume: 445
  start-page: 881
  year: 2007
  ident: 2022031208320947000_B4
  article-title: A genome-wide association study identifies novel risk loci for type 2 diabetes
  publication-title: Nature
  doi: 10.1038/nature05616
– volume: 54
  start-page: 2844
  year: 2005
  ident: 2022031208320947000_B14
  article-title: Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.10.2844
– volume: 316
  start-page: 1336
  year: 2007
  ident: 2022031208320947000_B7
  article-title: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes
  publication-title: Science
  doi: 10.1126/science.1142364
– volume: 22
  start-page: 849
  year: 2004
  ident: 2022031208320947000_B13
  article-title: Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells
  publication-title: Stem Cells
  doi: 10.1634/stemcells.22-5-849
– volume: 34
  start-page: 267
  year: 2003
  ident: 2022031208320947000_B12
  article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nat Genet
  doi: 10.1038/ng1180
– volume: 39
  start-page: 770
  year: 2007
  ident: 2022031208320947000_B5
  article-title: A variant in CDKAL1 influences insulin response and risk of type 2 diabetes
  publication-title: Nat Genet
  doi: 10.1038/ng2043
– volume: 316
  start-page: 1331
  year: 2007
  ident: 2022031208320947000_B2
  article-title: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels
  publication-title: Science
  doi: 10.1126/science.1142358
– volume: 40
  start-page: 638
  year: 2008
  ident: 2022031208320947000_B6
  article-title: Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes
  publication-title: Nat Genet
  doi: 10.1038/ng.120
– volume: 81
  start-page: 1278
  year: 2007
  ident: 2022031208320947000_B10
  article-title: Pathway-based approaches for analysis of genomewide association studies
  publication-title: Am J Hum Genet
  doi: 10.1086/522374
– volume: 289
  start-page: 950
  year: 2000
  ident: 2022031208320947000_B15
  article-title: Inhibition of adipogenesis by Wnt signaling
  publication-title: Science
  doi: 10.1126/science.289.5481.950
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2022031208320947000_B11
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0506580102
– volume: 447
  start-page: 661
  year: 2007
  ident: 2022031208320947000_B1
  article-title: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
  publication-title: Nature
  doi: 10.1038/nature05911
– volume: 25
  start-page: 25
  year: 2000
  ident: 2022031208320947000_B8
  article-title: Gene ontology: tool for the unification of biology: the Gene Ontology Consortium
  publication-title: Nat Genet
  doi: 10.1038/75556
– volume: 28
  start-page: 27
  year: 2000
  ident: 2022031208320947000_B9
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acid Res
  doi: 10.1093/nar/28.1.27
– volume: 316
  start-page: 1341
  year: 2007
  ident: 2022031208320947000_B3
  article-title: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants
  publication-title: Science
  doi: 10.1126/science.1142382
– reference: 19720820 - Diabetes. 2009 Sep;58(9):e9; author reply e10
SSID ssj0006060
Score 2.279225
Snippet Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach John R.B. Perry 1 , Mark I. McCarthy 2 , 3 , Andrew T....
Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a...
OBJECTIVE--Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a...
OBJECTIVERecent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1463
SubjectTerms Algorithms
Biological and medical sciences
Biology - methods
Case-Control Studies
Chromosome Mapping
Consortia
Diabetes
Diabetes Mellitus, Type 2 - genetics
Diabetes research
Diabetes. Impaired glucose tolerance
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Gene loci
Genetic aspects
Genetic research
Genetic Variation
Genetics
Genome-Wide Association Study
Genomes
Humans
Medical sciences
Models, Genetic
Odds Ratio
Ontology
Polymorphism, Single Nucleotide
Reference Values
Research design
Statistical analysis
Statistics
Type 2 diabetes
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3db9MwEMCt0UmwFwTjK2wMC6bBS7TE-XDygFA39iFEx4SG2Jvl2E6ZVJKytJr233NXO1kjCg-VKvnUJr6zfWeff0fIroFJ0cgk9jliLhGQ5RdBrPysVLCYmzwsM7zvPDpLT7_Hny-TyzUyau_CYFplOycuJmpdK9wj32cIvgo4Cz5Of_tYNAoPV9sKGtJVVtAfFoSxe2SdIRhrQNYPjs7Ov3VTM3jr9k5KyJDLyS1qiEUR39cFck4jLLe2tEC103TLDsbUSdlA75W27MUqv_Tv9MoH82oqb2_kZLK0dh0_Ig-d00mH1koekzVTbZL7I3esvkk20OW0xOYnRC82Ca9rRG9UY4qBKmXUZc409MRU9S_j_7jShi7pln6SM0kXCQhUUlvhEvVPz8HFvJG3_gEsl5oOHcL8Kbk4Pro4PPVdLQZfgc8y81MZ50znJi4yaRCIE-rQRDLmpgxNIqVEjrqBSBs-Smd5zLMi1TLJAlOWSR49I4OqrswLQou0KHSQFLKUEbLtc57INFW50azk4Ix65H3b_0I5TjmWy5gIiFdQVQJVJVBVHnnTiU4tnGOV0B4qUSDsosJsGmV3ZAS83uFXMWR4oSviQQ6_1hccy3nTiOzkS0_onRMqa3gqJd0tBng3BGn1JPd6kmOLEV8luN0ThPGtes27rfWJdj_-7kuSiRTDt8gjOz3L7DoEfDo8_mQe2WpNVbh5qhHdqPLI664VHwBT7ypTzxuRcojJQTEeeW7N-q6rcwbOXwR_zXsG3wkgurzfUl39XCDMWQphLer6bTc0_q3Bl_998i2yYU_4cGdsmwxm13PzChzFWbHjhv8fhTRmhw
  priority: 102
  providerName: ProQuest
Title Interrogating Type 2 Diabetes Genome-Wide Association Data Using a Biological Pathway-Based Approach
URI http://diabetes.diabetesjournals.org/content/58/6/1463.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19252133
https://www.proquest.com/docview/216470720
https://www.proquest.com/docview/67289777
https://pubmed.ncbi.nlm.nih.gov/PMC2682674
https://diabetesjournals.org/diabetes/article-pdf/58/6/1463/393854/zdb00609001463.pdf
UnpaywallVersion publishedVersion
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: KQ8
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: DIK
  dateStart: 19520101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Geneva Foundation for Medical Education and Research Open Access Journals
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central (PMC)
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: RPM
  dateStart: 20080701
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1939-327X
  dateEnd: 20130731
  omitProxy: true
  ssIdentifier: ssj0006060
  issn: 1939-327X
  databaseCode: 8C1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe2VgJe-P4IG8WCafCSJY0Tfzx2ZR9CrFRoE92T5SROmShptbZM21_PXZN0DRSJBx4aVfUvaXy-s-_s88-E7FjoFK2JQlcgzSUSZLmxHyauzBIYzK1qZxL3O5_0-PFZ-HEQDTbIWbUXpppxLCU5XSzmVz96pTTdSZp5kfS4B3bOPKaYjELvJkUV8hV6_RwixDTbJE0egYveIM2zXr9zXvTKAVJyimK1WbksEIOCcShgTHjwDIiqGJ66tjJOVb11RSGMGZRmCkLMitMv1rmnf2ZZ3p3nE3N9ZUajlSHs8AH5WVW-yFz5vjefxXvJzW-8kP9dOg_J_dLppZ3izkdkw-aPyZ2Tcln_CUkX85KXY2T7yIcUY2Ma0DJZZ0qPbD7-Yd2vF6mlK-pEP5iZoYucB2pocagmqhztg1d7Za7dfRihU9opWdOfktPDg9PusVse_-Am4CbNXG5CFaTKhrE0Fjl42mnbMhMKm7VtZIxB6nYLwT18klSqUMiYpyaSvs2ySLFnpJGPc_uC0JjHcepHsckMQzp9JSLDeaJsGmQC_F-HvK_aWiclNTqe0DHSECKhWmhUC41q4ZA3S-ik4ANZB9pFhdHIr5FjAk9STAJpqF73s-4EuIeMCV_B0-rAoZlPp1oefaqB3pWgbAxvlZhy4wTUDbm7asjdGnJYMJevA27XgNClJLXinUrTdaVdt18iqTlGjMwhrZoVLAUCbiSuuAYO2arMQlcqC4U8FL4IfIe8XpbiC2C2X27H86nmIpAQlwiHPC9M6FbUKgB_k8Ffi5pxLQHIll4vyS--LVjTAw6RNLb126UZ_r0FX_4TaovcKxYXcVJumzRml3P7CnzUWdwim2Ig4Cq77RZp7h_0-l9aZS_0CzrGj9w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRWp7QVBepqVdQSlcrDrrx9oHhEL6SGlSOATR22rtXYdKwQ51oij_iR_JTNZ2YhG49RAp0o6S9c54XjvzDSFHGpSilr5nc4S5RIAsO3a8xA7TBIy5jlppiP3O_eug-837fOPfbJDfVS8MllVWOnGhqFWeYI78hCHwlcOZ83H8y8ahUXi5Wk3QMFJxpecziNiKD5enwN63jJ2fDTpduxwqYCdgfCd2IL2IqUh7cSg1Iru0VEu70uM6bWlfSomA4BpCRvgkKow8HsaBkn7o6DT1EXoJFP4Dz2Uc1UDYWRaUQChgGl5aDEE_ucExYq7LT1SMIKouznJbsX6VDaiAibEuUxbAmtTM1Fjn9P5du7k9zcZyPpOj0YphPH9EHpYeLW0bEXxMNnS2S7b65Z39LtlBf9bAQT8hapGBvMsR1yMbUoyCKaNlWU5BL3SW_9T291ul6Yrg0FM5kXRR3UAlNeMzUbjoV_BfZ3JufwJbrGi7xEd_Sgb3wZNnZDPLM_2C0DiIY-X4sUyli8D5EfdlECSRVizl4Ola5H11_iIpQdBxFsdIQDCErBLIKoGsssjrmnRskD_WER0jEwUiaWRYqpOYdI-Ax-t8EW2G3WIudyL4tSbhUE6LQoQXvQbRu5IozWFXiSxbJODZEKWrQXncoBwajPJ1hPsNQlAeSWP5qJI-USX7l1_8UAQYG7oWOWhIZn0g4DDi3SqzyF4lqqJUgoWoX1mLHNaruAGs68t0Pi1EwCHgB8ZY5LkR6-VRRww8Sxf-mjcEviZAXPTmSnb7Y4GPzgKImZHXb-pX498cfPnfnR-S7e6g3xO9y-urPbJjrhIxBbdPNid3U_0KPNJJfLBQBJSIe1Y8fwDKdpyI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRSq9ICgv09KuoBQuVuz1Y-0DQqEhbemDHoqa22rtXYdKwQ51oij_jJ_HTNZ2YxG49RAp0o6S9c54XjvzDSH7GpSiloFvc4S5RIAsO3H81I6yFIy5jt0swn7n84vw-Lv_dRAM1sjvuhcGyyprnbhQ1KpIMUfeYQh85XDmdLKqKuKy1_80_mXjACm8aK2naRgJOdXzGURv5ceTHrD6HWP9L1eHx3Y1YMBOwRBP7FD6MVOx9pNIakR5cZWrPelznbk6kFIiOLiG8BE-qYpin0dJqGQQOTrLAoRhAuX_gHtejMWEfNCEeg6EBab5xWUIAMoNphHzPN5RCQKqejjXbckS1vagBinGGk1ZApsyM19jlQP8dx3nw2k-lvOZHI2WjGT_MXlUebe0a8TxCVnT-RbZOK_u77fIJvq2Bhr6KVGLbORtgRgf-ZBiREwZrUp0Snqk8-Kntq9vlKZLQkR7ciLpotKBSmpGaaKg0UvwZWdybn8Gu6xot8JKf0au7oMnz8l6XuT6JaFJmCTKCRKZSQ9B9GMeyDBMY61YxsHrtciH-vxFWgGi41yOkYDACFklkFUCWWWRNw3p2KCArCI6QCYKRNXIUUBTk_oR8HiH30SXYeeYx50Yfq1NOJTTshTR0VmL6H1FlBWwq1RW7RLwbIjY1aI8aFEODV75KsKdFiEokrS1vF9Ln6gT_3dfgkiEGCd6FtltSWZzIOA84j0rs8h2LaqiUoilaF5fi-w1q7gBrPHLdTEtRcgh-AfGWOSFEeu7o44ZeJke_DVvCXxDgBjp7ZX85scCK52FED8jr982r8a_OfjqvzvfIxugcsTZycXpNtk0t4qYjdsh65PbqX4Nzukk2V3oAUrEPeudP9YCoPc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwEvfH-EjWHBNHjJksaJHT-WwTYhNvawiu7JcmKnTJS0Wlqm7a_nrk66BorEAw-VovqXD5_v7Dv7_DMh2xY6RauT2BdIc4kEWX4WxrmfFjkM5lZ2ixT3Ox8d88N-_GmQDNZIv9kL08w41pKs5ov5zZ9BLU1_YoogSQMegJ2zgEmWJnFwbVCFQoleP4cI0RS3yDpPwEXvkPX-8UnvzPXKEVJyCrfaLH0WiYFjHIoYEwE8A6IqhqeuLY1TTW_dUAhjBqWuQIiFO_1ilXv6Z5blnVk50VeXejRaGsL275OfTeVd5sr33dk0282vf-OF_O_SeUDu1U4v7bk7H5I1Wz4it4_qZf3HxMznJS_GyPZRDinGxjSidbJORQ9sOf5h_a_nxtIldaIf9FTTec4D1dQdqokqR0_Aq73UV_57GKEN7dWs6U_I6f7H071Dvz7-wc_BTZr6XMcyMtLGWaotcvB0TdcyHQtbdG2itUbqdgvBPfxyk8pYpBk3OklDWxSJZE9JpxyX9jmhGc8yEyaZLjRDOn0pEs15Lq2JCgH-r0feNW2t8poaHU_oGCkIkVAtFKqFQrXwyOsFdOL4QFaBdlBhFPJrlJjAk7tJIAXV2_uiehHuIWMilPC0NnCoZ1Wl0oPPLdDbGlSM4atyXW-cgLohd1cLudNCDh1z-SrgZgsIXUreKt5uNF012nVzkaSKY8TIPLLVsoKFQMCNxBXXyCMbjVmoRmWhkMciFFHokVeLUvwAzPYr7XhWKS6iFOIS4ZFnzoRuRC0j8DcZvFq0jGsBQLb0dkl5_m3Omh5xiKSxrd8szPDvLfjin1Ab5K5bXMRJuU3SmV7M7EvwUafZVt3j_AIpnIyO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interrogating+Type+2+Diabetes+Genome-Wide+Association+Data+Using+a+Biological+Pathway-Based+Approach&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=PERRY%2C+John+R.+B&rft.au=MCCARTHY%2C+Mark+I&rft.au=HATTERSLEY%2C+Andrew+T&rft.au=ZEGGINI%2C+Eleftheria&rft.date=2009-06-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.volume=58&rft.issue=6&rft.spage=1463&rft.epage=1467&rft_id=info:doi/10.2337%2Fdb08-1378&rft.externalDBID=n%2Fa&rft.externalDocID=21501092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon