DLLabelsCT: Annotation tool using deep transfer learning to assist in creating new datasets from abdominal computed tomography scans, case study: Pancreas
The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning (DL) applications, which use large convolutional neural networks (CNN), hold considerable potential, especially in optimizing radiological evalu...
Saved in:
| Published in | PloS one Vol. 19; no. 12; p. e0313126 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
03.12.2024
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0313126 |
Cover
| Abstract | The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning (DL) applications, which use large convolutional neural networks (CNN), hold considerable potential, especially in optimizing radiological evaluations. However, training DL algorithms to clinical standards requires extensive datasets, and their processing is labor-intensive. In this study, we developed an annotation tool named DLLabelsCT that utilizes CNN models to accelerate the image analysis process. To validate DLLabelsCT, we trained a CNN model with a ResNet34 encoder and a UNet decoder to segment the pancreas on an open-access dataset and used the DL model to assist in annotating a local dataset, which was further used to refine the model. DLLabelsCT was also tested on two external testing datasets. The tool accelerates annotation by 3.4 times compared to a completely manual annotation method. Out of 3,715 CT scan slices in the testing datasets, 50% did not require editing when reviewing the segmentations made by the ResNet34-UNet model, and the mean and standard deviation of the Dice similarity coefficient was 0.82±0.24. DLLabelsCT is highly accurate and significantly saves time and resources. Furthermore, it can be easily modified to support other deep learning models for other organs, making it an efficient tool for future research involving larger datasets. |
|---|---|
| AbstractList | The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning (DL) applications, which use large convolutional neural networks (CNN), hold considerable potential, especially in optimizing radiological evaluations. However, training DL algorithms to clinical standards requires extensive datasets, and their processing is labor-intensive. In this study, we developed an annotation tool named DLLabelsCT that utilizes CNN models to accelerate the image analysis process. To validate DLLabelsCT, we trained a CNN model with a ResNet34 encoder and a UNet decoder to segment the pancreas on an open-access dataset and used the DL model to assist in annotating a local dataset, which was further used to refine the model. DLLabelsCT was also tested on two external testing datasets. The tool accelerates annotation by 3.4 times compared to a completely manual annotation method. Out of 3,715 CT scan slices in the testing datasets, 50% did not require editing when reviewing the segmentations made by the ResNet34-UNet model, and the mean and standard deviation of the Dice similarity coefficient was 0.82±0.24. DLLabelsCT is highly accurate and significantly saves time and resources. Furthermore, it can be easily modified to support other deep learning models for other organs, making it an efficient tool for future research involving larger datasets.The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning (DL) applications, which use large convolutional neural networks (CNN), hold considerable potential, especially in optimizing radiological evaluations. However, training DL algorithms to clinical standards requires extensive datasets, and their processing is labor-intensive. In this study, we developed an annotation tool named DLLabelsCT that utilizes CNN models to accelerate the image analysis process. To validate DLLabelsCT, we trained a CNN model with a ResNet34 encoder and a UNet decoder to segment the pancreas on an open-access dataset and used the DL model to assist in annotating a local dataset, which was further used to refine the model. DLLabelsCT was also tested on two external testing datasets. The tool accelerates annotation by 3.4 times compared to a completely manual annotation method. Out of 3,715 CT scan slices in the testing datasets, 50% did not require editing when reviewing the segmentations made by the ResNet34-UNet model, and the mean and standard deviation of the Dice similarity coefficient was 0.82±0.24. DLLabelsCT is highly accurate and significantly saves time and resources. Furthermore, it can be easily modified to support other deep learning models for other organs, making it an efficient tool for future research involving larger datasets. The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning (DL) applications, which use large convolutional neural networks (CNN), hold considerable potential, especially in optimizing radiological evaluations. However, training DL algorithms to clinical standards requires extensive datasets, and their processing is labor-intensive. In this study, we developed an annotation tool named DLLabelsCT that utilizes CNN models to accelerate the image analysis process. To validate DLLabelsCT, we trained a CNN model with a ResNet34 encoder and a UNet decoder to segment the pancreas on an open-access dataset and used the DL model to assist in annotating a local dataset, which was further used to refine the model. DLLabelsCT was also tested on two external testing datasets. The tool accelerates annotation by 3.4 times compared to a completely manual annotation method. Out of 3,715 CT scan slices in the testing datasets, 50% did not require editing when reviewing the segmentations made by the ResNet34-UNet model, and the mean and standard deviation of the Dice similarity coefficient was 0.82±0.24. DLLabelsCT is highly accurate and significantly saves time and resources. Furthermore, it can be easily modified to support other deep learning models for other organs, making it an efficient tool for future research involving larger datasets. |
| Audience | Academic |
| Author | Huhta, Heikki Nortunen, Minna Isosalo, Antti Nieminen, Miika T. Mustonen, Henrik Nevalainen, Mika |
| AuthorAffiliation | 1 Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland 4 Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland 2 Research Unit of Translational Medicine, Oulu University Hospital, Oulu, Finland 3 Department of Surgery, Oulu University Hospital, Oulu, Finland Al-Nahrain University, IRAQ |
| AuthorAffiliation_xml | – name: 3 Department of Surgery, Oulu University Hospital, Oulu, Finland – name: Al-Nahrain University, IRAQ – name: 4 Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland – name: 2 Research Unit of Translational Medicine, Oulu University Hospital, Oulu, Finland – name: 1 Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland |
| Author_xml | – sequence: 1 givenname: Henrik orcidid: 0009-0003-4437-8718 surname: Mustonen fullname: Mustonen, Henrik – sequence: 2 givenname: Antti surname: Isosalo fullname: Isosalo, Antti – sequence: 3 givenname: Minna surname: Nortunen fullname: Nortunen, Minna – sequence: 4 givenname: Mika surname: Nevalainen fullname: Nevalainen, Mika – sequence: 5 givenname: Miika T. surname: Nieminen fullname: Nieminen, Miika T. – sequence: 6 givenname: Heikki surname: Huhta fullname: Huhta, Heikki |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39625972$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk91u1DAQhSNURH_gDRBYQkIgsUuc2IndG1SVv0orFUHh1nKcya4rxw62Q9lX4Wlx2G3VRb2ocpFo8p3jMzPJYbZnnYUse4rzOS5r_PbSjd5KMx9SeZ6XuMRF9SA7wLwsZlWRl3u3nvezwxAu85yWrKoeZfslrwrK6-Ig-_N-sZANmHB6cYxOrHVRRu0sis4ZNAZtl6gFGFD00oYOPDIgvZ3K0SEZgg4RaYuUh6RLVQtXqJVRBogBdd71SDat63VKipTrhzFCm6S9W3o5rNYoqOT7BqkkQCGO7foYfZF2sguPs4edNAGebO9H2fePHy5OP88W55_OTk8WM1WRIs46KTkB2jYdVFQRVtaSF6nPBnhZdW1RE8Y7TqkktCnzgudVuhRlTLGOk6Yrj7LnG9_BuCC2Yw0iTZRjVrCcJOJsQ7ROXorB6176tXBSi38F55dC-qiVAUE7BjVUGDChJK9StkpxVZOWKgpFO51GN16jHeT6ShpzY4hzMW32OoKYNiu2m026d9uUY9NDq8CmlZidMLtvrF6JpfslMK4wKejUxautg3c_RwhR9DooMEZacOPUMMl5QRitE_riP_TusWyppUyda9u5dLCaTMUJw4zhkpVT8PkdVLpa6LVKLXY61XcEr3cEiYnwOy7lGII4-_b1_uz5j1325S12BdLEVXBmnL73sAs-uz3qmxlf_zUJIBtAeReCh-5-K_wL_2EtAA |
| Cites_doi | 10.1037/0033-295X.84.4.327 10.1371/journal.pone.0252287 10.1117/12.2628190 10.1007/s11042-022-12100-1 10.1109/TMI.2018.2806309 10.1002/jmri.26534 10.1097/SLA.0000000000005349 10.5152/dir.2019.19025 10.1109/ISBI.2019.8759329 10.1016/j.neucom.2022.10.060 10.1088/1361-6560/abfce3 10.1038/nature14539 10.1007/s11263-015-0816-y 10.1007/s10278-019-00232-0 10.1007/s10278-013-9622-7 10.1158/2159-8290.CD-21-0090 10.1148/radiol.220152 10.1007/s11548-021-02530-x 10.1016/j.simpa.2023.100599 10.3390/cancers14215382 10.1007/s12652-021-03612-z 10.1109/CVPR.2017.106 10.1109/CVPR.2016.90 10.3748/wjg.v20.i24.7864 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Mustonen et al 2024 Mustonen et al 2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Mustonen et al 2024 Mustonen et al – notice: 2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0313126 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Annotation tool with deep learning assistant for abdominal computed tomography scans |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3139182804 oai_doaj_org_article_5f8e7e61e145406aa96c9c74d5c5e2df 10.1371/journal.pone.0313126 PMC11614254 A818813836 39625972 10_1371_journal_pone_0313126 |
| Genre | Journal Article |
| GeographicLocations | Finland Netherlands Chicago Illinois United States--US Amsterdam Netherlands Japan Germany |
| GeographicLocations_xml | – name: Finland – name: Germany – name: Netherlands – name: United States--US – name: Amsterdam Netherlands – name: Japan – name: Chicago Illinois |
| GrantInformation_xml | – fundername: ; |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c642t-faa94e5dbfe65c4837a92386be936fd27489f955a45b302906060c588c8f94bf3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Wed Aug 13 01:17:33 EDT 2025 Fri Oct 03 12:51:07 EDT 2025 Sun Oct 26 04:05:08 EDT 2025 Tue Sep 30 17:06:52 EDT 2025 Wed Oct 01 13:45:36 EDT 2025 Tue Oct 07 07:49:51 EDT 2025 Mon Oct 20 22:42:25 EDT 2025 Mon Oct 20 16:57:26 EDT 2025 Thu Oct 16 15:38:35 EDT 2025 Thu Oct 16 15:40:08 EDT 2025 Thu May 22 21:23:35 EDT 2025 Wed Feb 19 02:02:11 EST 2025 Wed Oct 01 03:35:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Copyright: © 2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c642t-faa94e5dbfe65c4837a92386be936fd27489f955a45b302906060c588c8f94bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0009-0003-4437-8718 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0313126 |
| PMID | 39625972 |
| PQID | 3139182804 |
| PQPubID | 1436336 |
| PageCount | e0313126 |
| ParticipantIDs | plos_journals_3139182804 doaj_primary_oai_doaj_org_article_5f8e7e61e145406aa96c9c74d5c5e2df unpaywall_primary_10_1371_journal_pone_0313126 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11614254 proquest_miscellaneous_3140924857 proquest_journals_3139182804 gale_infotracmisc_A818813836 gale_infotracacademiconefile_A818813836 gale_incontextgauss_ISR_A818813836 gale_incontextgauss_IOV_A818813836 gale_healthsolutions_A818813836 pubmed_primary_39625972 crossref_primary_10_1371_journal_pone_0313126 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-03 |
| PublicationDateYYYYMMDD | 2024-12-03 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2024 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | pone.0313126.ref014 ES Lee (pone.0313126.ref027) 2014; 20 E Montagnon (pone.0313126.ref001) 2020; 11 KA Philbrick (pone.0313126.ref006) 2019; 32 pone.0313126.ref011 BV Janssen (pone.0313126.ref030) 2022; 275 P Chen (pone.0313126.ref031) 2023; 306 H Roth (pone.0313126.ref009) 2015; 9349 pone.0313126.ref016 H Roth (pone.0313126.ref007) pone.0313126.ref019 A. Tiulpin (pone.0313126.ref018) 2019 H Roth (pone.0313126.ref008) 2016 K Clark (pone.0313126.ref010) 2013; 26 C Shen (pone.0313126.ref028) 2022; 17 S Dai (pone.0313126.ref023) 2023; 517 F Pedregosa (pone.0313126.ref015) 2011; 12 A Paszke (pone.0313126.ref020) 2019; 32 Y LeCun (pone.0313126.ref003) 2015; 521 O Russakovsky (pone.0313126.ref012) 2015; 115 B Bhinder (pone.0313126.ref029) 2021; 11 A. Tversky (pone.0313126.ref017) 1977; 84 Y Kumar (pone.0313126.ref034) 2023; 14 E Gibson (pone.0313126.ref005) 2018; 37 BS Hameed (pone.0313126.ref033) 2022; 14 A Isosalo (pone.0313126.ref021) 2024; 19 pone.0313126.ref022 O Ronneberger (pone.0313126.ref013) 2015; 9351 S Lim (pone.0313126.ref026) 2022; 12 M Aljabri (pone.0313126.ref004) 2022; 81 Y Yan (pone.0313126.ref024) 2021; 16 MA Mazurowski (pone.0313126.ref002) 2019; 49 J Li (pone.0313126.ref025) 2021; 66 AE Kavur (pone.0313126.ref032) 2020; 26 |
| References_xml | – volume: 84 start-page: 327 issue: 4 year: 1977 ident: pone.0313126.ref017 article-title: Features of similarity. publication-title: Psychological review. doi: 10.1037/0033-295X.84.4.327 – volume: 16 start-page: e0252287 issue: 5 year: 2021 ident: pone.0313126.ref024 article-title: Multi-scale U-like network with attention mechanism for automatic pancreas segmentation publication-title: PLOS ONE doi: 10.1371/journal.pone.0252287 – ident: pone.0313126.ref014 doi: 10.1117/12.2628190 – volume: 81 start-page: 25877 issue: 18 year: 2022 ident: pone.0313126.ref004 article-title: Towards a better understanding of annotation tools for medical imaging: A survey. publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12100-1 – volume: 12 start-page: 2825 year: 2011 ident: pone.0313126.ref015 article-title: Scikit-learn: Machine learning in Python. publication-title: Journal of Machine Learning Research – volume: 37 start-page: 1822 issue: 8 year: 2018 ident: pone.0313126.ref005 article-title: Automatic multi-organ segmentation on abdominal CT with dense V-networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2806309 – volume: 49 start-page: 939 issue: 4 year: 2019 ident: pone.0313126.ref002 article-title: Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. publication-title: J. Magn. Reason. Imaging doi: 10.1002/jmri.26534 – volume: 9349 start-page: 556 year: 2015 ident: pone.0313126.ref009 article-title: DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation. publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Lecture Notes in Computer Science – volume: 275 start-page: 560 issue: 3 year: 2022 ident: pone.0313126.ref030 article-title: Imaging-based machine-learning models to predict clinical outcomes and identify biomarkers in pancreatic cancer publication-title: Ann. Surg doi: 10.1097/SLA.0000000000005349 – volume: 32 start-page: 8024 year: 2019 ident: pone.0313126.ref020 article-title: PyTorch: An imperative style, high-performance deep learning library publication-title: Advances in Neural Information Processing Systems – ident: pone.0313126.ref007 article-title: Deep convolutional networks for pancreas segmentation in CT imagingProc. SPIE 9413, Medical Imaging 2015: Image Processing, 94131G, – volume: 26 start-page: 11 issue: 1 year: 2020 ident: pone.0313126.ref032 article-title: Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors publication-title: Diagn. Interv. Radiol doi: 10.5152/dir.2019.19025 – ident: pone.0313126.ref016 doi: 10.1109/ISBI.2019.8759329 – volume: 517 start-page: 279 year: 2023 ident: pone.0313126.ref023 article-title: TD-Net: Trans-deformer network for automatic pancreas segmentation. publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.060 – volume: 66 start-page: 115010 issue: 11 year: 2021 ident: pone.0313126.ref025 article-title: Pancreas segmentation with probabilistic map guided bi-directional recurrent UNet publication-title: Phys Med Biol doi: 10.1088/1361-6560/abfce3 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: pone.0313126.ref003 article-title: Deep learning. publication-title: Nature doi: 10.1038/nature14539 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: pone.0313126.ref012 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comput. Vis doi: 10.1007/s11263-015-0816-y – ident: pone.0313126.ref019 – volume: 32 start-page: 571 issue: 4 year: 2019 ident: pone.0313126.ref006 article-title: RILContour: A medical imaging dataset annotation tool for and with deep learning. publication-title: J. Digit. Imaging. doi: 10.1007/s10278-019-00232-0 – volume: 26 start-page: 1045 issue: 6 year: 2013 ident: pone.0313126.ref010 article-title: The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. publication-title: J. Digit. Imaging. doi: 10.1007/s10278-013-9622-7 – year: 2019 ident: pone.0313126.ref018 article-title: Solt: Streaming over lightweight transformations publication-title: Computer software – volume: 11 start-page: 900 issue: 4 year: 2021 ident: pone.0313126.ref029 article-title: Artificial intelligence in cancer research and precision medicine publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-21-0090 – volume: 12 issue: 4075 year: 2022 ident: pone.0313126.ref026 article-title: Automated pancreas segmentation and volumetry using deep neural network on computed tomography publication-title: Sci. Rep – volume: 306 start-page: 172 issue: 1 year: 2023 ident: pone.0313126.ref031 article-title: Pancreatic cancer detection on CT scans with deep learning: A nationwide population-based study. publication-title: Radiology doi: 10.1148/radiol.220152 – year: 2016 ident: pone.0313126.ref008 article-title: Data from Pancreas-CT (Version 2) [Data set]. publication-title: The Cancer Imaging Archive – volume: 9351 start-page: 234 year: 2015 ident: pone.0313126.ref013 article-title: U-net: Convolutional networks for biomedical image segmentation. publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Lecture Notes in Computer Science – volume: 17 start-page: 343 issue: 2 year: 2022 ident: pone.0313126.ref028 article-title: A cascaded fully convolutional network framework for dilated pancreatic duct segmentation. publication-title: Int. J. CARS doi: 10.1007/s11548-021-02530-x – volume: 19 start-page: 100599 year: 2024 ident: pone.0313126.ref021 article-title: MammogramAnnotationTool: Markup tool for breast tissue abnormality annotation. publication-title: Softw. Impacts doi: 10.1016/j.simpa.2023.100599 – volume: 14 start-page: 5382 issue: 21 year: 2022 ident: pone.0313126.ref033 article-title: Artificial intelligence-driven diagnosis of pancreatic cancer publication-title: Cancers doi: 10.3390/cancers14215382 – volume: 14 start-page: 8459 issue: 7 year: 2023 ident: pone.0313126.ref034 article-title: Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. publication-title: J. Ambient Intell. Human Comput doi: 10.1007/s12652-021-03612-z – ident: pone.0313126.ref022 doi: 10.1109/CVPR.2017.106 – ident: pone.0313126.ref011 doi: 10.1109/CVPR.2016.90 – volume: 11 issue: 22 year: 2020 ident: pone.0313126.ref001 article-title: Deep learning workflow in radiology: A primer. publication-title: Insights Imaging – volume: 20 start-page: 7864 issue: 24 year: 2014 ident: pone.0313126.ref027 article-title: Imaging diagnosis of pancreatic cancer: A state-of-the-art review publication-title: WJG doi: 10.3748/wjg.v20.i24.7864 |
| SSID | ssj0053866 |
| Score | 2.4672656 |
| Snippet | The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0313126 |
| SubjectTerms | Abdomen Algorithms Analysis Annotations Archives & records Artificial intelligence Artificial neural networks Automation Biology and Life Sciences Computed tomography Computer and Information Sciences CT imaging Data mining Datasets Deep Learning Evaluation Hospitals Humans Image analysis Image processing Image Processing, Computer-Assisted - methods Machine learning Medical imaging Medical research Medicine and Health Sciences Neural networks Neural Networks, Computer Pancreas Pancreas - diagnostic imaging Pancreatic cancer Research and Analysis Methods Scanners Tomography Tomography, X-Ray Computed - methods Transfer learning Tumors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK9uKWAQEiCR7eZhJ-5tKVQFlYegRb1FtmMvlZZk1WSF-Cv8WmZsb7QRlegB7c0eb5SZ8fgbZfwNIc9EpQB3MhVZblSUFTaNFJaJ6dxYZsChUlfy_-EjPzrN3p-xs41WX1gT5umBveL2mC1MbnhsYuSK41IKroXOs4ppZpLKYvSdFmKdTPkYDLuY83BRLs3jvWCXybKpzQTZCmMkU9g4iBxffx-VR8tF014GOf-unLy-qpfy10-5WGwcS4e3yM2AJ-nMv8cWuWbq22Qr7NiWvgi00i_vkN9vjo-lgqPw4GSfzuq68R_hadc0C4rl73NaGbOknYOy5oKGhhJzkKAAscEf6HlNPcqEUcDjFOtLW9O1FG-pUKmqxvUIo9r3iqhg6Y_AiU1bMGL7impYQB2p7T79DC6HRfF3yenh25ODoyh0Zog05CtdZMEMmWGVsoYzjaT0EoBiwZURKbdVgpQ2VjAmM6bSKTLKw0-zotCFFZmy6T0yqsEW24RanUhhs1gLLrNimsnU8KnKk6yyCQzpMYnWZiqXnoCjdF_hckhcvI5LNGsZzDomr9GWvSzSZ7sBcKoyOFX5L6cak8foCaW_i9oHgXIG8KaIIamHxzx1EkihUWONzlyu2rZ89-nbFYS-fhkIPQ9CtgELaxnuRcA7ITXXQHJ3IAmBQA-mt9Fv11ppS1CIgPQRlAor1758-fSTfhr_FOvuatOsUAbyf2S9y8fkvnf9XrOpwNw5T8akGGyKgeqHM_X5d8dgHkOeAYcFPHjS758rWXfnf1j3AbmRADR1RUnpLhl1FyvzEKBlpx65KPIHaqd6Og priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZG9wAviHFbYYBBSIBEuuZiJ5mEUDc2DTTGNLZpb5Ht2GVSSUqTCvFX-LWc4zhhEROa-mafNLLPxZ_j4-8Q8jLNJeBOJj3DtfSixISexDQxFWvDNBhUaFP-Px_y_dPo0zk7XyGH7V0YTKtsY6IN1Hmp8Bv5ZghQBbBwMo7ez394WDUKT1fbEhrClVbI31mKsRtkNUBmrAFZ3d49PDpuYzN4N-fuAl0Y-5tOX6N5WegRshj6SLJwaYGyPP5dtB7MZ2V1FRT9N6Py5rKYi18_xWx2abnau0NuO5xJJ41hrJEVXdwla86TK_ra0U2_uUd-fzg4EBKWyJ2TLTopirI5nKd1Wc4opsVPaa71nNYW4uoFdYUmpiBBAXqDndCLgjboE1oBp1PMO610XVG8vUKFzEtbO4yqpoZEDo9-d1zZtALlVm-pggeoJbvdokdgipgsf5-c7u2e7Ox7rmKDp2AfU3tGiDTSLJdGc6aQrF4AgEy41GnITR4g1Y1JGRMRk-EYmebhp1iSqMSkkTThAzIoQBfrhBoViNREvkq5iEDrItR8LOMgyk0ATWpIvFZN2bwh5sjs6VwMG5pmjjNUa-bUOiTbqMtOFmm1bUO5mGbOSzNmEh1r7msfiQk5jIarVMVRzhTTQW6G5BlaQtbcUe2CQzYB2JP4sNmH17ywEkitUWDuzlQsqyr7-OXsGkJfj3tCr5yQKUHDSrj7EjAmpOzqSW70JCFAqF73OtptOytV9teV4MnWlq_uft51459iPl6hyyXKROMU2fDiIXnYmH43s2GKe-o4GJKk5xS9qe_3FBffLLO5D_sPWETgxaPOf66l3Uf_H8hjcisAMGrTkMINMqgXS_0EwGQtn7oI8QfyKHef priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgBFQi6eZhJ-ltKVQFlVJBF5UDimzHLhVLsmqyQnDgh_BrmXG8EYEilQPKJbLHznpmbM-sZz4T8iArJNidTHqGa-nFqYk8iWFiKtGGaVCoyIb8v9rjO5P45SE7XCIfFrkwjoPgI06r2p7k40tV6g3HyQ3EK2pPT33oKFi08GdA5CMSYRDyhxZxCP8ZazAB6RxZ5gxM9QFZnuztj9-3J82hx8NR5NLp_tZTb7uyqP7d2j3AX3aaYfpnfOX5eTkTX7-I6fSXzWv7Evm-GHYbs_LJnzfSV99-Q4T8b3y5TC46s5eO215WyJIur5AVt7DU9LFDv16_Sn48290VEnbsrYNNOi7Lqo0VoE1VTSlG6R_RQusZbazFrU-ou_fiCCgoeAKgtvS4pK0xDKXgNlAMg611U1NMpqFCFpW9yoyq9kqLApp-dtDdtAZdq59QBQ2oxd7dpPswMzB2_xqZbD8_2Nrx3AUSngK3qvGMEFmsWSGN5kwhdr4AezblUmcRN0WIyDsmY0zETEYjBL6HR7E0VanJYmmi62RQAvtWCTUqFJmJA5VxEaejWESaj2QSxoUJoUgNibfQk3zW4oTk9rAwAf-q5XGOksidJIbkKSpTR4so37YARJs7kebMpDrRPNAB4iRyGA1XmUrigimmw8IMyV1UxbxNme3WqnwMVlgaRGkEn7lvKRDpo8RQoiMxr-v8xet3ZyB6-6ZH9MgRmQokrIRL34Axoeb1KNd6lLBeqV71Kqrugit1DgzJwMsFpkLLxWQ6vfpeV42dYnhgqas50sSjDMH5kiG50c69jrNRhi5-Eg5J2puVPdb3a8rjjxZoPQB3CPY0-LDfTeAzSffmvza4RS6EYC3bOKlojQyak7m-DdZuI--4NesnFEywwQ priority: 102 providerName: Unpaywall |
| Title | DLLabelsCT: Annotation tool using deep transfer learning to assist in creating new datasets from abdominal computed tomography scans, case study: Pancreas |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39625972 https://www.proquest.com/docview/3139182804 https://www.proquest.com/docview/3140924857 https://pubmed.ncbi.nlm.nih.gov/PMC11614254 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0313126&type=printable https://doaj.org/article/5f8e7e61e145406aa96c9c74d5c5e2df http://dx.doi.org/10.1371/journal.pone.0313126 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO_Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrhVEMQgIkUjVfTjIJoa6sDLSVaqxTeYocxy6TSlKaVLB_hb-WO8eNiOikqVIe7HMj34d9F59_R8jLKE3A7_QTSzGZWF6oXCvBNDERSOVLUChXp_yfjtjxxPs89adbZF2z1TCw2BjaYT2pyXLe_f3z6j0Y_DtdtSGw14O6izyTXcQitB22TXZgr4qwmMOpV58rgHUzZi7QXTeysUFpHP96tW4t5nmxyRX9P6Py1ipb8KtffD7_Z7sa3iV3jJ9J-5Vi7JItmd0ju8aSC_rawE2_uU_-fDg54QlskYPzA9rPsrw6nKdlns8ppsXPaCrlgpbaxZVLagpNzICCgusNekIvM1p5n9AKfjrFvNNClgXF2yuUJ2mua4dRUdWQSGHoD4OVTQsQbvGWChhANdjtAR2DKmKy_AMyGR6dD44tU7HBEhDHlJbiPPKknyZKMl8gWD0HBzJkiYxcplIHoW5U5Pvc8xO3h0jz8BN-GIpQRV6i3IeklYEs9ghVwuGR8mwRMe6FPY-7kvWSwPFS5UCTaBNrLaZ4UQFzxPp0LoCApuJxjGKNjVjb5BBlWdMirLZuyJez2Fhp7KtQBpLZ0kZgQgazYSISgZf6wpdOqtrkGWpCXN1RrReHuA9uT2hDsA-veaEpEFojw9ydGV8VRfzpy8UNiL6eNYheGSKVg4QFN_clYE4I2dWg3G9QwgIhGt17qLdrrhQxMCSCsBKYCiPXury5-3ndjX-K-XiZzFdIA8aFaHhBmzyqVL_mrBthTB04bRI2jKLB-mZPdvldI5vbEH_AJgIv7tb2cyPpPr5-jk_IbQccUZ2C5O6TVrlcyafgSJZJh2wH0wCe4cDG5_Bjh-wcHo3GZx39aaaj1w5om4zG_W9_ARlKe_Q |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGeRgviPFvhcEMAgES6Zo4cZJJCJWNaWXdQNChvgXHscukkoQm1bSvwofgM3LnpGERE9rL1Df7ksi-8_l39fl3hDwLkxhwpxdbmqvYcgPNrBjTxKSvtKfAoJhJ-T884vvH7oeJN1khv5d3YTCtcukTjaNOMon_kW8xgCqAhYO--zb_aWHVKDxdXZbQqMziQJ2dQshWvBnugn6fO87e-_HOvlVXFbAkYO3S0kKErvKSWCvuSSRUFwByAh6rkHGdOEjHokPPE64Xsz6yocNPekEgAx26sWbw3mvkusvAl8D68SdNgAe-g_P6eh7z7a3aGnp5lqoeciTaSOFwbvszVQKavaCTz7LiIqD7b77m6iLNxdmpmM3ObYZ7t8jNGsXSQWV2a2RFpbfJWu0nCvqyJrN-dYf82h2NRAwb8M54mw7SNKuO_mmZZTOKSfdTmiiV09IAaDWndRmLKUhQAPZghfQkpRW2hVaIAihmtRaqLCjejaEiTjJTmYzKqkJFAo_-qJm4aQGmU7ymEh6ghkp3m34CQ8dU_Lvk-Eo0d490UtDFOqFaOiLUri1DLlywKcEU78e-4ybagSbZJdZSTVFe0X5E5uzPh3CpmuMI1RrVau2Sd6jLRhZJu01DNp9GtQ-IPB0oX3Fb2Uh7yGE0XIbSdxNPespJdJdsoiVE1Q3YxvVEAwBVgc0CBp95aiSQuCPFzKCpWBRFNPz49RJCXz63hF7UQjoDDUtR38aAMSEhWEtyoyUJ7ke2utfRbpezUkR_Fyo8ubTli7ufNN34Usz2S1W2QBm3HyLXnt8l9yvTb2aWhRix-06XBK1F0Zr6dk968t3wptsQ3cAWBR_uNevnUtp98P-BbJLV_fHhKBoNjw4ekhsOwF6T8MQ2SKecL9QjgK1l_Nj4Ckq-XbVz-gNeJq1I |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELZGkYAviPG2wmAGgQCJtE2c10kIlZVqZWVMsKF-C45jl0klCU2qaX-Fn8Kv4y5xwiImtC9Tv9nnRPadz8815-cIeRbEEeBOJzKUKyPD9hUzIkwTE55UjgSDYmXK_8d9d_fI_jBzZmvkd30XBtMqa59YOuo4FfgfeZ8BVAEs7A_svtJpEQej8dvsp4EVpPBLa11OozKRPXl6AuFb_mYyAl0_t6zx-8OdXUNXGDAE4O7CUJwHtnTiSEnXEUiuzgHw-G4kA-aq2EJqFhU4DrediA2QGR1-wvF94avAjhSD514hVz3GAkwn9GZNsAd-xHX1VT3mmX1tGb0sTWQP-RJNpHM4cxSWFQOac6GTLdL8PND7b-7m9VWS8dMTvlicORjHt8hNjWjpsDLBdbImk9tkXfuMnL7UxNav7pBfo-mUR3AY7xxu02GSpFUaAC3SdEExAX9OYykzWpRgWi6pLmkxBwkKIB8skh4ntMK50AoRAcUM11wWOcV7MpRHcVpWKaOiqlYRw9AfmpWb5mBG-WsqYAAtaXW36QEYPabl3yVHl6K5e6STgC42CFXC4oGyTRG43Ab74ky6g8iz7FhZ0CS6xKjVFGYVBUhYfgf0IHSq1jhEtYZarV3yDnXZyCKBd9mQLueh9geho3zpSdeUJlIgujAbVwTCs2NHONKKVZdsoSWE1W3Yxg2FQwBYvsl8Bq95WkogiUeC22HOV3keTj59vYDQl88toRdaSKWgYcH1zQyYE5KDtSQ3W5LgikSrewPttl6VPPy7aWFkbcvndz9puvGhmPmXyHSFMvYgQN49r0vuV6bfrCwLMHr3rC7xW5uitfTtnuT4e8mhbkKkA8cVvLjX7J8LaffB_yeyRa6BWwqnk_29h-SGBQi4zH1im6RTLFfyESDYInpcugpKvl22b_oDsiCxiw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgBFQi6eZhJ-ltKVQFlVJBF5UDimzHLhVLsmqyQnDgh_BrmXG8EYEilQPKJbLHznpmbM-sZz4T8iArJNidTHqGa-nFqYk8iWFiKtGGaVCoyIb8v9rjO5P45SE7XCIfFrkwjoPgI06r2p7k40tV6g3HyQ3EK2pPT33oKFi08GdA5CMSYRDyhxZxCP8ZazAB6RxZ5gxM9QFZnuztj9-3J82hx8NR5NLp_tZTb7uyqP7d2j3AX3aaYfpnfOX5eTkTX7-I6fSXzWv7Evm-GHYbs_LJnzfSV99-Q4T8b3y5TC46s5eO215WyJIur5AVt7DU9LFDv16_Sn48290VEnbsrYNNOi7Lqo0VoE1VTSlG6R_RQusZbazFrU-ou_fiCCgoeAKgtvS4pK0xDKXgNlAMg611U1NMpqFCFpW9yoyq9kqLApp-dtDdtAZdq59QBQ2oxd7dpPswMzB2_xqZbD8_2Nrx3AUSngK3qvGMEFmsWSGN5kwhdr4AezblUmcRN0WIyDsmY0zETEYjBL6HR7E0VanJYmmi62RQAvtWCTUqFJmJA5VxEaejWESaj2QSxoUJoUgNibfQk3zW4oTk9rAwAf-q5XGOksidJIbkKSpTR4so37YARJs7kebMpDrRPNAB4iRyGA1XmUrigimmw8IMyV1UxbxNme3WqnwMVlgaRGkEn7lvKRDpo8RQoiMxr-v8xet3ZyB6-6ZH9MgRmQokrIRL34Axoeb1KNd6lLBeqV71Kqrugit1DgzJwMsFpkLLxWQ6vfpeV42dYnhgqas50sSjDMH5kiG50c69jrNRhi5-Eg5J2puVPdb3a8rjjxZoPQB3CPY0-LDfTeAzSffmvza4RS6EYC3bOKlojQyak7m-DdZuI--4NesnFEywwQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DLLabelsCT%3A+Annotation+tool+using+deep+transfer+learning+to+assist+in+creating+new+datasets+from+abdominal+computed+tomography+scans%2C+case+study%3A+Pancreas&rft.jtitle=PloS+one&rft.au=Mustonen%2C+Henrik&rft.au=Isosalo%2C+Antti&rft.au=Nortunen%2C+Minna&rft.au=Nevalainen%2C+Mika&rft.date=2024-12-03&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pone.0313126&rft.externalDocID=3139182804 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |