DLLabelsCT: Annotation tool using deep transfer learning to assist in creating new datasets from abdominal computed tomography scans, case study: Pancreas

The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning (DL) applications, which use large convolutional neural networks (CNN), hold considerable potential, especially in optimizing radiological evalu...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 12; p. e0313126
Main Authors Mustonen, Henrik, Isosalo, Antti, Nortunen, Minna, Nevalainen, Mika, Nieminen, Miika T., Huhta, Heikki
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.12.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0313126

Cover

Abstract The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning (DL) applications, which use large convolutional neural networks (CNN), hold considerable potential, especially in optimizing radiological evaluations. However, training DL algorithms to clinical standards requires extensive datasets, and their processing is labor-intensive. In this study, we developed an annotation tool named DLLabelsCT that utilizes CNN models to accelerate the image analysis process. To validate DLLabelsCT, we trained a CNN model with a ResNet34 encoder and a UNet decoder to segment the pancreas on an open-access dataset and used the DL model to assist in annotating a local dataset, which was further used to refine the model. DLLabelsCT was also tested on two external testing datasets. The tool accelerates annotation by 3.4 times compared to a completely manual annotation method. Out of 3,715 CT scan slices in the testing datasets, 50% did not require editing when reviewing the segmentations made by the ResNet34-UNet model, and the mean and standard deviation of the Dice similarity coefficient was 0.82±0.24. DLLabelsCT is highly accurate and significantly saves time and resources. Furthermore, it can be easily modified to support other deep learning models for other organs, making it an efficient tool for future research involving larger datasets.
AbstractList The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning (DL) applications, which use large convolutional neural networks (CNN), hold considerable potential, especially in optimizing radiological evaluations. However, training DL algorithms to clinical standards requires extensive datasets, and their processing is labor-intensive. In this study, we developed an annotation tool named DLLabelsCT that utilizes CNN models to accelerate the image analysis process. To validate DLLabelsCT, we trained a CNN model with a ResNet34 encoder and a UNet decoder to segment the pancreas on an open-access dataset and used the DL model to assist in annotating a local dataset, which was further used to refine the model. DLLabelsCT was also tested on two external testing datasets. The tool accelerates annotation by 3.4 times compared to a completely manual annotation method. Out of 3,715 CT scan slices in the testing datasets, 50% did not require editing when reviewing the segmentations made by the ResNet34-UNet model, and the mean and standard deviation of the Dice similarity coefficient was 0.82±0.24. DLLabelsCT is highly accurate and significantly saves time and resources. Furthermore, it can be easily modified to support other deep learning models for other organs, making it an efficient tool for future research involving larger datasets.The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning (DL) applications, which use large convolutional neural networks (CNN), hold considerable potential, especially in optimizing radiological evaluations. However, training DL algorithms to clinical standards requires extensive datasets, and their processing is labor-intensive. In this study, we developed an annotation tool named DLLabelsCT that utilizes CNN models to accelerate the image analysis process. To validate DLLabelsCT, we trained a CNN model with a ResNet34 encoder and a UNet decoder to segment the pancreas on an open-access dataset and used the DL model to assist in annotating a local dataset, which was further used to refine the model. DLLabelsCT was also tested on two external testing datasets. The tool accelerates annotation by 3.4 times compared to a completely manual annotation method. Out of 3,715 CT scan slices in the testing datasets, 50% did not require editing when reviewing the segmentations made by the ResNet34-UNet model, and the mean and standard deviation of the Dice similarity coefficient was 0.82±0.24. DLLabelsCT is highly accurate and significantly saves time and resources. Furthermore, it can be easily modified to support other deep learning models for other organs, making it an efficient tool for future research involving larger datasets.
The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning (DL) applications, which use large convolutional neural networks (CNN), hold considerable potential, especially in optimizing radiological evaluations. However, training DL algorithms to clinical standards requires extensive datasets, and their processing is labor-intensive. In this study, we developed an annotation tool named DLLabelsCT that utilizes CNN models to accelerate the image analysis process. To validate DLLabelsCT, we trained a CNN model with a ResNet34 encoder and a UNet decoder to segment the pancreas on an open-access dataset and used the DL model to assist in annotating a local dataset, which was further used to refine the model. DLLabelsCT was also tested on two external testing datasets. The tool accelerates annotation by 3.4 times compared to a completely manual annotation method. Out of 3,715 CT scan slices in the testing datasets, 50% did not require editing when reviewing the segmentations made by the ResNet34-UNet model, and the mean and standard deviation of the Dice similarity coefficient was 0.82±0.24. DLLabelsCT is highly accurate and significantly saves time and resources. Furthermore, it can be easily modified to support other deep learning models for other organs, making it an efficient tool for future research involving larger datasets.
Audience Academic
Author Huhta, Heikki
Nortunen, Minna
Isosalo, Antti
Nieminen, Miika T.
Mustonen, Henrik
Nevalainen, Mika
AuthorAffiliation 1 Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
4 Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
2 Research Unit of Translational Medicine, Oulu University Hospital, Oulu, Finland
3 Department of Surgery, Oulu University Hospital, Oulu, Finland
Al-Nahrain University, IRAQ
AuthorAffiliation_xml – name: 3 Department of Surgery, Oulu University Hospital, Oulu, Finland
– name: Al-Nahrain University, IRAQ
– name: 4 Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
– name: 2 Research Unit of Translational Medicine, Oulu University Hospital, Oulu, Finland
– name: 1 Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
Author_xml – sequence: 1
  givenname: Henrik
  orcidid: 0009-0003-4437-8718
  surname: Mustonen
  fullname: Mustonen, Henrik
– sequence: 2
  givenname: Antti
  surname: Isosalo
  fullname: Isosalo, Antti
– sequence: 3
  givenname: Minna
  surname: Nortunen
  fullname: Nortunen, Minna
– sequence: 4
  givenname: Mika
  surname: Nevalainen
  fullname: Nevalainen, Mika
– sequence: 5
  givenname: Miika T.
  surname: Nieminen
  fullname: Nieminen, Miika T.
– sequence: 6
  givenname: Heikki
  surname: Huhta
  fullname: Huhta, Heikki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39625972$$D View this record in MEDLINE/PubMed
BookMark eNqNk91u1DAQhSNURH_gDRBYQkIgsUuc2IndG1SVv0orFUHh1nKcya4rxw62Q9lX4Wlx2G3VRb2ocpFo8p3jMzPJYbZnnYUse4rzOS5r_PbSjd5KMx9SeZ6XuMRF9SA7wLwsZlWRl3u3nvezwxAu85yWrKoeZfslrwrK6-Ig-_N-sZANmHB6cYxOrHVRRu0sis4ZNAZtl6gFGFD00oYOPDIgvZ3K0SEZgg4RaYuUh6RLVQtXqJVRBogBdd71SDat63VKipTrhzFCm6S9W3o5rNYoqOT7BqkkQCGO7foYfZF2sguPs4edNAGebO9H2fePHy5OP88W55_OTk8WM1WRIs46KTkB2jYdVFQRVtaSF6nPBnhZdW1RE8Y7TqkktCnzgudVuhRlTLGOk6Yrj7LnG9_BuCC2Yw0iTZRjVrCcJOJsQ7ROXorB6176tXBSi38F55dC-qiVAUE7BjVUGDChJK9StkpxVZOWKgpFO51GN16jHeT6ShpzY4hzMW32OoKYNiu2m026d9uUY9NDq8CmlZidMLtvrF6JpfslMK4wKejUxautg3c_RwhR9DooMEZacOPUMMl5QRitE_riP_TusWyppUyda9u5dLCaTMUJw4zhkpVT8PkdVLpa6LVKLXY61XcEr3cEiYnwOy7lGII4-_b1_uz5j1325S12BdLEVXBmnL73sAs-uz3qmxlf_zUJIBtAeReCh-5-K_wL_2EtAA
Cites_doi 10.1037/0033-295X.84.4.327
10.1371/journal.pone.0252287
10.1117/12.2628190
10.1007/s11042-022-12100-1
10.1109/TMI.2018.2806309
10.1002/jmri.26534
10.1097/SLA.0000000000005349
10.5152/dir.2019.19025
10.1109/ISBI.2019.8759329
10.1016/j.neucom.2022.10.060
10.1088/1361-6560/abfce3
10.1038/nature14539
10.1007/s11263-015-0816-y
10.1007/s10278-019-00232-0
10.1007/s10278-013-9622-7
10.1158/2159-8290.CD-21-0090
10.1148/radiol.220152
10.1007/s11548-021-02530-x
10.1016/j.simpa.2023.100599
10.3390/cancers14215382
10.1007/s12652-021-03612-z
10.1109/CVPR.2017.106
10.1109/CVPR.2016.90
10.3748/wjg.v20.i24.7864
ContentType Journal Article
Copyright Copyright: © 2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Mustonen et al 2024 Mustonen et al
2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Mustonen et al 2024 Mustonen et al
– notice: 2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0313126
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef




Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Annotation tool with deep learning assistant for abdominal computed tomography scans
EISSN 1932-6203
ExternalDocumentID 3139182804
oai_doaj_org_article_5f8e7e61e145406aa96c9c74d5c5e2df
10.1371/journal.pone.0313126
PMC11614254
A818813836
39625972
10_1371_journal_pone_0313126
Genre Journal Article
GeographicLocations Finland
Netherlands
Chicago Illinois
United States--US
Amsterdam Netherlands
Japan
Germany
GeographicLocations_xml – name: Finland
– name: Germany
– name: Netherlands
– name: United States--US
– name: Amsterdam Netherlands
– name: Japan
– name: Chicago Illinois
GrantInformation_xml – fundername: ;
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c642t-faa94e5dbfe65c4837a92386be936fd27489f955a45b302906060c588c8f94bf3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:17:33 EDT 2025
Fri Oct 03 12:51:07 EDT 2025
Sun Oct 26 04:05:08 EDT 2025
Tue Sep 30 17:06:52 EDT 2025
Wed Oct 01 13:45:36 EDT 2025
Tue Oct 07 07:49:51 EDT 2025
Mon Oct 20 22:42:25 EDT 2025
Mon Oct 20 16:57:26 EDT 2025
Thu Oct 16 15:38:35 EDT 2025
Thu Oct 16 15:40:08 EDT 2025
Thu May 22 21:23:35 EDT 2025
Wed Feb 19 02:02:11 EST 2025
Wed Oct 01 03:35:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Copyright: © 2024 Mustonen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-faa94e5dbfe65c4837a92386be936fd27489f955a45b302906060c588c8f94bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0009-0003-4437-8718
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0313126
PMID 39625972
PQID 3139182804
PQPubID 1436336
PageCount e0313126
ParticipantIDs plos_journals_3139182804
doaj_primary_oai_doaj_org_article_5f8e7e61e145406aa96c9c74d5c5e2df
unpaywall_primary_10_1371_journal_pone_0313126
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11614254
proquest_miscellaneous_3140924857
proquest_journals_3139182804
gale_infotracmisc_A818813836
gale_infotracacademiconefile_A818813836
gale_incontextgauss_ISR_A818813836
gale_incontextgauss_IOV_A818813836
gale_healthsolutions_A818813836
pubmed_primary_39625972
crossref_primary_10_1371_journal_pone_0313126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-03
PublicationDateYYYYMMDD 2024-12-03
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0313126.ref014
ES Lee (pone.0313126.ref027) 2014; 20
E Montagnon (pone.0313126.ref001) 2020; 11
KA Philbrick (pone.0313126.ref006) 2019; 32
pone.0313126.ref011
BV Janssen (pone.0313126.ref030) 2022; 275
P Chen (pone.0313126.ref031) 2023; 306
H Roth (pone.0313126.ref009) 2015; 9349
pone.0313126.ref016
H Roth (pone.0313126.ref007)
pone.0313126.ref019
A. Tiulpin (pone.0313126.ref018) 2019
H Roth (pone.0313126.ref008) 2016
K Clark (pone.0313126.ref010) 2013; 26
C Shen (pone.0313126.ref028) 2022; 17
S Dai (pone.0313126.ref023) 2023; 517
F Pedregosa (pone.0313126.ref015) 2011; 12
A Paszke (pone.0313126.ref020) 2019; 32
Y LeCun (pone.0313126.ref003) 2015; 521
O Russakovsky (pone.0313126.ref012) 2015; 115
B Bhinder (pone.0313126.ref029) 2021; 11
A. Tversky (pone.0313126.ref017) 1977; 84
Y Kumar (pone.0313126.ref034) 2023; 14
E Gibson (pone.0313126.ref005) 2018; 37
BS Hameed (pone.0313126.ref033) 2022; 14
A Isosalo (pone.0313126.ref021) 2024; 19
pone.0313126.ref022
O Ronneberger (pone.0313126.ref013) 2015; 9351
S Lim (pone.0313126.ref026) 2022; 12
M Aljabri (pone.0313126.ref004) 2022; 81
Y Yan (pone.0313126.ref024) 2021; 16
MA Mazurowski (pone.0313126.ref002) 2019; 49
J Li (pone.0313126.ref025) 2021; 66
AE Kavur (pone.0313126.ref032) 2020; 26
References_xml – volume: 84
  start-page: 327
  issue: 4
  year: 1977
  ident: pone.0313126.ref017
  article-title: Features of similarity.
  publication-title: Psychological review.
  doi: 10.1037/0033-295X.84.4.327
– volume: 16
  start-page: e0252287
  issue: 5
  year: 2021
  ident: pone.0313126.ref024
  article-title: Multi-scale U-like network with attention mechanism for automatic pancreas segmentation
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0252287
– ident: pone.0313126.ref014
  doi: 10.1117/12.2628190
– volume: 81
  start-page: 25877
  issue: 18
  year: 2022
  ident: pone.0313126.ref004
  article-title: Towards a better understanding of annotation tools for medical imaging: A survey.
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12100-1
– volume: 12
  start-page: 2825
  year: 2011
  ident: pone.0313126.ref015
  article-title: Scikit-learn: Machine learning in Python.
  publication-title: Journal of Machine Learning Research
– volume: 37
  start-page: 1822
  issue: 8
  year: 2018
  ident: pone.0313126.ref005
  article-title: Automatic multi-organ segmentation on abdominal CT with dense V-networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2806309
– volume: 49
  start-page: 939
  issue: 4
  year: 2019
  ident: pone.0313126.ref002
  article-title: Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI.
  publication-title: J. Magn. Reason. Imaging
  doi: 10.1002/jmri.26534
– volume: 9349
  start-page: 556
  year: 2015
  ident: pone.0313126.ref009
  article-title: DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation.
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Lecture Notes in Computer Science
– volume: 275
  start-page: 560
  issue: 3
  year: 2022
  ident: pone.0313126.ref030
  article-title: Imaging-based machine-learning models to predict clinical outcomes and identify biomarkers in pancreatic cancer
  publication-title: Ann. Surg
  doi: 10.1097/SLA.0000000000005349
– volume: 32
  start-page: 8024
  year: 2019
  ident: pone.0313126.ref020
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems
– ident: pone.0313126.ref007
  article-title: Deep convolutional networks for pancreas segmentation in CT imagingProc. SPIE 9413, Medical Imaging 2015: Image Processing, 94131G,
– volume: 26
  start-page: 11
  issue: 1
  year: 2020
  ident: pone.0313126.ref032
  article-title: Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors
  publication-title: Diagn. Interv. Radiol
  doi: 10.5152/dir.2019.19025
– ident: pone.0313126.ref016
  doi: 10.1109/ISBI.2019.8759329
– volume: 517
  start-page: 279
  year: 2023
  ident: pone.0313126.ref023
  article-title: TD-Net: Trans-deformer network for automatic pancreas segmentation.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.060
– volume: 66
  start-page: 115010
  issue: 11
  year: 2021
  ident: pone.0313126.ref025
  article-title: Pancreas segmentation with probabilistic map guided bi-directional recurrent UNet
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/abfce3
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: pone.0313126.ref003
  article-title: Deep learning.
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: pone.0313126.ref012
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis
  doi: 10.1007/s11263-015-0816-y
– ident: pone.0313126.ref019
– volume: 32
  start-page: 571
  issue: 4
  year: 2019
  ident: pone.0313126.ref006
  article-title: RILContour: A medical imaging dataset annotation tool for and with deep learning.
  publication-title: J. Digit. Imaging.
  doi: 10.1007/s10278-019-00232-0
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  ident: pone.0313126.ref010
  article-title: The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository.
  publication-title: J. Digit. Imaging.
  doi: 10.1007/s10278-013-9622-7
– year: 2019
  ident: pone.0313126.ref018
  article-title: Solt: Streaming over lightweight transformations
  publication-title: Computer software
– volume: 11
  start-page: 900
  issue: 4
  year: 2021
  ident: pone.0313126.ref029
  article-title: Artificial intelligence in cancer research and precision medicine
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-21-0090
– volume: 12
  issue: 4075
  year: 2022
  ident: pone.0313126.ref026
  article-title: Automated pancreas segmentation and volumetry using deep neural network on computed tomography
  publication-title: Sci. Rep
– volume: 306
  start-page: 172
  issue: 1
  year: 2023
  ident: pone.0313126.ref031
  article-title: Pancreatic cancer detection on CT scans with deep learning: A nationwide population-based study.
  publication-title: Radiology
  doi: 10.1148/radiol.220152
– year: 2016
  ident: pone.0313126.ref008
  article-title: Data from Pancreas-CT (Version 2) [Data set].
  publication-title: The Cancer Imaging Archive
– volume: 9351
  start-page: 234
  year: 2015
  ident: pone.0313126.ref013
  article-title: U-net: Convolutional networks for biomedical image segmentation.
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Lecture Notes in Computer Science
– volume: 17
  start-page: 343
  issue: 2
  year: 2022
  ident: pone.0313126.ref028
  article-title: A cascaded fully convolutional network framework for dilated pancreatic duct segmentation.
  publication-title: Int. J. CARS
  doi: 10.1007/s11548-021-02530-x
– volume: 19
  start-page: 100599
  year: 2024
  ident: pone.0313126.ref021
  article-title: MammogramAnnotationTool: Markup tool for breast tissue abnormality annotation.
  publication-title: Softw. Impacts
  doi: 10.1016/j.simpa.2023.100599
– volume: 14
  start-page: 5382
  issue: 21
  year: 2022
  ident: pone.0313126.ref033
  article-title: Artificial intelligence-driven diagnosis of pancreatic cancer
  publication-title: Cancers
  doi: 10.3390/cancers14215382
– volume: 14
  start-page: 8459
  issue: 7
  year: 2023
  ident: pone.0313126.ref034
  article-title: Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda.
  publication-title: J. Ambient Intell. Human Comput
  doi: 10.1007/s12652-021-03612-z
– ident: pone.0313126.ref022
  doi: 10.1109/CVPR.2017.106
– ident: pone.0313126.ref011
  doi: 10.1109/CVPR.2016.90
– volume: 11
  issue: 22
  year: 2020
  ident: pone.0313126.ref001
  article-title: Deep learning workflow in radiology: A primer.
  publication-title: Insights Imaging
– volume: 20
  start-page: 7864
  issue: 24
  year: 2014
  ident: pone.0313126.ref027
  article-title: Imaging diagnosis of pancreatic cancer: A state-of-the-art review
  publication-title: WJG
  doi: 10.3748/wjg.v20.i24.7864
SSID ssj0053866
Score 2.4672656
Snippet The utilization of artificial intelligence (AI) is expanding significantly within medical research and, to some extent, in clinical practice. Deep learning...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0313126
SubjectTerms Abdomen
Algorithms
Analysis
Annotations
Archives & records
Artificial intelligence
Artificial neural networks
Automation
Biology and Life Sciences
Computed tomography
Computer and Information Sciences
CT imaging
Data mining
Datasets
Deep Learning
Evaluation
Hospitals
Humans
Image analysis
Image processing
Image Processing, Computer-Assisted - methods
Machine learning
Medical imaging
Medical research
Medicine and Health Sciences
Neural networks
Neural Networks, Computer
Pancreas
Pancreas - diagnostic imaging
Pancreatic cancer
Research and Analysis Methods
Scanners
Tomography
Tomography, X-Ray Computed - methods
Transfer learning
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK9uKWAQEiCR7eZhJ-5tKVQFlYegRb1FtmMvlZZk1WSF-Cv8WmZsb7QRlegB7c0eb5SZ8fgbZfwNIc9EpQB3MhVZblSUFTaNFJaJ6dxYZsChUlfy_-EjPzrN3p-xs41WX1gT5umBveL2mC1MbnhsYuSK41IKroXOs4ppZpLKYvSdFmKdTPkYDLuY83BRLs3jvWCXybKpzQTZCmMkU9g4iBxffx-VR8tF014GOf-unLy-qpfy10-5WGwcS4e3yM2AJ-nMv8cWuWbq22Qr7NiWvgi00i_vkN9vjo-lgqPw4GSfzuq68R_hadc0C4rl73NaGbOknYOy5oKGhhJzkKAAscEf6HlNPcqEUcDjFOtLW9O1FG-pUKmqxvUIo9r3iqhg6Y_AiU1bMGL7impYQB2p7T79DC6HRfF3yenh25ODoyh0Zog05CtdZMEMmWGVsoYzjaT0EoBiwZURKbdVgpQ2VjAmM6bSKTLKw0-zotCFFZmy6T0yqsEW24RanUhhs1gLLrNimsnU8KnKk6yyCQzpMYnWZiqXnoCjdF_hckhcvI5LNGsZzDomr9GWvSzSZ7sBcKoyOFX5L6cak8foCaW_i9oHgXIG8KaIIamHxzx1EkihUWONzlyu2rZ89-nbFYS-fhkIPQ9CtgELaxnuRcA7ITXXQHJ3IAmBQA-mt9Fv11ppS1CIgPQRlAor1758-fSTfhr_FOvuatOsUAbyf2S9y8fkvnf9XrOpwNw5T8akGGyKgeqHM_X5d8dgHkOeAYcFPHjS758rWXfnf1j3AbmRADR1RUnpLhl1FyvzEKBlpx65KPIHaqd6Og
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZG9wAviHFbYYBBSIBEuuZiJ5mEUDc2DTTGNLZpb5Ht2GVSSUqTCvFX-LWc4zhhEROa-mafNLLPxZ_j4-8Q8jLNJeBOJj3DtfSixISexDQxFWvDNBhUaFP-Px_y_dPo0zk7XyGH7V0YTKtsY6IN1Hmp8Bv5ZghQBbBwMo7ez394WDUKT1fbEhrClVbI31mKsRtkNUBmrAFZ3d49PDpuYzN4N-fuAl0Y-5tOX6N5WegRshj6SLJwaYGyPP5dtB7MZ2V1FRT9N6Py5rKYi18_xWx2abnau0NuO5xJJ41hrJEVXdwla86TK_ra0U2_uUd-fzg4EBKWyJ2TLTopirI5nKd1Wc4opsVPaa71nNYW4uoFdYUmpiBBAXqDndCLgjboE1oBp1PMO610XVG8vUKFzEtbO4yqpoZEDo9-d1zZtALlVm-pggeoJbvdokdgipgsf5-c7u2e7Ox7rmKDp2AfU3tGiDTSLJdGc6aQrF4AgEy41GnITR4g1Y1JGRMRk-EYmebhp1iSqMSkkTThAzIoQBfrhBoViNREvkq5iEDrItR8LOMgyk0ATWpIvFZN2bwh5sjs6VwMG5pmjjNUa-bUOiTbqMtOFmm1bUO5mGbOSzNmEh1r7msfiQk5jIarVMVRzhTTQW6G5BlaQtbcUe2CQzYB2JP4sNmH17ywEkitUWDuzlQsqyr7-OXsGkJfj3tCr5yQKUHDSrj7EjAmpOzqSW70JCFAqF73OtptOytV9teV4MnWlq_uft51459iPl6hyyXKROMU2fDiIXnYmH43s2GKe-o4GJKk5xS9qe_3FBffLLO5D_sPWETgxaPOf66l3Uf_H8hjcisAMGrTkMINMqgXS_0EwGQtn7oI8QfyKHef
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgBFQi6eZhJ-ltKVQFlVJBF5UDimzHLhVLsmqyQnDgh_BrmXG8EYEilQPKJbLHznpmbM-sZz4T8iArJNidTHqGa-nFqYk8iWFiKtGGaVCoyIb8v9rjO5P45SE7XCIfFrkwjoPgI06r2p7k40tV6g3HyQ3EK2pPT33oKFi08GdA5CMSYRDyhxZxCP8ZazAB6RxZ5gxM9QFZnuztj9-3J82hx8NR5NLp_tZTb7uyqP7d2j3AX3aaYfpnfOX5eTkTX7-I6fSXzWv7Evm-GHYbs_LJnzfSV99-Q4T8b3y5TC46s5eO215WyJIur5AVt7DU9LFDv16_Sn48290VEnbsrYNNOi7Lqo0VoE1VTSlG6R_RQusZbazFrU-ou_fiCCgoeAKgtvS4pK0xDKXgNlAMg611U1NMpqFCFpW9yoyq9kqLApp-dtDdtAZdq59QBQ2oxd7dpPswMzB2_xqZbD8_2Nrx3AUSngK3qvGMEFmsWSGN5kwhdr4AezblUmcRN0WIyDsmY0zETEYjBL6HR7E0VanJYmmi62RQAvtWCTUqFJmJA5VxEaejWESaj2QSxoUJoUgNibfQk3zW4oTk9rAwAf-q5XGOksidJIbkKSpTR4so37YARJs7kebMpDrRPNAB4iRyGA1XmUrigimmw8IMyV1UxbxNme3WqnwMVlgaRGkEn7lvKRDpo8RQoiMxr-v8xet3ZyB6-6ZH9MgRmQokrIRL34Axoeb1KNd6lLBeqV71Kqrugit1DgzJwMsFpkLLxWQ6vfpeV42dYnhgqas50sSjDMH5kiG50c69jrNRhi5-Eg5J2puVPdb3a8rjjxZoPQB3CPY0-LDfTeAzSffmvza4RS6EYC3bOKlojQyak7m-DdZuI--4NesnFEywwQ
  priority: 102
  providerName: Unpaywall
Title DLLabelsCT: Annotation tool using deep transfer learning to assist in creating new datasets from abdominal computed tomography scans, case study: Pancreas
URI https://www.ncbi.nlm.nih.gov/pubmed/39625972
https://www.proquest.com/docview/3139182804
https://www.proquest.com/docview/3140924857
https://pubmed.ncbi.nlm.nih.gov/PMC11614254
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0313126&type=printable
https://doaj.org/article/5f8e7e61e145406aa96c9c74d5c5e2df
http://dx.doi.org/10.1371/journal.pone.0313126
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO_Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrhVEMQgIkUjVfTjIJoa6sDLSVaqxTeYocxy6TSlKaVLB_hb-WO8eNiOikqVIe7HMj34d9F59_R8jLKE3A7_QTSzGZWF6oXCvBNDERSOVLUChXp_yfjtjxxPs89adbZF2z1TCw2BjaYT2pyXLe_f3z6j0Y_DtdtSGw14O6izyTXcQitB22TXZgr4qwmMOpV58rgHUzZi7QXTeysUFpHP96tW4t5nmxyRX9P6Py1ipb8KtffD7_Z7sa3iV3jJ9J-5Vi7JItmd0ju8aSC_rawE2_uU_-fDg54QlskYPzA9rPsrw6nKdlns8ppsXPaCrlgpbaxZVLagpNzICCgusNekIvM1p5n9AKfjrFvNNClgXF2yuUJ2mua4dRUdWQSGHoD4OVTQsQbvGWChhANdjtAR2DKmKy_AMyGR6dD44tU7HBEhDHlJbiPPKknyZKMl8gWD0HBzJkiYxcplIHoW5U5Pvc8xO3h0jz8BN-GIpQRV6i3IeklYEs9ghVwuGR8mwRMe6FPY-7kvWSwPFS5UCTaBNrLaZ4UQFzxPp0LoCApuJxjGKNjVjb5BBlWdMirLZuyJez2Fhp7KtQBpLZ0kZgQgazYSISgZf6wpdOqtrkGWpCXN1RrReHuA9uT2hDsA-veaEpEFojw9ydGV8VRfzpy8UNiL6eNYheGSKVg4QFN_clYE4I2dWg3G9QwgIhGt17qLdrrhQxMCSCsBKYCiPXury5-3ndjX-K-XiZzFdIA8aFaHhBmzyqVL_mrBthTB04bRI2jKLB-mZPdvldI5vbEH_AJgIv7tb2cyPpPr5-jk_IbQccUZ2C5O6TVrlcyafgSJZJh2wH0wCe4cDG5_Bjh-wcHo3GZx39aaaj1w5om4zG_W9_ARlKe_Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGeRgviPFvhcEMAgES6Zo4cZJJCJWNaWXdQNChvgXHscukkoQm1bSvwofgM3LnpGERE9rL1Df7ksi-8_l39fl3hDwLkxhwpxdbmqvYcgPNrBjTxKSvtKfAoJhJ-T884vvH7oeJN1khv5d3YTCtcukTjaNOMon_kW8xgCqAhYO--zb_aWHVKDxdXZbQqMziQJ2dQshWvBnugn6fO87e-_HOvlVXFbAkYO3S0kKErvKSWCvuSSRUFwByAh6rkHGdOEjHokPPE64Xsz6yocNPekEgAx26sWbw3mvkusvAl8D68SdNgAe-g_P6eh7z7a3aGnp5lqoeciTaSOFwbvszVQKavaCTz7LiIqD7b77m6iLNxdmpmM3ObYZ7t8jNGsXSQWV2a2RFpbfJWu0nCvqyJrN-dYf82h2NRAwb8M54mw7SNKuO_mmZZTOKSfdTmiiV09IAaDWndRmLKUhQAPZghfQkpRW2hVaIAihmtRaqLCjejaEiTjJTmYzKqkJFAo_-qJm4aQGmU7ymEh6ghkp3m34CQ8dU_Lvk-Eo0d490UtDFOqFaOiLUri1DLlywKcEU78e-4ybagSbZJdZSTVFe0X5E5uzPh3CpmuMI1RrVau2Sd6jLRhZJu01DNp9GtQ-IPB0oX3Fb2Uh7yGE0XIbSdxNPespJdJdsoiVE1Q3YxvVEAwBVgc0CBp95aiSQuCPFzKCpWBRFNPz49RJCXz63hF7UQjoDDUtR38aAMSEhWEtyoyUJ7ke2utfRbpezUkR_Fyo8ubTli7ufNN34Usz2S1W2QBm3HyLXnt8l9yvTb2aWhRix-06XBK1F0Zr6dk968t3wptsQ3cAWBR_uNevnUtp98P-BbJLV_fHhKBoNjw4ekhsOwF6T8MQ2SKecL9QjgK1l_Nj4Ckq-XbVz-gNeJq1I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELZGkYAviPG2wmAGgQCJtE2c10kIlZVqZWVMsKF-C45jl0klCU2qaX-Fn8Kv4y5xwiImtC9Tv9nnRPadz8815-cIeRbEEeBOJzKUKyPD9hUzIkwTE55UjgSDYmXK_8d9d_fI_jBzZmvkd30XBtMqa59YOuo4FfgfeZ8BVAEs7A_svtJpEQej8dvsp4EVpPBLa11OozKRPXl6AuFb_mYyAl0_t6zx-8OdXUNXGDAE4O7CUJwHtnTiSEnXEUiuzgHw-G4kA-aq2EJqFhU4DrediA2QGR1-wvF94avAjhSD514hVz3GAkwn9GZNsAd-xHX1VT3mmX1tGb0sTWQP-RJNpHM4cxSWFQOac6GTLdL8PND7b-7m9VWS8dMTvlicORjHt8hNjWjpsDLBdbImk9tkXfuMnL7UxNav7pBfo-mUR3AY7xxu02GSpFUaAC3SdEExAX9OYykzWpRgWi6pLmkxBwkKIB8skh4ntMK50AoRAcUM11wWOcV7MpRHcVpWKaOiqlYRw9AfmpWb5mBG-WsqYAAtaXW36QEYPabl3yVHl6K5e6STgC42CFXC4oGyTRG43Ab74ky6g8iz7FhZ0CS6xKjVFGYVBUhYfgf0IHSq1jhEtYZarV3yDnXZyCKBd9mQLueh9geho3zpSdeUJlIgujAbVwTCs2NHONKKVZdsoSWE1W3Yxg2FQwBYvsl8Bq95WkogiUeC22HOV3keTj59vYDQl88toRdaSKWgYcH1zQyYE5KDtSQ3W5LgikSrewPttl6VPPy7aWFkbcvndz9puvGhmPmXyHSFMvYgQN49r0vuV6bfrCwLMHr3rC7xW5uitfTtnuT4e8mhbkKkA8cVvLjX7J8LaffB_yeyRa6BWwqnk_29h-SGBQi4zH1im6RTLFfyESDYInpcugpKvl22b_oDsiCxiw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgBFQi6eZhJ-ltKVQFlVJBF5UDimzHLhVLsmqyQnDgh_BrmXG8EYEilQPKJbLHznpmbM-sZz4T8iArJNidTHqGa-nFqYk8iWFiKtGGaVCoyIb8v9rjO5P45SE7XCIfFrkwjoPgI06r2p7k40tV6g3HyQ3EK2pPT33oKFi08GdA5CMSYRDyhxZxCP8ZazAB6RxZ5gxM9QFZnuztj9-3J82hx8NR5NLp_tZTb7uyqP7d2j3AX3aaYfpnfOX5eTkTX7-I6fSXzWv7Evm-GHYbs_LJnzfSV99-Q4T8b3y5TC46s5eO215WyJIur5AVt7DU9LFDv16_Sn48290VEnbsrYNNOi7Lqo0VoE1VTSlG6R_RQusZbazFrU-ou_fiCCgoeAKgtvS4pK0xDKXgNlAMg611U1NMpqFCFpW9yoyq9kqLApp-dtDdtAZdq59QBQ2oxd7dpPswMzB2_xqZbD8_2Nrx3AUSngK3qvGMEFmsWSGN5kwhdr4AezblUmcRN0WIyDsmY0zETEYjBL6HR7E0VanJYmmi62RQAvtWCTUqFJmJA5VxEaejWESaj2QSxoUJoUgNibfQk3zW4oTk9rAwAf-q5XGOksidJIbkKSpTR4so37YARJs7kebMpDrRPNAB4iRyGA1XmUrigimmw8IMyV1UxbxNme3WqnwMVlgaRGkEn7lvKRDpo8RQoiMxr-v8xet3ZyB6-6ZH9MgRmQokrIRL34Axoeb1KNd6lLBeqV71Kqrugit1DgzJwMsFpkLLxWQ6vfpeV42dYnhgqas50sSjDMH5kiG50c69jrNRhi5-Eg5J2puVPdb3a8rjjxZoPQB3CPY0-LDfTeAzSffmvza4RS6EYC3bOKlojQyak7m-DdZuI--4NesnFEywwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DLLabelsCT%3A+Annotation+tool+using+deep+transfer+learning+to+assist+in+creating+new+datasets+from+abdominal+computed+tomography+scans%2C+case+study%3A+Pancreas&rft.jtitle=PloS+one&rft.au=Mustonen%2C+Henrik&rft.au=Isosalo%2C+Antti&rft.au=Nortunen%2C+Minna&rft.au=Nevalainen%2C+Mika&rft.date=2024-12-03&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pone.0313126&rft.externalDocID=3139182804
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon