A Wild Horse Optimization algorithm with chaotic inertia weights and its application in linear antenna array synthesis

Antennas play a crucial role in designing an efficient communication system. However, reducing the maximum sidelobe level (SLL) of the beam pattern is a crucial challenge in antenna arrays. Pattern synthesis in smart antennas is a major area of research because of its widespread application across v...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 7; p. e0304971
Main Authors Zhao, WanRu, Liu, Yan, Li, JianHui, Zhu, TianNing, Zhao, KunXia, Hu, Kui
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 05.07.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0304971

Cover

More Information
Summary:Antennas play a crucial role in designing an efficient communication system. However, reducing the maximum sidelobe level (SLL) of the beam pattern is a crucial challenge in antenna arrays. Pattern synthesis in smart antennas is a major area of research because of its widespread application across various radar and communication systems. This paper presents an effective technique to minimize the SLL and thus improve the radiation pattern of the linear antenna array (LAA) using the chaotic inertia-weighted Wild Horse optimization (IERWHO) algorithm. The wild horse optimizer (WHO) is a new metaheuristic algorithm based on the social behavior of wild horses. The IERWHO algorithm is an improved Wild Horse optimization (WHO) algorithm that combines the concepts of chaotic sequence factor, nonlinear factor, and inertia weights factor. In this paper, the method is applied for the first time in antenna array synthesis by optimizing parameters such as inter-element spacing and excitation to minimize the SLL while keeping other constraints within the boundary limits, while ensuring that the performance is not affected. For performance evaluation, the simulation tests include 12 benchmark test functions and 12 test functions to verify the effectiveness of the improvement strategies. According to the encouraging research results in this paper, the IERWHO algorithm proposed has a place in the field of optimization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0304971